8231626: DeoptimizeRandom should not be a product flag
Summary: The DeoptimizeRandom flag is changed to develop since it has no effect in production.
Reviewed-by: neliasso, thartmann
/*
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "jvm.h"
#include "aot/aotLoader.hpp"
#include "classfile/stringTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/codeCache.hpp"
#include "code/compiledIC.hpp"
#include "code/icBuffer.hpp"
#include "code/compiledMethod.inline.hpp"
#include "code/scopeDesc.hpp"
#include "code/vtableStubs.hpp"
#include "compiler/abstractCompiler.hpp"
#include "compiler/compileBroker.hpp"
#include "compiler/disassembler.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/gcLocker.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "jfr/jfrEvents.hpp"
#include "logging/log.hpp"
#include "memory/metaspaceShared.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "oops/klass.hpp"
#include "oops/method.inline.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "prims/forte.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/methodHandles.hpp"
#include "prims/nativeLookup.hpp"
#include "runtime/arguments.hpp"
#include "runtime/atomic.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/compilationPolicy.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/init.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/java.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/vframe.inline.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/copy.hpp"
#include "utilities/dtrace.hpp"
#include "utilities/events.hpp"
#include "utilities/hashtable.inline.hpp"
#include "utilities/macros.hpp"
#include "utilities/xmlstream.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif
// Shared stub locations
RuntimeStub* SharedRuntime::_wrong_method_blob;
RuntimeStub* SharedRuntime::_wrong_method_abstract_blob;
RuntimeStub* SharedRuntime::_ic_miss_blob;
RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
RuntimeStub* SharedRuntime::_resolve_static_call_blob;
address SharedRuntime::_resolve_static_call_entry;
DeoptimizationBlob* SharedRuntime::_deopt_blob;
SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob;
SafepointBlob* SharedRuntime::_polling_page_return_handler_blob;
#ifdef COMPILER2
UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob;
#endif // COMPILER2
//----------------------------generate_stubs-----------------------------------
void SharedRuntime::generate_stubs() {
_wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub");
_wrong_method_abstract_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
_ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
_resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call");
_resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call");
_resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call");
_resolve_static_call_entry = _resolve_static_call_blob->entry_point();
#if COMPILER2_OR_JVMCI
// Vectors are generated only by C2 and JVMCI.
bool support_wide = is_wide_vector(MaxVectorSize);
if (support_wide) {
_polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
}
#endif // COMPILER2_OR_JVMCI
_polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
_polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
generate_deopt_blob();
#ifdef COMPILER2
generate_uncommon_trap_blob();
#endif // COMPILER2
}
#include <math.h>
// Implementation of SharedRuntime
#ifndef PRODUCT
// For statistics
int SharedRuntime::_ic_miss_ctr = 0;
int SharedRuntime::_wrong_method_ctr = 0;
int SharedRuntime::_resolve_static_ctr = 0;
int SharedRuntime::_resolve_virtual_ctr = 0;
int SharedRuntime::_resolve_opt_virtual_ctr = 0;
int SharedRuntime::_implicit_null_throws = 0;
int SharedRuntime::_implicit_div0_throws = 0;
int SharedRuntime::_throw_null_ctr = 0;
int SharedRuntime::_nof_normal_calls = 0;
int SharedRuntime::_nof_optimized_calls = 0;
int SharedRuntime::_nof_inlined_calls = 0;
int SharedRuntime::_nof_megamorphic_calls = 0;
int SharedRuntime::_nof_static_calls = 0;
int SharedRuntime::_nof_inlined_static_calls = 0;
int SharedRuntime::_nof_interface_calls = 0;
int SharedRuntime::_nof_optimized_interface_calls = 0;
int SharedRuntime::_nof_inlined_interface_calls = 0;
int SharedRuntime::_nof_megamorphic_interface_calls = 0;
int SharedRuntime::_nof_removable_exceptions = 0;
int SharedRuntime::_new_instance_ctr=0;
int SharedRuntime::_new_array_ctr=0;
int SharedRuntime::_multi1_ctr=0;
int SharedRuntime::_multi2_ctr=0;
int SharedRuntime::_multi3_ctr=0;
int SharedRuntime::_multi4_ctr=0;
int SharedRuntime::_multi5_ctr=0;
int SharedRuntime::_mon_enter_stub_ctr=0;
int SharedRuntime::_mon_exit_stub_ctr=0;
int SharedRuntime::_mon_enter_ctr=0;
int SharedRuntime::_mon_exit_ctr=0;
int SharedRuntime::_partial_subtype_ctr=0;
int SharedRuntime::_jbyte_array_copy_ctr=0;
int SharedRuntime::_jshort_array_copy_ctr=0;
int SharedRuntime::_jint_array_copy_ctr=0;
int SharedRuntime::_jlong_array_copy_ctr=0;
int SharedRuntime::_oop_array_copy_ctr=0;
int SharedRuntime::_checkcast_array_copy_ctr=0;
int SharedRuntime::_unsafe_array_copy_ctr=0;
int SharedRuntime::_generic_array_copy_ctr=0;
int SharedRuntime::_slow_array_copy_ctr=0;
int SharedRuntime::_find_handler_ctr=0;
int SharedRuntime::_rethrow_ctr=0;
int SharedRuntime::_ICmiss_index = 0;
int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
void SharedRuntime::trace_ic_miss(address at) {
for (int i = 0; i < _ICmiss_index; i++) {
if (_ICmiss_at[i] == at) {
_ICmiss_count[i]++;
return;
}
}
int index = _ICmiss_index++;
if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
_ICmiss_at[index] = at;
_ICmiss_count[index] = 1;
}
void SharedRuntime::print_ic_miss_histogram() {
if (ICMissHistogram) {
tty->print_cr("IC Miss Histogram:");
int tot_misses = 0;
for (int i = 0; i < _ICmiss_index; i++) {
tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
tot_misses += _ICmiss_count[i];
}
tty->print_cr("Total IC misses: %7d", tot_misses);
}
}
#endif // PRODUCT
JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
return x * y;
JRT_END
JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
if (x == min_jlong && y == CONST64(-1)) {
return x;
} else {
return x / y;
}
JRT_END
JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
if (x == min_jlong && y == CONST64(-1)) {
return 0;
} else {
return x % y;
}
JRT_END
const juint float_sign_mask = 0x7FFFFFFF;
const juint float_infinity = 0x7F800000;
const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
const julong double_infinity = CONST64(0x7FF0000000000000);
JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
#ifdef _WIN64
// 64-bit Windows on amd64 returns the wrong values for
// infinity operands.
union { jfloat f; juint i; } xbits, ybits;
xbits.f = x;
ybits.f = y;
// x Mod Infinity == x unless x is infinity
if (((xbits.i & float_sign_mask) != float_infinity) &&
((ybits.i & float_sign_mask) == float_infinity) ) {
return x;
}
return ((jfloat)fmod_winx64((double)x, (double)y));
#else
return ((jfloat)fmod((double)x,(double)y));
#endif
JRT_END
JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
#ifdef _WIN64
union { jdouble d; julong l; } xbits, ybits;
xbits.d = x;
ybits.d = y;
// x Mod Infinity == x unless x is infinity
if (((xbits.l & double_sign_mask) != double_infinity) &&
((ybits.l & double_sign_mask) == double_infinity) ) {
return x;
}
return ((jdouble)fmod_winx64((double)x, (double)y));
#else
return ((jdouble)fmod((double)x,(double)y));
#endif
JRT_END
#ifdef __SOFTFP__
JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
return x + y;
JRT_END
JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
return x - y;
JRT_END
JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
return x * y;
JRT_END
JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
return x / y;
JRT_END
JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
return x + y;
JRT_END
JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
return x - y;
JRT_END
JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
return x * y;
JRT_END
JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
return x / y;
JRT_END
JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
return (jfloat)x;
JRT_END
JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
return (jdouble)x;
JRT_END
JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
return (jdouble)x;
JRT_END
JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
JRT_END
JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
JRT_END
JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
JRT_END
JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
JRT_END
// Functions to return the opposite of the aeabi functions for nan.
JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
JRT_END
JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
JRT_END
JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
JRT_END
JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
JRT_END
JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
JRT_END
JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
JRT_END
JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
JRT_END
JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
JRT_END
// Intrinsics make gcc generate code for these.
float SharedRuntime::fneg(float f) {
return -f;
}
double SharedRuntime::dneg(double f) {
return -f;
}
#endif // __SOFTFP__
#if defined(__SOFTFP__) || defined(E500V2)
// Intrinsics make gcc generate code for these.
double SharedRuntime::dabs(double f) {
return (f <= (double)0.0) ? (double)0.0 - f : f;
}
#endif
#if defined(__SOFTFP__) || defined(PPC)
double SharedRuntime::dsqrt(double f) {
return sqrt(f);
}
#endif
JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
if (g_isnan(x))
return 0;
if (x >= (jfloat) max_jint)
return max_jint;
if (x <= (jfloat) min_jint)
return min_jint;
return (jint) x;
JRT_END
JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
if (g_isnan(x))
return 0;
if (x >= (jfloat) max_jlong)
return max_jlong;
if (x <= (jfloat) min_jlong)
return min_jlong;
return (jlong) x;
JRT_END
JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
if (g_isnan(x))
return 0;
if (x >= (jdouble) max_jint)
return max_jint;
if (x <= (jdouble) min_jint)
return min_jint;
return (jint) x;
JRT_END
JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
if (g_isnan(x))
return 0;
if (x >= (jdouble) max_jlong)
return max_jlong;
if (x <= (jdouble) min_jlong)
return min_jlong;
return (jlong) x;
JRT_END
JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
return (jfloat)x;
JRT_END
JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
return (jfloat)x;
JRT_END
JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
return (jdouble)x;
JRT_END
// Exception handling across interpreter/compiler boundaries
//
// exception_handler_for_return_address(...) returns the continuation address.
// The continuation address is the entry point of the exception handler of the
// previous frame depending on the return address.
address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
// Reset method handle flag.
thread->set_is_method_handle_return(false);
#if INCLUDE_JVMCI
// JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
// and other exception handler continuations do not read it
thread->set_exception_pc(NULL);
#endif // INCLUDE_JVMCI
// The fastest case first
CodeBlob* blob = CodeCache::find_blob(return_address);
CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
if (nm != NULL) {
// Set flag if return address is a method handle call site.
thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
// native nmethods don't have exception handlers
assert(!nm->is_native_method(), "no exception handler");
assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
if (nm->is_deopt_pc(return_address)) {
// If we come here because of a stack overflow, the stack may be
// unguarded. Reguard the stack otherwise if we return to the
// deopt blob and the stack bang causes a stack overflow we
// crash.
bool guard_pages_enabled = thread->stack_guards_enabled();
if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
if (thread->reserved_stack_activation() != thread->stack_base()) {
thread->set_reserved_stack_activation(thread->stack_base());
}
assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
return SharedRuntime::deopt_blob()->unpack_with_exception();
} else {
return nm->exception_begin();
}
}
// Entry code
if (StubRoutines::returns_to_call_stub(return_address)) {
return StubRoutines::catch_exception_entry();
}
// Interpreted code
if (Interpreter::contains(return_address)) {
return Interpreter::rethrow_exception_entry();
}
guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
#ifndef PRODUCT
{ ResourceMark rm;
tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
tty->print_cr("b) other problem");
}
#endif // PRODUCT
ShouldNotReachHere();
return NULL;
}
JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
return raw_exception_handler_for_return_address(thread, return_address);
JRT_END
address SharedRuntime::get_poll_stub(address pc) {
address stub;
// Look up the code blob
CodeBlob *cb = CodeCache::find_blob(pc);
// Should be an nmethod
guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
// Look up the relocation information
assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
"safepoint polling: type must be poll");
#ifdef ASSERT
if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
Disassembler::decode(cb);
fatal("Only polling locations are used for safepoint");
}
#endif
bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
if (at_poll_return) {
assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
"polling page return stub not created yet");
stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
} else if (has_wide_vectors) {
assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
"polling page vectors safepoint stub not created yet");
stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
} else {
assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
"polling page safepoint stub not created yet");
stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
}
log_debug(safepoint)("... found polling page %s exception at pc = "
INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
at_poll_return ? "return" : "loop",
(intptr_t)pc, (intptr_t)stub);
return stub;
}
oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
assert(caller.is_interpreted_frame(), "");
int args_size = ArgumentSizeComputer(sig).size() + 1;
assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
return result;
}
void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
if (JvmtiExport::can_post_on_exceptions()) {
vframeStream vfst(thread, true);
methodHandle method = methodHandle(thread, vfst.method());
address bcp = method()->bcp_from(vfst.bci());
JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
}
Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
}
void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
Handle h_exception = Exceptions::new_exception(thread, name, message);
throw_and_post_jvmti_exception(thread, h_exception);
}
// The interpreter code to call this tracing function is only
// called/generated when UL is on for redefine, class and has the right level
// and tags. Since obsolete methods are never compiled, we don't have
// to modify the compilers to generate calls to this function.
//
JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
JavaThread* thread, Method* method))
if (method->is_obsolete()) {
// We are calling an obsolete method, but this is not necessarily
// an error. Our method could have been redefined just after we
// fetched the Method* from the constant pool.
ResourceMark rm;
log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
}
return 0;
JRT_END
// ret_pc points into caller; we are returning caller's exception handler
// for given exception
address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
assert(cm != NULL, "must exist");
ResourceMark rm;
#if INCLUDE_JVMCI
if (cm->is_compiled_by_jvmci()) {
// lookup exception handler for this pc
int catch_pco = ret_pc - cm->code_begin();
ExceptionHandlerTable table(cm);
HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
if (t != NULL) {
return cm->code_begin() + t->pco();
} else {
return Deoptimization::deoptimize_for_missing_exception_handler(cm);
}
}
#endif // INCLUDE_JVMCI
nmethod* nm = cm->as_nmethod();
ScopeDesc* sd = nm->scope_desc_at(ret_pc);
// determine handler bci, if any
EXCEPTION_MARK;
int handler_bci = -1;
int scope_depth = 0;
if (!force_unwind) {
int bci = sd->bci();
bool recursive_exception = false;
do {
bool skip_scope_increment = false;
// exception handler lookup
Klass* ek = exception->klass();
methodHandle mh(THREAD, sd->method());
handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
if (HAS_PENDING_EXCEPTION) {
recursive_exception = true;
// We threw an exception while trying to find the exception handler.
// Transfer the new exception to the exception handle which will
// be set into thread local storage, and do another lookup for an
// exception handler for this exception, this time starting at the
// BCI of the exception handler which caused the exception to be
// thrown (bugs 4307310 and 4546590). Set "exception" reference
// argument to ensure that the correct exception is thrown (4870175).
recursive_exception_occurred = true;
exception = Handle(THREAD, PENDING_EXCEPTION);
CLEAR_PENDING_EXCEPTION;
if (handler_bci >= 0) {
bci = handler_bci;
handler_bci = -1;
skip_scope_increment = true;
}
}
else {
recursive_exception = false;
}
if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
sd = sd->sender();
if (sd != NULL) {
bci = sd->bci();
}
++scope_depth;
}
} while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
}
// found handling method => lookup exception handler
int catch_pco = ret_pc - nm->code_begin();
ExceptionHandlerTable table(nm);
HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
// Allow abbreviated catch tables. The idea is to allow a method
// to materialize its exceptions without committing to the exact
// routing of exceptions. In particular this is needed for adding
// a synthetic handler to unlock monitors when inlining
// synchronized methods since the unlock path isn't represented in
// the bytecodes.
t = table.entry_for(catch_pco, -1, 0);
}
#ifdef COMPILER1
if (t == NULL && nm->is_compiled_by_c1()) {
assert(nm->unwind_handler_begin() != NULL, "");
return nm->unwind_handler_begin();
}
#endif
if (t == NULL) {
ttyLocker ttyl;
tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
tty->print_cr(" Exception:");
exception->print();
tty->cr();
tty->print_cr(" Compiled exception table :");
table.print();
nm->print_code();
guarantee(false, "missing exception handler");
return NULL;
}
return nm->code_begin() + t->pco();
}
JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
// These errors occur only at call sites
throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
JRT_END
JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
// These errors occur only at call sites
throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
JRT_END
JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
JRT_END
JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
JRT_END
JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
// This entry point is effectively only used for NullPointerExceptions which occur at inline
// cache sites (when the callee activation is not yet set up) so we are at a call site
throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
JRT_END
JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
throw_StackOverflowError_common(thread, false);
JRT_END
JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
throw_StackOverflowError_common(thread, true);
JRT_END
void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
// We avoid using the normal exception construction in this case because
// it performs an upcall to Java, and we're already out of stack space.
Thread* THREAD = thread;
Klass* k = SystemDictionary::StackOverflowError_klass();
oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
if (delayed) {
java_lang_Throwable::set_message(exception_oop,
Universe::delayed_stack_overflow_error_message());
}
Handle exception (thread, exception_oop);
if (StackTraceInThrowable) {
java_lang_Throwable::fill_in_stack_trace(exception);
}
// Increment counter for hs_err file reporting
Atomic::inc(&Exceptions::_stack_overflow_errors);
throw_and_post_jvmti_exception(thread, exception);
}
address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
address pc,
ImplicitExceptionKind exception_kind)
{
address target_pc = NULL;
if (Interpreter::contains(pc)) {
#ifdef CC_INTERP
// C++ interpreter doesn't throw implicit exceptions
ShouldNotReachHere();
#else
switch (exception_kind) {
case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
default: ShouldNotReachHere();
}
#endif // !CC_INTERP
} else {
switch (exception_kind) {
case STACK_OVERFLOW: {
// Stack overflow only occurs upon frame setup; the callee is
// going to be unwound. Dispatch to a shared runtime stub
// which will cause the StackOverflowError to be fabricated
// and processed.
// Stack overflow should never occur during deoptimization:
// the compiled method bangs the stack by as much as the
// interpreter would need in case of a deoptimization. The
// deoptimization blob and uncommon trap blob bang the stack
// in a debug VM to verify the correctness of the compiled
// method stack banging.
assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
return StubRoutines::throw_StackOverflowError_entry();
}
case IMPLICIT_NULL: {
if (VtableStubs::contains(pc)) {
// We haven't yet entered the callee frame. Fabricate an
// exception and begin dispatching it in the caller. Since
// the caller was at a call site, it's safe to destroy all
// caller-saved registers, as these entry points do.
VtableStub* vt_stub = VtableStubs::stub_containing(pc);
// If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
if (vt_stub == NULL) return NULL;
if (vt_stub->is_abstract_method_error(pc)) {
assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
// Instead of throwing the abstract method error here directly, we re-resolve
// and will throw the AbstractMethodError during resolve. As a result, we'll
// get a more detailed error message.
return SharedRuntime::get_handle_wrong_method_stub();
} else {
Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
// Assert that the signal comes from the expected location in stub code.
assert(vt_stub->is_null_pointer_exception(pc),
"obtained signal from unexpected location in stub code");
return StubRoutines::throw_NullPointerException_at_call_entry();
}
} else {
CodeBlob* cb = CodeCache::find_blob(pc);
// If code blob is NULL, then return NULL to signal handler to report the SEGV error.
if (cb == NULL) return NULL;
// Exception happened in CodeCache. Must be either:
// 1. Inline-cache check in C2I handler blob,
// 2. Inline-cache check in nmethod, or
// 3. Implicit null exception in nmethod
if (!cb->is_compiled()) {
bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
if (!is_in_blob) {
// Allow normal crash reporting to handle this
return NULL;
}
Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
// There is no handler here, so we will simply unwind.
return StubRoutines::throw_NullPointerException_at_call_entry();
}
// Otherwise, it's a compiled method. Consult its exception handlers.
CompiledMethod* cm = (CompiledMethod*)cb;
if (cm->inlinecache_check_contains(pc)) {
// exception happened inside inline-cache check code
// => the nmethod is not yet active (i.e., the frame
// is not set up yet) => use return address pushed by
// caller => don't push another return address
Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
return StubRoutines::throw_NullPointerException_at_call_entry();
}
if (cm->method()->is_method_handle_intrinsic()) {
// exception happened inside MH dispatch code, similar to a vtable stub
Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
return StubRoutines::throw_NullPointerException_at_call_entry();
}
#ifndef PRODUCT
_implicit_null_throws++;
#endif
target_pc = cm->continuation_for_implicit_null_exception(pc);
// If there's an unexpected fault, target_pc might be NULL,
// in which case we want to fall through into the normal
// error handling code.
}
break; // fall through
}
case IMPLICIT_DIVIDE_BY_ZERO: {
CompiledMethod* cm = CodeCache::find_compiled(pc);
guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
#ifndef PRODUCT
_implicit_div0_throws++;
#endif
target_pc = cm->continuation_for_implicit_div0_exception(pc);
// If there's an unexpected fault, target_pc might be NULL,
// in which case we want to fall through into the normal
// error handling code.
break; // fall through
}
default: ShouldNotReachHere();
}
assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
if (exception_kind == IMPLICIT_NULL) {
#ifndef PRODUCT
// for AbortVMOnException flag
Exceptions::debug_check_abort("java.lang.NullPointerException");
#endif //PRODUCT
Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
} else {
#ifndef PRODUCT
// for AbortVMOnException flag
Exceptions::debug_check_abort("java.lang.ArithmeticException");
#endif //PRODUCT
Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
}
return target_pc;
}
ShouldNotReachHere();
return NULL;
}
/**
* Throws an java/lang/UnsatisfiedLinkError. The address of this method is
* installed in the native function entry of all native Java methods before
* they get linked to their actual native methods.
*
* \note
* This method actually never gets called! The reason is because
* the interpreter's native entries call NativeLookup::lookup() which
* throws the exception when the lookup fails. The exception is then
* caught and forwarded on the return from NativeLookup::lookup() call
* before the call to the native function. This might change in the future.
*/
JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
{
// We return a bad value here to make sure that the exception is
// forwarded before we look at the return value.
THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
}
JNI_END
address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
}
JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
#if INCLUDE_JVMCI
if (!obj->klass()->has_finalizer()) {
return;
}
#endif // INCLUDE_JVMCI
assert(oopDesc::is_oop(obj), "must be a valid oop");
assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
JRT_END
jlong SharedRuntime::get_java_tid(Thread* thread) {
if (thread != NULL) {
if (thread->is_Java_thread()) {
oop obj = ((JavaThread*)thread)->threadObj();
return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
}
}
return 0;
}
/**
* This function ought to be a void function, but cannot be because
* it gets turned into a tail-call on sparc, which runs into dtrace bug
* 6254741. Once that is fixed we can remove the dummy return value.
*/
int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
return dtrace_object_alloc_base(Thread::current(), o, size);
}
int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
assert(DTraceAllocProbes, "wrong call");
Klass* klass = o->klass();
Symbol* name = klass->name();
HOTSPOT_OBJECT_ALLOC(
get_java_tid(thread),
(char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
return 0;
}
JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
JavaThread* thread, Method* method))
assert(DTraceMethodProbes, "wrong call");
Symbol* kname = method->klass_name();
Symbol* name = method->name();
Symbol* sig = method->signature();
HOTSPOT_METHOD_ENTRY(
get_java_tid(thread),
(char *) kname->bytes(), kname->utf8_length(),
(char *) name->bytes(), name->utf8_length(),
(char *) sig->bytes(), sig->utf8_length());
return 0;
JRT_END
JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
JavaThread* thread, Method* method))
assert(DTraceMethodProbes, "wrong call");
Symbol* kname = method->klass_name();
Symbol* name = method->name();
Symbol* sig = method->signature();
HOTSPOT_METHOD_RETURN(
get_java_tid(thread),
(char *) kname->bytes(), kname->utf8_length(),
(char *) name->bytes(), name->utf8_length(),
(char *) sig->bytes(), sig->utf8_length());
return 0;
JRT_END
// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
// for a call current in progress, i.e., arguments has been pushed on stack
// put callee has not been invoked yet. Used by: resolve virtual/static,
// vtable updates, etc. Caller frame must be compiled.
Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
ResourceMark rm(THREAD);
// last java frame on stack (which includes native call frames)
vframeStream vfst(thread, true); // Do not skip and javaCalls
return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
}
methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
CompiledMethod* caller = vfst.nm();
nmethodLocker caller_lock(caller);
address pc = vfst.frame_pc();
{ // Get call instruction under lock because another thread may be busy patching it.
CompiledICLocker ic_locker(caller);
return caller->attached_method_before_pc(pc);
}
return NULL;
}
// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
// for a call current in progress, i.e., arguments has been pushed on stack
// but callee has not been invoked yet. Caller frame must be compiled.
Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
vframeStream& vfst,
Bytecodes::Code& bc,
CallInfo& callinfo, TRAPS) {
Handle receiver;
Handle nullHandle; //create a handy null handle for exception returns
assert(!vfst.at_end(), "Java frame must exist");
// Find caller and bci from vframe
methodHandle caller(THREAD, vfst.method());
int bci = vfst.bci();
Bytecode_invoke bytecode(caller, bci);
int bytecode_index = bytecode.index();
bc = bytecode.invoke_code();
methodHandle attached_method = extract_attached_method(vfst);
if (attached_method.not_null()) {
methodHandle callee = bytecode.static_target(CHECK_NH);
vmIntrinsics::ID id = callee->intrinsic_id();
// When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
// it attaches statically resolved method to the call site.
if (MethodHandles::is_signature_polymorphic(id) &&
MethodHandles::is_signature_polymorphic_intrinsic(id)) {
bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
// Adjust invocation mode according to the attached method.
switch (bc) {
case Bytecodes::_invokevirtual:
if (attached_method->method_holder()->is_interface()) {
bc = Bytecodes::_invokeinterface;
}
break;
case Bytecodes::_invokeinterface:
if (!attached_method->method_holder()->is_interface()) {
bc = Bytecodes::_invokevirtual;
}
break;
case Bytecodes::_invokehandle:
if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
bc = attached_method->is_static() ? Bytecodes::_invokestatic
: Bytecodes::_invokevirtual;
}
break;
default:
break;
}
}
}
assert(bc != Bytecodes::_illegal, "not initialized");
bool has_receiver = bc != Bytecodes::_invokestatic &&
bc != Bytecodes::_invokedynamic &&
bc != Bytecodes::_invokehandle;
// Find receiver for non-static call
if (has_receiver) {
// This register map must be update since we need to find the receiver for
// compiled frames. The receiver might be in a register.
RegisterMap reg_map2(thread);
frame stubFrame = thread->last_frame();
// Caller-frame is a compiled frame
frame callerFrame = stubFrame.sender(®_map2);
if (attached_method.is_null()) {
methodHandle callee = bytecode.static_target(CHECK_NH);
if (callee.is_null()) {
THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
}
}
// Retrieve from a compiled argument list
receiver = Handle(THREAD, callerFrame.retrieve_receiver(®_map2));
if (receiver.is_null()) {
THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
}
}
// Resolve method
if (attached_method.not_null()) {
// Parameterized by attached method.
LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
} else {
// Parameterized by bytecode.
constantPoolHandle constants(THREAD, caller->constants());
LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
}
#ifdef ASSERT
// Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
if (has_receiver) {
assert(receiver.not_null(), "should have thrown exception");
Klass* receiver_klass = receiver->klass();
Klass* rk = NULL;
if (attached_method.not_null()) {
// In case there's resolved method attached, use its holder during the check.
rk = attached_method->method_holder();
} else {
// Klass is already loaded.
constantPoolHandle constants(THREAD, caller->constants());
rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
}
Klass* static_receiver_klass = rk;
methodHandle callee = callinfo.selected_method();
assert(receiver_klass->is_subtype_of(static_receiver_klass),
"actual receiver must be subclass of static receiver klass");
if (receiver_klass->is_instance_klass()) {
if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
tty->print_cr("ERROR: Klass not yet initialized!!");
receiver_klass->print();
}
assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
}
}
#endif
return receiver;
}
methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
ResourceMark rm(THREAD);
// We need first to check if any Java activations (compiled, interpreted)
// exist on the stack since last JavaCall. If not, we need
// to get the target method from the JavaCall wrapper.
vframeStream vfst(thread, true); // Do not skip any javaCalls
methodHandle callee_method;
if (vfst.at_end()) {
// No Java frames were found on stack since we did the JavaCall.
// Hence the stack can only contain an entry_frame. We need to
// find the target method from the stub frame.
RegisterMap reg_map(thread, false);
frame fr = thread->last_frame();
assert(fr.is_runtime_frame(), "must be a runtimeStub");
fr = fr.sender(®_map);
assert(fr.is_entry_frame(), "must be");
// fr is now pointing to the entry frame.
callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
} else {
Bytecodes::Code bc;
CallInfo callinfo;
find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
callee_method = callinfo.selected_method();
}
assert(callee_method()->is_method(), "must be");
return callee_method;
}
// Resolves a call.
methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
bool is_virtual,
bool is_optimized, TRAPS) {
methodHandle callee_method;
callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
int retry_count = 0;
while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
callee_method->method_holder() != SystemDictionary::Object_klass()) {
// If has a pending exception then there is no need to re-try to
// resolve this method.
// If the method has been redefined, we need to try again.
// Hack: we have no way to update the vtables of arrays, so don't
// require that java.lang.Object has been updated.
// It is very unlikely that method is redefined more than 100 times
// in the middle of resolve. If it is looping here more than 100 times
// means then there could be a bug here.
guarantee((retry_count++ < 100),
"Could not resolve to latest version of redefined method");
// method is redefined in the middle of resolve so re-try.
callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
}
}
return callee_method;
}
// This fails if resolution required refilling of IC stubs
bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
StaticCallInfo static_call_info;
CompiledICInfo virtual_call_info;
// Make sure the callee nmethod does not get deoptimized and removed before
// we are done patching the code.
CompiledMethod* callee = callee_method->code();
if (callee != NULL) {
assert(callee->is_compiled(), "must be nmethod for patching");
}
if (callee != NULL && !callee->is_in_use()) {
// Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
callee = NULL;
}
nmethodLocker nl_callee(callee);
#ifdef ASSERT
address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
#endif
bool is_nmethod = caller_nm->is_nmethod();
if (is_virtual) {
assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
bool static_bound = call_info.resolved_method()->can_be_statically_bound();
Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
CompiledIC::compute_monomorphic_entry(callee_method, klass,
is_optimized, static_bound, is_nmethod, virtual_call_info,
CHECK_false);
} else {
// static call
CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
}
// grab lock, check for deoptimization and potentially patch caller
{
CompiledICLocker ml(caller_nm);
// Lock blocks for safepoint during which both nmethods can change state.
// Now that we are ready to patch if the Method* was redefined then
// don't update call site and let the caller retry.
// Don't update call site if callee nmethod was unloaded or deoptimized.
// Don't update call site if callee nmethod was replaced by an other nmethod
// which may happen when multiply alive nmethod (tiered compilation)
// will be supported.
if (!callee_method->is_old() &&
(callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
NoSafepointVerifier nsv;
#ifdef ASSERT
// We must not try to patch to jump to an already unloaded method.
if (dest_entry_point != 0) {
CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
"should not call unloaded nmethod");
}
#endif
if (is_virtual) {
CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
if (inline_cache->is_clean()) {
if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
return false;
}
}
} else {
if (VM_Version::supports_fast_class_init_checks() &&
invoke_code == Bytecodes::_invokestatic &&
callee_method->needs_clinit_barrier() &&
callee != NULL && (callee->is_compiled_by_jvmci() || callee->is_aot())) {
return true; // skip patching for JVMCI or AOT code
}
CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
if (ssc->is_clean()) ssc->set(static_call_info);
}
}
} // unlock CompiledICLocker
return true;
}
// Resolves a call. The compilers generate code for calls that go here
// and are patched with the real destination of the call.
methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
bool is_virtual,
bool is_optimized, TRAPS) {
ResourceMark rm(thread);
RegisterMap cbl_map(thread, false);
frame caller_frame = thread->last_frame().sender(&cbl_map);
CodeBlob* caller_cb = caller_frame.cb();
guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
// make sure caller is not getting deoptimized
// and removed before we are done with it.
// CLEANUP - with lazy deopt shouldn't need this lock
nmethodLocker caller_lock(caller_nm);
// determine call info & receiver
// note: a) receiver is NULL for static calls
// b) an exception is thrown if receiver is NULL for non-static calls
CallInfo call_info;
Bytecodes::Code invoke_code = Bytecodes::_illegal;
Handle receiver = find_callee_info(thread, invoke_code,
call_info, CHECK_(methodHandle()));
methodHandle callee_method = call_info.selected_method();
assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
(!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
(!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
(!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
#ifndef PRODUCT
// tracing/debugging/statistics
int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
(is_virtual) ? (&_resolve_virtual_ctr) :
(&_resolve_static_ctr);
Atomic::inc(addr);
if (TraceCallFixup) {
ResourceMark rm(thread);
tty->print("resolving %s%s (%s) call to",
(is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
Bytecodes::name(invoke_code));
callee_method->print_short_name(tty);
tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
p2i(caller_frame.pc()), p2i(callee_method->code()));
}
#endif
if (invoke_code == Bytecodes::_invokestatic) {
assert(callee_method->method_holder()->is_initialized() ||
callee_method->method_holder()->is_reentrant_initialization(thread),
"invalid class initialization state for invoke_static");
if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
// In order to keep class initialization check, do not patch call
// site for static call when the class is not fully initialized.
// Proper check is enforced by call site re-resolution on every invocation.
//
// When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
// explicit class initialization check is put in nmethod entry (VEP).
assert(callee_method->method_holder()->is_linked(), "must be");
return callee_method;
}
}
// JSR 292 key invariant:
// If the resolved method is a MethodHandle invoke target, the call
// site must be a MethodHandle call site, because the lambda form might tail-call
// leaving the stack in a state unknown to either caller or callee
// TODO detune for now but we might need it again
// assert(!callee_method->is_compiled_lambda_form() ||
// caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
// Compute entry points. This might require generation of C2I converter
// frames, so we cannot be holding any locks here. Furthermore, the
// computation of the entry points is independent of patching the call. We
// always return the entry-point, but we only patch the stub if the call has
// not been deoptimized. Return values: For a virtual call this is an
// (cached_oop, destination address) pair. For a static call/optimized
// virtual this is just a destination address.
// Patching IC caches may fail if we run out if transition stubs.
// We refill the ic stubs then and try again.
for (;;) {
ICRefillVerifier ic_refill_verifier;
bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
is_virtual, is_optimized, receiver,
call_info, invoke_code, CHECK_(methodHandle()));
if (successful) {
return callee_method;
} else {
InlineCacheBuffer::refill_ic_stubs();
}
}
}
// Inline caches exist only in compiled code
JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
#ifdef ASSERT
RegisterMap reg_map(thread, false);
frame stub_frame = thread->last_frame();
assert(stub_frame.is_runtime_frame(), "sanity check");
frame caller_frame = stub_frame.sender(®_map);
assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
#endif /* ASSERT */
methodHandle callee_method;
JRT_BLOCK
callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
// Return Method* through TLS
thread->set_vm_result_2(callee_method());
JRT_BLOCK_END
// return compiled code entry point after potential safepoints
assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
return callee_method->verified_code_entry();
JRT_END
// Handle call site that has been made non-entrant
JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
// 6243940 We might end up in here if the callee is deoptimized
// as we race to call it. We don't want to take a safepoint if
// the caller was interpreted because the caller frame will look
// interpreted to the stack walkers and arguments are now
// "compiled" so it is much better to make this transition
// invisible to the stack walking code. The i2c path will
// place the callee method in the callee_target. It is stashed
// there because if we try and find the callee by normal means a
// safepoint is possible and have trouble gc'ing the compiled args.
RegisterMap reg_map(thread, false);
frame stub_frame = thread->last_frame();
assert(stub_frame.is_runtime_frame(), "sanity check");
frame caller_frame = stub_frame.sender(®_map);
if (caller_frame.is_interpreted_frame() ||
caller_frame.is_entry_frame()) {
Method* callee = thread->callee_target();
guarantee(callee != NULL && callee->is_method(), "bad handshake");
thread->set_vm_result_2(callee);
thread->set_callee_target(NULL);
if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
// Bypass class initialization checks in c2i when caller is in native.
// JNI calls to static methods don't have class initialization checks.
// Fast class initialization checks are present in c2i adapters and call into
// SharedRuntime::handle_wrong_method() on the slow path.
//
// JVM upcalls may land here as well, but there's a proper check present in
// LinkResolver::resolve_static_call (called from JavaCalls::call_static),
// so bypassing it in c2i adapter is benign.
return callee->get_c2i_no_clinit_check_entry();
} else {
return callee->get_c2i_entry();
}
}
// Must be compiled to compiled path which is safe to stackwalk
methodHandle callee_method;
JRT_BLOCK
// Force resolving of caller (if we called from compiled frame)
callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
thread->set_vm_result_2(callee_method());
JRT_BLOCK_END
// return compiled code entry point after potential safepoints
assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
return callee_method->verified_code_entry();
JRT_END
// Handle abstract method call
JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
// Verbose error message for AbstractMethodError.
// Get the called method from the invoke bytecode.
vframeStream vfst(thread, true);
assert(!vfst.at_end(), "Java frame must exist");
methodHandle caller(vfst.method());
Bytecode_invoke invoke(caller, vfst.bci());
DEBUG_ONLY( invoke.verify(); )
// Find the compiled caller frame.
RegisterMap reg_map(thread);
frame stubFrame = thread->last_frame();
assert(stubFrame.is_runtime_frame(), "must be");
frame callerFrame = stubFrame.sender(®_map);
assert(callerFrame.is_compiled_frame(), "must be");
// Install exception and return forward entry.
address res = StubRoutines::throw_AbstractMethodError_entry();
JRT_BLOCK
methodHandle callee = invoke.static_target(thread);
if (!callee.is_null()) {
oop recv = callerFrame.retrieve_receiver(®_map);
Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
res = StubRoutines::forward_exception_entry();
}
JRT_BLOCK_END
return res;
JRT_END
// resolve a static call and patch code
JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
methodHandle callee_method;
JRT_BLOCK
callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
thread->set_vm_result_2(callee_method());
JRT_BLOCK_END
// return compiled code entry point after potential safepoints
assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
return callee_method->verified_code_entry();
JRT_END
// resolve virtual call and update inline cache to monomorphic
JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
methodHandle callee_method;
JRT_BLOCK
callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
thread->set_vm_result_2(callee_method());
JRT_BLOCK_END
// return compiled code entry point after potential safepoints
assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
return callee_method->verified_code_entry();
JRT_END
// Resolve a virtual call that can be statically bound (e.g., always
// monomorphic, so it has no inline cache). Patch code to resolved target.
JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
methodHandle callee_method;
JRT_BLOCK
callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
thread->set_vm_result_2(callee_method());
JRT_BLOCK_END
// return compiled code entry point after potential safepoints
assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
return callee_method->verified_code_entry();
JRT_END
// The handle_ic_miss_helper_internal function returns false if it failed due
// to either running out of vtable stubs or ic stubs due to IC transitions
// to transitional states. The needs_ic_stub_refill value will be set if
// the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
// refills the IC stubs and tries again.
bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
const frame& caller_frame, methodHandle callee_method,
Bytecodes::Code bc, CallInfo& call_info,
bool& needs_ic_stub_refill, TRAPS) {
CompiledICLocker ml(caller_nm);
CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
bool should_be_mono = false;
if (inline_cache->is_optimized()) {
if (TraceCallFixup) {
ResourceMark rm(THREAD);
tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
callee_method->print_short_name(tty);
tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
}
should_be_mono = true;
} else if (inline_cache->is_icholder_call()) {
CompiledICHolder* ic_oop = inline_cache->cached_icholder();
if (ic_oop != NULL) {
if (!ic_oop->is_loader_alive()) {
// Deferred IC cleaning due to concurrent class unloading
if (!inline_cache->set_to_clean()) {
needs_ic_stub_refill = true;
return false;
}
} else if (receiver()->klass() == ic_oop->holder_klass()) {
// This isn't a real miss. We must have seen that compiled code
// is now available and we want the call site converted to a
// monomorphic compiled call site.
// We can't assert for callee_method->code() != NULL because it
// could have been deoptimized in the meantime
if (TraceCallFixup) {
ResourceMark rm(THREAD);
tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
callee_method->print_short_name(tty);
tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
}
should_be_mono = true;
}
}
}
if (should_be_mono) {
// We have a path that was monomorphic but was going interpreted
// and now we have (or had) a compiled entry. We correct the IC
// by using a new icBuffer.
CompiledICInfo info;
Klass* receiver_klass = receiver()->klass();
inline_cache->compute_monomorphic_entry(callee_method,
receiver_klass,
inline_cache->is_optimized(),
false, caller_nm->is_nmethod(),
info, CHECK_false);
if (!inline_cache->set_to_monomorphic(info)) {
needs_ic_stub_refill = true;
return false;
}
} else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
// Potential change to megamorphic
bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false);
if (needs_ic_stub_refill) {
return false;
}
if (!successful) {
if (!inline_cache->set_to_clean()) {
needs_ic_stub_refill = true;
return false;
}
}
} else {
// Either clean or megamorphic
}
return true;
}
methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
ResourceMark rm(thread);
CallInfo call_info;
Bytecodes::Code bc;
// receiver is NULL for static calls. An exception is thrown for NULL
// receivers for non-static calls
Handle receiver = find_callee_info(thread, bc, call_info,
CHECK_(methodHandle()));
// Compiler1 can produce virtual call sites that can actually be statically bound
// If we fell thru to below we would think that the site was going megamorphic
// when in fact the site can never miss. Worse because we'd think it was megamorphic
// we'd try and do a vtable dispatch however methods that can be statically bound
// don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
// reresolution of the call site (as if we did a handle_wrong_method and not an
// plain ic_miss) and the site will be converted to an optimized virtual call site
// never to miss again. I don't believe C2 will produce code like this but if it
// did this would still be the correct thing to do for it too, hence no ifdef.
//
if (call_info.resolved_method()->can_be_statically_bound()) {
methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
if (TraceCallFixup) {
RegisterMap reg_map(thread, false);
frame caller_frame = thread->last_frame().sender(®_map);
ResourceMark rm(thread);
tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
callee_method->print_short_name(tty);
tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
}
return callee_method;
}
methodHandle callee_method = call_info.selected_method();
#ifndef PRODUCT
Atomic::inc(&_ic_miss_ctr);
// Statistics & Tracing
if (TraceCallFixup) {
ResourceMark rm(thread);
tty->print("IC miss (%s) call to", Bytecodes::name(bc));
callee_method->print_short_name(tty);
tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
}
if (ICMissHistogram) {
MutexLocker m(VMStatistic_lock);
RegisterMap reg_map(thread, false);
frame f = thread->last_frame().real_sender(®_map);// skip runtime stub
// produce statistics under the lock
trace_ic_miss(f.pc());
}
#endif
// install an event collector so that when a vtable stub is created the
// profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
// event can't be posted when the stub is created as locks are held
// - instead the event will be deferred until the event collector goes
// out of scope.
JvmtiDynamicCodeEventCollector event_collector;
// Update inline cache to megamorphic. Skip update if we are called from interpreted.
// Transitioning IC caches may require transition stubs. If we run out
// of transition stubs, we have to drop locks and perform a safepoint
// that refills them.
RegisterMap reg_map(thread, false);
frame caller_frame = thread->last_frame().sender(®_map);
CodeBlob* cb = caller_frame.cb();
CompiledMethod* caller_nm = cb->as_compiled_method();
for (;;) {
ICRefillVerifier ic_refill_verifier;
bool needs_ic_stub_refill = false;
bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle()));
if (successful || !needs_ic_stub_refill) {
return callee_method;
} else {
InlineCacheBuffer::refill_ic_stubs();
}
}
}
static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
CompiledICLocker ml(caller_nm);
if (is_static_call) {
CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
if (!ssc->is_clean()) {
return ssc->set_to_clean();
}
} else {
// compiled, dispatched call (which used to call an interpreted method)
CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
if (!inline_cache->is_clean()) {
return inline_cache->set_to_clean();
}
}
return true;
}
//
// Resets a call-site in compiled code so it will get resolved again.
// This routines handles both virtual call sites, optimized virtual call
// sites, and static call sites. Typically used to change a call sites
// destination from compiled to interpreted.
//
methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
ResourceMark rm(thread);
RegisterMap reg_map(thread, false);
frame stub_frame = thread->last_frame();
assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
frame caller = stub_frame.sender(®_map);
// Do nothing if the frame isn't a live compiled frame.
// nmethod could be deoptimized by the time we get here
// so no update to the caller is needed.
if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
address pc = caller.pc();
// Check for static or virtual call
bool is_static_call = false;
CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
// Default call_addr is the location of the "basic" call.
// Determine the address of the call we a reresolving. With
// Inline Caches we will always find a recognizable call.
// With Inline Caches disabled we may or may not find a
// recognizable call. We will always find a call for static
// calls and for optimized virtual calls. For vanilla virtual
// calls it depends on the state of the UseInlineCaches switch.
//
// With Inline Caches disabled we can get here for a virtual call
// for two reasons:
// 1 - calling an abstract method. The vtable for abstract methods
// will run us thru handle_wrong_method and we will eventually
// end up in the interpreter to throw the ame.
// 2 - a racing deoptimization. We could be doing a vanilla vtable
// call and between the time we fetch the entry address and
// we jump to it the target gets deoptimized. Similar to 1
// we will wind up in the interprter (thru a c2i with c2).
//
address call_addr = NULL;
{
// Get call instruction under lock because another thread may be
// busy patching it.
CompiledICLocker ml(caller_nm);
// Location of call instruction
call_addr = caller_nm->call_instruction_address(pc);
}
// Make sure nmethod doesn't get deoptimized and removed until
// this is done with it.
// CLEANUP - with lazy deopt shouldn't need this lock
nmethodLocker nmlock(caller_nm);
if (call_addr != NULL) {
RelocIterator iter(caller_nm, call_addr, call_addr+1);
int ret = iter.next(); // Get item
if (ret) {
assert(iter.addr() == call_addr, "must find call");
if (iter.type() == relocInfo::static_call_type) {
is_static_call = true;
} else {
assert(iter.type() == relocInfo::virtual_call_type ||
iter.type() == relocInfo::opt_virtual_call_type
, "unexpected relocInfo. type");
}
} else {
assert(!UseInlineCaches, "relocation info. must exist for this address");
}
// Cleaning the inline cache will force a new resolve. This is more robust
// than directly setting it to the new destination, since resolving of calls
// is always done through the same code path. (experience shows that it
// leads to very hard to track down bugs, if an inline cache gets updated
// to a wrong method). It should not be performance critical, since the
// resolve is only done once.
for (;;) {
ICRefillVerifier ic_refill_verifier;
if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
InlineCacheBuffer::refill_ic_stubs();
} else {
break;
}
}
}
}
methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
#ifndef PRODUCT
Atomic::inc(&_wrong_method_ctr);
if (TraceCallFixup) {
ResourceMark rm(thread);
tty->print("handle_wrong_method reresolving call to");
callee_method->print_short_name(tty);
tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
}
#endif
return callee_method;
}
address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
// The faulting unsafe accesses should be changed to throw the error
// synchronously instead. Meanwhile the faulting instruction will be
// skipped over (effectively turning it into a no-op) and an
// asynchronous exception will be raised which the thread will
// handle at a later point. If the instruction is a load it will
// return garbage.
// Request an async exception.
thread->set_pending_unsafe_access_error();
// Return address of next instruction to execute.
return next_pc;
}
#ifdef ASSERT
void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
const BasicType* sig_bt,
const VMRegPair* regs) {
ResourceMark rm;
const int total_args_passed = method->size_of_parameters();
const VMRegPair* regs_with_member_name = regs;
VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
const int member_arg_pos = total_args_passed - 1;
assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
const bool is_outgoing = method->is_method_handle_intrinsic();
int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
for (int i = 0; i < member_arg_pos; i++) {
VMReg a = regs_with_member_name[i].first();
VMReg b = regs_without_member_name[i].first();
assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
}
assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
}
#endif
bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
if (destination != entry_point) {
CodeBlob* callee = CodeCache::find_blob(destination);
// callee == cb seems weird. It means calling interpreter thru stub.
if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
// static call or optimized virtual
if (TraceCallFixup) {
tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
moop->print_short_name(tty);
tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
}
return true;
} else {
if (TraceCallFixup) {
tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
moop->print_short_name(tty);
tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
}
// assert is too strong could also be resolve destinations.
// assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
}
} else {
if (TraceCallFixup) {
tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
moop->print_short_name(tty);
tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
}
}
return false;
}
// ---------------------------------------------------------------------------
// We are calling the interpreter via a c2i. Normally this would mean that
// we were called by a compiled method. However we could have lost a race
// where we went int -> i2c -> c2i and so the caller could in fact be
// interpreted. If the caller is compiled we attempt to patch the caller
// so he no longer calls into the interpreter.
JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
Method* moop(method);
address entry_point = moop->from_compiled_entry_no_trampoline();
// It's possible that deoptimization can occur at a call site which hasn't
// been resolved yet, in which case this function will be called from
// an nmethod that has been patched for deopt and we can ignore the
// request for a fixup.
// Also it is possible that we lost a race in that from_compiled_entry
// is now back to the i2c in that case we don't need to patch and if
// we did we'd leap into space because the callsite needs to use
// "to interpreter" stub in order to load up the Method*. Don't
// ask me how I know this...
CodeBlob* cb = CodeCache::find_blob(caller_pc);
if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
return;
}
// The check above makes sure this is a nmethod.
CompiledMethod* nm = cb->as_compiled_method_or_null();
assert(nm, "must be");
// Get the return PC for the passed caller PC.
address return_pc = caller_pc + frame::pc_return_offset;
// There is a benign race here. We could be attempting to patch to a compiled
// entry point at the same time the callee is being deoptimized. If that is
// the case then entry_point may in fact point to a c2i and we'd patch the
// call site with the same old data. clear_code will set code() to NULL
// at the end of it. If we happen to see that NULL then we can skip trying
// to patch. If we hit the window where the callee has a c2i in the
// from_compiled_entry and the NULL isn't present yet then we lose the race
// and patch the code with the same old data. Asi es la vida.
if (moop->code() == NULL) return;
if (nm->is_in_use()) {
// Expect to find a native call there (unless it was no-inline cache vtable dispatch)
CompiledICLocker ic_locker(nm);
if (NativeCall::is_call_before(return_pc)) {
ResourceMark mark;
NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
//
// bug 6281185. We might get here after resolving a call site to a vanilla
// virtual call. Because the resolvee uses the verified entry it may then
// see compiled code and attempt to patch the site by calling us. This would
// then incorrectly convert the call site to optimized and its downhill from
// there. If you're lucky you'll get the assert in the bugid, if not you've
// just made a call site that could be megamorphic into a monomorphic site
// for the rest of its life! Just another racing bug in the life of
// fixup_callers_callsite ...
//
RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
iter.next();
assert(iter.has_current(), "must have a reloc at java call site");
relocInfo::relocType typ = iter.reloc()->type();
if (typ != relocInfo::static_call_type &&
typ != relocInfo::opt_virtual_call_type &&
typ != relocInfo::static_stub_type) {
return;
}
address destination = call->destination();
if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
call->set_destination_mt_safe(entry_point);
}
}
}
JRT_END
// same as JVM_Arraycopy, but called directly from compiled code
JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
oopDesc* dest, jint dest_pos,
jint length,
JavaThread* thread)) {
#ifndef PRODUCT
_slow_array_copy_ctr++;
#endif
// Check if we have null pointers
if (src == NULL || dest == NULL) {
THROW(vmSymbols::java_lang_NullPointerException());
}
// Do the copy. The casts to arrayOop are necessary to the copy_array API,
// even though the copy_array API also performs dynamic checks to ensure
// that src and dest are truly arrays (and are conformable).
// The copy_array mechanism is awkward and could be removed, but
// the compilers don't call this function except as a last resort,
// so it probably doesn't matter.
src->klass()->copy_array((arrayOopDesc*)src, src_pos,
(arrayOopDesc*)dest, dest_pos,
length, thread);
}
JRT_END
// The caller of generate_class_cast_message() (or one of its callers)
// must use a ResourceMark in order to correctly free the result.
char* SharedRuntime::generate_class_cast_message(
JavaThread* thread, Klass* caster_klass) {
// Get target class name from the checkcast instruction
vframeStream vfst(thread, true);
assert(!vfst.at_end(), "Java frame must exist");
Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
constantPoolHandle cpool(thread, vfst.method()->constants());
Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
Symbol* target_klass_name = NULL;
if (target_klass == NULL) {
// This klass should be resolved, but just in case, get the name in the klass slot.
target_klass_name = cpool->klass_name_at(cc.index());
}
return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
}
// The caller of generate_class_cast_message() (or one of its callers)
// must use a ResourceMark in order to correctly free the result.
char* SharedRuntime::generate_class_cast_message(
Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
const char* caster_name = caster_klass->external_name();
assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
const char* target_name = target_klass == NULL ? target_klass_name->as_klass_external_name() :
target_klass->external_name();
size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
const char* caster_klass_description = "";
const char* target_klass_description = "";
const char* klass_separator = "";
if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
} else {
caster_klass_description = caster_klass->class_in_module_of_loader();
target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
klass_separator = (target_klass != NULL) ? "; " : "";
}
// add 3 for parenthesis and preceeding space
msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
if (message == NULL) {
// Shouldn't happen, but don't cause even more problems if it does
message = const_cast<char*>(caster_klass->external_name());
} else {
jio_snprintf(message,
msglen,
"class %s cannot be cast to class %s (%s%s%s)",
caster_name,
target_name,
caster_klass_description,
klass_separator,
target_klass_description
);
}
return message;
}
JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
(void) JavaThread::current()->reguard_stack();
JRT_END
// Handles the uncommon case in locking, i.e., contention or an inflated lock.
JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
if (!SafepointSynchronize::is_synchronizing()) {
// Only try quick_enter() if we're not trying to reach a safepoint
// so that the calling thread reaches the safepoint more quickly.
if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
}
// NO_ASYNC required because an async exception on the state transition destructor
// would leave you with the lock held and it would never be released.
// The normal monitorenter NullPointerException is thrown without acquiring a lock
// and the model is that an exception implies the method failed.
JRT_BLOCK_NO_ASYNC
oop obj(_obj);
if (PrintBiasedLockingStatistics) {
Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
}
Handle h_obj(THREAD, obj);
ObjectSynchronizer::enter(h_obj, lock, CHECK);
assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
JRT_BLOCK_END
JRT_END
// Handles the uncommon cases of monitor unlocking in compiled code
JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
oop obj(_obj);
assert(JavaThread::current() == THREAD, "invariant");
// I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
// testing was unable to ever fire the assert that guarded it so I have removed it.
assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
#undef MIGHT_HAVE_PENDING
#ifdef MIGHT_HAVE_PENDING
// Save and restore any pending_exception around the exception mark.
// While the slow_exit must not throw an exception, we could come into
// this routine with one set.
oop pending_excep = NULL;
const char* pending_file;
int pending_line;
if (HAS_PENDING_EXCEPTION) {
pending_excep = PENDING_EXCEPTION;
pending_file = THREAD->exception_file();
pending_line = THREAD->exception_line();
CLEAR_PENDING_EXCEPTION;
}
#endif /* MIGHT_HAVE_PENDING */
{
// Exit must be non-blocking, and therefore no exceptions can be thrown.
EXCEPTION_MARK;
ObjectSynchronizer::exit(obj, lock, THREAD);
}
#ifdef MIGHT_HAVE_PENDING
if (pending_excep != NULL) {
THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
}
#endif /* MIGHT_HAVE_PENDING */
JRT_END
#ifndef PRODUCT
void SharedRuntime::print_statistics() {
ttyLocker ttyl;
if (xtty != NULL) xtty->head("statistics type='SharedRuntime'");
if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
SharedRuntime::print_ic_miss_histogram();
if (CountRemovableExceptions) {
if (_nof_removable_exceptions > 0) {
Unimplemented(); // this counter is not yet incremented
tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
}
}
// Dump the JRT_ENTRY counters
if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
tty->print_cr("%5d wrong method", _wrong_method_ctr);
tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
AdapterHandlerLibrary::print_statistics();
if (xtty != NULL) xtty->tail("statistics");
}
inline double percent(int x, int y) {
return 100.0 * x / MAX2(y, 1);
}
class MethodArityHistogram {
public:
enum { MAX_ARITY = 256 };
private:
static int _arity_histogram[MAX_ARITY]; // histogram of #args
static int _size_histogram[MAX_ARITY]; // histogram of arg size in words
static int _max_arity; // max. arity seen
static int _max_size; // max. arg size seen
static void add_method_to_histogram(nmethod* nm) {
if (CompiledMethod::nmethod_access_is_safe(nm)) {
Method* method = nm->method();
ArgumentCount args(method->signature());
int arity = args.size() + (method->is_static() ? 0 : 1);
int argsize = method->size_of_parameters();
arity = MIN2(arity, MAX_ARITY-1);
argsize = MIN2(argsize, MAX_ARITY-1);
int count = method->compiled_invocation_count();
_arity_histogram[arity] += count;
_size_histogram[argsize] += count;
_max_arity = MAX2(_max_arity, arity);
_max_size = MAX2(_max_size, argsize);
}
}
void print_histogram_helper(int n, int* histo, const char* name) {
const int N = MIN2(5, n);
tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
double sum = 0;
double weighted_sum = 0;
int i;
for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
double rest = sum;
double percent = sum / 100;
for (i = 0; i <= N; i++) {
rest -= histo[i];
tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
}
tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
}
void print_histogram() {
tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
print_histogram_helper(_max_arity, _arity_histogram, "arity");
tty->print_cr("\nSame for parameter size (in words):");
print_histogram_helper(_max_size, _size_histogram, "size");
tty->cr();
}
public:
MethodArityHistogram() {
MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
_max_arity = _max_size = 0;
for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
CodeCache::nmethods_do(add_method_to_histogram);
print_histogram();
}
};
int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
int MethodArityHistogram::_max_arity;
int MethodArityHistogram::_max_size;
void SharedRuntime::print_call_statistics(int comp_total) {
tty->print_cr("Calls from compiled code:");
int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total));
tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
tty->cr();
tty->print_cr("Note 1: counter updates are not MT-safe.");
tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
tty->print_cr(" %% in nested categories are relative to their category");
tty->print_cr(" (and thus add up to more than 100%% with inlining)");
tty->cr();
MethodArityHistogram h;
}
#endif
// A simple wrapper class around the calling convention information
// that allows sharing of adapters for the same calling convention.
class AdapterFingerPrint : public CHeapObj<mtCode> {
private:
enum {
_basic_type_bits = 4,
_basic_type_mask = right_n_bits(_basic_type_bits),
_basic_types_per_int = BitsPerInt / _basic_type_bits,
_compact_int_count = 3
};
// TO DO: Consider integrating this with a more global scheme for compressing signatures.
// For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
union {
int _compact[_compact_int_count];
int* _fingerprint;
} _value;
int _length; // A negative length indicates the fingerprint is in the compact form,
// Otherwise _value._fingerprint is the array.
// Remap BasicTypes that are handled equivalently by the adapters.
// These are correct for the current system but someday it might be
// necessary to make this mapping platform dependent.
static int adapter_encoding(BasicType in) {
switch (in) {
case T_BOOLEAN:
case T_BYTE:
case T_SHORT:
case T_CHAR:
// There are all promoted to T_INT in the calling convention
return T_INT;
case T_OBJECT:
case T_ARRAY:
// In other words, we assume that any register good enough for
// an int or long is good enough for a managed pointer.
#ifdef _LP64
return T_LONG;
#else
return T_INT;
#endif
case T_INT:
case T_LONG:
case T_FLOAT:
case T_DOUBLE:
case T_VOID:
return in;
default:
ShouldNotReachHere();
return T_CONFLICT;
}
}
public:
AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
// The fingerprint is based on the BasicType signature encoded
// into an array of ints with eight entries per int.
int* ptr;
int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
if (len <= _compact_int_count) {
assert(_compact_int_count == 3, "else change next line");
_value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
// Storing the signature encoded as signed chars hits about 98%
// of the time.
_length = -len;
ptr = _value._compact;
} else {
_length = len;
_value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
ptr = _value._fingerprint;
}
// Now pack the BasicTypes with 8 per int
int sig_index = 0;
for (int index = 0; index < len; index++) {
int value = 0;
for (int byte = 0; byte < _basic_types_per_int; byte++) {
int bt = ((sig_index < total_args_passed)
? adapter_encoding(sig_bt[sig_index++])
: 0);
assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
value = (value << _basic_type_bits) | bt;
}
ptr[index] = value;
}
}
~AdapterFingerPrint() {
if (_length > 0) {
FREE_C_HEAP_ARRAY(int, _value._fingerprint);
}
}
int value(int index) {
if (_length < 0) {
return _value._compact[index];
}
return _value._fingerprint[index];
}
int length() {
if (_length < 0) return -_length;
return _length;
}
bool is_compact() {
return _length <= 0;
}
unsigned int compute_hash() {
int hash = 0;
for (int i = 0; i < length(); i++) {
int v = value(i);
hash = (hash << 8) ^ v ^ (hash >> 5);
}
return (unsigned int)hash;
}
const char* as_string() {
stringStream st;
st.print("0x");
for (int i = 0; i < length(); i++) {
st.print("%08x", value(i));
}
return st.as_string();
}
bool equals(AdapterFingerPrint* other) {
if (other->_length != _length) {
return false;
}
if (_length < 0) {
assert(_compact_int_count == 3, "else change next line");
return _value._compact[0] == other->_value._compact[0] &&
_value._compact[1] == other->_value._compact[1] &&
_value._compact[2] == other->_value._compact[2];
} else {
for (int i = 0; i < _length; i++) {
if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
return false;
}
}
}
return true;
}
};
// A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
class AdapterHandlerTable : public BasicHashtable<mtCode> {
friend class AdapterHandlerTableIterator;
private:
#ifndef PRODUCT
static int _lookups; // number of calls to lookup
static int _buckets; // number of buckets checked
static int _equals; // number of buckets checked with matching hash
static int _hits; // number of successful lookups
static int _compact; // number of equals calls with compact signature
#endif
AdapterHandlerEntry* bucket(int i) {
return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
}
public:
AdapterHandlerTable()
: BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
// Create a new entry suitable for insertion in the table
AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry, address c2i_no_clinit_check_entry) {
AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
if (DumpSharedSpaces) {
((CDSAdapterHandlerEntry*)entry)->init();
}
return entry;
}
// Insert an entry into the table
void add(AdapterHandlerEntry* entry) {
int index = hash_to_index(entry->hash());
add_entry(index, entry);
}
void free_entry(AdapterHandlerEntry* entry) {
entry->deallocate();
BasicHashtable<mtCode>::free_entry(entry);
}
// Find a entry with the same fingerprint if it exists
AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
NOT_PRODUCT(_lookups++);
AdapterFingerPrint fp(total_args_passed, sig_bt);
unsigned int hash = fp.compute_hash();
int index = hash_to_index(hash);
for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
NOT_PRODUCT(_buckets++);
if (e->hash() == hash) {
NOT_PRODUCT(_equals++);
if (fp.equals(e->fingerprint())) {
#ifndef PRODUCT
if (fp.is_compact()) _compact++;
_hits++;
#endif
return e;
}
}
}
return NULL;
}
#ifndef PRODUCT
void print_statistics() {
ResourceMark rm;
int longest = 0;
int empty = 0;
int total = 0;
int nonempty = 0;
for (int index = 0; index < table_size(); index++) {
int count = 0;
for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
count++;
}
if (count != 0) nonempty++;
if (count == 0) empty++;
if (count > longest) longest = count;
total += count;
}
tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
empty, longest, total, total / (double)nonempty);
tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
_lookups, _buckets, _equals, _hits, _compact);
}
#endif
};
#ifndef PRODUCT
int AdapterHandlerTable::_lookups;
int AdapterHandlerTable::_buckets;
int AdapterHandlerTable::_equals;
int AdapterHandlerTable::_hits;
int AdapterHandlerTable::_compact;
#endif
class AdapterHandlerTableIterator : public StackObj {
private:
AdapterHandlerTable* _table;
int _index;
AdapterHandlerEntry* _current;
void scan() {
while (_index < _table->table_size()) {
AdapterHandlerEntry* a = _table->bucket(_index);
_index++;
if (a != NULL) {
_current = a;
return;
}
}
}
public:
AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
scan();
}
bool has_next() {
return _current != NULL;
}
AdapterHandlerEntry* next() {
if (_current != NULL) {
AdapterHandlerEntry* result = _current;
_current = _current->next();
if (_current == NULL) scan();
return result;
} else {
return NULL;
}
}
};
// ---------------------------------------------------------------------------
// Implementation of AdapterHandlerLibrary
AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
const int AdapterHandlerLibrary_size = 16*K;
BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
BufferBlob* AdapterHandlerLibrary::buffer_blob() {
// Should be called only when AdapterHandlerLibrary_lock is active.
if (_buffer == NULL) // Initialize lazily
_buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
return _buffer;
}
extern "C" void unexpected_adapter_call() {
ShouldNotCallThis();
}
void AdapterHandlerLibrary::initialize() {
if (_adapters != NULL) return;
_adapters = new AdapterHandlerTable();
// Create a special handler for abstract methods. Abstract methods
// are never compiled so an i2c entry is somewhat meaningless, but
// throw AbstractMethodError just in case.
// Pass wrong_method_abstract for the c2i transitions to return
// AbstractMethodError for invalid invocations.
address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
_abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
StubRoutines::throw_AbstractMethodError_entry(),
wrong_method_abstract, wrong_method_abstract);
}
AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
address i2c_entry,
address c2i_entry,
address c2i_unverified_entry,
address c2i_no_clinit_check_entry) {
return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
}
AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
AdapterHandlerEntry* entry = get_adapter0(method);
if (method->is_shared()) {
// See comments around Method::link_method()
MutexLocker mu(AdapterHandlerLibrary_lock);
if (method->adapter() == NULL) {
method->update_adapter_trampoline(entry);
}
address trampoline = method->from_compiled_entry();
if (*(int*)trampoline == 0) {
CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
MacroAssembler _masm(&buffer);
SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
if (PrintInterpreter) {
Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
}
}
}
return entry;
}
AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
// Use customized signature handler. Need to lock around updates to
// the AdapterHandlerTable (it is not safe for concurrent readers
// and a single writer: this could be fixed if it becomes a
// problem).
ResourceMark rm;
NOT_PRODUCT(int insts_size);
AdapterBlob* new_adapter = NULL;
AdapterHandlerEntry* entry = NULL;
AdapterFingerPrint* fingerprint = NULL;
{
MutexLocker mu(AdapterHandlerLibrary_lock);
// make sure data structure is initialized
initialize();
if (method->is_abstract()) {
return _abstract_method_handler;
}
// Fill in the signature array, for the calling-convention call.
int total_args_passed = method->size_of_parameters(); // All args on stack
BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
int i = 0;
if (!method->is_static()) // Pass in receiver first
sig_bt[i++] = T_OBJECT;
for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
sig_bt[i++] = ss.type(); // Collect remaining bits of signature
if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
}
assert(i == total_args_passed, "");
// Lookup method signature's fingerprint
entry = _adapters->lookup(total_args_passed, sig_bt);
#ifdef ASSERT
AdapterHandlerEntry* shared_entry = NULL;
// Start adapter sharing verification only after the VM is booted.
if (VerifyAdapterSharing && (entry != NULL)) {
shared_entry = entry;
entry = NULL;
}
#endif
if (entry != NULL) {
return entry;
}
// Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
// Make a C heap allocated version of the fingerprint to store in the adapter
fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
// StubRoutines::code2() is initialized after this function can be called. As a result,
// VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
// prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
// stub that ensure that an I2C stub is called from an interpreter frame.
bool contains_all_checks = StubRoutines::code2() != NULL;
// Create I2C & C2I handlers
BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
if (buf != NULL) {
CodeBuffer buffer(buf);
short buffer_locs[20];
buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
sizeof(buffer_locs)/sizeof(relocInfo));
MacroAssembler _masm(&buffer);
entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
total_args_passed,
comp_args_on_stack,
sig_bt,
regs,
fingerprint);
#ifdef ASSERT
if (VerifyAdapterSharing) {
if (shared_entry != NULL) {
assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
// Release the one just created and return the original
_adapters->free_entry(entry);
return shared_entry;
} else {
entry->save_code(buf->code_begin(), buffer.insts_size());
}
}
#endif
new_adapter = AdapterBlob::create(&buffer);
NOT_PRODUCT(insts_size = buffer.insts_size());
}
if (new_adapter == NULL) {
// CodeCache is full, disable compilation
// Ought to log this but compile log is only per compile thread
// and we're some non descript Java thread.
return NULL; // Out of CodeCache space
}
entry->relocate(new_adapter->content_begin());
#ifndef PRODUCT
// debugging suppport
if (PrintAdapterHandlers || PrintStubCode) {
ttyLocker ttyl;
entry->print_adapter_on(tty);
tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
_adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
if (Verbose || PrintStubCode) {
address first_pc = entry->base_address();
if (first_pc != NULL) {
Disassembler::decode(first_pc, first_pc + insts_size);
tty->cr();
}
}
}
#endif
// Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
// The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
if (contains_all_checks || !VerifyAdapterCalls) {
_adapters->add(entry);
}
}
// Outside of the lock
if (new_adapter != NULL) {
char blob_id[256];
jio_snprintf(blob_id,
sizeof(blob_id),
"%s(%s)@" PTR_FORMAT,
new_adapter->name(),
fingerprint->as_string(),
new_adapter->content_begin());
Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
if (JvmtiExport::should_post_dynamic_code_generated()) {
JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
}
}
return entry;
}
address AdapterHandlerEntry::base_address() {
address base = _i2c_entry;
if (base == NULL) base = _c2i_entry;
assert(base <= _c2i_entry || _c2i_entry == NULL, "");
assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == NULL, "");
return base;
}
void AdapterHandlerEntry::relocate(address new_base) {
address old_base = base_address();
assert(old_base != NULL, "");
ptrdiff_t delta = new_base - old_base;
if (_i2c_entry != NULL)
_i2c_entry += delta;
if (_c2i_entry != NULL)
_c2i_entry += delta;
if (_c2i_unverified_entry != NULL)
_c2i_unverified_entry += delta;
if (_c2i_no_clinit_check_entry != NULL)
_c2i_no_clinit_check_entry += delta;
assert(base_address() == new_base, "");
}
void AdapterHandlerEntry::deallocate() {
delete _fingerprint;
#ifdef ASSERT
FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
#endif
}
#ifdef ASSERT
// Capture the code before relocation so that it can be compared
// against other versions. If the code is captured after relocation
// then relative instructions won't be equivalent.
void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
_saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
_saved_code_length = length;
memcpy(_saved_code, buffer, length);
}
bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
if (length != _saved_code_length) {
return false;
}
return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
}
#endif
/**
* Create a native wrapper for this native method. The wrapper converts the
* Java-compiled calling convention to the native convention, handles
* arguments, and transitions to native. On return from the native we transition
* back to java blocking if a safepoint is in progress.
*/
void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
ResourceMark rm;
nmethod* nm = NULL;
address critical_entry = NULL;
assert(method->is_native(), "must be native");
assert(method->is_method_handle_intrinsic() ||
method->has_native_function(), "must have something valid to call!");
if (CriticalJNINatives && !method->is_method_handle_intrinsic()) {
// We perform the I/O with transition to native before acquiring AdapterHandlerLibrary_lock.
critical_entry = NativeLookup::lookup_critical_entry(method);
}
{
// Perform the work while holding the lock, but perform any printing outside the lock
MutexLocker mu(AdapterHandlerLibrary_lock);
// See if somebody beat us to it
if (method->code() != NULL) {
return;
}
const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
assert(compile_id > 0, "Must generate native wrapper");
ResourceMark rm;
BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
if (buf != NULL) {
CodeBuffer buffer(buf);
double locs_buf[20];
buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
MacroAssembler _masm(&buffer);
// Fill in the signature array, for the calling-convention call.
const int total_args_passed = method->size_of_parameters();
BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
int i=0;
if (!method->is_static()) // Pass in receiver first
sig_bt[i++] = T_OBJECT;
SignatureStream ss(method->signature());
for (; !ss.at_return_type(); ss.next()) {
sig_bt[i++] = ss.type(); // Collect remaining bits of signature
if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
}
assert(i == total_args_passed, "");
BasicType ret_type = ss.type();
// Now get the compiled-Java layout as input (or output) arguments.
// NOTE: Stubs for compiled entry points of method handle intrinsics
// are just trampolines so the argument registers must be outgoing ones.
const bool is_outgoing = method->is_method_handle_intrinsic();
int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
// Generate the compiled-to-native wrapper code
nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type, critical_entry);
if (nm != NULL) {
{
MutexLocker pl(CompiledMethod_lock, Mutex::_no_safepoint_check_flag);
if (nm->make_in_use()) {
method->set_code(method, nm);
}
}
DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
if (directive->PrintAssemblyOption) {
nm->print_code();
}
DirectivesStack::release(directive);
}
}
} // Unlock AdapterHandlerLibrary_lock
// Install the generated code.
if (nm != NULL) {
const char *msg = method->is_static() ? "(static)" : "";
CompileTask::print_ul(nm, msg);
if (PrintCompilation) {
ttyLocker ttyl;
CompileTask::print(tty, nm, msg);
}
nm->post_compiled_method_load_event();
}
}
JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
assert(thread == JavaThread::current(), "must be");
// The code is about to enter a JNI lazy critical native method and
// _needs_gc is true, so if this thread is already in a critical
// section then just return, otherwise this thread should block
// until needs_gc has been cleared.
if (thread->in_critical()) {
return;
}
// Lock and unlock a critical section to give the system a chance to block
GCLocker::lock_critical(thread);
GCLocker::unlock_critical(thread);
JRT_END
JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
assert(obj != NULL, "Should not be null");
oop o(obj);
o = Universe::heap()->pin_object(thread, o);
assert(o != NULL, "Should not be null");
return o;
JRT_END
JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
assert(obj != NULL, "Should not be null");
oop o(obj);
Universe::heap()->unpin_object(thread, o);
JRT_END
// -------------------------------------------------------------------------
// Java-Java calling convention
// (what you use when Java calls Java)
//------------------------------name_for_receiver----------------------------------
// For a given signature, return the VMReg for parameter 0.
VMReg SharedRuntime::name_for_receiver() {
VMRegPair regs;
BasicType sig_bt = T_OBJECT;
(void) java_calling_convention(&sig_bt, ®s, 1, true);
// Return argument 0 register. In the LP64 build pointers
// take 2 registers, but the VM wants only the 'main' name.
return regs.first();
}
VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
// This method is returning a data structure allocating as a
// ResourceObject, so do not put any ResourceMarks in here.
char *s = sig->as_C_string();
int len = (int)strlen(s);
s++; len--; // Skip opening paren
BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
int cnt = 0;
if (has_receiver) {
sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
}
while (*s != ')') { // Find closing right paren
switch (*s++) { // Switch on signature character
case 'B': sig_bt[cnt++] = T_BYTE; break;
case 'C': sig_bt[cnt++] = T_CHAR; break;
case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break;
case 'F': sig_bt[cnt++] = T_FLOAT; break;
case 'I': sig_bt[cnt++] = T_INT; break;
case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break;
case 'S': sig_bt[cnt++] = T_SHORT; break;
case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
case 'V': sig_bt[cnt++] = T_VOID; break;
case 'L': // Oop
while (*s++ != ';'); // Skip signature
sig_bt[cnt++] = T_OBJECT;
break;
case '[': { // Array
do { // Skip optional size
while (*s >= '0' && *s <= '9') s++;
} while (*s++ == '['); // Nested arrays?
// Skip element type
if (s[-1] == 'L')
while (*s++ != ';'); // Skip signature
sig_bt[cnt++] = T_ARRAY;
break;
}
default : ShouldNotReachHere();
}
}
if (has_appendix) {
sig_bt[cnt++] = T_OBJECT;
}
assert(cnt < 256, "grow table size");
int comp_args_on_stack;
comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
// the calling convention doesn't count out_preserve_stack_slots so
// we must add that in to get "true" stack offsets.
if (comp_args_on_stack) {
for (int i = 0; i < cnt; i++) {
VMReg reg1 = regs[i].first();
if (reg1->is_stack()) {
// Yuck
reg1 = reg1->bias(out_preserve_stack_slots());
}
VMReg reg2 = regs[i].second();
if (reg2->is_stack()) {
// Yuck
reg2 = reg2->bias(out_preserve_stack_slots());
}
regs[i].set_pair(reg2, reg1);
}
}
// results
*arg_size = cnt;
return regs;
}
// OSR Migration Code
//
// This code is used convert interpreter frames into compiled frames. It is
// called from very start of a compiled OSR nmethod. A temp array is
// allocated to hold the interesting bits of the interpreter frame. All
// active locks are inflated to allow them to move. The displaced headers and
// active interpreter locals are copied into the temp buffer. Then we return
// back to the compiled code. The compiled code then pops the current
// interpreter frame off the stack and pushes a new compiled frame. Then it
// copies the interpreter locals and displaced headers where it wants.
// Finally it calls back to free the temp buffer.
//
// All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
//
// This code is dependent on the memory layout of the interpreter local
// array and the monitors. On all of our platforms the layout is identical
// so this code is shared. If some platform lays the their arrays out
// differently then this code could move to platform specific code or
// the code here could be modified to copy items one at a time using
// frame accessor methods and be platform independent.
frame fr = thread->last_frame();
assert(fr.is_interpreted_frame(), "");
assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
// Figure out how many monitors are active.
int active_monitor_count = 0;
for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
kptr < fr.interpreter_frame_monitor_begin();
kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
if (kptr->obj() != NULL) active_monitor_count++;
}
// QQQ we could place number of active monitors in the array so that compiled code
// could double check it.
Method* moop = fr.interpreter_frame_method();
int max_locals = moop->max_locals();
// Allocate temp buffer, 1 word per local & 2 per active monitor
int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
// Copy the locals. Order is preserved so that loading of longs works.
// Since there's no GC I can copy the oops blindly.
assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
(HeapWord*)&buf[0],
max_locals);
// Inflate locks. Copy the displaced headers. Be careful, there can be holes.
int i = max_locals;
for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
kptr2 < fr.interpreter_frame_monitor_begin();
kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
if (kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array
BasicLock *lock = kptr2->lock();
// Inflate so the displaced header becomes position-independent
if (lock->displaced_header().is_unlocked())
ObjectSynchronizer::inflate_helper(kptr2->obj());
// Now the displaced header is free to move
buf[i++] = (intptr_t)lock->displaced_header().value();
buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
}
}
assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
return buf;
JRT_END
JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
FREE_C_HEAP_ARRAY(intptr_t, buf);
JRT_END
bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
AdapterHandlerTableIterator iter(_adapters);
while (iter.has_next()) {
AdapterHandlerEntry* a = iter.next();
if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
}
return false;
}
void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
AdapterHandlerTableIterator iter(_adapters);
while (iter.has_next()) {
AdapterHandlerEntry* a = iter.next();
if (b == CodeCache::find_blob(a->get_i2c_entry())) {
st->print("Adapter for signature: ");
a->print_adapter_on(tty);
return;
}
}
assert(false, "Should have found handler");
}
void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
if (get_i2c_entry() != NULL) {
st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
}
if (get_c2i_entry() != NULL) {
st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
}
if (get_c2i_unverified_entry() != NULL) {
st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
}
if (get_c2i_no_clinit_check_entry() != NULL) {
st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
}
st->cr();
}
#if INCLUDE_CDS
void CDSAdapterHandlerEntry::init() {
assert(DumpSharedSpaces, "used during dump time only");
_c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
_adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
};
#endif // INCLUDE_CDS
#ifndef PRODUCT
void AdapterHandlerLibrary::print_statistics() {
_adapters->print_statistics();
}
#endif /* PRODUCT */
JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
if (thread->stack_reserved_zone_disabled()) {
thread->enable_stack_reserved_zone();
}
thread->set_reserved_stack_activation(thread->stack_base());
JRT_END
frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
ResourceMark rm(thread);
frame activation;
CompiledMethod* nm = NULL;
int count = 1;
assert(fr.is_java_frame(), "Must start on Java frame");
while (true) {
Method* method = NULL;
bool found = false;
if (fr.is_interpreted_frame()) {
method = fr.interpreter_frame_method();
if (method != NULL && method->has_reserved_stack_access()) {
found = true;
}
} else {
CodeBlob* cb = fr.cb();
if (cb != NULL && cb->is_compiled()) {
nm = cb->as_compiled_method();
method = nm->method();
// scope_desc_near() must be used, instead of scope_desc_at() because on
// SPARC, the pcDesc can be on the delay slot after the call instruction.
for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
method = sd->method();
if (method != NULL && method->has_reserved_stack_access()) {
found = true;
}
}
}
}
if (found) {
activation = fr;
warning("Potentially dangerous stack overflow in "
"ReservedStackAccess annotated method %s [%d]",
method->name_and_sig_as_C_string(), count++);
EventReservedStackActivation event;
if (event.should_commit()) {
event.set_method(method);
event.commit();
}
}
if (fr.is_first_java_frame()) {
break;
} else {
fr = fr.java_sender();
}
}
return activation;
}
void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
// After any safepoint, just before going back to compiled code,
// we inform the GC that we will be doing initializing writes to
// this object in the future without emitting card-marks, so
// GC may take any compensating steps.
oop new_obj = thread->vm_result();
if (new_obj == NULL) return;
BarrierSet *bs = BarrierSet::barrier_set();
bs->on_slowpath_allocation_exit(thread, new_obj);
}