8205003: Replace selected link tags with linkplain in java.lang.Class
Reviewed-by: bpb, mchung, lancea
/*
* Copyright (c) 1994, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.lang;
import java.lang.annotation.Annotation;
import java.lang.module.ModuleReader;
import java.lang.ref.SoftReference;
import java.io.IOException;
import java.io.InputStream;
import java.io.ObjectStreamField;
import java.lang.reflect.AnnotatedElement;
import java.lang.reflect.AnnotatedType;
import java.lang.reflect.Array;
import java.lang.reflect.Constructor;
import java.lang.reflect.Executable;
import java.lang.reflect.Field;
import java.lang.reflect.GenericArrayType;
import java.lang.reflect.GenericDeclaration;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Member;
import java.lang.reflect.Method;
import java.lang.reflect.Modifier;
import java.lang.reflect.Proxy;
import java.lang.reflect.Type;
import java.lang.reflect.TypeVariable;
import java.net.URL;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.StringJoiner;
import jdk.internal.HotSpotIntrinsicCandidate;
import jdk.internal.loader.BootLoader;
import jdk.internal.loader.BuiltinClassLoader;
import jdk.internal.misc.Unsafe;
import jdk.internal.misc.VM;
import jdk.internal.module.Resources;
import jdk.internal.reflect.CallerSensitive;
import jdk.internal.reflect.ConstantPool;
import jdk.internal.reflect.Reflection;
import jdk.internal.reflect.ReflectionFactory;
import jdk.internal.vm.annotation.ForceInline;
import sun.reflect.generics.factory.CoreReflectionFactory;
import sun.reflect.generics.factory.GenericsFactory;
import sun.reflect.generics.repository.ClassRepository;
import sun.reflect.generics.repository.MethodRepository;
import sun.reflect.generics.repository.ConstructorRepository;
import sun.reflect.generics.scope.ClassScope;
import sun.security.util.SecurityConstants;
import sun.reflect.annotation.*;
import sun.reflect.misc.ReflectUtil;
/**
* Instances of the class {@code Class} represent classes and
* interfaces in a running Java application. An enum is a kind of
* class and an annotation is a kind of interface. Every array also
* belongs to a class that is reflected as a {@code Class} object
* that is shared by all arrays with the same element type and number
* of dimensions. The primitive Java types ({@code boolean},
* {@code byte}, {@code char}, {@code short},
* {@code int}, {@code long}, {@code float}, and
* {@code double}), and the keyword {@code void} are also
* represented as {@code Class} objects.
*
* <p> {@code Class} has no public constructor. Instead {@code Class}
* objects are constructed automatically by the Java Virtual Machine as classes
* are loaded and by calls to the {@code defineClass} method in the class
* loader.
*
* <p> The following example uses a {@code Class} object to print the
* class name of an object:
*
* <blockquote><pre>
* void printClassName(Object obj) {
* System.out.println("The class of " + obj +
* " is " + obj.getClass().getName());
* }
* </pre></blockquote>
*
* <p> It is also possible to get the {@code Class} object for a named
* type (or for void) using a class literal. See Section 15.8.2 of
* <cite>The Java™ Language Specification</cite>.
* For example:
*
* <blockquote>
* {@code System.out.println("The name of class Foo is: "+Foo.class.getName());}
* </blockquote>
*
* @param <T> the type of the class modeled by this {@code Class}
* object. For example, the type of {@code String.class} is {@code
* Class<String>}. Use {@code Class<?>} if the class being modeled is
* unknown.
*
* @author unascribed
* @see java.lang.ClassLoader#defineClass(byte[], int, int)
* @since 1.0
*/
public final class Class<T> implements java.io.Serializable,
GenericDeclaration,
Type,
AnnotatedElement {
private static final int ANNOTATION= 0x00002000;
private static final int ENUM = 0x00004000;
private static final int SYNTHETIC = 0x00001000;
private static native void registerNatives();
static {
registerNatives();
}
/*
* Private constructor. Only the Java Virtual Machine creates Class objects.
* This constructor is not used and prevents the default constructor being
* generated.
*/
private Class(ClassLoader loader, Class<?> arrayComponentType) {
// Initialize final field for classLoader. The initialization value of non-null
// prevents future JIT optimizations from assuming this final field is null.
classLoader = loader;
componentType = arrayComponentType;
}
/**
* Converts the object to a string. The string representation is the
* string "class" or "interface", followed by a space, and then by the
* fully qualified name of the class in the format returned by
* {@code getName}. If this {@code Class} object represents a
* primitive type, this method returns the name of the primitive type. If
* this {@code Class} object represents void this method returns
* "void". If this {@code Class} object represents an array type,
* this method returns "class " followed by {@code getName}.
*
* @return a string representation of this class object.
*/
public String toString() {
return (isInterface() ? "interface " : (isPrimitive() ? "" : "class "))
+ getName();
}
/**
* Returns a string describing this {@code Class}, including
* information about modifiers and type parameters.
*
* The string is formatted as a list of type modifiers, if any,
* followed by the kind of type (empty string for primitive types
* and {@code class}, {@code enum}, {@code interface}, or
* <code>@</code>{@code interface}, as appropriate), followed
* by the type's name, followed by an angle-bracketed
* comma-separated list of the type's type parameters, if any.
*
* A space is used to separate modifiers from one another and to
* separate any modifiers from the kind of type. The modifiers
* occur in canonical order. If there are no type parameters, the
* type parameter list is elided.
*
* For an array type, the string starts with the type name,
* followed by an angle-bracketed comma-separated list of the
* type's type parameters, if any, followed by a sequence of
* {@code []} characters, one set of brackets per dimension of
* the array.
*
* <p>Note that since information about the runtime representation
* of a type is being generated, modifiers not present on the
* originating source code or illegal on the originating source
* code may be present.
*
* @return a string describing this {@code Class}, including
* information about modifiers and type parameters
*
* @since 1.8
*/
public String toGenericString() {
if (isPrimitive()) {
return toString();
} else {
StringBuilder sb = new StringBuilder();
Class<?> component = this;
int arrayDepth = 0;
if (isArray()) {
do {
arrayDepth++;
component = component.getComponentType();
} while (component.isArray());
sb.append(component.getName());
} else {
// Class modifiers are a superset of interface modifiers
int modifiers = getModifiers() & Modifier.classModifiers();
if (modifiers != 0) {
sb.append(Modifier.toString(modifiers));
sb.append(' ');
}
if (isAnnotation()) {
sb.append('@');
}
if (isInterface()) { // Note: all annotation types are interfaces
sb.append("interface");
} else {
if (isEnum())
sb.append("enum");
else
sb.append("class");
}
sb.append(' ');
sb.append(getName());
}
TypeVariable<?>[] typeparms = component.getTypeParameters();
if (typeparms.length > 0) {
StringJoiner sj = new StringJoiner(",", "<", ">");
for(TypeVariable<?> typeparm: typeparms) {
sj.add(typeparm.getTypeName());
}
sb.append(sj.toString());
}
for (int i = 0; i < arrayDepth; i++)
sb.append("[]");
return sb.toString();
}
}
/**
* Returns the {@code Class} object associated with the class or
* interface with the given string name. Invoking this method is
* equivalent to:
*
* <blockquote>
* {@code Class.forName(className, true, currentLoader)}
* </blockquote>
*
* where {@code currentLoader} denotes the defining class loader of
* the current class.
*
* <p> For example, the following code fragment returns the
* runtime {@code Class} descriptor for the class named
* {@code java.lang.Thread}:
*
* <blockquote>
* {@code Class t = Class.forName("java.lang.Thread")}
* </blockquote>
* <p>
* A call to {@code forName("X")} causes the class named
* {@code X} to be initialized.
*
* @param className the fully qualified name of the desired class.
* @return the {@code Class} object for the class with the
* specified name.
* @exception LinkageError if the linkage fails
* @exception ExceptionInInitializerError if the initialization provoked
* by this method fails
* @exception ClassNotFoundException if the class cannot be located
*/
@CallerSensitive
public static Class<?> forName(String className)
throws ClassNotFoundException {
Class<?> caller = Reflection.getCallerClass();
return forName0(className, true, ClassLoader.getClassLoader(caller), caller);
}
/**
* Returns the {@code Class} object associated with the class or
* interface with the given string name, using the given class loader.
* Given the fully qualified name for a class or interface (in the same
* format returned by {@code getName}) this method attempts to
* locate, load, and link the class or interface. The specified class
* loader is used to load the class or interface. If the parameter
* {@code loader} is null, the class is loaded through the bootstrap
* class loader. The class is initialized only if the
* {@code initialize} parameter is {@code true} and if it has
* not been initialized earlier.
*
* <p> If {@code name} denotes a primitive type or void, an attempt
* will be made to locate a user-defined class in the unnamed package whose
* name is {@code name}. Therefore, this method cannot be used to
* obtain any of the {@code Class} objects representing primitive
* types or void.
*
* <p> If {@code name} denotes an array class, the component type of
* the array class is loaded but not initialized.
*
* <p> For example, in an instance method the expression:
*
* <blockquote>
* {@code Class.forName("Foo")}
* </blockquote>
*
* is equivalent to:
*
* <blockquote>
* {@code Class.forName("Foo", true, this.getClass().getClassLoader())}
* </blockquote>
*
* Note that this method throws errors related to loading, linking or
* initializing as specified in Sections 12.2, 12.3 and 12.4 of <em>The
* Java Language Specification</em>.
* Note that this method does not check whether the requested class
* is accessible to its caller.
*
* @param name fully qualified name of the desired class
* @param initialize if {@code true} the class will be initialized.
* See Section 12.4 of <em>The Java Language Specification</em>.
* @param loader class loader from which the class must be loaded
* @return class object representing the desired class
*
* @exception LinkageError if the linkage fails
* @exception ExceptionInInitializerError if the initialization provoked
* by this method fails
* @exception ClassNotFoundException if the class cannot be located by
* the specified class loader
* @exception SecurityException
* if a security manager is present, and the {@code loader} is
* {@code null}, and the caller's class loader is not
* {@code null}, and the caller does not have the
* {@link RuntimePermission}{@code ("getClassLoader")}
*
* @see java.lang.Class#forName(String)
* @see java.lang.ClassLoader
* @since 1.2
*/
@CallerSensitive
public static Class<?> forName(String name, boolean initialize,
ClassLoader loader)
throws ClassNotFoundException
{
Class<?> caller = null;
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
// Reflective call to get caller class is only needed if a security manager
// is present. Avoid the overhead of making this call otherwise.
caller = Reflection.getCallerClass();
if (loader == null) {
ClassLoader ccl = ClassLoader.getClassLoader(caller);
if (ccl != null) {
sm.checkPermission(
SecurityConstants.GET_CLASSLOADER_PERMISSION);
}
}
}
return forName0(name, initialize, loader, caller);
}
/** Called after security check for system loader access checks have been made. */
private static native Class<?> forName0(String name, boolean initialize,
ClassLoader loader,
Class<?> caller)
throws ClassNotFoundException;
/**
* Returns the {@code Class} with the given <a href="ClassLoader.html#name">
* binary name</a> in the given module.
*
* <p> This method attempts to locate, load, and link the class or interface.
* It does not run the class initializer. If the class is not found, this
* method returns {@code null}. </p>
*
* <p> If the class loader of the given module defines other modules and
* the given name is a class defined in a different module, this method
* returns {@code null} after the class is loaded. </p>
*
* <p> This method does not check whether the requested class is
* accessible to its caller. </p>
*
* @apiNote
* This method returns {@code null} on failure rather than
* throwing a {@link ClassNotFoundException}, as is done by
* the {@link #forName(String, boolean, ClassLoader)} method.
* The security check is a stack-based permission check if the caller
* loads a class in another module.
*
* @param module A module
* @param name The <a href="ClassLoader.html#name">binary name</a>
* of the class
* @return {@code Class} object of the given name defined in the given module;
* {@code null} if not found.
*
* @throws NullPointerException if the given module or name is {@code null}
*
* @throws LinkageError if the linkage fails
*
* @throws SecurityException
* <ul>
* <li> if the caller is not the specified module and
* {@code RuntimePermission("getClassLoader")} permission is denied; or</li>
* <li> access to the module content is denied. For example,
* permission check will be performed when a class loader calls
* {@link ModuleReader#open(String)} to read the bytes of a class file
* in a module.</li>
* </ul>
*
* @since 9
* @spec JPMS
*/
@CallerSensitive
public static Class<?> forName(Module module, String name) {
Objects.requireNonNull(module);
Objects.requireNonNull(name);
ClassLoader cl;
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
Class<?> caller = Reflection.getCallerClass();
if (caller != null && caller.getModule() != module) {
// if caller is null, Class.forName is the last java frame on the stack.
// java.base has all permissions
sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
}
PrivilegedAction<ClassLoader> pa = module::getClassLoader;
cl = AccessController.doPrivileged(pa);
} else {
cl = module.getClassLoader();
}
if (cl != null) {
return cl.loadClass(module, name);
} else {
return BootLoader.loadClass(module, name);
}
}
/**
* Creates a new instance of the class represented by this {@code Class}
* object. The class is instantiated as if by a {@code new}
* expression with an empty argument list. The class is initialized if it
* has not already been initialized.
*
* @deprecated This method propagates any exception thrown by the
* nullary constructor, including a checked exception. Use of
* this method effectively bypasses the compile-time exception
* checking that would otherwise be performed by the compiler.
* The {@link
* java.lang.reflect.Constructor#newInstance(java.lang.Object...)
* Constructor.newInstance} method avoids this problem by wrapping
* any exception thrown by the constructor in a (checked) {@link
* java.lang.reflect.InvocationTargetException}.
*
* <p>The call
*
* <pre>{@code
* clazz.newInstance()
* }</pre>
*
* can be replaced by
*
* <pre>{@code
* clazz.getDeclaredConstructor().newInstance()
* }</pre>
*
* The latter sequence of calls is inferred to be able to throw
* the additional exception types {@link
* InvocationTargetException} and {@link
* NoSuchMethodException}. Both of these exception types are
* subclasses of {@link ReflectiveOperationException}.
*
* @return a newly allocated instance of the class represented by this
* object.
* @throws IllegalAccessException if the class or its nullary
* constructor is not accessible.
* @throws InstantiationException
* if this {@code Class} represents an abstract class,
* an interface, an array class, a primitive type, or void;
* or if the class has no nullary constructor;
* or if the instantiation fails for some other reason.
* @throws ExceptionInInitializerError if the initialization
* provoked by this method fails.
* @throws SecurityException
* If a security manager, <i>s</i>, is present and
* the caller's class loader is not the same as or an
* ancestor of the class loader for the current class and
* invocation of {@link SecurityManager#checkPackageAccess
* s.checkPackageAccess()} denies access to the package
* of this class.
*/
@CallerSensitive
@Deprecated(since="9")
public T newInstance()
throws InstantiationException, IllegalAccessException
{
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
checkMemberAccess(sm, Member.PUBLIC, Reflection.getCallerClass(), false);
}
// NOTE: the following code may not be strictly correct under
// the current Java memory model.
// Constructor lookup
if (cachedConstructor == null) {
if (this == Class.class) {
throw new IllegalAccessException(
"Can not call newInstance() on the Class for java.lang.Class"
);
}
try {
Class<?>[] empty = {};
final Constructor<T> c = getReflectionFactory().copyConstructor(
getConstructor0(empty, Member.DECLARED));
// Disable accessibility checks on the constructor
// since we have to do the security check here anyway
// (the stack depth is wrong for the Constructor's
// security check to work)
java.security.AccessController.doPrivileged(
new java.security.PrivilegedAction<>() {
public Void run() {
c.setAccessible(true);
return null;
}
});
cachedConstructor = c;
} catch (NoSuchMethodException e) {
throw (InstantiationException)
new InstantiationException(getName()).initCause(e);
}
}
Constructor<T> tmpConstructor = cachedConstructor;
// Security check (same as in java.lang.reflect.Constructor)
Class<?> caller = Reflection.getCallerClass();
if (newInstanceCallerCache != caller) {
int modifiers = tmpConstructor.getModifiers();
Reflection.ensureMemberAccess(caller, this, this, modifiers);
newInstanceCallerCache = caller;
}
// Run constructor
try {
return tmpConstructor.newInstance((Object[])null);
} catch (InvocationTargetException e) {
Unsafe.getUnsafe().throwException(e.getTargetException());
// Not reached
return null;
}
}
private transient volatile Constructor<T> cachedConstructor;
private transient volatile Class<?> newInstanceCallerCache;
/**
* Determines if the specified {@code Object} is assignment-compatible
* with the object represented by this {@code Class}. This method is
* the dynamic equivalent of the Java language {@code instanceof}
* operator. The method returns {@code true} if the specified
* {@code Object} argument is non-null and can be cast to the
* reference type represented by this {@code Class} object without
* raising a {@code ClassCastException.} It returns {@code false}
* otherwise.
*
* <p> Specifically, if this {@code Class} object represents a
* declared class, this method returns {@code true} if the specified
* {@code Object} argument is an instance of the represented class (or
* of any of its subclasses); it returns {@code false} otherwise. If
* this {@code Class} object represents an array class, this method
* returns {@code true} if the specified {@code Object} argument
* can be converted to an object of the array class by an identity
* conversion or by a widening reference conversion; it returns
* {@code false} otherwise. If this {@code Class} object
* represents an interface, this method returns {@code true} if the
* class or any superclass of the specified {@code Object} argument
* implements this interface; it returns {@code false} otherwise. If
* this {@code Class} object represents a primitive type, this method
* returns {@code false}.
*
* @param obj the object to check
* @return true if {@code obj} is an instance of this class
*
* @since 1.1
*/
@HotSpotIntrinsicCandidate
public native boolean isInstance(Object obj);
/**
* Determines if the class or interface represented by this
* {@code Class} object is either the same as, or is a superclass or
* superinterface of, the class or interface represented by the specified
* {@code Class} parameter. It returns {@code true} if so;
* otherwise it returns {@code false}. If this {@code Class}
* object represents a primitive type, this method returns
* {@code true} if the specified {@code Class} parameter is
* exactly this {@code Class} object; otherwise it returns
* {@code false}.
*
* <p> Specifically, this method tests whether the type represented by the
* specified {@code Class} parameter can be converted to the type
* represented by this {@code Class} object via an identity conversion
* or via a widening reference conversion. See <em>The Java Language
* Specification</em>, sections 5.1.1 and 5.1.4 , for details.
*
* @param cls the {@code Class} object to be checked
* @return the {@code boolean} value indicating whether objects of the
* type {@code cls} can be assigned to objects of this class
* @exception NullPointerException if the specified Class parameter is
* null.
* @since 1.1
*/
@HotSpotIntrinsicCandidate
public native boolean isAssignableFrom(Class<?> cls);
/**
* Determines if the specified {@code Class} object represents an
* interface type.
*
* @return {@code true} if this object represents an interface;
* {@code false} otherwise.
*/
@HotSpotIntrinsicCandidate
public native boolean isInterface();
/**
* Determines if this {@code Class} object represents an array class.
*
* @return {@code true} if this object represents an array class;
* {@code false} otherwise.
* @since 1.1
*/
@HotSpotIntrinsicCandidate
public native boolean isArray();
/**
* Determines if the specified {@code Class} object represents a
* primitive type.
*
* <p> There are nine predefined {@code Class} objects to represent
* the eight primitive types and void. These are created by the Java
* Virtual Machine, and have the same names as the primitive types that
* they represent, namely {@code boolean}, {@code byte},
* {@code char}, {@code short}, {@code int},
* {@code long}, {@code float}, and {@code double}.
*
* <p> These objects may only be accessed via the following public static
* final variables, and are the only {@code Class} objects for which
* this method returns {@code true}.
*
* @return true if and only if this class represents a primitive type
*
* @see java.lang.Boolean#TYPE
* @see java.lang.Character#TYPE
* @see java.lang.Byte#TYPE
* @see java.lang.Short#TYPE
* @see java.lang.Integer#TYPE
* @see java.lang.Long#TYPE
* @see java.lang.Float#TYPE
* @see java.lang.Double#TYPE
* @see java.lang.Void#TYPE
* @since 1.1
*/
@HotSpotIntrinsicCandidate
public native boolean isPrimitive();
/**
* Returns true if this {@code Class} object represents an annotation
* type. Note that if this method returns true, {@link #isInterface()}
* would also return true, as all annotation types are also interfaces.
*
* @return {@code true} if this class object represents an annotation
* type; {@code false} otherwise
* @since 1.5
*/
public boolean isAnnotation() {
return (getModifiers() & ANNOTATION) != 0;
}
/**
* Returns {@code true} if this class is a synthetic class;
* returns {@code false} otherwise.
* @return {@code true} if and only if this class is a synthetic class as
* defined by the Java Language Specification.
* @jls 13.1 The Form of a Binary
* @since 1.5
*/
public boolean isSynthetic() {
return (getModifiers() & SYNTHETIC) != 0;
}
/**
* Returns the name of the entity (class, interface, array class,
* primitive type, or void) represented by this {@code Class} object,
* as a {@code String}.
*
* <p> If this class object represents a reference type that is not an
* array type then the binary name of the class is returned, as specified
* by
* <cite>The Java™ Language Specification</cite>.
*
* <p> If this class object represents a primitive type or void, then the
* name returned is a {@code String} equal to the Java language
* keyword corresponding to the primitive type or void.
*
* <p> If this class object represents a class of arrays, then the internal
* form of the name consists of the name of the element type preceded by
* one or more '{@code [}' characters representing the depth of the array
* nesting. The encoding of element type names is as follows:
*
* <blockquote><table class="striped">
* <caption style="display:none">Element types and encodings</caption>
* <thead>
* <tr><th scope="col"> Element Type <th scope="col"> Encoding
* </thead>
* <tbody style="text-align:left">
* <tr><th scope="row"> boolean <td style="text-align:center"> Z
* <tr><th scope="row"> byte <td style="text-align:center"> B
* <tr><th scope="row"> char <td style="text-align:center"> C
* <tr><th scope="row"> class or interface
* <td style="text-align:center"> L<i>classname</i>;
* <tr><th scope="row"> double <td style="text-align:center"> D
* <tr><th scope="row"> float <td style="text-align:center"> F
* <tr><th scope="row"> int <td style="text-align:center"> I
* <tr><th scope="row"> long <td style="text-align:center"> J
* <tr><th scope="row"> short <td style="text-align:center"> S
* </tbody>
* </table></blockquote>
*
* <p> The class or interface name <i>classname</i> is the binary name of
* the class specified above.
*
* <p> Examples:
* <blockquote><pre>
* String.class.getName()
* returns "java.lang.String"
* byte.class.getName()
* returns "byte"
* (new Object[3]).getClass().getName()
* returns "[Ljava.lang.Object;"
* (new int[3][4][5][6][7][8][9]).getClass().getName()
* returns "[[[[[[[I"
* </pre></blockquote>
*
* @return the name of the class or interface
* represented by this object.
*/
public String getName() {
String name = this.name;
if (name == null)
this.name = name = getName0();
return name;
}
// cache the name to reduce the number of calls into the VM
private transient String name;
private native String getName0();
/**
* Returns the class loader for the class. Some implementations may use
* null to represent the bootstrap class loader. This method will return
* null in such implementations if this class was loaded by the bootstrap
* class loader.
*
* <p>If this object
* represents a primitive type or void, null is returned.
*
* @return the class loader that loaded the class or interface
* represented by this object.
* @throws SecurityException
* if a security manager is present, and the caller's class loader
* is not {@code null} and is not the same as or an ancestor of the
* class loader for the class whose class loader is requested,
* and the caller does not have the
* {@link RuntimePermission}{@code ("getClassLoader")}
* @see java.lang.ClassLoader
* @see SecurityManager#checkPermission
* @see java.lang.RuntimePermission
*/
@CallerSensitive
@ForceInline // to ensure Reflection.getCallerClass optimization
public ClassLoader getClassLoader() {
ClassLoader cl = getClassLoader0();
if (cl == null)
return null;
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
ClassLoader.checkClassLoaderPermission(cl, Reflection.getCallerClass());
}
return cl;
}
// Package-private to allow ClassLoader access
ClassLoader getClassLoader0() { return classLoader; }
/**
* Returns the module that this class or interface is a member of.
*
* If this class represents an array type then this method returns the
* {@code Module} for the element type. If this class represents a
* primitive type or void, then the {@code Module} object for the
* {@code java.base} module is returned.
*
* If this class is in an unnamed module then the {@linkplain
* ClassLoader#getUnnamedModule() unnamed} {@code Module} of the class
* loader for this class is returned.
*
* @return the module that this class or interface is a member of
*
* @since 9
* @spec JPMS
*/
public Module getModule() {
return module;
}
// set by VM
private transient Module module;
// Initialized in JVM not by private constructor
// This field is filtered from reflection access, i.e. getDeclaredField
// will throw NoSuchFieldException
private final ClassLoader classLoader;
/**
* Returns an array of {@code TypeVariable} objects that represent the
* type variables declared by the generic declaration represented by this
* {@code GenericDeclaration} object, in declaration order. Returns an
* array of length 0 if the underlying generic declaration declares no type
* variables.
*
* @return an array of {@code TypeVariable} objects that represent
* the type variables declared by this generic declaration
* @throws java.lang.reflect.GenericSignatureFormatError if the generic
* signature of this generic declaration does not conform to
* the format specified in
* <cite>The Java™ Virtual Machine Specification</cite>
* @since 1.5
*/
@SuppressWarnings("unchecked")
public TypeVariable<Class<T>>[] getTypeParameters() {
ClassRepository info = getGenericInfo();
if (info != null)
return (TypeVariable<Class<T>>[])info.getTypeParameters();
else
return (TypeVariable<Class<T>>[])new TypeVariable<?>[0];
}
/**
* Returns the {@code Class} representing the direct superclass of the
* entity (class, interface, primitive type or void) represented by
* this {@code Class}. If this {@code Class} represents either the
* {@code Object} class, an interface, a primitive type, or void, then
* null is returned. If this object represents an array class then the
* {@code Class} object representing the {@code Object} class is
* returned.
*
* @return the direct superclass of the class represented by this object
*/
@HotSpotIntrinsicCandidate
public native Class<? super T> getSuperclass();
/**
* Returns the {@code Type} representing the direct superclass of
* the entity (class, interface, primitive type or void) represented by
* this {@code Class}.
*
* <p>If the superclass is a parameterized type, the {@code Type}
* object returned must accurately reflect the actual type
* parameters used in the source code. The parameterized type
* representing the superclass is created if it had not been
* created before. See the declaration of {@link
* java.lang.reflect.ParameterizedType ParameterizedType} for the
* semantics of the creation process for parameterized types. If
* this {@code Class} represents either the {@code Object}
* class, an interface, a primitive type, or void, then null is
* returned. If this object represents an array class then the
* {@code Class} object representing the {@code Object} class is
* returned.
*
* @throws java.lang.reflect.GenericSignatureFormatError if the generic
* class signature does not conform to the format specified in
* <cite>The Java™ Virtual Machine Specification</cite>
* @throws TypeNotPresentException if the generic superclass
* refers to a non-existent type declaration
* @throws java.lang.reflect.MalformedParameterizedTypeException if the
* generic superclass refers to a parameterized type that cannot be
* instantiated for any reason
* @return the direct superclass of the class represented by this object
* @since 1.5
*/
public Type getGenericSuperclass() {
ClassRepository info = getGenericInfo();
if (info == null) {
return getSuperclass();
}
// Historical irregularity:
// Generic signature marks interfaces with superclass = Object
// but this API returns null for interfaces
if (isInterface()) {
return null;
}
return info.getSuperclass();
}
/**
* Gets the package of this class.
*
* <p>If this class represents an array type, a primitive type or void,
* this method returns {@code null}.
*
* @return the package of this class.
* @revised 9
* @spec JPMS
*/
public Package getPackage() {
if (isPrimitive() || isArray()) {
return null;
}
ClassLoader cl = getClassLoader0();
return cl != null ? cl.definePackage(this)
: BootLoader.definePackage(this);
}
/**
* Returns the fully qualified package name.
*
* <p> If this class is a top level class, then this method returns the fully
* qualified name of the package that the class is a member of, or the
* empty string if the class is in an unnamed package.
*
* <p> If this class is a member class, then this method is equivalent to
* invoking {@code getPackageName()} on the {@linkplain #getEnclosingClass
* enclosing class}.
*
* <p> If this class is a {@linkplain #isLocalClass local class} or an {@linkplain
* #isAnonymousClass() anonymous class}, then this method is equivalent to
* invoking {@code getPackageName()} on the {@linkplain #getDeclaringClass
* declaring class} of the {@linkplain #getEnclosingMethod enclosing method} or
* {@linkplain #getEnclosingConstructor enclosing constructor}.
*
* <p> If this class represents an array type then this method returns the
* package name of the element type. If this class represents a primitive
* type or void then the package name "{@code java.lang}" is returned.
*
* @return the fully qualified package name
*
* @since 9
* @spec JPMS
* @jls 6.7 Fully Qualified Names
*/
public String getPackageName() {
String pn = this.packageName;
if (pn == null) {
Class<?> c = this;
while (c.isArray()) {
c = c.getComponentType();
}
if (c.isPrimitive()) {
pn = "java.lang";
} else {
String cn = c.getName();
int dot = cn.lastIndexOf('.');
pn = (dot != -1) ? cn.substring(0, dot).intern() : "";
}
this.packageName = pn;
}
return pn;
}
// cached package name
private transient String packageName;
/**
* Returns the interfaces directly implemented by the class or interface
* represented by this object.
*
* <p>If this object represents a class, the return value is an array
* containing objects representing all interfaces directly implemented by
* the class. The order of the interface objects in the array corresponds
* to the order of the interface names in the {@code implements} clause of
* the declaration of the class represented by this object. For example,
* given the declaration:
* <blockquote>
* {@code class Shimmer implements FloorWax, DessertTopping { ... }}
* </blockquote>
* suppose the value of {@code s} is an instance of
* {@code Shimmer}; the value of the expression:
* <blockquote>
* {@code s.getClass().getInterfaces()[0]}
* </blockquote>
* is the {@code Class} object that represents interface
* {@code FloorWax}; and the value of:
* <blockquote>
* {@code s.getClass().getInterfaces()[1]}
* </blockquote>
* is the {@code Class} object that represents interface
* {@code DessertTopping}.
*
* <p>If this object represents an interface, the array contains objects
* representing all interfaces directly extended by the interface. The
* order of the interface objects in the array corresponds to the order of
* the interface names in the {@code extends} clause of the declaration of
* the interface represented by this object.
*
* <p>If this object represents a class or interface that implements no
* interfaces, the method returns an array of length 0.
*
* <p>If this object represents a primitive type or void, the method
* returns an array of length 0.
*
* <p>If this {@code Class} object represents an array type, the
* interfaces {@code Cloneable} and {@code java.io.Serializable} are
* returned in that order.
*
* @return an array of interfaces directly implemented by this class
*/
public Class<?>[] getInterfaces() {
// defensively copy before handing over to user code
return getInterfaces(true);
}
private Class<?>[] getInterfaces(boolean cloneArray) {
ReflectionData<T> rd = reflectionData();
if (rd == null) {
// no cloning required
return getInterfaces0();
} else {
Class<?>[] interfaces = rd.interfaces;
if (interfaces == null) {
interfaces = getInterfaces0();
rd.interfaces = interfaces;
}
// defensively copy if requested
return cloneArray ? interfaces.clone() : interfaces;
}
}
private native Class<?>[] getInterfaces0();
/**
* Returns the {@code Type}s representing the interfaces
* directly implemented by the class or interface represented by
* this object.
*
* <p>If a superinterface is a parameterized type, the
* {@code Type} object returned for it must accurately reflect
* the actual type parameters used in the source code. The
* parameterized type representing each superinterface is created
* if it had not been created before. See the declaration of
* {@link java.lang.reflect.ParameterizedType ParameterizedType}
* for the semantics of the creation process for parameterized
* types.
*
* <p>If this object represents a class, the return value is an array
* containing objects representing all interfaces directly implemented by
* the class. The order of the interface objects in the array corresponds
* to the order of the interface names in the {@code implements} clause of
* the declaration of the class represented by this object.
*
* <p>If this object represents an interface, the array contains objects
* representing all interfaces directly extended by the interface. The
* order of the interface objects in the array corresponds to the order of
* the interface names in the {@code extends} clause of the declaration of
* the interface represented by this object.
*
* <p>If this object represents a class or interface that implements no
* interfaces, the method returns an array of length 0.
*
* <p>If this object represents a primitive type or void, the method
* returns an array of length 0.
*
* <p>If this {@code Class} object represents an array type, the
* interfaces {@code Cloneable} and {@code java.io.Serializable} are
* returned in that order.
*
* @throws java.lang.reflect.GenericSignatureFormatError
* if the generic class signature does not conform to the format
* specified in
* <cite>The Java™ Virtual Machine Specification</cite>
* @throws TypeNotPresentException if any of the generic
* superinterfaces refers to a non-existent type declaration
* @throws java.lang.reflect.MalformedParameterizedTypeException
* if any of the generic superinterfaces refer to a parameterized
* type that cannot be instantiated for any reason
* @return an array of interfaces directly implemented by this class
* @since 1.5
*/
public Type[] getGenericInterfaces() {
ClassRepository info = getGenericInfo();
return (info == null) ? getInterfaces() : info.getSuperInterfaces();
}
/**
* Returns the {@code Class} representing the component type of an
* array. If this class does not represent an array class this method
* returns null.
*
* @return the {@code Class} representing the component type of this
* class if this class is an array
* @see java.lang.reflect.Array
* @since 1.1
*/
public Class<?> getComponentType() {
// Only return for array types. Storage may be reused for Class for instance types.
if (isArray()) {
return componentType;
} else {
return null;
}
}
private final Class<?> componentType;
/**
* Returns the Java language modifiers for this class or interface, encoded
* in an integer. The modifiers consist of the Java Virtual Machine's
* constants for {@code public}, {@code protected},
* {@code private}, {@code final}, {@code static},
* {@code abstract} and {@code interface}; they should be decoded
* using the methods of class {@code Modifier}.
*
* <p> If the underlying class is an array class, then its
* {@code public}, {@code private} and {@code protected}
* modifiers are the same as those of its component type. If this
* {@code Class} represents a primitive type or void, its
* {@code public} modifier is always {@code true}, and its
* {@code protected} and {@code private} modifiers are always
* {@code false}. If this object represents an array class, a
* primitive type or void, then its {@code final} modifier is always
* {@code true} and its interface modifier is always
* {@code false}. The values of its other modifiers are not determined
* by this specification.
*
* <p> The modifier encodings are defined in <em>The Java Virtual Machine
* Specification</em>, table 4.1.
*
* @return the {@code int} representing the modifiers for this class
* @see java.lang.reflect.Modifier
* @since 1.1
*/
@HotSpotIntrinsicCandidate
public native int getModifiers();
/**
* Gets the signers of this class.
*
* @return the signers of this class, or null if there are no signers. In
* particular, this method returns null if this object represents
* a primitive type or void.
* @since 1.1
*/
public native Object[] getSigners();
/**
* Set the signers of this class.
*/
native void setSigners(Object[] signers);
/**
* If this {@code Class} object represents a local or anonymous
* class within a method, returns a {@link
* java.lang.reflect.Method Method} object representing the
* immediately enclosing method of the underlying class. Returns
* {@code null} otherwise.
*
* In particular, this method returns {@code null} if the underlying
* class is a local or anonymous class immediately enclosed by a type
* declaration, instance initializer or static initializer.
*
* @return the immediately enclosing method of the underlying class, if
* that class is a local or anonymous class; otherwise {@code null}.
*
* @throws SecurityException
* If a security manager, <i>s</i>, is present and any of the
* following conditions is met:
*
* <ul>
*
* <li> the caller's class loader is not the same as the
* class loader of the enclosing class and invocation of
* {@link SecurityManager#checkPermission
* s.checkPermission} method with
* {@code RuntimePermission("accessDeclaredMembers")}
* denies access to the methods within the enclosing class
*
* <li> the caller's class loader is not the same as or an
* ancestor of the class loader for the enclosing class and
* invocation of {@link SecurityManager#checkPackageAccess
* s.checkPackageAccess()} denies access to the package
* of the enclosing class
*
* </ul>
* @since 1.5
*/
@CallerSensitive
public Method getEnclosingMethod() throws SecurityException {
EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo();
if (enclosingInfo == null)
return null;
else {
if (!enclosingInfo.isMethod())
return null;
MethodRepository typeInfo = MethodRepository.make(enclosingInfo.getDescriptor(),
getFactory());
Class<?> returnType = toClass(typeInfo.getReturnType());
Type [] parameterTypes = typeInfo.getParameterTypes();
Class<?>[] parameterClasses = new Class<?>[parameterTypes.length];
// Convert Types to Classes; returned types *should*
// be class objects since the methodDescriptor's used
// don't have generics information
for(int i = 0; i < parameterClasses.length; i++)
parameterClasses[i] = toClass(parameterTypes[i]);
// Perform access check
final Class<?> enclosingCandidate = enclosingInfo.getEnclosingClass();
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
enclosingCandidate.checkMemberAccess(sm, Member.DECLARED,
Reflection.getCallerClass(), true);
}
Method[] candidates = enclosingCandidate.privateGetDeclaredMethods(false);
/*
* Loop over all declared methods; match method name,
* number of and type of parameters, *and* return
* type. Matching return type is also necessary
* because of covariant returns, etc.
*/
ReflectionFactory fact = getReflectionFactory();
for (Method m : candidates) {
if (m.getName().equals(enclosingInfo.getName()) &&
arrayContentsEq(parameterClasses,
fact.getExecutableSharedParameterTypes(m))) {
// finally, check return type
if (m.getReturnType().equals(returnType)) {
return fact.copyMethod(m);
}
}
}
throw new InternalError("Enclosing method not found");
}
}
private native Object[] getEnclosingMethod0();
private EnclosingMethodInfo getEnclosingMethodInfo() {
Object[] enclosingInfo = getEnclosingMethod0();
if (enclosingInfo == null)
return null;
else {
return new EnclosingMethodInfo(enclosingInfo);
}
}
private static final class EnclosingMethodInfo {
private final Class<?> enclosingClass;
private final String name;
private final String descriptor;
static void validate(Object[] enclosingInfo) {
if (enclosingInfo.length != 3)
throw new InternalError("Malformed enclosing method information");
try {
// The array is expected to have three elements:
// the immediately enclosing class
Class<?> enclosingClass = (Class<?>)enclosingInfo[0];
assert(enclosingClass != null);
// the immediately enclosing method or constructor's
// name (can be null).
String name = (String)enclosingInfo[1];
// the immediately enclosing method or constructor's
// descriptor (null iff name is).
String descriptor = (String)enclosingInfo[2];
assert((name != null && descriptor != null) || name == descriptor);
} catch (ClassCastException cce) {
throw new InternalError("Invalid type in enclosing method information", cce);
}
}
EnclosingMethodInfo(Object[] enclosingInfo) {
validate(enclosingInfo);
this.enclosingClass = (Class<?>)enclosingInfo[0];
this.name = (String)enclosingInfo[1];
this.descriptor = (String)enclosingInfo[2];
}
boolean isPartial() {
return enclosingClass == null || name == null || descriptor == null;
}
boolean isConstructor() { return !isPartial() && "<init>".equals(name); }
boolean isMethod() { return !isPartial() && !isConstructor() && !"<clinit>".equals(name); }
Class<?> getEnclosingClass() { return enclosingClass; }
String getName() { return name; }
String getDescriptor() { return descriptor; }
}
private static Class<?> toClass(Type o) {
if (o instanceof GenericArrayType)
return Array.newInstance(toClass(((GenericArrayType)o).getGenericComponentType()),
0)
.getClass();
return (Class<?>)o;
}
/**
* If this {@code Class} object represents a local or anonymous
* class within a constructor, returns a {@link
* java.lang.reflect.Constructor Constructor} object representing
* the immediately enclosing constructor of the underlying
* class. Returns {@code null} otherwise. In particular, this
* method returns {@code null} if the underlying class is a local
* or anonymous class immediately enclosed by a type declaration,
* instance initializer or static initializer.
*
* @return the immediately enclosing constructor of the underlying class, if
* that class is a local or anonymous class; otherwise {@code null}.
* @throws SecurityException
* If a security manager, <i>s</i>, is present and any of the
* following conditions is met:
*
* <ul>
*
* <li> the caller's class loader is not the same as the
* class loader of the enclosing class and invocation of
* {@link SecurityManager#checkPermission
* s.checkPermission} method with
* {@code RuntimePermission("accessDeclaredMembers")}
* denies access to the constructors within the enclosing class
*
* <li> the caller's class loader is not the same as or an
* ancestor of the class loader for the enclosing class and
* invocation of {@link SecurityManager#checkPackageAccess
* s.checkPackageAccess()} denies access to the package
* of the enclosing class
*
* </ul>
* @since 1.5
*/
@CallerSensitive
public Constructor<?> getEnclosingConstructor() throws SecurityException {
EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo();
if (enclosingInfo == null)
return null;
else {
if (!enclosingInfo.isConstructor())
return null;
ConstructorRepository typeInfo = ConstructorRepository.make(enclosingInfo.getDescriptor(),
getFactory());
Type [] parameterTypes = typeInfo.getParameterTypes();
Class<?>[] parameterClasses = new Class<?>[parameterTypes.length];
// Convert Types to Classes; returned types *should*
// be class objects since the methodDescriptor's used
// don't have generics information
for(int i = 0; i < parameterClasses.length; i++)
parameterClasses[i] = toClass(parameterTypes[i]);
// Perform access check
final Class<?> enclosingCandidate = enclosingInfo.getEnclosingClass();
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
enclosingCandidate.checkMemberAccess(sm, Member.DECLARED,
Reflection.getCallerClass(), true);
}
Constructor<?>[] candidates = enclosingCandidate
.privateGetDeclaredConstructors(false);
/*
* Loop over all declared constructors; match number
* of and type of parameters.
*/
ReflectionFactory fact = getReflectionFactory();
for (Constructor<?> c : candidates) {
if (arrayContentsEq(parameterClasses,
fact.getExecutableSharedParameterTypes(c))) {
return fact.copyConstructor(c);
}
}
throw new InternalError("Enclosing constructor not found");
}
}
/**
* If the class or interface represented by this {@code Class} object
* is a member of another class, returns the {@code Class} object
* representing the class in which it was declared. This method returns
* null if this class or interface is not a member of any other class. If
* this {@code Class} object represents an array class, a primitive
* type, or void,then this method returns null.
*
* @return the declaring class for this class
* @throws SecurityException
* If a security manager, <i>s</i>, is present and the caller's
* class loader is not the same as or an ancestor of the class
* loader for the declaring class and invocation of {@link
* SecurityManager#checkPackageAccess s.checkPackageAccess()}
* denies access to the package of the declaring class
* @since 1.1
*/
@CallerSensitive
public Class<?> getDeclaringClass() throws SecurityException {
final Class<?> candidate = getDeclaringClass0();
if (candidate != null) {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
candidate.checkPackageAccess(sm,
ClassLoader.getClassLoader(Reflection.getCallerClass()), true);
}
}
return candidate;
}
private native Class<?> getDeclaringClass0();
/**
* Returns the immediately enclosing class of the underlying
* class. If the underlying class is a top level class this
* method returns {@code null}.
* @return the immediately enclosing class of the underlying class
* @exception SecurityException
* If a security manager, <i>s</i>, is present and the caller's
* class loader is not the same as or an ancestor of the class
* loader for the enclosing class and invocation of {@link
* SecurityManager#checkPackageAccess s.checkPackageAccess()}
* denies access to the package of the enclosing class
* @since 1.5
*/
@CallerSensitive
public Class<?> getEnclosingClass() throws SecurityException {
// There are five kinds of classes (or interfaces):
// a) Top level classes
// b) Nested classes (static member classes)
// c) Inner classes (non-static member classes)
// d) Local classes (named classes declared within a method)
// e) Anonymous classes
// JVM Spec 4.7.7: A class must have an EnclosingMethod
// attribute if and only if it is a local class or an
// anonymous class.
EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo();
Class<?> enclosingCandidate;
if (enclosingInfo == null) {
// This is a top level or a nested class or an inner class (a, b, or c)
enclosingCandidate = getDeclaringClass0();
} else {
Class<?> enclosingClass = enclosingInfo.getEnclosingClass();
// This is a local class or an anonymous class (d or e)
if (enclosingClass == this || enclosingClass == null)
throw new InternalError("Malformed enclosing method information");
else
enclosingCandidate = enclosingClass;
}
if (enclosingCandidate != null) {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
enclosingCandidate.checkPackageAccess(sm,
ClassLoader.getClassLoader(Reflection.getCallerClass()), true);
}
}
return enclosingCandidate;
}
/**
* Returns the simple name of the underlying class as given in the
* source code. Returns an empty string if the underlying class is
* anonymous.
*
* <p>The simple name of an array is the simple name of the
* component type with "[]" appended. In particular the simple
* name of an array whose component type is anonymous is "[]".
*
* @return the simple name of the underlying class
* @since 1.5
*/
public String getSimpleName() {
ReflectionData<T> rd = reflectionData();
String simpleName = rd.simpleName;
if (simpleName == null) {
rd.simpleName = simpleName = getSimpleName0();
}
return simpleName;
}
private String getSimpleName0() {
if (isArray()) {
return getComponentType().getSimpleName() + "[]";
}
String simpleName = getSimpleBinaryName();
if (simpleName == null) { // top level class
simpleName = getName();
simpleName = simpleName.substring(simpleName.lastIndexOf('.') + 1); // strip the package name
}
return simpleName;
}
/**
* Return an informative string for the name of this type.
*
* @return an informative string for the name of this type
* @since 1.8
*/
public String getTypeName() {
if (isArray()) {
try {
Class<?> cl = this;
int dimensions = 0;
do {
dimensions++;
cl = cl.getComponentType();
} while (cl.isArray());
StringBuilder sb = new StringBuilder();
sb.append(cl.getName());
for (int i = 0; i < dimensions; i++) {
sb.append("[]");
}
return sb.toString();
} catch (Throwable e) { /*FALLTHRU*/ }
}
return getName();
}
/**
* Returns the canonical name of the underlying class as
* defined by the Java Language Specification. Returns null if
* the underlying class does not have a canonical name (i.e., if
* it is a local or anonymous class or an array whose component
* type does not have a canonical name).
* @return the canonical name of the underlying class if it exists, and
* {@code null} otherwise.
* @since 1.5
*/
public String getCanonicalName() {
ReflectionData<T> rd = reflectionData();
String canonicalName = rd.canonicalName;
if (canonicalName == null) {
rd.canonicalName = canonicalName = getCanonicalName0();
}
return canonicalName == ReflectionData.NULL_SENTINEL? null : canonicalName;
}
private String getCanonicalName0() {
if (isArray()) {
String canonicalName = getComponentType().getCanonicalName();
if (canonicalName != null)
return canonicalName + "[]";
else
return ReflectionData.NULL_SENTINEL;
}
if (isLocalOrAnonymousClass())
return ReflectionData.NULL_SENTINEL;
Class<?> enclosingClass = getEnclosingClass();
if (enclosingClass == null) { // top level class
return getName();
} else {
String enclosingName = enclosingClass.getCanonicalName();
if (enclosingName == null)
return ReflectionData.NULL_SENTINEL;
return enclosingName + "." + getSimpleName();
}
}
/**
* Returns {@code true} if and only if the underlying class
* is an anonymous class.
*
* @return {@code true} if and only if this class is an anonymous class.
* @since 1.5
*/
public boolean isAnonymousClass() {
return !isArray() && isLocalOrAnonymousClass() &&
getSimpleBinaryName0() == null;
}
/**
* Returns {@code true} if and only if the underlying class
* is a local class.
*
* @return {@code true} if and only if this class is a local class.
* @since 1.5
*/
public boolean isLocalClass() {
return isLocalOrAnonymousClass() &&
(isArray() || getSimpleBinaryName0() != null);
}
/**
* Returns {@code true} if and only if the underlying class
* is a member class.
*
* @return {@code true} if and only if this class is a member class.
* @since 1.5
*/
public boolean isMemberClass() {
return !isLocalOrAnonymousClass() && getDeclaringClass0() != null;
}
/**
* Returns the "simple binary name" of the underlying class, i.e.,
* the binary name without the leading enclosing class name.
* Returns {@code null} if the underlying class is a top level
* class.
*/
private String getSimpleBinaryName() {
if (isTopLevelClass())
return null;
String name = getSimpleBinaryName0();
if (name == null) // anonymous class
return "";
return name;
}
private native String getSimpleBinaryName0();
/**
* Returns {@code true} if this is a top level class. Returns {@code false}
* otherwise.
*/
private boolean isTopLevelClass() {
return !isLocalOrAnonymousClass() && getDeclaringClass0() == null;
}
/**
* Returns {@code true} if this is a local class or an anonymous
* class. Returns {@code false} otherwise.
*/
private boolean isLocalOrAnonymousClass() {
// JVM Spec 4.7.7: A class must have an EnclosingMethod
// attribute if and only if it is a local class or an
// anonymous class.
return hasEnclosingMethodInfo();
}
private boolean hasEnclosingMethodInfo() {
Object[] enclosingInfo = getEnclosingMethod0();
if (enclosingInfo != null) {
EnclosingMethodInfo.validate(enclosingInfo);
return true;
}
return false;
}
/**
* Returns an array containing {@code Class} objects representing all
* the public classes and interfaces that are members of the class
* represented by this {@code Class} object. This includes public
* class and interface members inherited from superclasses and public class
* and interface members declared by the class. This method returns an
* array of length 0 if this {@code Class} object has no public member
* classes or interfaces. This method also returns an array of length 0 if
* this {@code Class} object represents a primitive type, an array
* class, or void.
*
* @return the array of {@code Class} objects representing the public
* members of this class
* @throws SecurityException
* If a security manager, <i>s</i>, is present and
* the caller's class loader is not the same as or an
* ancestor of the class loader for the current class and
* invocation of {@link SecurityManager#checkPackageAccess
* s.checkPackageAccess()} denies access to the package
* of this class.
*
* @since 1.1
*/
@CallerSensitive
public Class<?>[] getClasses() {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
checkMemberAccess(sm, Member.PUBLIC, Reflection.getCallerClass(), false);
}
// Privileged so this implementation can look at DECLARED classes,
// something the caller might not have privilege to do. The code here
// is allowed to look at DECLARED classes because (1) it does not hand
// out anything other than public members and (2) public member access
// has already been ok'd by the SecurityManager.
return java.security.AccessController.doPrivileged(
new java.security.PrivilegedAction<>() {
public Class<?>[] run() {
List<Class<?>> list = new ArrayList<>();
Class<?> currentClass = Class.this;
while (currentClass != null) {
for (Class<?> m : currentClass.getDeclaredClasses()) {
if (Modifier.isPublic(m.getModifiers())) {
list.add(m);
}
}
currentClass = currentClass.getSuperclass();
}
return list.toArray(new Class<?>[0]);
}
});
}
/**
* Returns an array containing {@code Field} objects reflecting all
* the accessible public fields of the class or interface represented by
* this {@code Class} object.
*
* <p> If this {@code Class} object represents a class or interface with
* no accessible public fields, then this method returns an array of length
* 0.
*
* <p> If this {@code Class} object represents a class, then this method
* returns the public fields of the class and of all its superclasses and
* superinterfaces.
*
* <p> If this {@code Class} object represents an interface, then this
* method returns the fields of the interface and of all its
* superinterfaces.
*
* <p> If this {@code Class} object represents an array type, a primitive
* type, or void, then this method returns an array of length 0.
*
* <p> The elements in the returned array are not sorted and are not in any
* particular order.
*
* @return the array of {@code Field} objects representing the
* public fields
* @throws SecurityException
* If a security manager, <i>s</i>, is present and
* the caller's class loader is not the same as or an
* ancestor of the class loader for the current class and
* invocation of {@link SecurityManager#checkPackageAccess
* s.checkPackageAccess()} denies access to the package
* of this class.
*
* @since 1.1
* @jls 8.2 Class Members
* @jls 8.3 Field Declarations
*/
@CallerSensitive
public Field[] getFields() throws SecurityException {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
checkMemberAccess(sm, Member.PUBLIC, Reflection.getCallerClass(), true);
}
return copyFields(privateGetPublicFields());
}
/**
* Returns an array containing {@code Method} objects reflecting all the
* public methods of the class or interface represented by this {@code
* Class} object, including those declared by the class or interface and
* those inherited from superclasses and superinterfaces.
*
* <p> If this {@code Class} object represents an array type, then the
* returned array has a {@code Method} object for each of the public
* methods inherited by the array type from {@code Object}. It does not
* contain a {@code Method} object for {@code clone()}.
*
* <p> If this {@code Class} object represents an interface then the
* returned array does not contain any implicitly declared methods from
* {@code Object}. Therefore, if no methods are explicitly declared in
* this interface or any of its superinterfaces then the returned array
* has length 0. (Note that a {@code Class} object which represents a class
* always has public methods, inherited from {@code Object}.)
*
* <p> The returned array never contains methods with names "{@code <init>}"
* or "{@code <clinit>}".
*
* <p> The elements in the returned array are not sorted and are not in any
* particular order.
*
* <p> Generally, the result is computed as with the following 4 step algorithm.
* Let C be the class or interface represented by this {@code Class} object:
* <ol>
* <li> A union of methods is composed of:
* <ol type="a">
* <li> C's declared public instance and static methods as returned by
* {@link #getDeclaredMethods()} and filtered to include only public
* methods.</li>
* <li> If C is a class other than {@code Object}, then include the result
* of invoking this algorithm recursively on the superclass of C.</li>
* <li> Include the results of invoking this algorithm recursively on all
* direct superinterfaces of C, but include only instance methods.</li>
* </ol></li>
* <li> Union from step 1 is partitioned into subsets of methods with same
* signature (name, parameter types) and return type.</li>
* <li> Within each such subset only the most specific methods are selected.
* Let method M be a method from a set of methods with same signature
* and return type. M is most specific if there is no such method
* N != M from the same set, such that N is more specific than M.
* N is more specific than M if:
* <ol type="a">
* <li> N is declared by a class and M is declared by an interface; or</li>
* <li> N and M are both declared by classes or both by interfaces and
* N's declaring type is the same as or a subtype of M's declaring type
* (clearly, if M's and N's declaring types are the same type, then
* M and N are the same method).</li>
* </ol></li>
* <li> The result of this algorithm is the union of all selected methods from
* step 3.</li>
* </ol>
*
* @apiNote There may be more than one method with a particular name
* and parameter types in a class because while the Java language forbids a
* class to declare multiple methods with the same signature but different
* return types, the Java virtual machine does not. This
* increased flexibility in the virtual machine can be used to
* implement various language features. For example, covariant
* returns can be implemented with {@linkplain
* java.lang.reflect.Method#isBridge bridge methods}; the bridge
* method and the overriding method would have the same
* signature but different return types.
*
* @return the array of {@code Method} objects representing the
* public methods of this class
* @throws SecurityException
* If a security manager, <i>s</i>, is present and
* the caller's class loader is not the same as or an
* ancestor of the class loader for the current class and
* invocation of {@link SecurityManager#checkPackageAccess
* s.checkPackageAccess()} denies access to the package
* of this class.
*
* @jls 8.2 Class Members
* @jls 8.4 Method Declarations
* @since 1.1
*/
@CallerSensitive
public Method[] getMethods() throws SecurityException {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
checkMemberAccess(sm, Member.PUBLIC, Reflection.getCallerClass(), true);
}
return copyMethods(privateGetPublicMethods());
}
/**
* Returns an array containing {@code Constructor} objects reflecting
* all the public constructors of the class represented by this
* {@code Class} object. An array of length 0 is returned if the
* class has no public constructors, or if the class is an array class, or
* if the class reflects a primitive type or void.
*
* Note that while this method returns an array of {@code
* Constructor<T>} objects (that is an array of constructors from
* this class), the return type of this method is {@code
* Constructor<?>[]} and <em>not</em> {@code Constructor<T>[]} as
* might be expected. This less informative return type is
* necessary since after being returned from this method, the
* array could be modified to hold {@code Constructor} objects for
* different classes, which would violate the type guarantees of
* {@code Constructor<T>[]}.
*
* @return the array of {@code Constructor} objects representing the
* public constructors of this class
* @throws SecurityException
* If a security manager, <i>s</i>, is present and
* the caller's class loader is not the same as or an
* ancestor of the class loader for the current class and
* invocation of {@link SecurityManager#checkPackageAccess
* s.checkPackageAccess()} denies access to the package
* of this class.
*
* @since 1.1
*/
@CallerSensitive
public Constructor<?>[] getConstructors() throws SecurityException {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
checkMemberAccess(sm, Member.PUBLIC, Reflection.getCallerClass(), true);
}
return copyConstructors(privateGetDeclaredConstructors(true));
}
/**
* Returns a {@code Field} object that reflects the specified public member
* field of the class or interface represented by this {@code Class}
* object. The {@code name} parameter is a {@code String} specifying the
* simple name of the desired field.
*
* <p> The field to be reflected is determined by the algorithm that
* follows. Let C be the class or interface represented by this object:
*
* <OL>
* <LI> If C declares a public field with the name specified, that is the
* field to be reflected.</LI>
* <LI> If no field was found in step 1 above, this algorithm is applied
* recursively to each direct superinterface of C. The direct
* superinterfaces are searched in the order they were declared.</LI>
* <LI> If no field was found in steps 1 and 2 above, and C has a
* superclass S, then this algorithm is invoked recursively upon S.
* If C has no superclass, then a {@code NoSuchFieldException}
* is thrown.</LI>
* </OL>
*
* <p> If this {@code Class} object represents an array type, then this
* method does not find the {@code length} field of the array type.
*
* @param name the field name
* @return the {@code Field} object of this class specified by
* {@code name}
* @throws NoSuchFieldException if a field with the specified name is
* not found.
* @throws NullPointerException if {@code name} is {@code null}
* @throws SecurityException
* If a security manager, <i>s</i>, is present and
* the caller's class loader is not the same as or an
* ancestor of the class loader for the current class and
* invocation of {@link SecurityManager#checkPackageAccess
* s.checkPackageAccess()} denies access to the package
* of this class.
*
* @since 1.1
* @jls 8.2 Class Members
* @jls 8.3 Field Declarations
*/
@CallerSensitive
public Field getField(String name)
throws NoSuchFieldException, SecurityException {
Objects.requireNonNull(name);
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
checkMemberAccess(sm, Member.PUBLIC, Reflection.getCallerClass(), true);
}
Field field = getField0(name);
if (field == null) {
throw new NoSuchFieldException(name);
}
return getReflectionFactory().copyField(field);
}
/**
* Returns a {@code Method} object that reflects the specified public
* member method of the class or interface represented by this
* {@code Class} object. The {@code name} parameter is a
* {@code String} specifying the simple name of the desired method. The
* {@code parameterTypes} parameter is an array of {@code Class}
* objects that identify the method's formal parameter types, in declared
* order. If {@code parameterTypes} is {@code null}, it is
* treated as if it were an empty array.
*
* <p> If this {@code Class} object represents an array type, then this
* method finds any public method inherited by the array type from
* {@code Object} except method {@code clone()}.
*
* <p> If this {@code Class} object represents an interface then this
* method does not find any implicitly declared method from
* {@code Object}. Therefore, if no methods are explicitly declared in
* this interface or any of its superinterfaces, then this method does not
* find any method.
*
* <p> This method does not find any method with name "{@code <init>}" or
* "{@code <clinit>}".
*
* <p> Generally, the method to be reflected is determined by the 4 step
* algorithm that follows.
* Let C be the class or interface represented by this {@code Class} object:
* <ol>
* <li> A union of methods is composed of:
* <ol type="a">
* <li> C's declared public instance and static methods as returned by
* {@link #getDeclaredMethods()} and filtered to include only public
* methods that match given {@code name} and {@code parameterTypes}</li>
* <li> If C is a class other than {@code Object}, then include the result
* of invoking this algorithm recursively on the superclass of C.</li>
* <li> Include the results of invoking this algorithm recursively on all
* direct superinterfaces of C, but include only instance methods.</li>
* </ol></li>
* <li> This union is partitioned into subsets of methods with same
* return type (the selection of methods from step 1 also guarantees that
* they have the same method name and parameter types).</li>
* <li> Within each such subset only the most specific methods are selected.
* Let method M be a method from a set of methods with same VM
* signature (return type, name, parameter types).
* M is most specific if there is no such method N != M from the same
* set, such that N is more specific than M. N is more specific than M
* if:
* <ol type="a">
* <li> N is declared by a class and M is declared by an interface; or</li>
* <li> N and M are both declared by classes or both by interfaces and
* N's declaring type is the same as or a subtype of M's declaring type
* (clearly, if M's and N's declaring types are the same type, then
* M and N are the same method).</li>
* </ol></li>
* <li> The result of this algorithm is chosen arbitrarily from the methods
* with most specific return type among all selected methods from step 3.
* Let R be a return type of a method M from the set of all selected methods
* from step 3. M is a method with most specific return type if there is
* no such method N != M from the same set, having return type S != R,
* such that S is a subtype of R as determined by
* R.class.{@link #isAssignableFrom}(S.class).
* </ol>
*
* @apiNote There may be more than one method with matching name and
* parameter types in a class because while the Java language forbids a
* class to declare multiple methods with the same signature but different
* return types, the Java virtual machine does not. This
* increased flexibility in the virtual machine can be used to
* implement various language features. For example, covariant
* returns can be implemented with {@linkplain
* java.lang.reflect.Method#isBridge bridge methods}; the bridge
* method and the overriding method would have the same
* signature but different return types. This method would return the
* overriding method as it would have a more specific return type.
*
* @param name the name of the method
* @param parameterTypes the list of parameters
* @return the {@code Method} object that matches the specified
* {@code name} and {@code parameterTypes}
* @throws NoSuchMethodException if a matching method is not found
* or if the name is "<init>"or "<clinit>".
* @throws NullPointerException if {@code name} is {@code null}
* @throws SecurityException
* If a security manager, <i>s</i>, is present and
* the caller's class loader is not the same as or an
* ancestor of the class loader for the current class and
* invocation of {@link SecurityManager#checkPackageAccess
* s.checkPackageAccess()} denies access to the package
* of this class.
*
* @jls 8.2 Class Members
* @jls 8.4 Method Declarations
* @since 1.1
*/
@CallerSensitive
public Method getMethod(String name, Class<?>... parameterTypes)
throws NoSuchMethodException, SecurityException {
Objects.requireNonNull(name);
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
checkMemberAccess(sm, Member.PUBLIC, Reflection.getCallerClass(), true);
}
Method method = getMethod0(name, parameterTypes);
if (method == null) {
throw new NoSuchMethodException(methodToString(name, parameterTypes));
}
return getReflectionFactory().copyMethod(method);
}
/**
* Returns a {@code Constructor} object that reflects the specified
* public constructor of the class represented by this {@code Class}
* object. The {@code parameterTypes} parameter is an array of
* {@code Class} objects that identify the constructor's formal
* parameter types, in declared order.
*
* If this {@code Class} object represents an inner class
* declared in a non-static context, the formal parameter types
* include the explicit enclosing instance as the first parameter.
*
* <p> The constructor to reflect is the public constructor of the class
* represented by this {@code Class} object whose formal parameter
* types match those specified by {@code parameterTypes}.
*
* @param parameterTypes the parameter array
* @return the {@code Constructor} object of the public constructor that
* matches the specified {@code parameterTypes}
* @throws NoSuchMethodException if a matching method is not found.
* @throws SecurityException
* If a security manager, <i>s</i>, is present and
* the caller's class loader is not the same as or an
* ancestor of the class loader for the current class and
* invocation of {@link SecurityManager#checkPackageAccess
* s.checkPackageAccess()} denies access to the package
* of this class.
*
* @since 1.1
*/
@CallerSensitive
public Constructor<T> getConstructor(Class<?>... parameterTypes)
throws NoSuchMethodException, SecurityException
{
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
checkMemberAccess(sm, Member.PUBLIC, Reflection.getCallerClass(), true);
}
return getReflectionFactory().copyConstructor(
getConstructor0(parameterTypes, Member.PUBLIC));
}
/**
* Returns an array of {@code Class} objects reflecting all the
* classes and interfaces declared as members of the class represented by
* this {@code Class} object. This includes public, protected, default
* (package) access, and private classes and interfaces declared by the
* class, but excludes inherited classes and interfaces. This method
* returns an array of length 0 if the class declares no classes or
* interfaces as members, or if this {@code Class} object represents a
* primitive type, an array class, or void.
*
* @return the array of {@code Class} objects representing all the
* declared members of this class
* @throws SecurityException
* If a security manager, <i>s</i>, is present and any of the
* following conditions is met:
*
* <ul>
*
* <li> the caller's class loader is not the same as the
* class loader of this class and invocation of
* {@link SecurityManager#checkPermission
* s.checkPermission} method with
* {@code RuntimePermission("accessDeclaredMembers")}
* denies access to the declared classes within this class
*
* <li> the caller's class loader is not the same as or an
* ancestor of the class loader for the current class and
* invocation of {@link SecurityManager#checkPackageAccess
* s.checkPackageAccess()} denies access to the package
* of this class
*
* </ul>
*
* @since 1.1
*/
@CallerSensitive
public Class<?>[] getDeclaredClasses() throws SecurityException {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
checkMemberAccess(sm, Member.DECLARED, Reflection.getCallerClass(), false);
}
return getDeclaredClasses0();
}
/**
* Returns an array of {@code Field} objects reflecting all the fields
* declared by the class or interface represented by this
* {@code Class} object. This includes public, protected, default
* (package) access, and private fields, but excludes inherited fields.
*
* <p> If this {@code Class} object represents a class or interface with no
* declared fields, then this method returns an array of length 0.
*
* <p> If this {@code Class} object represents an array type, a primitive
* type, or void, then this method returns an array of length 0.
*
* <p> The elements in the returned array are not sorted and are not in any
* particular order.
*
* @return the array of {@code Field} objects representing all the
* declared fields of this class
* @throws SecurityException
* If a security manager, <i>s</i>, is present and any of the
* following conditions is met:
*
* <ul>
*
* <li> the caller's class loader is not the same as the
* class loader of this class and invocation of
* {@link SecurityManager#checkPermission
* s.checkPermission} method with
* {@code RuntimePermission("accessDeclaredMembers")}
* denies access to the declared fields within this class
*
* <li> the caller's class loader is not the same as or an
* ancestor of the class loader for the current class and
* invocation of {@link SecurityManager#checkPackageAccess
* s.checkPackageAccess()} denies access to the package
* of this class
*
* </ul>
*
* @since 1.1
* @jls 8.2 Class Members
* @jls 8.3 Field Declarations
*/
@CallerSensitive
public Field[] getDeclaredFields() throws SecurityException {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
checkMemberAccess(sm, Member.DECLARED, Reflection.getCallerClass(), true);
}
return copyFields(privateGetDeclaredFields(false));
}
/**
* Returns an array containing {@code Method} objects reflecting all the
* declared methods of the class or interface represented by this {@code
* Class} object, including public, protected, default (package)
* access, and private methods, but excluding inherited methods.
*
* <p> If this {@code Class} object represents a type that has multiple
* declared methods with the same name and parameter types, but different
* return types, then the returned array has a {@code Method} object for
* each such method.
*
* <p> If this {@code Class} object represents a type that has a class
* initialization method {@code <clinit>}, then the returned array does
* <em>not</em> have a corresponding {@code Method} object.
*
* <p> If this {@code Class} object represents a class or interface with no
* declared methods, then the returned array has length 0.
*
* <p> If this {@code Class} object represents an array type, a primitive
* type, or void, then the returned array has length 0.
*
* <p> The elements in the returned array are not sorted and are not in any
* particular order.
*
* @return the array of {@code Method} objects representing all the
* declared methods of this class
* @throws SecurityException
* If a security manager, <i>s</i>, is present and any of the
* following conditions is met:
*
* <ul>
*
* <li> the caller's class loader is not the same as the
* class loader of this class and invocation of
* {@link SecurityManager#checkPermission
* s.checkPermission} method with
* {@code RuntimePermission("accessDeclaredMembers")}
* denies access to the declared methods within this class
*
* <li> the caller's class loader is not the same as or an
* ancestor of the class loader for the current class and
* invocation of {@link SecurityManager#checkPackageAccess
* s.checkPackageAccess()} denies access to the package
* of this class
*
* </ul>
*
* @jls 8.2 Class Members
* @jls 8.4 Method Declarations
* @since 1.1
*/
@CallerSensitive
public Method[] getDeclaredMethods() throws SecurityException {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
checkMemberAccess(sm, Member.DECLARED, Reflection.getCallerClass(), true);
}
return copyMethods(privateGetDeclaredMethods(false));
}
/**
* Returns an array of {@code Constructor} objects reflecting all the
* constructors declared by the class represented by this
* {@code Class} object. These are public, protected, default
* (package) access, and private constructors. The elements in the array
* returned are not sorted and are not in any particular order. If the
* class has a default constructor, it is included in the returned array.
* This method returns an array of length 0 if this {@code Class}
* object represents an interface, a primitive type, an array class, or
* void.
*
* <p> See <em>The Java Language Specification</em>, section 8.2.
*
* @return the array of {@code Constructor} objects representing all the
* declared constructors of this class
* @throws SecurityException
* If a security manager, <i>s</i>, is present and any of the
* following conditions is met:
*
* <ul>
*
* <li> the caller's class loader is not the same as the
* class loader of this class and invocation of
* {@link SecurityManager#checkPermission
* s.checkPermission} method with
* {@code RuntimePermission("accessDeclaredMembers")}
* denies access to the declared constructors within this class
*
* <li> the caller's class loader is not the same as or an
* ancestor of the class loader for the current class and
* invocation of {@link SecurityManager#checkPackageAccess
* s.checkPackageAccess()} denies access to the package
* of this class
*
* </ul>
*
* @since 1.1
*/
@CallerSensitive
public Constructor<?>[] getDeclaredConstructors() throws SecurityException {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
checkMemberAccess(sm, Member.DECLARED, Reflection.getCallerClass(), true);
}
return copyConstructors(privateGetDeclaredConstructors(false));
}
/**
* Returns a {@code Field} object that reflects the specified declared
* field of the class or interface represented by this {@code Class}
* object. The {@code name} parameter is a {@code String} that specifies
* the simple name of the desired field.
*
* <p> If this {@code Class} object represents an array type, then this
* method does not find the {@code length} field of the array type.
*
* @param name the name of the field
* @return the {@code Field} object for the specified field in this
* class
* @throws NoSuchFieldException if a field with the specified name is
* not found.
* @throws NullPointerException if {@code name} is {@code null}
* @throws SecurityException
* If a security manager, <i>s</i>, is present and any of the
* following conditions is met:
*
* <ul>
*
* <li> the caller's class loader is not the same as the
* class loader of this class and invocation of
* {@link SecurityManager#checkPermission
* s.checkPermission} method with
* {@code RuntimePermission("accessDeclaredMembers")}
* denies access to the declared field
*
* <li> the caller's class loader is not the same as or an
* ancestor of the class loader for the current class and
* invocation of {@link SecurityManager#checkPackageAccess
* s.checkPackageAccess()} denies access to the package
* of this class
*
* </ul>
*
* @since 1.1
* @jls 8.2 Class Members
* @jls 8.3 Field Declarations
*/
@CallerSensitive
public Field getDeclaredField(String name)
throws NoSuchFieldException, SecurityException {
Objects.requireNonNull(name);
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
checkMemberAccess(sm, Member.DECLARED, Reflection.getCallerClass(), true);
}
Field field = searchFields(privateGetDeclaredFields(false), name);
if (field == null) {
throw new NoSuchFieldException(name);
}
return getReflectionFactory().copyField(field);
}
/**
* Returns a {@code Method} object that reflects the specified
* declared method of the class or interface represented by this
* {@code Class} object. The {@code name} parameter is a
* {@code String} that specifies the simple name of the desired
* method, and the {@code parameterTypes} parameter is an array of
* {@code Class} objects that identify the method's formal parameter
* types, in declared order. If more than one method with the same
* parameter types is declared in a class, and one of these methods has a
* return type that is more specific than any of the others, that method is
* returned; otherwise one of the methods is chosen arbitrarily. If the
* name is "<init>"or "<clinit>" a {@code NoSuchMethodException}
* is raised.
*
* <p> If this {@code Class} object represents an array type, then this
* method does not find the {@code clone()} method.
*
* @param name the name of the method
* @param parameterTypes the parameter array
* @return the {@code Method} object for the method of this class
* matching the specified name and parameters
* @throws NoSuchMethodException if a matching method is not found.
* @throws NullPointerException if {@code name} is {@code null}
* @throws SecurityException
* If a security manager, <i>s</i>, is present and any of the
* following conditions is met:
*
* <ul>
*
* <li> the caller's class loader is not the same as the
* class loader of this class and invocation of
* {@link SecurityManager#checkPermission
* s.checkPermission} method with
* {@code RuntimePermission("accessDeclaredMembers")}
* denies access to the declared method
*
* <li> the caller's class loader is not the same as or an
* ancestor of the class loader for the current class and
* invocation of {@link SecurityManager#checkPackageAccess
* s.checkPackageAccess()} denies access to the package
* of this class
*
* </ul>
*
* @jls 8.2 Class Members
* @jls 8.4 Method Declarations
* @since 1.1
*/
@CallerSensitive
public Method getDeclaredMethod(String name, Class<?>... parameterTypes)
throws NoSuchMethodException, SecurityException {
Objects.requireNonNull(name);
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
checkMemberAccess(sm, Member.DECLARED, Reflection.getCallerClass(), true);
}
Method method = searchMethods(privateGetDeclaredMethods(false), name, parameterTypes);
if (method == null) {
throw new NoSuchMethodException(methodToString(name, parameterTypes));
}
return getReflectionFactory().copyMethod(method);
}
/**
* Returns the list of {@code Method} objects for the declared public
* methods of this class or interface that have the specified method name
* and parameter types.
*
* @param name the name of the method
* @param parameterTypes the parameter array
* @return the list of {@code Method} objects for the public methods of
* this class matching the specified name and parameters
*/
List<Method> getDeclaredPublicMethods(String name, Class<?>... parameterTypes) {
Method[] methods = privateGetDeclaredMethods(/* publicOnly */ true);
ReflectionFactory factory = getReflectionFactory();
List<Method> result = new ArrayList<>();
for (Method method : methods) {
if (method.getName().equals(name)
&& Arrays.equals(
factory.getExecutableSharedParameterTypes(method),
parameterTypes)) {
result.add(factory.copyMethod(method));
}
}
return result;
}
/**
* Returns a {@code Constructor} object that reflects the specified
* constructor of the class or interface represented by this
* {@code Class} object. The {@code parameterTypes} parameter is
* an array of {@code Class} objects that identify the constructor's
* formal parameter types, in declared order.
*
* If this {@code Class} object represents an inner class
* declared in a non-static context, the formal parameter types
* include the explicit enclosing instance as the first parameter.
*
* @param parameterTypes the parameter array
* @return The {@code Constructor} object for the constructor with the
* specified parameter list
* @throws NoSuchMethodException if a matching method is not found.
* @throws SecurityException
* If a security manager, <i>s</i>, is present and any of the
* following conditions is met:
*
* <ul>
*
* <li> the caller's class loader is not the same as the
* class loader of this class and invocation of
* {@link SecurityManager#checkPermission
* s.checkPermission} method with
* {@code RuntimePermission("accessDeclaredMembers")}
* denies access to the declared constructor
*
* <li> the caller's class loader is not the same as or an
* ancestor of the class loader for the current class and
* invocation of {@link SecurityManager#checkPackageAccess
* s.checkPackageAccess()} denies access to the package
* of this class
*
* </ul>
*
* @since 1.1
*/
@CallerSensitive
public Constructor<T> getDeclaredConstructor(Class<?>... parameterTypes)
throws NoSuchMethodException, SecurityException
{
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
checkMemberAccess(sm, Member.DECLARED, Reflection.getCallerClass(), true);
}
return getReflectionFactory().copyConstructor(
getConstructor0(parameterTypes, Member.DECLARED));
}
/**
* Finds a resource with a given name.
*
* <p> If this class is in a named {@link Module Module} then this method
* will attempt to find the resource in the module. This is done by
* delegating to the module's class loader {@link
* ClassLoader#findResource(String,String) findResource(String,String)}
* method, invoking it with the module name and the absolute name of the
* resource. Resources in named modules are subject to the rules for
* encapsulation specified in the {@code Module} {@link
* Module#getResourceAsStream getResourceAsStream} method and so this
* method returns {@code null} when the resource is a
* non-"{@code .class}" resource in a package that is not open to the
* caller's module.
*
* <p> Otherwise, if this class is not in a named module then the rules for
* searching resources associated with a given class are implemented by the
* defining {@linkplain ClassLoader class loader} of the class. This method
* delegates to this object's class loader. If this object was loaded by
* the bootstrap class loader, the method delegates to {@link
* ClassLoader#getSystemResourceAsStream}.
*
* <p> Before delegation, an absolute resource name is constructed from the
* given resource name using this algorithm:
*
* <ul>
*
* <li> If the {@code name} begins with a {@code '/'}
* (<code>'\u002f'</code>), then the absolute name of the resource is the
* portion of the {@code name} following the {@code '/'}.
*
* <li> Otherwise, the absolute name is of the following form:
*
* <blockquote>
* {@code modified_package_name/name}
* </blockquote>
*
* <p> Where the {@code modified_package_name} is the package name of this
* object with {@code '/'} substituted for {@code '.'}
* (<code>'\u002e'</code>).
*
* </ul>
*
* @param name name of the desired resource
* @return A {@link java.io.InputStream} object; {@code null} if no
* resource with this name is found, the resource is in a package
* that is not {@linkplain Module#isOpen(String, Module) open} to at
* least the caller module, or access to the resource is denied
* by the security manager.
* @throws NullPointerException If {@code name} is {@code null}
*
* @see Module#getResourceAsStream(String)
* @since 1.1
* @revised 9
* @spec JPMS
*/
@CallerSensitive
public InputStream getResourceAsStream(String name) {
name = resolveName(name);
Module thisModule = getModule();
if (thisModule.isNamed()) {
// check if resource can be located by caller
if (Resources.canEncapsulate(name)
&& !isOpenToCaller(name, Reflection.getCallerClass())) {
return null;
}
// resource not encapsulated or in package open to caller
String mn = thisModule.getName();
ClassLoader cl = getClassLoader0();
try {
// special-case built-in class loaders to avoid the
// need for a URL connection
if (cl == null) {
return BootLoader.findResourceAsStream(mn, name);
} else if (cl instanceof BuiltinClassLoader) {
return ((BuiltinClassLoader) cl).findResourceAsStream(mn, name);
} else {
URL url = cl.findResource(mn, name);
return (url != null) ? url.openStream() : null;
}
} catch (IOException | SecurityException e) {
return null;
}
}
// unnamed module
ClassLoader cl = getClassLoader0();
if (cl == null) {
return ClassLoader.getSystemResourceAsStream(name);
} else {
return cl.getResourceAsStream(name);
}
}
/**
* Finds a resource with a given name.
*
* <p> If this class is in a named {@link Module Module} then this method
* will attempt to find the resource in the module. This is done by
* delegating to the module's class loader {@link
* ClassLoader#findResource(String,String) findResource(String,String)}
* method, invoking it with the module name and the absolute name of the
* resource. Resources in named modules are subject to the rules for
* encapsulation specified in the {@code Module} {@link
* Module#getResourceAsStream getResourceAsStream} method and so this
* method returns {@code null} when the resource is a
* non-"{@code .class}" resource in a package that is not open to the
* caller's module.
*
* <p> Otherwise, if this class is not in a named module then the rules for
* searching resources associated with a given class are implemented by the
* defining {@linkplain ClassLoader class loader} of the class. This method
* delegates to this object's class loader. If this object was loaded by
* the bootstrap class loader, the method delegates to {@link
* ClassLoader#getSystemResource}.
*
* <p> Before delegation, an absolute resource name is constructed from the
* given resource name using this algorithm:
*
* <ul>
*
* <li> If the {@code name} begins with a {@code '/'}
* (<code>'\u002f'</code>), then the absolute name of the resource is the
* portion of the {@code name} following the {@code '/'}.
*
* <li> Otherwise, the absolute name is of the following form:
*
* <blockquote>
* {@code modified_package_name/name}
* </blockquote>
*
* <p> Where the {@code modified_package_name} is the package name of this
* object with {@code '/'} substituted for {@code '.'}
* (<code>'\u002e'</code>).
*
* </ul>
*
* @param name name of the desired resource
* @return A {@link java.net.URL} object; {@code null} if no resource with
* this name is found, the resource cannot be located by a URL, the
* resource is in a package that is not
* {@linkplain Module#isOpen(String, Module) open} to at least the caller
* module, or access to the resource is denied by the security
* manager.
* @throws NullPointerException If {@code name} is {@code null}
* @since 1.1
* @revised 9
* @spec JPMS
*/
@CallerSensitive
public URL getResource(String name) {
name = resolveName(name);
Module thisModule = getModule();
if (thisModule.isNamed()) {
// check if resource can be located by caller
if (Resources.canEncapsulate(name)
&& !isOpenToCaller(name, Reflection.getCallerClass())) {
return null;
}
// resource not encapsulated or in package open to caller
String mn = thisModule.getName();
ClassLoader cl = getClassLoader0();
try {
if (cl == null) {
return BootLoader.findResource(mn, name);
} else {
return cl.findResource(mn, name);
}
} catch (IOException ioe) {
return null;
}
}
// unnamed module
ClassLoader cl = getClassLoader0();
if (cl == null) {
return ClassLoader.getSystemResource(name);
} else {
return cl.getResource(name);
}
}
/**
* Returns true if a resource with the given name can be located by the
* given caller. All resources in a module can be located by code in
* the module. For other callers, then the package needs to be open to
* the caller.
*/
private boolean isOpenToCaller(String name, Class<?> caller) {
// assert getModule().isNamed();
Module thisModule = getModule();
Module callerModule = (caller != null) ? caller.getModule() : null;
if (callerModule != thisModule) {
String pn = Resources.toPackageName(name);
if (thisModule.getDescriptor().packages().contains(pn)) {
if (callerModule == null && !thisModule.isOpen(pn)) {
// no caller, package not open
return false;
}
if (!thisModule.isOpen(pn, callerModule)) {
// package not open to caller
return false;
}
}
}
return true;
}
/** protection domain returned when the internal domain is null */
private static java.security.ProtectionDomain allPermDomain;
/**
* Returns the {@code ProtectionDomain} of this class. If there is a
* security manager installed, this method first calls the security
* manager's {@code checkPermission} method with a
* {@code RuntimePermission("getProtectionDomain")} permission to
* ensure it's ok to get the
* {@code ProtectionDomain}.
*
* @return the ProtectionDomain of this class
*
* @throws SecurityException
* if a security manager exists and its
* {@code checkPermission} method doesn't allow
* getting the ProtectionDomain.
*
* @see java.security.ProtectionDomain
* @see SecurityManager#checkPermission
* @see java.lang.RuntimePermission
* @since 1.2
*/
public java.security.ProtectionDomain getProtectionDomain() {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
sm.checkPermission(SecurityConstants.GET_PD_PERMISSION);
}
java.security.ProtectionDomain pd = getProtectionDomain0();
if (pd == null) {
if (allPermDomain == null) {
java.security.Permissions perms =
new java.security.Permissions();
perms.add(SecurityConstants.ALL_PERMISSION);
allPermDomain =
new java.security.ProtectionDomain(null, perms);
}
pd = allPermDomain;
}
return pd;
}
/**
* Returns the ProtectionDomain of this class.
*/
private native java.security.ProtectionDomain getProtectionDomain0();
/*
* Return the Virtual Machine's Class object for the named
* primitive type.
*/
static native Class<?> getPrimitiveClass(String name);
/*
* Check if client is allowed to access members. If access is denied,
* throw a SecurityException.
*
* This method also enforces package access.
*
* <p> Default policy: allow all clients access with normal Java access
* control.
*
* <p> NOTE: should only be called if a SecurityManager is installed
*/
private void checkMemberAccess(SecurityManager sm, int which,
Class<?> caller, boolean checkProxyInterfaces) {
/* Default policy allows access to all {@link Member#PUBLIC} members,
* as well as access to classes that have the same class loader as the caller.
* In all other cases, it requires RuntimePermission("accessDeclaredMembers")
* permission.
*/
final ClassLoader ccl = ClassLoader.getClassLoader(caller);
if (which != Member.PUBLIC) {
final ClassLoader cl = getClassLoader0();
if (ccl != cl) {
sm.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
}
}
this.checkPackageAccess(sm, ccl, checkProxyInterfaces);
}
/*
* Checks if a client loaded in ClassLoader ccl is allowed to access this
* class under the current package access policy. If access is denied,
* throw a SecurityException.
*
* NOTE: this method should only be called if a SecurityManager is active
*/
private void checkPackageAccess(SecurityManager sm, final ClassLoader ccl,
boolean checkProxyInterfaces) {
final ClassLoader cl = getClassLoader0();
if (ReflectUtil.needsPackageAccessCheck(ccl, cl)) {
String pkg = this.getPackageName();
if (pkg != null && !pkg.isEmpty()) {
// skip the package access check on a proxy class in default proxy package
if (!Proxy.isProxyClass(this) || ReflectUtil.isNonPublicProxyClass(this)) {
sm.checkPackageAccess(pkg);
}
}
}
// check package access on the proxy interfaces
if (checkProxyInterfaces && Proxy.isProxyClass(this)) {
ReflectUtil.checkProxyPackageAccess(ccl, this.getInterfaces());
}
}
/**
* Add a package name prefix if the name is not absolute Remove leading "/"
* if name is absolute
*/
private String resolveName(String name) {
if (!name.startsWith("/")) {
Class<?> c = this;
while (c.isArray()) {
c = c.getComponentType();
}
String baseName = c.getPackageName();
if (baseName != null && !baseName.isEmpty()) {
name = baseName.replace('.', '/') + "/" + name;
}
} else {
name = name.substring(1);
}
return name;
}
/**
* Atomic operations support.
*/
private static class Atomic {
// initialize Unsafe machinery here, since we need to call Class.class instance method
// and have to avoid calling it in the static initializer of the Class class...
private static final Unsafe unsafe = Unsafe.getUnsafe();
// offset of Class.reflectionData instance field
private static final long reflectionDataOffset
= unsafe.objectFieldOffset(Class.class, "reflectionData");
// offset of Class.annotationType instance field
private static final long annotationTypeOffset
= unsafe.objectFieldOffset(Class.class, "annotationType");
// offset of Class.annotationData instance field
private static final long annotationDataOffset
= unsafe.objectFieldOffset(Class.class, "annotationData");
static <T> boolean casReflectionData(Class<?> clazz,
SoftReference<ReflectionData<T>> oldData,
SoftReference<ReflectionData<T>> newData) {
return unsafe.compareAndSetObject(clazz, reflectionDataOffset, oldData, newData);
}
static <T> boolean casAnnotationType(Class<?> clazz,
AnnotationType oldType,
AnnotationType newType) {
return unsafe.compareAndSetObject(clazz, annotationTypeOffset, oldType, newType);
}
static <T> boolean casAnnotationData(Class<?> clazz,
AnnotationData oldData,
AnnotationData newData) {
return unsafe.compareAndSetObject(clazz, annotationDataOffset, oldData, newData);
}
}
/**
* Reflection support.
*/
// Reflection data caches various derived names and reflective members. Cached
// values may be invalidated when JVM TI RedefineClasses() is called
private static class ReflectionData<T> {
volatile Field[] declaredFields;
volatile Field[] publicFields;
volatile Method[] declaredMethods;
volatile Method[] publicMethods;
volatile Constructor<T>[] declaredConstructors;
volatile Constructor<T>[] publicConstructors;
// Intermediate results for getFields and getMethods
volatile Field[] declaredPublicFields;
volatile Method[] declaredPublicMethods;
volatile Class<?>[] interfaces;
// Cached names
String simpleName;
String canonicalName;
static final String NULL_SENTINEL = new String();
// Value of classRedefinedCount when we created this ReflectionData instance
final int redefinedCount;
ReflectionData(int redefinedCount) {
this.redefinedCount = redefinedCount;
}
}
private transient volatile SoftReference<ReflectionData<T>> reflectionData;
// Incremented by the VM on each call to JVM TI RedefineClasses()
// that redefines this class or a superclass.
private transient volatile int classRedefinedCount;
// Lazily create and cache ReflectionData
private ReflectionData<T> reflectionData() {
SoftReference<ReflectionData<T>> reflectionData = this.reflectionData;
int classRedefinedCount = this.classRedefinedCount;
ReflectionData<T> rd;
if (reflectionData != null &&
(rd = reflectionData.get()) != null &&
rd.redefinedCount == classRedefinedCount) {
return rd;
}
// else no SoftReference or cleared SoftReference or stale ReflectionData
// -> create and replace new instance
return newReflectionData(reflectionData, classRedefinedCount);
}
private ReflectionData<T> newReflectionData(SoftReference<ReflectionData<T>> oldReflectionData,
int classRedefinedCount) {
while (true) {
ReflectionData<T> rd = new ReflectionData<>(classRedefinedCount);
// try to CAS it...
if (Atomic.casReflectionData(this, oldReflectionData, new SoftReference<>(rd))) {
return rd;
}
// else retry
oldReflectionData = this.reflectionData;
classRedefinedCount = this.classRedefinedCount;
if (oldReflectionData != null &&
(rd = oldReflectionData.get()) != null &&
rd.redefinedCount == classRedefinedCount) {
return rd;
}
}
}
// Generic signature handling
private native String getGenericSignature0();
// Generic info repository; lazily initialized
private transient volatile ClassRepository genericInfo;
// accessor for factory
private GenericsFactory getFactory() {
// create scope and factory
return CoreReflectionFactory.make(this, ClassScope.make(this));
}
// accessor for generic info repository;
// generic info is lazily initialized
private ClassRepository getGenericInfo() {
ClassRepository genericInfo = this.genericInfo;
if (genericInfo == null) {
String signature = getGenericSignature0();
if (signature == null) {
genericInfo = ClassRepository.NONE;
} else {
genericInfo = ClassRepository.make(signature, getFactory());
}
this.genericInfo = genericInfo;
}
return (genericInfo != ClassRepository.NONE) ? genericInfo : null;
}
// Annotations handling
native byte[] getRawAnnotations();
// Since 1.8
native byte[] getRawTypeAnnotations();
static byte[] getExecutableTypeAnnotationBytes(Executable ex) {
return getReflectionFactory().getExecutableTypeAnnotationBytes(ex);
}
native ConstantPool getConstantPool();
//
//
// java.lang.reflect.Field handling
//
//
// Returns an array of "root" fields. These Field objects must NOT
// be propagated to the outside world, but must instead be copied
// via ReflectionFactory.copyField.
private Field[] privateGetDeclaredFields(boolean publicOnly) {
Field[] res;
ReflectionData<T> rd = reflectionData();
if (rd != null) {
res = publicOnly ? rd.declaredPublicFields : rd.declaredFields;
if (res != null) return res;
}
// No cached value available; request value from VM
res = Reflection.filterFields(this, getDeclaredFields0(publicOnly));
if (rd != null) {
if (publicOnly) {
rd.declaredPublicFields = res;
} else {
rd.declaredFields = res;
}
}
return res;
}
// Returns an array of "root" fields. These Field objects must NOT
// be propagated to the outside world, but must instead be copied
// via ReflectionFactory.copyField.
private Field[] privateGetPublicFields() {
Field[] res;
ReflectionData<T> rd = reflectionData();
if (rd != null) {
res = rd.publicFields;
if (res != null) return res;
}
// Use a linked hash set to ensure order is preserved and
// fields from common super interfaces are not duplicated
LinkedHashSet<Field> fields = new LinkedHashSet<>();
// Local fields
addAll(fields, privateGetDeclaredFields(true));
// Direct superinterfaces, recursively
for (Class<?> si : getInterfaces()) {
addAll(fields, si.privateGetPublicFields());
}
// Direct superclass, recursively
Class<?> sc = getSuperclass();
if (sc != null) {
addAll(fields, sc.privateGetPublicFields());
}
res = fields.toArray(new Field[0]);
if (rd != null) {
rd.publicFields = res;
}
return res;
}
private static void addAll(Collection<Field> c, Field[] o) {
for (Field f : o) {
c.add(f);
}
}
//
//
// java.lang.reflect.Constructor handling
//
//
// Returns an array of "root" constructors. These Constructor
// objects must NOT be propagated to the outside world, but must
// instead be copied via ReflectionFactory.copyConstructor.
private Constructor<T>[] privateGetDeclaredConstructors(boolean publicOnly) {
Constructor<T>[] res;
ReflectionData<T> rd = reflectionData();
if (rd != null) {
res = publicOnly ? rd.publicConstructors : rd.declaredConstructors;
if (res != null) return res;
}
// No cached value available; request value from VM
if (isInterface()) {
@SuppressWarnings("unchecked")
Constructor<T>[] temporaryRes = (Constructor<T>[]) new Constructor<?>[0];
res = temporaryRes;
} else {
res = getDeclaredConstructors0(publicOnly);
}
if (rd != null) {
if (publicOnly) {
rd.publicConstructors = res;
} else {
rd.declaredConstructors = res;
}
}
return res;
}
//
//
// java.lang.reflect.Method handling
//
//
// Returns an array of "root" methods. These Method objects must NOT
// be propagated to the outside world, but must instead be copied
// via ReflectionFactory.copyMethod.
private Method[] privateGetDeclaredMethods(boolean publicOnly) {
Method[] res;
ReflectionData<T> rd = reflectionData();
if (rd != null) {
res = publicOnly ? rd.declaredPublicMethods : rd.declaredMethods;
if (res != null) return res;
}
// No cached value available; request value from VM
res = Reflection.filterMethods(this, getDeclaredMethods0(publicOnly));
if (rd != null) {
if (publicOnly) {
rd.declaredPublicMethods = res;
} else {
rd.declaredMethods = res;
}
}
return res;
}
// Returns an array of "root" methods. These Method objects must NOT
// be propagated to the outside world, but must instead be copied
// via ReflectionFactory.copyMethod.
private Method[] privateGetPublicMethods() {
Method[] res;
ReflectionData<T> rd = reflectionData();
if (rd != null) {
res = rd.publicMethods;
if (res != null) return res;
}
// No cached value available; compute value recursively.
// Start by fetching public declared methods...
PublicMethods pms = new PublicMethods();
for (Method m : privateGetDeclaredMethods(/* publicOnly */ true)) {
pms.merge(m);
}
// ...then recur over superclass methods...
Class<?> sc = getSuperclass();
if (sc != null) {
for (Method m : sc.privateGetPublicMethods()) {
pms.merge(m);
}
}
// ...and finally over direct superinterfaces.
for (Class<?> intf : getInterfaces(/* cloneArray */ false)) {
for (Method m : intf.privateGetPublicMethods()) {
// static interface methods are not inherited
if (!Modifier.isStatic(m.getModifiers())) {
pms.merge(m);
}
}
}
res = pms.toArray();
if (rd != null) {
rd.publicMethods = res;
}
return res;
}
//
// Helpers for fetchers of one field, method, or constructor
//
// This method does not copy the returned Field object!
private static Field searchFields(Field[] fields, String name) {
for (Field field : fields) {
if (field.getName().equals(name)) {
return field;
}
}
return null;
}
// Returns a "root" Field object. This Field object must NOT
// be propagated to the outside world, but must instead be copied
// via ReflectionFactory.copyField.
private Field getField0(String name) {
// Note: the intent is that the search algorithm this routine
// uses be equivalent to the ordering imposed by
// privateGetPublicFields(). It fetches only the declared
// public fields for each class, however, to reduce the number
// of Field objects which have to be created for the common
// case where the field being requested is declared in the
// class which is being queried.
Field res;
// Search declared public fields
if ((res = searchFields(privateGetDeclaredFields(true), name)) != null) {
return res;
}
// Direct superinterfaces, recursively
Class<?>[] interfaces = getInterfaces(/* cloneArray */ false);
for (Class<?> c : interfaces) {
if ((res = c.getField0(name)) != null) {
return res;
}
}
// Direct superclass, recursively
if (!isInterface()) {
Class<?> c = getSuperclass();
if (c != null) {
if ((res = c.getField0(name)) != null) {
return res;
}
}
}
return null;
}
// This method does not copy the returned Method object!
private static Method searchMethods(Method[] methods,
String name,
Class<?>[] parameterTypes)
{
ReflectionFactory fact = getReflectionFactory();
Method res = null;
for (Method m : methods) {
if (m.getName().equals(name)
&& arrayContentsEq(parameterTypes,
fact.getExecutableSharedParameterTypes(m))
&& (res == null
|| (res.getReturnType() != m.getReturnType()
&& res.getReturnType().isAssignableFrom(m.getReturnType()))))
res = m;
}
return res;
}
private static final Class<?>[] EMPTY_CLASS_ARRAY = new Class<?>[0];
// Returns a "root" Method object. This Method object must NOT
// be propagated to the outside world, but must instead be copied
// via ReflectionFactory.copyMethod.
private Method getMethod0(String name, Class<?>[] parameterTypes) {
PublicMethods.MethodList res = getMethodsRecursive(
name,
parameterTypes == null ? EMPTY_CLASS_ARRAY : parameterTypes,
/* includeStatic */ true);
return res == null ? null : res.getMostSpecific();
}
// Returns a list of "root" Method objects. These Method objects must NOT
// be propagated to the outside world, but must instead be copied
// via ReflectionFactory.copyMethod.
private PublicMethods.MethodList getMethodsRecursive(String name,
Class<?>[] parameterTypes,
boolean includeStatic) {
// 1st check declared public methods
Method[] methods = privateGetDeclaredMethods(/* publicOnly */ true);
PublicMethods.MethodList res = PublicMethods.MethodList
.filter(methods, name, parameterTypes, includeStatic);
// if there is at least one match among declared methods, we need not
// search any further as such match surely overrides matching methods
// declared in superclass(es) or interface(s).
if (res != null) {
return res;
}
// if there was no match among declared methods,
// we must consult the superclass (if any) recursively...
Class<?> sc = getSuperclass();
if (sc != null) {
res = sc.getMethodsRecursive(name, parameterTypes, includeStatic);
}
// ...and coalesce the superclass methods with methods obtained
// from directly implemented interfaces excluding static methods...
for (Class<?> intf : getInterfaces(/* cloneArray */ false)) {
res = PublicMethods.MethodList.merge(
res, intf.getMethodsRecursive(name, parameterTypes,
/* includeStatic */ false));
}
return res;
}
// Returns a "root" Constructor object. This Constructor object must NOT
// be propagated to the outside world, but must instead be copied
// via ReflectionFactory.copyConstructor.
private Constructor<T> getConstructor0(Class<?>[] parameterTypes,
int which) throws NoSuchMethodException
{
ReflectionFactory fact = getReflectionFactory();
Constructor<T>[] constructors = privateGetDeclaredConstructors((which == Member.PUBLIC));
for (Constructor<T> constructor : constructors) {
if (arrayContentsEq(parameterTypes,
fact.getExecutableSharedParameterTypes(constructor))) {
return constructor;
}
}
throw new NoSuchMethodException(methodToString("<init>", parameterTypes));
}
//
// Other helpers and base implementation
//
private static boolean arrayContentsEq(Object[] a1, Object[] a2) {
if (a1 == null) {
return a2 == null || a2.length == 0;
}
if (a2 == null) {
return a1.length == 0;
}
if (a1.length != a2.length) {
return false;
}
for (int i = 0; i < a1.length; i++) {
if (a1[i] != a2[i]) {
return false;
}
}
return true;
}
private static Field[] copyFields(Field[] arg) {
Field[] out = new Field[arg.length];
ReflectionFactory fact = getReflectionFactory();
for (int i = 0; i < arg.length; i++) {
out[i] = fact.copyField(arg[i]);
}
return out;
}
private static Method[] copyMethods(Method[] arg) {
Method[] out = new Method[arg.length];
ReflectionFactory fact = getReflectionFactory();
for (int i = 0; i < arg.length; i++) {
out[i] = fact.copyMethod(arg[i]);
}
return out;
}
private static <U> Constructor<U>[] copyConstructors(Constructor<U>[] arg) {
Constructor<U>[] out = arg.clone();
ReflectionFactory fact = getReflectionFactory();
for (int i = 0; i < out.length; i++) {
out[i] = fact.copyConstructor(out[i]);
}
return out;
}
private native Field[] getDeclaredFields0(boolean publicOnly);
private native Method[] getDeclaredMethods0(boolean publicOnly);
private native Constructor<T>[] getDeclaredConstructors0(boolean publicOnly);
private native Class<?>[] getDeclaredClasses0();
/**
* Helper method to get the method name from arguments.
*/
private String methodToString(String name, Class<?>[] argTypes) {
StringJoiner sj = new StringJoiner(", ", getName() + "." + name + "(", ")");
if (argTypes != null) {
for (int i = 0; i < argTypes.length; i++) {
Class<?> c = argTypes[i];
sj.add((c == null) ? "null" : c.getName());
}
}
return sj.toString();
}
/** use serialVersionUID from JDK 1.1 for interoperability */
private static final long serialVersionUID = 3206093459760846163L;
/**
* Class Class is special cased within the Serialization Stream Protocol.
*
* A Class instance is written initially into an ObjectOutputStream in the
* following format:
* <pre>
* {@code TC_CLASS} ClassDescriptor
* A ClassDescriptor is a special cased serialization of
* a {@code java.io.ObjectStreamClass} instance.
* </pre>
* A new handle is generated for the initial time the class descriptor
* is written into the stream. Future references to the class descriptor
* are written as references to the initial class descriptor instance.
*
* @see java.io.ObjectStreamClass
*/
private static final ObjectStreamField[] serialPersistentFields =
new ObjectStreamField[0];
/**
* Returns the assertion status that would be assigned to this
* class if it were to be initialized at the time this method is invoked.
* If this class has had its assertion status set, the most recent
* setting will be returned; otherwise, if any package default assertion
* status pertains to this class, the most recent setting for the most
* specific pertinent package default assertion status is returned;
* otherwise, if this class is not a system class (i.e., it has a
* class loader) its class loader's default assertion status is returned;
* otherwise, the system class default assertion status is returned.
* <p>
* Few programmers will have any need for this method; it is provided
* for the benefit of the JRE itself. (It allows a class to determine at
* the time that it is initialized whether assertions should be enabled.)
* Note that this method is not guaranteed to return the actual
* assertion status that was (or will be) associated with the specified
* class when it was (or will be) initialized.
*
* @return the desired assertion status of the specified class.
* @see java.lang.ClassLoader#setClassAssertionStatus
* @see java.lang.ClassLoader#setPackageAssertionStatus
* @see java.lang.ClassLoader#setDefaultAssertionStatus
* @since 1.4
*/
public boolean desiredAssertionStatus() {
ClassLoader loader = getClassLoader0();
// If the loader is null this is a system class, so ask the VM
if (loader == null)
return desiredAssertionStatus0(this);
// If the classloader has been initialized with the assertion
// directives, ask it. Otherwise, ask the VM.
synchronized(loader.assertionLock) {
if (loader.classAssertionStatus != null) {
return loader.desiredAssertionStatus(getName());
}
}
return desiredAssertionStatus0(this);
}
// Retrieves the desired assertion status of this class from the VM
private static native boolean desiredAssertionStatus0(Class<?> clazz);
/**
* Returns true if and only if this class was declared as an enum in the
* source code.
*
* @return true if and only if this class was declared as an enum in the
* source code
* @since 1.5
*/
public boolean isEnum() {
// An enum must both directly extend java.lang.Enum and have
// the ENUM bit set; classes for specialized enum constants
// don't do the former.
return (this.getModifiers() & ENUM) != 0 &&
this.getSuperclass() == java.lang.Enum.class;
}
// Fetches the factory for reflective objects
private static ReflectionFactory getReflectionFactory() {
if (reflectionFactory == null) {
reflectionFactory =
java.security.AccessController.doPrivileged
(new ReflectionFactory.GetReflectionFactoryAction());
}
return reflectionFactory;
}
private static ReflectionFactory reflectionFactory;
/**
* Returns the elements of this enum class or null if this
* Class object does not represent an enum type.
*
* @return an array containing the values comprising the enum class
* represented by this Class object in the order they're
* declared, or null if this Class object does not
* represent an enum type
* @since 1.5
*/
public T[] getEnumConstants() {
T[] values = getEnumConstantsShared();
return (values != null) ? values.clone() : null;
}
/**
* Returns the elements of this enum class or null if this
* Class object does not represent an enum type;
* identical to getEnumConstants except that the result is
* uncloned, cached, and shared by all callers.
*/
T[] getEnumConstantsShared() {
T[] constants = enumConstants;
if (constants == null) {
if (!isEnum()) return null;
try {
final Method values = getMethod("values");
java.security.AccessController.doPrivileged(
new java.security.PrivilegedAction<>() {
public Void run() {
values.setAccessible(true);
return null;
}
});
@SuppressWarnings("unchecked")
T[] temporaryConstants = (T[])values.invoke(null);
enumConstants = constants = temporaryConstants;
}
// These can happen when users concoct enum-like classes
// that don't comply with the enum spec.
catch (InvocationTargetException | NoSuchMethodException |
IllegalAccessException ex) { return null; }
}
return constants;
}
private transient volatile T[] enumConstants;
/**
* Returns a map from simple name to enum constant. This package-private
* method is used internally by Enum to implement
* {@code public static <T extends Enum<T>> T valueOf(Class<T>, String)}
* efficiently. Note that the map is returned by this method is
* created lazily on first use. Typically it won't ever get created.
*/
Map<String, T> enumConstantDirectory() {
Map<String, T> directory = enumConstantDirectory;
if (directory == null) {
T[] universe = getEnumConstantsShared();
if (universe == null)
throw new IllegalArgumentException(
getName() + " is not an enum type");
directory = new HashMap<>((int)(universe.length / 0.75f) + 1);
for (T constant : universe) {
directory.put(((Enum<?>)constant).name(), constant);
}
enumConstantDirectory = directory;
}
return directory;
}
private transient volatile Map<String, T> enumConstantDirectory;
/**
* Casts an object to the class or interface represented
* by this {@code Class} object.
*
* @param obj the object to be cast
* @return the object after casting, or null if obj is null
*
* @throws ClassCastException if the object is not
* null and is not assignable to the type T.
*
* @since 1.5
*/
@SuppressWarnings("unchecked")
@HotSpotIntrinsicCandidate
public T cast(Object obj) {
if (obj != null && !isInstance(obj))
throw new ClassCastException(cannotCastMsg(obj));
return (T) obj;
}
private String cannotCastMsg(Object obj) {
return "Cannot cast " + obj.getClass().getName() + " to " + getName();
}
/**
* Casts this {@code Class} object to represent a subclass of the class
* represented by the specified class object. Checks that the cast
* is valid, and throws a {@code ClassCastException} if it is not. If
* this method succeeds, it always returns a reference to this class object.
*
* <p>This method is useful when a client needs to "narrow" the type of
* a {@code Class} object to pass it to an API that restricts the
* {@code Class} objects that it is willing to accept. A cast would
* generate a compile-time warning, as the correctness of the cast
* could not be checked at runtime (because generic types are implemented
* by erasure).
*
* @param <U> the type to cast this class object to
* @param clazz the class of the type to cast this class object to
* @return this {@code Class} object, cast to represent a subclass of
* the specified class object.
* @throws ClassCastException if this {@code Class} object does not
* represent a subclass of the specified class (here "subclass" includes
* the class itself).
* @since 1.5
*/
@SuppressWarnings("unchecked")
public <U> Class<? extends U> asSubclass(Class<U> clazz) {
if (clazz.isAssignableFrom(this))
return (Class<? extends U>) this;
else
throw new ClassCastException(this.toString());
}
/**
* @throws NullPointerException {@inheritDoc}
* @since 1.5
*/
@SuppressWarnings("unchecked")
public <A extends Annotation> A getAnnotation(Class<A> annotationClass) {
Objects.requireNonNull(annotationClass);
return (A) annotationData().annotations.get(annotationClass);
}
/**
* {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @since 1.5
*/
@Override
public boolean isAnnotationPresent(Class<? extends Annotation> annotationClass) {
return GenericDeclaration.super.isAnnotationPresent(annotationClass);
}
/**
* @throws NullPointerException {@inheritDoc}
* @since 1.8
*/
@Override
public <A extends Annotation> A[] getAnnotationsByType(Class<A> annotationClass) {
Objects.requireNonNull(annotationClass);
AnnotationData annotationData = annotationData();
return AnnotationSupport.getAssociatedAnnotations(annotationData.declaredAnnotations,
this,
annotationClass);
}
/**
* @since 1.5
*/
public Annotation[] getAnnotations() {
return AnnotationParser.toArray(annotationData().annotations);
}
/**
* @throws NullPointerException {@inheritDoc}
* @since 1.8
*/
@Override
@SuppressWarnings("unchecked")
public <A extends Annotation> A getDeclaredAnnotation(Class<A> annotationClass) {
Objects.requireNonNull(annotationClass);
return (A) annotationData().declaredAnnotations.get(annotationClass);
}
/**
* @throws NullPointerException {@inheritDoc}
* @since 1.8
*/
@Override
public <A extends Annotation> A[] getDeclaredAnnotationsByType(Class<A> annotationClass) {
Objects.requireNonNull(annotationClass);
return AnnotationSupport.getDirectlyAndIndirectlyPresent(annotationData().declaredAnnotations,
annotationClass);
}
/**
* @since 1.5
*/
public Annotation[] getDeclaredAnnotations() {
return AnnotationParser.toArray(annotationData().declaredAnnotations);
}
// annotation data that might get invalidated when JVM TI RedefineClasses() is called
private static class AnnotationData {
final Map<Class<? extends Annotation>, Annotation> annotations;
final Map<Class<? extends Annotation>, Annotation> declaredAnnotations;
// Value of classRedefinedCount when we created this AnnotationData instance
final int redefinedCount;
AnnotationData(Map<Class<? extends Annotation>, Annotation> annotations,
Map<Class<? extends Annotation>, Annotation> declaredAnnotations,
int redefinedCount) {
this.annotations = annotations;
this.declaredAnnotations = declaredAnnotations;
this.redefinedCount = redefinedCount;
}
}
// Annotations cache
@SuppressWarnings("UnusedDeclaration")
private transient volatile AnnotationData annotationData;
private AnnotationData annotationData() {
while (true) { // retry loop
AnnotationData annotationData = this.annotationData;
int classRedefinedCount = this.classRedefinedCount;
if (annotationData != null &&
annotationData.redefinedCount == classRedefinedCount) {
return annotationData;
}
// null or stale annotationData -> optimistically create new instance
AnnotationData newAnnotationData = createAnnotationData(classRedefinedCount);
// try to install it
if (Atomic.casAnnotationData(this, annotationData, newAnnotationData)) {
// successfully installed new AnnotationData
return newAnnotationData;
}
}
}
private AnnotationData createAnnotationData(int classRedefinedCount) {
Map<Class<? extends Annotation>, Annotation> declaredAnnotations =
AnnotationParser.parseAnnotations(getRawAnnotations(), getConstantPool(), this);
Class<?> superClass = getSuperclass();
Map<Class<? extends Annotation>, Annotation> annotations = null;
if (superClass != null) {
Map<Class<? extends Annotation>, Annotation> superAnnotations =
superClass.annotationData().annotations;
for (Map.Entry<Class<? extends Annotation>, Annotation> e : superAnnotations.entrySet()) {
Class<? extends Annotation> annotationClass = e.getKey();
if (AnnotationType.getInstance(annotationClass).isInherited()) {
if (annotations == null) { // lazy construction
annotations = new LinkedHashMap<>((Math.max(
declaredAnnotations.size(),
Math.min(12, declaredAnnotations.size() + superAnnotations.size())
) * 4 + 2) / 3
);
}
annotations.put(annotationClass, e.getValue());
}
}
}
if (annotations == null) {
// no inherited annotations -> share the Map with declaredAnnotations
annotations = declaredAnnotations;
} else {
// at least one inherited annotation -> declared may override inherited
annotations.putAll(declaredAnnotations);
}
return new AnnotationData(annotations, declaredAnnotations, classRedefinedCount);
}
// Annotation types cache their internal (AnnotationType) form
@SuppressWarnings("UnusedDeclaration")
private transient volatile AnnotationType annotationType;
boolean casAnnotationType(AnnotationType oldType, AnnotationType newType) {
return Atomic.casAnnotationType(this, oldType, newType);
}
AnnotationType getAnnotationType() {
return annotationType;
}
Map<Class<? extends Annotation>, Annotation> getDeclaredAnnotationMap() {
return annotationData().declaredAnnotations;
}
/* Backing store of user-defined values pertaining to this class.
* Maintained by the ClassValue class.
*/
transient ClassValue.ClassValueMap classValueMap;
/**
* Returns an {@code AnnotatedType} object that represents the use of a
* type to specify the superclass of the entity represented by this {@code
* Class} object. (The <em>use</em> of type Foo to specify the superclass
* in '... extends Foo' is distinct from the <em>declaration</em> of type
* Foo.)
*
* <p> If this {@code Class} object represents a type whose declaration
* does not explicitly indicate an annotated superclass, then the return
* value is an {@code AnnotatedType} object representing an element with no
* annotations.
*
* <p> If this {@code Class} represents either the {@code Object} class, an
* interface type, an array type, a primitive type, or void, the return
* value is {@code null}.
*
* @return an object representing the superclass
* @since 1.8
*/
public AnnotatedType getAnnotatedSuperclass() {
if (this == Object.class ||
isInterface() ||
isArray() ||
isPrimitive() ||
this == Void.TYPE) {
return null;
}
return TypeAnnotationParser.buildAnnotatedSuperclass(getRawTypeAnnotations(), getConstantPool(), this);
}
/**
* Returns an array of {@code AnnotatedType} objects that represent the use
* of types to specify superinterfaces of the entity represented by this
* {@code Class} object. (The <em>use</em> of type Foo to specify a
* superinterface in '... implements Foo' is distinct from the
* <em>declaration</em> of type Foo.)
*
* <p> If this {@code Class} object represents a class, the return value is
* an array containing objects representing the uses of interface types to
* specify interfaces implemented by the class. The order of the objects in
* the array corresponds to the order of the interface types used in the
* 'implements' clause of the declaration of this {@code Class} object.
*
* <p> If this {@code Class} object represents an interface, the return
* value is an array containing objects representing the uses of interface
* types to specify interfaces directly extended by the interface. The
* order of the objects in the array corresponds to the order of the
* interface types used in the 'extends' clause of the declaration of this
* {@code Class} object.
*
* <p> If this {@code Class} object represents a class or interface whose
* declaration does not explicitly indicate any annotated superinterfaces,
* the return value is an array of length 0.
*
* <p> If this {@code Class} object represents either the {@code Object}
* class, an array type, a primitive type, or void, the return value is an
* array of length 0.
*
* @return an array representing the superinterfaces
* @since 1.8
*/
public AnnotatedType[] getAnnotatedInterfaces() {
return TypeAnnotationParser.buildAnnotatedInterfaces(getRawTypeAnnotations(), getConstantPool(), this);
}
}