/*
* Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2018 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_MEMORY_METASPACE_OCCUPANCYMAP_HPP
#define SHARE_MEMORY_METASPACE_OCCUPANCYMAP_HPP
#include "memory/allocation.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
namespace metaspace {
class Metachunk;
// Helper for Occupancy Bitmap. A type trait to give an all-bits-are-one-unsigned constant.
template <typename T> struct all_ones { static const T value; };
template <> struct all_ones <uint64_t> { static const uint64_t value = 0xFFFFFFFFFFFFFFFFULL; };
template <> struct all_ones <uint32_t> { static const uint32_t value = 0xFFFFFFFF; };
// The OccupancyMap is a bitmap which, for a given VirtualSpaceNode,
// keeps information about
// - where a chunk starts
// - whether a chunk is in-use or free
// A bit in this bitmap represents one range of memory in the smallest
// chunk size (SpecializedChunk or ClassSpecializedChunk).
class OccupancyMap : public CHeapObj<mtInternal> {
// The address range this map covers.
const MetaWord* const _reference_address;
const size_t _word_size;
// The word size of a specialized chunk, aka the number of words one
// bit in this map represents.
const size_t _smallest_chunk_word_size;
// map data
// Data are organized in two bit layers:
// The first layer is the chunk-start-map. Here, a bit is set to mark
// the corresponding region as the head of a chunk.
// The second layer is the in-use-map. Here, a set bit indicates that
// the corresponding belongs to a chunk which is in use.
uint8_t* _map[2];
enum { layer_chunk_start_map = 0, layer_in_use_map = 1 };
// length, in bytes, of bitmap data
size_t _map_size;
// Returns true if bit at position pos at bit-layer layer is set.
bool get_bit_at_position(unsigned pos, unsigned layer) const {
assert(layer == 0 || layer == 1, "Invalid layer %d", layer);
const unsigned byteoffset = pos / 8;
assert(byteoffset < _map_size,
"invalid byte offset (%u), map size is " SIZE_FORMAT ".", byteoffset, _map_size);
const unsigned mask = 1 << (pos % 8);
return (_map[layer][byteoffset] & mask) > 0;
}
// Changes bit at position pos at bit-layer layer to value v.
void set_bit_at_position(unsigned pos, unsigned layer, bool v) {
assert(layer == 0 || layer == 1, "Invalid layer %d", layer);
const unsigned byteoffset = pos / 8;
assert(byteoffset < _map_size,
"invalid byte offset (%u), map size is " SIZE_FORMAT ".", byteoffset, _map_size);
const unsigned mask = 1 << (pos % 8);
if (v) {
_map[layer][byteoffset] |= mask;
} else {
_map[layer][byteoffset] &= ~mask;
}
}
// Optimized case of is_any_bit_set_in_region for 32/64bit aligned access:
// pos is 32/64 aligned and num_bits is 32/64.
// This is the typical case when coalescing to medium chunks, whose size is
// 32 or 64 times the specialized chunk size (depending on class or non class
// case), so they occupy 64 bits which should be 64bit aligned, because
// chunks are chunk-size aligned.
template <typename T>
bool is_any_bit_set_in_region_3264(unsigned pos, unsigned num_bits, unsigned layer) const {
assert(_map_size > 0, "not initialized");
assert(layer == 0 || layer == 1, "Invalid layer %d.", layer);
assert(pos % (sizeof(T) * 8) == 0, "Bit position must be aligned (%u).", pos);
assert(num_bits == (sizeof(T) * 8), "Number of bits incorrect (%u).", num_bits);
const size_t byteoffset = pos / 8;
assert(byteoffset <= (_map_size - sizeof(T)),
"Invalid byte offset (" SIZE_FORMAT "), map size is " SIZE_FORMAT ".", byteoffset, _map_size);
const T w = *(T*)(_map[layer] + byteoffset);
return w > 0 ? true : false;
}
// Returns true if any bit in region [pos1, pos1 + num_bits) is set in bit-layer layer.
bool is_any_bit_set_in_region(unsigned pos, unsigned num_bits, unsigned layer) const {
if (pos % 32 == 0 && num_bits == 32) {
return is_any_bit_set_in_region_3264<uint32_t>(pos, num_bits, layer);
} else if (pos % 64 == 0 && num_bits == 64) {
return is_any_bit_set_in_region_3264<uint64_t>(pos, num_bits, layer);
} else {
for (unsigned n = 0; n < num_bits; n ++) {
if (get_bit_at_position(pos + n, layer)) {
return true;
}
}
}
return false;
}
// Returns true if any bit in region [p, p+word_size) is set in bit-layer layer.
bool is_any_bit_set_in_region(MetaWord* p, size_t word_size, unsigned layer) const {
assert(word_size % _smallest_chunk_word_size == 0,
"Region size " SIZE_FORMAT " not a multiple of smallest chunk size.", word_size);
const unsigned pos = get_bitpos_for_address(p);
const unsigned num_bits = (unsigned) (word_size / _smallest_chunk_word_size);
return is_any_bit_set_in_region(pos, num_bits, layer);
}
// Optimized case of set_bits_of_region for 32/64bit aligned access:
// pos is 32/64 aligned and num_bits is 32/64.
// This is the typical case when coalescing to medium chunks, whose size
// is 32 or 64 times the specialized chunk size (depending on class or non
// class case), so they occupy 64 bits which should be 64bit aligned,
// because chunks are chunk-size aligned.
template <typename T>
void set_bits_of_region_T(unsigned pos, unsigned num_bits, unsigned layer, bool v) {
assert(pos % (sizeof(T) * 8) == 0, "Bit position must be aligned to %u (%u).",
(unsigned)(sizeof(T) * 8), pos);
assert(num_bits == (sizeof(T) * 8), "Number of bits incorrect (%u), expected %u.",
num_bits, (unsigned)(sizeof(T) * 8));
const size_t byteoffset = pos / 8;
assert(byteoffset <= (_map_size - sizeof(T)),
"invalid byte offset (" SIZE_FORMAT "), map size is " SIZE_FORMAT ".", byteoffset, _map_size);
T* const pw = (T*)(_map[layer] + byteoffset);
*pw = v ? all_ones<T>::value : (T) 0;
}
// Set all bits in a region starting at pos to a value.
void set_bits_of_region(unsigned pos, unsigned num_bits, unsigned layer, bool v) {
assert(_map_size > 0, "not initialized");
assert(layer == 0 || layer == 1, "Invalid layer %d.", layer);
if (pos % 32 == 0 && num_bits == 32) {
set_bits_of_region_T<uint32_t>(pos, num_bits, layer, v);
} else if (pos % 64 == 0 && num_bits == 64) {
set_bits_of_region_T<uint64_t>(pos, num_bits, layer, v);
} else {
for (unsigned n = 0; n < num_bits; n ++) {
set_bit_at_position(pos + n, layer, v);
}
}
}
// Helper: sets all bits in a region [p, p+word_size).
void set_bits_of_region(MetaWord* p, size_t word_size, unsigned layer, bool v) {
assert(word_size % _smallest_chunk_word_size == 0,
"Region size " SIZE_FORMAT " not a multiple of smallest chunk size.", word_size);
const unsigned pos = get_bitpos_for_address(p);
const unsigned num_bits = (unsigned) (word_size / _smallest_chunk_word_size);
set_bits_of_region(pos, num_bits, layer, v);
}
// Helper: given an address, return the bit position representing that address.
unsigned get_bitpos_for_address(const MetaWord* p) const {
assert(_reference_address != NULL, "not initialized");
assert(p >= _reference_address && p < _reference_address + _word_size,
"Address %p out of range for occupancy map [%p..%p).",
p, _reference_address, _reference_address + _word_size);
assert(is_aligned(p, _smallest_chunk_word_size * sizeof(MetaWord)),
"Address not aligned (%p).", p);
const ptrdiff_t d = (p - _reference_address) / _smallest_chunk_word_size;
assert(d >= 0 && (size_t)d < _map_size * 8, "Sanity.");
return (unsigned) d;
}
public:
OccupancyMap(const MetaWord* reference_address, size_t word_size, size_t smallest_chunk_word_size);
~OccupancyMap();
// Returns true if at address x a chunk is starting.
bool chunk_starts_at_address(MetaWord* p) const {
const unsigned pos = get_bitpos_for_address(p);
return get_bit_at_position(pos, layer_chunk_start_map);
}
void set_chunk_starts_at_address(MetaWord* p, bool v) {
const unsigned pos = get_bitpos_for_address(p);
set_bit_at_position(pos, layer_chunk_start_map, v);
}
// Removes all chunk-start-bits inside a region, typically as a
// result of a chunk merge.
void wipe_chunk_start_bits_in_region(MetaWord* p, size_t word_size) {
set_bits_of_region(p, word_size, layer_chunk_start_map, false);
}
// Returns true if there are life (in use) chunks in the region limited
// by [p, p+word_size).
bool is_region_in_use(MetaWord* p, size_t word_size) const {
return is_any_bit_set_in_region(p, word_size, layer_in_use_map);
}
// Marks the region starting at p with the size word_size as in use
// or free, depending on v.
void set_region_in_use(MetaWord* p, size_t word_size, bool v) {
set_bits_of_region(p, word_size, layer_in_use_map, v);
}
// Verify occupancy map for the address range [from, to).
// We need to tell it the address range, because the memory the
// occupancy map is covering may not be fully comitted yet.
DEBUG_ONLY(void verify(MetaWord* from, MetaWord* to);)
// Verify that a given chunk is correctly accounted for in the bitmap.
DEBUG_ONLY(void verify_for_chunk(Metachunk* chunk);)
};
} // namespace metaspace
#endif // SHARE_MEMORY_METASPACE_OCCUPANCYMAP_HPP