/*
* Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "memory/metaspace/chunkManager.hpp"
#include "memory/metaspace/metachunk.hpp"
#include "memory/metaspace/metaDebug.hpp"
#include "memory/metaspace/metaspaceCommon.hpp"
#include "memory/metaspace/spaceManager.hpp"
#include "memory/metaspace/virtualSpaceList.hpp"
#include "runtime/atomic.hpp"
#include "runtime/init.hpp"
#include "services/memoryService.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
namespace metaspace {
#define assert_counter(expected_value, real_value, msg) \
assert( (expected_value) == (real_value), \
"Counter mismatch (%s): expected " SIZE_FORMAT \
", but got: " SIZE_FORMAT ".", msg, expected_value, \
real_value);
// SpaceManager methods
size_t SpaceManager::adjust_initial_chunk_size(size_t requested, bool is_class_space) {
size_t chunk_sizes[] = {
specialized_chunk_size(is_class_space),
small_chunk_size(is_class_space),
medium_chunk_size(is_class_space)
};
// Adjust up to one of the fixed chunk sizes ...
for (size_t i = 0; i < ARRAY_SIZE(chunk_sizes); i++) {
if (requested <= chunk_sizes[i]) {
return chunk_sizes[i];
}
}
// ... or return the size as a humongous chunk.
return requested;
}
size_t SpaceManager::adjust_initial_chunk_size(size_t requested) const {
return adjust_initial_chunk_size(requested, is_class());
}
size_t SpaceManager::get_initial_chunk_size(Metaspace::MetaspaceType type) const {
size_t requested;
if (is_class()) {
switch (type) {
case Metaspace::BootMetaspaceType: requested = Metaspace::first_class_chunk_word_size(); break;
case Metaspace::UnsafeAnonymousMetaspaceType: requested = ClassSpecializedChunk; break;
case Metaspace::ReflectionMetaspaceType: requested = ClassSpecializedChunk; break;
default: requested = ClassSmallChunk; break;
}
} else {
switch (type) {
case Metaspace::BootMetaspaceType: requested = Metaspace::first_chunk_word_size(); break;
case Metaspace::UnsafeAnonymousMetaspaceType: requested = SpecializedChunk; break;
case Metaspace::ReflectionMetaspaceType: requested = SpecializedChunk; break;
default: requested = SmallChunk; break;
}
}
// Adjust to one of the fixed chunk sizes (unless humongous)
const size_t adjusted = adjust_initial_chunk_size(requested);
assert(adjusted != 0, "Incorrect initial chunk size. Requested: "
SIZE_FORMAT " adjusted: " SIZE_FORMAT, requested, adjusted);
return adjusted;
}
void SpaceManager::locked_print_chunks_in_use_on(outputStream* st) const {
for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
st->print("SpaceManager: " UINTX_FORMAT " %s chunks.",
num_chunks_by_type(i), chunk_size_name(i));
}
chunk_manager()->locked_print_free_chunks(st);
}
size_t SpaceManager::calc_chunk_size(size_t word_size) {
// Decide between a small chunk and a medium chunk. Up to
// _small_chunk_limit small chunks can be allocated.
// After that a medium chunk is preferred.
size_t chunk_word_size;
// Special case for unsafe anonymous metadata space.
// UnsafeAnonymous metadata space is usually small since it is used for
// class loader data's whose life cycle is governed by one class such as an
// unsafe anonymous class. The majority within 1K - 2K range and
// rarely about 4K (64-bits JVM).
// Instead of jumping to SmallChunk after initial chunk exhausted, keeping allocation
// from SpecializeChunk up to _anon_or_delegating_metadata_specialize_chunk_limit (4)
// reduces space waste from 60+% to around 30%.
if ((_space_type == Metaspace::UnsafeAnonymousMetaspaceType || _space_type == Metaspace::ReflectionMetaspaceType) &&
_mdtype == Metaspace::NonClassType &&
num_chunks_by_type(SpecializedIndex) < anon_and_delegating_metadata_specialize_chunk_limit &&
word_size + Metachunk::overhead() <= SpecializedChunk) {
return SpecializedChunk;
}
if (num_chunks_by_type(MediumIndex) == 0 &&
num_chunks_by_type(SmallIndex) < small_chunk_limit) {
chunk_word_size = (size_t) small_chunk_size();
if (word_size + Metachunk::overhead() > small_chunk_size()) {
chunk_word_size = medium_chunk_size();
}
} else {
chunk_word_size = medium_chunk_size();
}
// Might still need a humongous chunk. Enforce
// humongous allocations sizes to be aligned up to
// the smallest chunk size.
size_t if_humongous_sized_chunk =
align_up(word_size + Metachunk::overhead(),
smallest_chunk_size());
chunk_word_size =
MAX2((size_t) chunk_word_size, if_humongous_sized_chunk);
assert(!SpaceManager::is_humongous(word_size) ||
chunk_word_size == if_humongous_sized_chunk,
"Size calculation is wrong, word_size " SIZE_FORMAT
" chunk_word_size " SIZE_FORMAT,
word_size, chunk_word_size);
Log(gc, metaspace, alloc) log;
if (log.is_trace() && SpaceManager::is_humongous(word_size)) {
log.trace("Metadata humongous allocation:");
log.trace(" word_size " PTR_FORMAT, word_size);
log.trace(" chunk_word_size " PTR_FORMAT, chunk_word_size);
log.trace(" chunk overhead " PTR_FORMAT, Metachunk::overhead());
}
return chunk_word_size;
}
void SpaceManager::track_metaspace_memory_usage() {
if (is_init_completed()) {
if (is_class()) {
MemoryService::track_compressed_class_memory_usage();
}
MemoryService::track_metaspace_memory_usage();
}
}
MetaWord* SpaceManager::grow_and_allocate(size_t word_size) {
assert_lock_strong(_lock);
assert(vs_list()->current_virtual_space() != NULL,
"Should have been set");
assert(current_chunk() == NULL ||
current_chunk()->allocate(word_size) == NULL,
"Don't need to expand");
MutexLocker cl(MetaspaceExpand_lock, Mutex::_no_safepoint_check_flag);
if (log_is_enabled(Trace, gc, metaspace, freelist)) {
size_t words_left = 0;
size_t words_used = 0;
if (current_chunk() != NULL) {
words_left = current_chunk()->free_word_size();
words_used = current_chunk()->used_word_size();
}
log_trace(gc, metaspace, freelist)("SpaceManager::grow_and_allocate for " SIZE_FORMAT " words " SIZE_FORMAT " words used " SIZE_FORMAT " words left",
word_size, words_used, words_left);
}
// Get another chunk
size_t chunk_word_size = calc_chunk_size(word_size);
Metachunk* next = get_new_chunk(chunk_word_size);
MetaWord* mem = NULL;
// If a chunk was available, add it to the in-use chunk list
// and do an allocation from it.
if (next != NULL) {
// Add to this manager's list of chunks in use.
// If the new chunk is humongous, it was created to serve a single large allocation. In that
// case it usually makes no sense to make it the current chunk, since the next allocation would
// need to allocate a new chunk anyway, while we would now prematurely retire a perfectly
// good chunk which could be used for more normal allocations.
bool make_current = true;
if (next->get_chunk_type() == HumongousIndex &&
current_chunk() != NULL) {
make_current = false;
}
add_chunk(next, make_current);
mem = next->allocate(word_size);
}
// Track metaspace memory usage statistic.
track_metaspace_memory_usage();
return mem;
}
void SpaceManager::print_on(outputStream* st) const {
SpaceManagerStatistics stat;
add_to_statistics(&stat); // will lock _lock.
stat.print_on(st, 1*K, false);
}
SpaceManager::SpaceManager(Metaspace::MetadataType mdtype,
Metaspace::MetaspaceType space_type,//
Mutex* lock) :
_lock(lock),
_mdtype(mdtype),
_space_type(space_type),
_chunk_list(NULL),
_current_chunk(NULL),
_overhead_words(0),
_capacity_words(0),
_used_words(0),
_block_freelists(NULL) {
Metadebug::init_allocation_fail_alot_count();
memset(_num_chunks_by_type, 0, sizeof(_num_chunks_by_type));
log_trace(gc, metaspace, freelist)("SpaceManager(): " PTR_FORMAT, p2i(this));
}
void SpaceManager::account_for_new_chunk(const Metachunk* new_chunk) {
assert_lock_strong(MetaspaceExpand_lock);
_capacity_words += new_chunk->word_size();
_overhead_words += Metachunk::overhead();
DEBUG_ONLY(new_chunk->verify());
_num_chunks_by_type[new_chunk->get_chunk_type()] ++;
// Adjust global counters:
MetaspaceUtils::inc_capacity(mdtype(), new_chunk->word_size());
MetaspaceUtils::inc_overhead(mdtype(), Metachunk::overhead());
}
void SpaceManager::account_for_allocation(size_t words) {
// Note: we should be locked with the ClassloaderData-specific metaspace lock.
// We may or may not be locked with the global metaspace expansion lock.
assert_lock_strong(lock());
// Add to the per SpaceManager totals. This can be done non-atomically.
_used_words += words;
// Adjust global counters. This will be done atomically.
MetaspaceUtils::inc_used(mdtype(), words);
}
void SpaceManager::account_for_spacemanager_death() {
assert_lock_strong(MetaspaceExpand_lock);
MetaspaceUtils::dec_capacity(mdtype(), _capacity_words);
MetaspaceUtils::dec_overhead(mdtype(), _overhead_words);
MetaspaceUtils::dec_used(mdtype(), _used_words);
}
SpaceManager::~SpaceManager() {
// This call this->_lock which can't be done while holding MetaspaceExpand_lock
DEBUG_ONLY(verify_metrics());
MutexLocker fcl(MetaspaceExpand_lock, Mutex::_no_safepoint_check_flag);
account_for_spacemanager_death();
Log(gc, metaspace, freelist) log;
if (log.is_trace()) {
log.trace("~SpaceManager(): " PTR_FORMAT, p2i(this));
ResourceMark rm;
LogStream ls(log.trace());
locked_print_chunks_in_use_on(&ls);
if (block_freelists() != NULL) {
block_freelists()->print_on(&ls);
}
}
// Add all the chunks in use by this space manager
// to the global list of free chunks.
// Follow each list of chunks-in-use and add them to the
// free lists. Each list is NULL terminated.
chunk_manager()->return_chunk_list(chunk_list());
#ifdef ASSERT
_chunk_list = NULL;
_current_chunk = NULL;
#endif
#ifdef ASSERT
EVERY_NTH(VerifyMetaspaceInterval)
chunk_manager()->locked_verify(true);
END_EVERY_NTH
#endif
if (_block_freelists != NULL) {
delete _block_freelists;
}
}
void SpaceManager::deallocate(MetaWord* p, size_t word_size) {
assert_lock_strong(lock());
// Allocations and deallocations are in raw_word_size
size_t raw_word_size = get_allocation_word_size(word_size);
// Lazily create a block_freelist
if (block_freelists() == NULL) {
_block_freelists = new BlockFreelist();
}
block_freelists()->return_block(p, raw_word_size);
DEBUG_ONLY(Atomic::inc(&(g_internal_statistics.num_deallocs)));
}
// Adds a chunk to the list of chunks in use.
void SpaceManager::add_chunk(Metachunk* new_chunk, bool make_current) {
assert_lock_strong(_lock);
assert(new_chunk != NULL, "Should not be NULL");
assert(new_chunk->next() == NULL, "Should not be on a list");
new_chunk->reset_empty();
// Find the correct list and and set the current
// chunk for that list.
ChunkIndex index = chunk_manager()->list_index(new_chunk->word_size());
if (make_current) {
// If we are to make the chunk current, retire the old current chunk and replace
// it with the new chunk.
retire_current_chunk();
set_current_chunk(new_chunk);
}
// Add the new chunk at the head of its respective chunk list.
new_chunk->set_next(_chunk_list);
_chunk_list = new_chunk;
// Adjust counters.
account_for_new_chunk(new_chunk);
assert(new_chunk->is_empty(), "Not ready for reuse");
Log(gc, metaspace, freelist) log;
if (log.is_trace()) {
log.trace("SpaceManager::added chunk: ");
ResourceMark rm;
LogStream ls(log.trace());
new_chunk->print_on(&ls);
chunk_manager()->locked_print_free_chunks(&ls);
}
}
void SpaceManager::retire_current_chunk() {
if (current_chunk() != NULL) {
size_t remaining_words = current_chunk()->free_word_size();
if (remaining_words >= SmallBlocks::small_block_min_size()) {
MetaWord* ptr = current_chunk()->allocate(remaining_words);
deallocate(ptr, remaining_words);
account_for_allocation(remaining_words);
}
}
}
Metachunk* SpaceManager::get_new_chunk(size_t chunk_word_size) {
// Get a chunk from the chunk freelist
Metachunk* next = chunk_manager()->chunk_freelist_allocate(chunk_word_size);
if (next == NULL) {
next = vs_list()->get_new_chunk(chunk_word_size,
medium_chunk_bunch());
}
Log(gc, metaspace, alloc) log;
if (log.is_trace() && next != NULL &&
SpaceManager::is_humongous(next->word_size())) {
log.trace(" new humongous chunk word size " PTR_FORMAT, next->word_size());
}
return next;
}
MetaWord* SpaceManager::allocate(size_t word_size) {
MutexLocker cl(lock(), Mutex::_no_safepoint_check_flag);
size_t raw_word_size = get_allocation_word_size(word_size);
BlockFreelist* fl = block_freelists();
MetaWord* p = NULL;
// Allocation from the dictionary is expensive in the sense that
// the dictionary has to be searched for a size. Don't allocate
// from the dictionary until it starts to get fat. Is this
// a reasonable policy? Maybe an skinny dictionary is fast enough
// for allocations. Do some profiling. JJJ
if (fl != NULL && fl->total_size() > allocation_from_dictionary_limit) {
p = fl->get_block(raw_word_size);
if (p != NULL) {
DEBUG_ONLY(Atomic::inc(&g_internal_statistics.num_allocs_from_deallocated_blocks));
}
}
if (p == NULL) {
p = allocate_work(raw_word_size);
}
#ifdef ASSERT
EVERY_NTH(VerifyMetaspaceInterval)
verify_metrics_locked();
END_EVERY_NTH
#endif
return p;
}
// Returns the address of spaced allocated for "word_size".
// This methods does not know about blocks (Metablocks)
MetaWord* SpaceManager::allocate_work(size_t word_size) {
assert_lock_strong(lock());
#ifdef ASSERT
if (Metadebug::test_metadata_failure()) {
return NULL;
}
#endif
// Is there space in the current chunk?
MetaWord* result = NULL;
if (current_chunk() != NULL) {
result = current_chunk()->allocate(word_size);
}
if (result == NULL) {
result = grow_and_allocate(word_size);
}
if (result != NULL) {
account_for_allocation(word_size);
}
return result;
}
void SpaceManager::verify() {
Metachunk* curr = chunk_list();
while (curr != NULL) {
DEBUG_ONLY(do_verify_chunk(curr);)
assert(curr->is_tagged_free() == false, "Chunk should be tagged as in use.");
curr = curr->next();
}
}
void SpaceManager::verify_chunk_size(Metachunk* chunk) {
assert(is_humongous(chunk->word_size()) ||
chunk->word_size() == medium_chunk_size() ||
chunk->word_size() == small_chunk_size() ||
chunk->word_size() == specialized_chunk_size(),
"Chunk size is wrong");
return;
}
void SpaceManager::add_to_statistics_locked(SpaceManagerStatistics* out) const {
assert_lock_strong(lock());
Metachunk* chunk = chunk_list();
while (chunk != NULL) {
UsedChunksStatistics& chunk_stat = out->chunk_stats(chunk->get_chunk_type());
chunk_stat.add_num(1);
chunk_stat.add_cap(chunk->word_size());
chunk_stat.add_overhead(Metachunk::overhead());
chunk_stat.add_used(chunk->used_word_size() - Metachunk::overhead());
if (chunk != current_chunk()) {
chunk_stat.add_waste(chunk->free_word_size());
} else {
chunk_stat.add_free(chunk->free_word_size());
}
chunk = chunk->next();
}
if (block_freelists() != NULL) {
out->add_free_blocks_info(block_freelists()->num_blocks(), block_freelists()->total_size());
}
}
void SpaceManager::add_to_statistics(SpaceManagerStatistics* out) const {
MutexLocker cl(lock(), Mutex::_no_safepoint_check_flag);
add_to_statistics_locked(out);
}
#ifdef ASSERT
void SpaceManager::verify_metrics_locked() const {
assert_lock_strong(lock());
SpaceManagerStatistics stat;
add_to_statistics_locked(&stat);
UsedChunksStatistics chunk_stats = stat.totals();
DEBUG_ONLY(chunk_stats.check_sanity());
assert_counter(_capacity_words, chunk_stats.cap(), "SpaceManager::_capacity_words");
assert_counter(_used_words, chunk_stats.used(), "SpaceManager::_used_words");
assert_counter(_overhead_words, chunk_stats.overhead(), "SpaceManager::_overhead_words");
}
void SpaceManager::verify_metrics() const {
MutexLocker cl(lock(), Mutex::_no_safepoint_check_flag);
verify_metrics_locked();
}
#endif // ASSERT
} // namespace metaspace