/*
* Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @bug 8078262
* @summary Tests correct dominator information after loop peeling.
* @run main/othervm -Xcomp -XX:CompileCommand=compileonly,TestLoopPeeling::test* TestLoopPeeling
*/
public class TestLoopPeeling {
public int[] array = new int[100];
public static void main(String args[]) {
TestLoopPeeling test = new TestLoopPeeling();
try {
test.testArrayAccess(0, 1);
test.testArrayAllocation(0, 1);
} catch (Exception e) {
// Ignore exceptions
}
}
public void testArrayAccess(int index, int inc) {
int storeIndex = -1;
for (; index < 10; index += inc) {
// This loop invariant check triggers loop peeling because it can
// be moved out of the loop (see 'IdealLoopTree::policy_peeling').
if (inc == 42) return;
// This loop variant usage of LShiftL( ConvI2L( Phi(storeIndex) ) )
// prevents the split if optimization that would otherwise clone the
// LShiftL and ConvI2L nodes and assign them to their corresponding array
// address computation (see 'PhaseIdealLoop::split_if_with_blocks_post').
if (storeIndex > 0 && array[storeIndex] == 42) return;
if (index == 42) {
// This store and the corresponding range check are moved out of the
// loop and both used after old loop and the peeled iteration exit.
// For the peeled iteration, storeIndex is always -1 and the ConvI2L
// is replaced by TOP. However, the range check is not folded because
// we don't do the split if optimization in PhaseIdealLoop2.
// As a result, we have a (dead) control path from the peeled iteration
// to the StoreI but the data path is removed.
array[storeIndex] = 1;
return;
}
storeIndex++;
}
}
public byte[] testArrayAllocation(int index, int inc) {
int allocationCount = -1;
byte[] result;
for (; index < 10; index += inc) {
// This loop invariant check triggers loop peeling because it can
// be moved out of the loop (see 'IdealLoopTree::policy_peeling').
if (inc == 42) return null;
if (index == 42) {
// This allocation and the corresponding size check are moved out of the
// loop and both used after old loop and the peeled iteration exit.
// For the peeled iteration, allocationCount is always -1 and the ConvI2L
// is replaced by TOP. However, the size check is not folded because
// we don't do the split if optimization in PhaseIdealLoop2.
// As a result, we have a (dead) control path from the peeled iteration
// to the allocation but the data path is removed.
result = new byte[allocationCount];
return result;
}
allocationCount++;
}
return null;
}
}