8173147: [ctw] fails during compilation of sun.security.krb5.internal.crypto.RsaMd5DesCksumType::calculateKeyedChecksum with " graph should be schedulable"
Summary: Loads generated at uncommon trap from eliminated arraycopy have incorrect memory state
Reviewed-by: thartmann
/* * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */#ifndef SHARE_VM_OPTO_MULNODE_HPP#define SHARE_VM_OPTO_MULNODE_HPP#include "opto/node.hpp"#include "opto/opcodes.hpp"#include "opto/type.hpp"// Portions of code courtesy of Clifford Clickclass PhaseTransform;//------------------------------MulNode----------------------------------------// Classic MULTIPLY functionality. This covers all the usual 'multiply'// behaviors for an algebraic ring. Multiply-integer, multiply-float,// multiply-double, and binary-and are all inherited from this class. The// various identity values are supplied by virtual functions.class MulNode : public Node { virtual uint hash() const;public: MulNode( Node *in1, Node *in2 ): Node(0,in1,in2) { init_class_id(Class_Mul); } // Handle algebraic identities here. If we have an identity, return the Node // we are equivalent to. We look for "add of zero" as an identity. virtual Node* Identity(PhaseGVN* phase); // We also canonicalize the Node, moving constants to the right input, // and flatten expressions (so that 1+x+2 becomes x+3). virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); // Compute a new Type for this node. Basically we just do the pre-check, // then call the virtual add() to set the type. virtual const Type* Value(PhaseGVN* phase) const; // Supplied function returns the product of the inputs. // This also type-checks the inputs for sanity. Guaranteed never to // be passed a TOP or BOTTOM type, these are filtered out by a pre-check. // This call recognizes the multiplicative zero type. virtual const Type *mul_ring( const Type *, const Type * ) const = 0; // Supplied function to return the multiplicative identity type virtual const Type *mul_id() const = 0; // Supplied function to return the additive identity type virtual const Type *add_id() const = 0; // Supplied function to return the additive opcode virtual int add_opcode() const = 0; // Supplied function to return the multiplicative opcode virtual int mul_opcode() const = 0;};//------------------------------MulINode---------------------------------------// Multiply 2 integersclass MulINode : public MulNode {public: MulINode( Node *in1, Node *in2 ) : MulNode(in1,in2) {} virtual int Opcode() const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *mul_ring( const Type *, const Type * ) const; const Type *mul_id() const { return TypeInt::ONE; } const Type *add_id() const { return TypeInt::ZERO; } int add_opcode() const { return Op_AddI; } int mul_opcode() const { return Op_MulI; } const Type *bottom_type() const { return TypeInt::INT; } virtual uint ideal_reg() const { return Op_RegI; }};//------------------------------MulLNode---------------------------------------// Multiply 2 longsclass MulLNode : public MulNode {public: MulLNode( Node *in1, Node *in2 ) : MulNode(in1,in2) {} virtual int Opcode() const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *mul_ring( const Type *, const Type * ) const; const Type *mul_id() const { return TypeLong::ONE; } const Type *add_id() const { return TypeLong::ZERO; } int add_opcode() const { return Op_AddL; } int mul_opcode() const { return Op_MulL; } const Type *bottom_type() const { return TypeLong::LONG; } virtual uint ideal_reg() const { return Op_RegL; }};//------------------------------MulFNode---------------------------------------// Multiply 2 floatsclass MulFNode : public MulNode {public: MulFNode( Node *in1, Node *in2 ) : MulNode(in1,in2) {} virtual int Opcode() const; virtual const Type *mul_ring( const Type *, const Type * ) const; const Type *mul_id() const { return TypeF::ONE; } const Type *add_id() const { return TypeF::ZERO; } int add_opcode() const { return Op_AddF; } int mul_opcode() const { return Op_MulF; } const Type *bottom_type() const { return Type::FLOAT; } virtual uint ideal_reg() const { return Op_RegF; }};//------------------------------MulDNode---------------------------------------// Multiply 2 doublesclass MulDNode : public MulNode {public: MulDNode( Node *in1, Node *in2 ) : MulNode(in1,in2) {} virtual int Opcode() const; virtual const Type *mul_ring( const Type *, const Type * ) const; const Type *mul_id() const { return TypeD::ONE; } const Type *add_id() const { return TypeD::ZERO; } int add_opcode() const { return Op_AddD; } int mul_opcode() const { return Op_MulD; } const Type *bottom_type() const { return Type::DOUBLE; } virtual uint ideal_reg() const { return Op_RegD; }};//-------------------------------MulHiLNode------------------------------------// Upper 64 bits of a 64 bit by 64 bit multiplyclass MulHiLNode : public Node {public: MulHiLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {} virtual int Opcode() const; virtual const Type* Value(PhaseGVN* phase) const; const Type *bottom_type() const { return TypeLong::LONG; } virtual uint ideal_reg() const { return Op_RegL; }};//------------------------------AndINode---------------------------------------// Logically AND 2 integers. Included with the MUL nodes because it inherits// all the behavior of multiplication on a ring.class AndINode : public MulINode {public: AndINode( Node *in1, Node *in2 ) : MulINode(in1,in2) {} virtual int Opcode() const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual Node* Identity(PhaseGVN* phase); virtual const Type *mul_ring( const Type *, const Type * ) const; const Type *mul_id() const { return TypeInt::MINUS_1; } const Type *add_id() const { return TypeInt::ZERO; } int add_opcode() const { return Op_OrI; } int mul_opcode() const { return Op_AndI; } virtual uint ideal_reg() const { return Op_RegI; }};//------------------------------AndINode---------------------------------------// Logically AND 2 longs. Included with the MUL nodes because it inherits// all the behavior of multiplication on a ring.class AndLNode : public MulLNode {public: AndLNode( Node *in1, Node *in2 ) : MulLNode(in1,in2) {} virtual int Opcode() const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual Node* Identity(PhaseGVN* phase); virtual const Type *mul_ring( const Type *, const Type * ) const; const Type *mul_id() const { return TypeLong::MINUS_1; } const Type *add_id() const { return TypeLong::ZERO; } int add_opcode() const { return Op_OrL; } int mul_opcode() const { return Op_AndL; } virtual uint ideal_reg() const { return Op_RegL; }};//------------------------------LShiftINode------------------------------------// Logical shift leftclass LShiftINode : public Node {public: LShiftINode( Node *in1, Node *in2 ) : Node(0,in1,in2) {} virtual int Opcode() const; virtual Node* Identity(PhaseGVN* phase); virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type* Value(PhaseGVN* phase) const; const Type *bottom_type() const { return TypeInt::INT; } virtual uint ideal_reg() const { return Op_RegI; }};//------------------------------LShiftLNode------------------------------------// Logical shift leftclass LShiftLNode : public Node {public: LShiftLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {} virtual int Opcode() const; virtual Node* Identity(PhaseGVN* phase); virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type* Value(PhaseGVN* phase) const; const Type *bottom_type() const { return TypeLong::LONG; } virtual uint ideal_reg() const { return Op_RegL; }};//------------------------------RShiftINode------------------------------------// Signed shift rightclass RShiftINode : public Node {public: RShiftINode( Node *in1, Node *in2 ) : Node(0,in1,in2) {} virtual int Opcode() const; virtual Node* Identity(PhaseGVN* phase); virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type* Value(PhaseGVN* phase) const; const Type *bottom_type() const { return TypeInt::INT; } virtual uint ideal_reg() const { return Op_RegI; }};//------------------------------RShiftLNode------------------------------------// Signed shift rightclass RShiftLNode : public Node {public: RShiftLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {} virtual int Opcode() const; virtual Node* Identity(PhaseGVN* phase); virtual const Type* Value(PhaseGVN* phase) const; const Type *bottom_type() const { return TypeLong::LONG; } virtual uint ideal_reg() const { return Op_RegL; }};//------------------------------URShiftINode-----------------------------------// Logical shift rightclass URShiftINode : public Node {public: URShiftINode( Node *in1, Node *in2 ) : Node(0,in1,in2) {} virtual int Opcode() const; virtual Node* Identity(PhaseGVN* phase); virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type* Value(PhaseGVN* phase) const; const Type *bottom_type() const { return TypeInt::INT; } virtual uint ideal_reg() const { return Op_RegI; }};//------------------------------URShiftLNode-----------------------------------// Logical shift rightclass URShiftLNode : public Node {public: URShiftLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {} virtual int Opcode() const; virtual Node* Identity(PhaseGVN* phase); virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type* Value(PhaseGVN* phase) const; const Type *bottom_type() const { return TypeLong::LONG; } virtual uint ideal_reg() const { return Op_RegL; }};//------------------------------FmaDNode--------------------------------------// fused-multiply-add doubleclass FmaDNode : public Node {public: FmaDNode(Node *c, Node *in1, Node *in2, Node *in3) : Node(c, in1, in2, in3) {} virtual int Opcode() const; const Type *bottom_type() const { return Type::DOUBLE; } virtual uint ideal_reg() const { return Op_RegD; } virtual const Type* Value(PhaseGVN* phase) const;};//------------------------------FmaFNode--------------------------------------// fused-multiply-add floatclass FmaFNode : public Node {public: FmaFNode(Node *c, Node *in1, Node *in2, Node *in3) : Node(c, in1, in2, in3) {} virtual int Opcode() const; const Type *bottom_type() const { return Type::FLOAT; } virtual uint ideal_reg() const { return Op_RegF; } virtual const Type* Value(PhaseGVN* phase) const;};#endif // SHARE_VM_OPTO_MULNODE_HPP