8079315: UseCondCardMark broken in conjunction with CMS precleaning on x86
Summary: Add the necessary StoreLoad barrier in interpreter, C1 and C2 for x86
Reviewed-by: tschatzl
/*
* Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "c1/c1_Compilation.hpp"
#include "c1/c1_Defs.hpp"
#include "c1/c1_FrameMap.hpp"
#include "c1/c1_Instruction.hpp"
#include "c1/c1_LIRAssembler.hpp"
#include "c1/c1_LIRGenerator.hpp"
#include "c1/c1_ValueStack.hpp"
#include "ci/ciArrayKlass.hpp"
#include "ci/ciInstance.hpp"
#include "ci/ciObjArray.hpp"
#include "gc/shared/cardTableModRefBS.hpp"
#include "runtime/arguments.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/vm_version.hpp"
#include "utilities/bitMap.inline.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
#include "gc/g1/heapRegion.hpp"
#endif // INCLUDE_ALL_GCS
#ifdef ASSERT
#define __ gen()->lir(__FILE__, __LINE__)->
#else
#define __ gen()->lir()->
#endif
#ifndef PATCHED_ADDR
#define PATCHED_ADDR (max_jint)
#endif
void PhiResolverState::reset(int max_vregs) {
// Initialize array sizes
_virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
_virtual_operands.trunc_to(0);
_other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
_other_operands.trunc_to(0);
_vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
_vreg_table.trunc_to(0);
}
//--------------------------------------------------------------
// PhiResolver
// Resolves cycles:
//
// r1 := r2 becomes temp := r1
// r2 := r1 r1 := r2
// r2 := temp
// and orders moves:
//
// r2 := r3 becomes r1 := r2
// r1 := r2 r2 := r3
PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
: _gen(gen)
, _state(gen->resolver_state())
, _temp(LIR_OprFact::illegalOpr)
{
// reinitialize the shared state arrays
_state.reset(max_vregs);
}
void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
assert(src->is_valid(), "");
assert(dest->is_valid(), "");
__ move(src, dest);
}
void PhiResolver::move_temp_to(LIR_Opr dest) {
assert(_temp->is_valid(), "");
emit_move(_temp, dest);
NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
}
void PhiResolver::move_to_temp(LIR_Opr src) {
assert(_temp->is_illegal(), "");
_temp = _gen->new_register(src->type());
emit_move(src, _temp);
}
// Traverse assignment graph in depth first order and generate moves in post order
// ie. two assignments: b := c, a := b start with node c:
// Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
// Generates moves in this order: move b to a and move c to b
// ie. cycle a := b, b := a start with node a
// Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
// Generates moves in this order: move b to temp, move a to b, move temp to a
void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
if (!dest->visited()) {
dest->set_visited();
for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
move(dest, dest->destination_at(i));
}
} else if (!dest->start_node()) {
// cylce in graph detected
assert(_loop == NULL, "only one loop valid!");
_loop = dest;
move_to_temp(src->operand());
return;
} // else dest is a start node
if (!dest->assigned()) {
if (_loop == dest) {
move_temp_to(dest->operand());
dest->set_assigned();
} else if (src != NULL) {
emit_move(src->operand(), dest->operand());
dest->set_assigned();
}
}
}
PhiResolver::~PhiResolver() {
int i;
// resolve any cycles in moves from and to virtual registers
for (i = virtual_operands().length() - 1; i >= 0; i --) {
ResolveNode* node = virtual_operands()[i];
if (!node->visited()) {
_loop = NULL;
move(NULL, node);
node->set_start_node();
assert(_temp->is_illegal(), "move_temp_to() call missing");
}
}
// generate move for move from non virtual register to abitrary destination
for (i = other_operands().length() - 1; i >= 0; i --) {
ResolveNode* node = other_operands()[i];
for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
emit_move(node->operand(), node->destination_at(j)->operand());
}
}
}
ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
ResolveNode* node;
if (opr->is_virtual()) {
int vreg_num = opr->vreg_number();
node = vreg_table().at_grow(vreg_num, NULL);
assert(node == NULL || node->operand() == opr, "");
if (node == NULL) {
node = new ResolveNode(opr);
vreg_table()[vreg_num] = node;
}
// Make sure that all virtual operands show up in the list when
// they are used as the source of a move.
if (source && !virtual_operands().contains(node)) {
virtual_operands().append(node);
}
} else {
assert(source, "");
node = new ResolveNode(opr);
other_operands().append(node);
}
return node;
}
void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
assert(dest->is_virtual(), "");
// tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
assert(src->is_valid(), "");
assert(dest->is_valid(), "");
ResolveNode* source = source_node(src);
source->append(destination_node(dest));
}
//--------------------------------------------------------------
// LIRItem
void LIRItem::set_result(LIR_Opr opr) {
assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
value()->set_operand(opr);
if (opr->is_virtual()) {
_gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
}
_result = opr;
}
void LIRItem::load_item() {
if (result()->is_illegal()) {
// update the items result
_result = value()->operand();
}
if (!result()->is_register()) {
LIR_Opr reg = _gen->new_register(value()->type());
__ move(result(), reg);
if (result()->is_constant()) {
_result = reg;
} else {
set_result(reg);
}
}
}
void LIRItem::load_for_store(BasicType type) {
if (_gen->can_store_as_constant(value(), type)) {
_result = value()->operand();
if (!_result->is_constant()) {
_result = LIR_OprFact::value_type(value()->type());
}
} else if (type == T_BYTE || type == T_BOOLEAN) {
load_byte_item();
} else {
load_item();
}
}
void LIRItem::load_item_force(LIR_Opr reg) {
LIR_Opr r = result();
if (r != reg) {
#if !defined(ARM) && !defined(E500V2)
if (r->type() != reg->type()) {
// moves between different types need an intervening spill slot
r = _gen->force_to_spill(r, reg->type());
}
#endif
__ move(r, reg);
_result = reg;
}
}
ciObject* LIRItem::get_jobject_constant() const {
ObjectType* oc = type()->as_ObjectType();
if (oc) {
return oc->constant_value();
}
return NULL;
}
jint LIRItem::get_jint_constant() const {
assert(is_constant() && value() != NULL, "");
assert(type()->as_IntConstant() != NULL, "type check");
return type()->as_IntConstant()->value();
}
jint LIRItem::get_address_constant() const {
assert(is_constant() && value() != NULL, "");
assert(type()->as_AddressConstant() != NULL, "type check");
return type()->as_AddressConstant()->value();
}
jfloat LIRItem::get_jfloat_constant() const {
assert(is_constant() && value() != NULL, "");
assert(type()->as_FloatConstant() != NULL, "type check");
return type()->as_FloatConstant()->value();
}
jdouble LIRItem::get_jdouble_constant() const {
assert(is_constant() && value() != NULL, "");
assert(type()->as_DoubleConstant() != NULL, "type check");
return type()->as_DoubleConstant()->value();
}
jlong LIRItem::get_jlong_constant() const {
assert(is_constant() && value() != NULL, "");
assert(type()->as_LongConstant() != NULL, "type check");
return type()->as_LongConstant()->value();
}
//--------------------------------------------------------------
void LIRGenerator::init() {
_bs = Universe::heap()->barrier_set();
}
void LIRGenerator::block_do_prolog(BlockBegin* block) {
#ifndef PRODUCT
if (PrintIRWithLIR) {
block->print();
}
#endif
// set up the list of LIR instructions
assert(block->lir() == NULL, "LIR list already computed for this block");
_lir = new LIR_List(compilation(), block);
block->set_lir(_lir);
__ branch_destination(block->label());
if (LIRTraceExecution &&
Compilation::current()->hir()->start()->block_id() != block->block_id() &&
!block->is_set(BlockBegin::exception_entry_flag)) {
assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
trace_block_entry(block);
}
}
void LIRGenerator::block_do_epilog(BlockBegin* block) {
#ifndef PRODUCT
if (PrintIRWithLIR) {
tty->cr();
}
#endif
// LIR_Opr for unpinned constants shouldn't be referenced by other
// blocks so clear them out after processing the block.
for (int i = 0; i < _unpinned_constants.length(); i++) {
_unpinned_constants.at(i)->clear_operand();
}
_unpinned_constants.trunc_to(0);
// clear our any registers for other local constants
_constants.trunc_to(0);
_reg_for_constants.trunc_to(0);
}
void LIRGenerator::block_do(BlockBegin* block) {
CHECK_BAILOUT();
block_do_prolog(block);
set_block(block);
for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
if (instr->is_pinned()) do_root(instr);
}
set_block(NULL);
block_do_epilog(block);
}
//-------------------------LIRGenerator-----------------------------
// This is where the tree-walk starts; instr must be root;
void LIRGenerator::do_root(Value instr) {
CHECK_BAILOUT();
InstructionMark im(compilation(), instr);
assert(instr->is_pinned(), "use only with roots");
assert(instr->subst() == instr, "shouldn't have missed substitution");
instr->visit(this);
assert(!instr->has_uses() || instr->operand()->is_valid() ||
instr->as_Constant() != NULL || bailed_out(), "invalid item set");
}
// This is called for each node in tree; the walk stops if a root is reached
void LIRGenerator::walk(Value instr) {
InstructionMark im(compilation(), instr);
//stop walk when encounter a root
if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
} else {
assert(instr->subst() == instr, "shouldn't have missed substitution");
instr->visit(this);
// assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
}
}
CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
assert(state != NULL, "state must be defined");
#ifndef PRODUCT
state->verify();
#endif
ValueStack* s = state;
for_each_state(s) {
if (s->kind() == ValueStack::EmptyExceptionState) {
assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
continue;
}
int index;
Value value;
for_each_stack_value(s, index, value) {
assert(value->subst() == value, "missed substitution");
if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
walk(value);
assert(value->operand()->is_valid(), "must be evaluated now");
}
}
int bci = s->bci();
IRScope* scope = s->scope();
ciMethod* method = scope->method();
MethodLivenessResult liveness = method->liveness_at_bci(bci);
if (bci == SynchronizationEntryBCI) {
if (x->as_ExceptionObject() || x->as_Throw()) {
// all locals are dead on exit from the synthetic unlocker
liveness.clear();
} else {
assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
}
}
if (!liveness.is_valid()) {
// Degenerate or breakpointed method.
bailout("Degenerate or breakpointed method");
} else {
assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
for_each_local_value(s, index, value) {
assert(value->subst() == value, "missed substition");
if (liveness.at(index) && !value->type()->is_illegal()) {
if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
walk(value);
assert(value->operand()->is_valid(), "must be evaluated now");
}
} else {
// NULL out this local so that linear scan can assume that all non-NULL values are live.
s->invalidate_local(index);
}
}
}
}
return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
}
CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
return state_for(x, x->exception_state());
}
void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
/* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
* is active and the class hasn't yet been resolved we need to emit a patch that resolves
* the class. */
if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
assert(info != NULL, "info must be set if class is not loaded");
__ klass2reg_patch(NULL, r, info);
} else {
// no patching needed
__ metadata2reg(obj->constant_encoding(), r);
}
}
void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
CodeStub* stub = new RangeCheckStub(range_check_info, index);
if (index->is_constant()) {
cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
index->as_jint(), null_check_info);
__ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
} else {
cmp_reg_mem(lir_cond_aboveEqual, index, array,
arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
__ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
}
}
void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
CodeStub* stub = new RangeCheckStub(info, index, true);
if (index->is_constant()) {
cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
__ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
} else {
cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
java_nio_Buffer::limit_offset(), T_INT, info);
__ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
}
__ move(index, result);
}
void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
LIR_Opr result_op = result;
LIR_Opr left_op = left;
LIR_Opr right_op = right;
if (TwoOperandLIRForm && left_op != result_op) {
assert(right_op != result_op, "malformed");
__ move(left_op, result_op);
left_op = result_op;
}
switch(code) {
case Bytecodes::_dadd:
case Bytecodes::_fadd:
case Bytecodes::_ladd:
case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break;
case Bytecodes::_fmul:
case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break;
case Bytecodes::_dmul:
{
if (is_strictfp) {
__ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
} else {
__ mul(left_op, right_op, result_op); break;
}
}
break;
case Bytecodes::_imul:
{
bool did_strength_reduce = false;
if (right->is_constant()) {
int c = right->as_jint();
if (is_power_of_2(c)) {
// do not need tmp here
__ shift_left(left_op, exact_log2(c), result_op);
did_strength_reduce = true;
} else {
did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
}
}
// we couldn't strength reduce so just emit the multiply
if (!did_strength_reduce) {
__ mul(left_op, right_op, result_op);
}
}
break;
case Bytecodes::_dsub:
case Bytecodes::_fsub:
case Bytecodes::_lsub:
case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
// ldiv and lrem are implemented with a direct runtime call
case Bytecodes::_ddiv:
{
if (is_strictfp) {
__ div_strictfp (left_op, right_op, result_op, tmp_op); break;
} else {
__ div (left_op, right_op, result_op); break;
}
}
break;
case Bytecodes::_drem:
case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
default: ShouldNotReachHere();
}
}
void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
arithmetic_op(code, result, left, right, false, tmp);
}
void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
}
void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
arithmetic_op(code, result, left, right, is_strictfp, tmp);
}
void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
if (TwoOperandLIRForm && value != result_op) {
assert(count != result_op, "malformed");
__ move(value, result_op);
value = result_op;
}
assert(count->is_constant() || count->is_register(), "must be");
switch(code) {
case Bytecodes::_ishl:
case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
case Bytecodes::_ishr:
case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
case Bytecodes::_iushr:
case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
default: ShouldNotReachHere();
}
}
void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
if (TwoOperandLIRForm && left_op != result_op) {
assert(right_op != result_op, "malformed");
__ move(left_op, result_op);
left_op = result_op;
}
switch(code) {
case Bytecodes::_iand:
case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
case Bytecodes::_ior:
case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
case Bytecodes::_ixor:
case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
default: ShouldNotReachHere();
}
}
void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
if (!GenerateSynchronizationCode) return;
// for slow path, use debug info for state after successful locking
CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
__ load_stack_address_monitor(monitor_no, lock);
// for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
__ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
}
void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
if (!GenerateSynchronizationCode) return;
// setup registers
LIR_Opr hdr = lock;
lock = new_hdr;
CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
__ load_stack_address_monitor(monitor_no, lock);
__ unlock_object(hdr, object, lock, scratch, slow_path);
}
#ifndef PRODUCT
void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci());
} else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci());
}
}
#endif
void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
// If klass is not loaded we do not know if the klass has finalizers:
if (UseFastNewInstance && klass->is_loaded()
&& !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
assert(klass->is_loaded(), "must be loaded");
// allocate space for instance
assert(klass->size_helper() >= 0, "illegal instance size");
const int instance_size = align_object_size(klass->size_helper());
__ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
} else {
CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
__ branch(lir_cond_always, T_ILLEGAL, slow_path);
__ branch_destination(slow_path->continuation());
}
}
static bool is_constant_zero(Instruction* inst) {
IntConstant* c = inst->type()->as_IntConstant();
if (c) {
return (c->value() == 0);
}
return false;
}
static bool positive_constant(Instruction* inst) {
IntConstant* c = inst->type()->as_IntConstant();
if (c) {
return (c->value() >= 0);
}
return false;
}
static ciArrayKlass* as_array_klass(ciType* type) {
if (type != NULL && type->is_array_klass() && type->is_loaded()) {
return (ciArrayKlass*)type;
} else {
return NULL;
}
}
static ciType* phi_declared_type(Phi* phi) {
ciType* t = phi->operand_at(0)->declared_type();
if (t == NULL) {
return NULL;
}
for(int i = 1; i < phi->operand_count(); i++) {
if (t != phi->operand_at(i)->declared_type()) {
return NULL;
}
}
return t;
}
void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
Instruction* src = x->argument_at(0);
Instruction* src_pos = x->argument_at(1);
Instruction* dst = x->argument_at(2);
Instruction* dst_pos = x->argument_at(3);
Instruction* length = x->argument_at(4);
// first try to identify the likely type of the arrays involved
ciArrayKlass* expected_type = NULL;
bool is_exact = false, src_objarray = false, dst_objarray = false;
{
ciArrayKlass* src_exact_type = as_array_klass(src->exact_type());
ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
Phi* phi;
if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
src_declared_type = as_array_klass(phi_declared_type(phi));
}
ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type());
ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
dst_declared_type = as_array_klass(phi_declared_type(phi));
}
if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
// the types exactly match so the type is fully known
is_exact = true;
expected_type = src_exact_type;
} else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
ciArrayKlass* src_type = NULL;
if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
src_type = (ciArrayKlass*) src_exact_type;
} else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
src_type = (ciArrayKlass*) src_declared_type;
}
if (src_type != NULL) {
if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
is_exact = true;
expected_type = dst_type;
}
}
}
// at least pass along a good guess
if (expected_type == NULL) expected_type = dst_exact_type;
if (expected_type == NULL) expected_type = src_declared_type;
if (expected_type == NULL) expected_type = dst_declared_type;
src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
}
// if a probable array type has been identified, figure out if any
// of the required checks for a fast case can be elided.
int flags = LIR_OpArrayCopy::all_flags;
if (!src_objarray)
flags &= ~LIR_OpArrayCopy::src_objarray;
if (!dst_objarray)
flags &= ~LIR_OpArrayCopy::dst_objarray;
if (!x->arg_needs_null_check(0))
flags &= ~LIR_OpArrayCopy::src_null_check;
if (!x->arg_needs_null_check(2))
flags &= ~LIR_OpArrayCopy::dst_null_check;
if (expected_type != NULL) {
Value length_limit = NULL;
IfOp* ifop = length->as_IfOp();
if (ifop != NULL) {
// look for expressions like min(v, a.length) which ends up as
// x > y ? y : x or x >= y ? y : x
if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
ifop->x() == ifop->fval() &&
ifop->y() == ifop->tval()) {
length_limit = ifop->y();
}
}
// try to skip null checks and range checks
NewArray* src_array = src->as_NewArray();
if (src_array != NULL) {
flags &= ~LIR_OpArrayCopy::src_null_check;
if (length_limit != NULL &&
src_array->length() == length_limit &&
is_constant_zero(src_pos)) {
flags &= ~LIR_OpArrayCopy::src_range_check;
}
}
NewArray* dst_array = dst->as_NewArray();
if (dst_array != NULL) {
flags &= ~LIR_OpArrayCopy::dst_null_check;
if (length_limit != NULL &&
dst_array->length() == length_limit &&
is_constant_zero(dst_pos)) {
flags &= ~LIR_OpArrayCopy::dst_range_check;
}
}
// check from incoming constant values
if (positive_constant(src_pos))
flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
if (positive_constant(dst_pos))
flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
if (positive_constant(length))
flags &= ~LIR_OpArrayCopy::length_positive_check;
// see if the range check can be elided, which might also imply
// that src or dst is non-null.
ArrayLength* al = length->as_ArrayLength();
if (al != NULL) {
if (al->array() == src) {
// it's the length of the source array
flags &= ~LIR_OpArrayCopy::length_positive_check;
flags &= ~LIR_OpArrayCopy::src_null_check;
if (is_constant_zero(src_pos))
flags &= ~LIR_OpArrayCopy::src_range_check;
}
if (al->array() == dst) {
// it's the length of the destination array
flags &= ~LIR_OpArrayCopy::length_positive_check;
flags &= ~LIR_OpArrayCopy::dst_null_check;
if (is_constant_zero(dst_pos))
flags &= ~LIR_OpArrayCopy::dst_range_check;
}
}
if (is_exact) {
flags &= ~LIR_OpArrayCopy::type_check;
}
}
IntConstant* src_int = src_pos->type()->as_IntConstant();
IntConstant* dst_int = dst_pos->type()->as_IntConstant();
if (src_int && dst_int) {
int s_offs = src_int->value();
int d_offs = dst_int->value();
if (src_int->value() >= dst_int->value()) {
flags &= ~LIR_OpArrayCopy::overlapping;
}
if (expected_type != NULL) {
BasicType t = expected_type->element_type()->basic_type();
int element_size = type2aelembytes(t);
if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
flags &= ~LIR_OpArrayCopy::unaligned;
}
}
} else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
// src and dest positions are the same, or dst is zero so assume
// nonoverlapping copy.
flags &= ~LIR_OpArrayCopy::overlapping;
}
if (src == dst) {
// moving within a single array so no type checks are needed
if (flags & LIR_OpArrayCopy::type_check) {
flags &= ~LIR_OpArrayCopy::type_check;
}
}
*flagsp = flags;
*expected_typep = (ciArrayKlass*)expected_type;
}
LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
assert(opr->is_register(), "why spill if item is not register?");
if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
LIR_Opr result = new_register(T_FLOAT);
set_vreg_flag(result, must_start_in_memory);
assert(opr->is_register(), "only a register can be spilled");
assert(opr->value_type()->is_float(), "rounding only for floats available");
__ roundfp(opr, LIR_OprFact::illegalOpr, result);
return result;
}
return opr;
}
LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
assert(type2size[t] == type2size[value->type()],
err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
if (!value->is_register()) {
// force into a register
LIR_Opr r = new_register(value->type());
__ move(value, r);
value = r;
}
// create a spill location
LIR_Opr tmp = new_register(t);
set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
// move from register to spill
__ move(value, tmp);
return tmp;
}
void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
if (if_instr->should_profile()) {
ciMethod* method = if_instr->profiled_method();
assert(method != NULL, "method should be set if branch is profiled");
ciMethodData* md = method->method_data_or_null();
assert(md != NULL, "Sanity");
ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
assert(data != NULL, "must have profiling data");
assert(data->is_BranchData(), "need BranchData for two-way branches");
int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
if (if_instr->is_swapped()) {
int t = taken_count_offset;
taken_count_offset = not_taken_count_offset;
not_taken_count_offset = t;
}
LIR_Opr md_reg = new_register(T_METADATA);
__ metadata2reg(md->constant_encoding(), md_reg);
LIR_Opr data_offset_reg = new_pointer_register();
__ cmove(lir_cond(cond),
LIR_OprFact::intptrConst(taken_count_offset),
LIR_OprFact::intptrConst(not_taken_count_offset),
data_offset_reg, as_BasicType(if_instr->x()->type()));
// MDO cells are intptr_t, so the data_reg width is arch-dependent.
LIR_Opr data_reg = new_pointer_register();
LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
__ move(data_addr, data_reg);
// Use leal instead of add to avoid destroying condition codes on x86
LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
__ leal(LIR_OprFact::address(fake_incr_value), data_reg);
__ move(data_reg, data_addr);
}
}
// Phi technique:
// This is about passing live values from one basic block to the other.
// In code generated with Java it is rather rare that more than one
// value is on the stack from one basic block to the other.
// We optimize our technique for efficient passing of one value
// (of type long, int, double..) but it can be extended.
// When entering or leaving a basic block, all registers and all spill
// slots are release and empty. We use the released registers
// and spill slots to pass the live values from one block
// to the other. The topmost value, i.e., the value on TOS of expression
// stack is passed in registers. All other values are stored in spilling
// area. Every Phi has an index which designates its spill slot
// At exit of a basic block, we fill the register(s) and spill slots.
// At entry of a basic block, the block_prolog sets up the content of phi nodes
// and locks necessary registers and spilling slots.
// move current value to referenced phi function
void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
Phi* phi = sux_val->as_Phi();
// cur_val can be null without phi being null in conjunction with inlining
if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
LIR_Opr operand = cur_val->operand();
if (cur_val->operand()->is_illegal()) {
assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
"these can be produced lazily");
operand = operand_for_instruction(cur_val);
}
resolver->move(operand, operand_for_instruction(phi));
}
}
// Moves all stack values into their PHI position
void LIRGenerator::move_to_phi(ValueStack* cur_state) {
BlockBegin* bb = block();
if (bb->number_of_sux() == 1) {
BlockBegin* sux = bb->sux_at(0);
assert(sux->number_of_preds() > 0, "invalid CFG");
// a block with only one predecessor never has phi functions
if (sux->number_of_preds() > 1) {
int max_phis = cur_state->stack_size() + cur_state->locals_size();
PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
ValueStack* sux_state = sux->state();
Value sux_value;
int index;
assert(cur_state->scope() == sux_state->scope(), "not matching");
assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
for_each_stack_value(sux_state, index, sux_value) {
move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
}
for_each_local_value(sux_state, index, sux_value) {
move_to_phi(&resolver, cur_state->local_at(index), sux_value);
}
assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
}
}
}
LIR_Opr LIRGenerator::new_register(BasicType type) {
int vreg = _virtual_register_number;
// add a little fudge factor for the bailout, since the bailout is
// only checked periodically. This gives a few extra registers to
// hand out before we really run out, which helps us keep from
// tripping over assertions.
if (vreg + 20 >= LIR_OprDesc::vreg_max) {
bailout("out of virtual registers");
if (vreg + 2 >= LIR_OprDesc::vreg_max) {
// wrap it around
_virtual_register_number = LIR_OprDesc::vreg_base;
}
}
_virtual_register_number += 1;
return LIR_OprFact::virtual_register(vreg, type);
}
// Try to lock using register in hint
LIR_Opr LIRGenerator::rlock(Value instr) {
return new_register(instr->type());
}
// does an rlock and sets result
LIR_Opr LIRGenerator::rlock_result(Value x) {
LIR_Opr reg = rlock(x);
set_result(x, reg);
return reg;
}
// does an rlock and sets result
LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
LIR_Opr reg;
switch (type) {
case T_BYTE:
case T_BOOLEAN:
reg = rlock_byte(type);
break;
default:
reg = rlock(x);
break;
}
set_result(x, reg);
return reg;
}
//---------------------------------------------------------------------
ciObject* LIRGenerator::get_jobject_constant(Value value) {
ObjectType* oc = value->type()->as_ObjectType();
if (oc) {
return oc->constant_value();
}
return NULL;
}
void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
assert(block()->next() == x, "ExceptionObject must be first instruction of block");
// no moves are created for phi functions at the begin of exception
// handlers, so assign operands manually here
for_each_phi_fun(block(), phi,
operand_for_instruction(phi));
LIR_Opr thread_reg = getThreadPointer();
__ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
exceptionOopOpr());
__ move_wide(LIR_OprFact::oopConst(NULL),
new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
__ move_wide(LIR_OprFact::oopConst(NULL),
new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
LIR_Opr result = new_register(T_OBJECT);
__ move(exceptionOopOpr(), result);
set_result(x, result);
}
//----------------------------------------------------------------------
//----------------------------------------------------------------------
//----------------------------------------------------------------------
//----------------------------------------------------------------------
// visitor functions
//----------------------------------------------------------------------
//----------------------------------------------------------------------
//----------------------------------------------------------------------
//----------------------------------------------------------------------
void LIRGenerator::do_Phi(Phi* x) {
// phi functions are never visited directly
ShouldNotReachHere();
}
// Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
void LIRGenerator::do_Constant(Constant* x) {
if (x->state_before() != NULL) {
// Any constant with a ValueStack requires patching so emit the patch here
LIR_Opr reg = rlock_result(x);
CodeEmitInfo* info = state_for(x, x->state_before());
__ oop2reg_patch(NULL, reg, info);
} else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
if (!x->is_pinned()) {
// unpinned constants are handled specially so that they can be
// put into registers when they are used multiple times within a
// block. After the block completes their operand will be
// cleared so that other blocks can't refer to that register.
set_result(x, load_constant(x));
} else {
LIR_Opr res = x->operand();
if (!res->is_valid()) {
res = LIR_OprFact::value_type(x->type());
}
if (res->is_constant()) {
LIR_Opr reg = rlock_result(x);
__ move(res, reg);
} else {
set_result(x, res);
}
}
} else {
set_result(x, LIR_OprFact::value_type(x->type()));
}
}
void LIRGenerator::do_Local(Local* x) {
// operand_for_instruction has the side effect of setting the result
// so there's no need to do it here.
operand_for_instruction(x);
}
void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
Unimplemented();
}
void LIRGenerator::do_Return(Return* x) {
if (compilation()->env()->dtrace_method_probes()) {
BasicTypeList signature;
signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
signature.append(T_METADATA); // Method*
LIR_OprList* args = new LIR_OprList();
args->append(getThreadPointer());
LIR_Opr meth = new_register(T_METADATA);
__ metadata2reg(method()->constant_encoding(), meth);
args->append(meth);
call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
}
if (x->type()->is_void()) {
__ return_op(LIR_OprFact::illegalOpr);
} else {
LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
LIRItem result(x->result(), this);
result.load_item_force(reg);
__ return_op(result.result());
}
set_no_result(x);
}
// Examble: ref.get()
// Combination of LoadField and g1 pre-write barrier
void LIRGenerator::do_Reference_get(Intrinsic* x) {
const int referent_offset = java_lang_ref_Reference::referent_offset;
guarantee(referent_offset > 0, "referent offset not initialized");
assert(x->number_of_arguments() == 1, "wrong type");
LIRItem reference(x->argument_at(0), this);
reference.load_item();
// need to perform the null check on the reference objecy
CodeEmitInfo* info = NULL;
if (x->needs_null_check()) {
info = state_for(x);
}
LIR_Address* referent_field_adr =
new LIR_Address(reference.result(), referent_offset, T_OBJECT);
LIR_Opr result = rlock_result(x);
__ load(referent_field_adr, result, info);
// Register the value in the referent field with the pre-barrier
pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
result /* pre_val */,
false /* do_load */,
false /* patch */,
NULL /* info */);
}
// Example: clazz.isInstance(object)
void LIRGenerator::do_isInstance(Intrinsic* x) {
assert(x->number_of_arguments() == 2, "wrong type");
// TODO could try to substitute this node with an equivalent InstanceOf
// if clazz is known to be a constant Class. This will pick up newly found
// constants after HIR construction. I'll leave this to a future change.
// as a first cut, make a simple leaf call to runtime to stay platform independent.
// could follow the aastore example in a future change.
LIRItem clazz(x->argument_at(0), this);
LIRItem object(x->argument_at(1), this);
clazz.load_item();
object.load_item();
LIR_Opr result = rlock_result(x);
// need to perform null check on clazz
if (x->needs_null_check()) {
CodeEmitInfo* info = state_for(x);
__ null_check(clazz.result(), info);
}
LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
x->type(),
NULL); // NULL CodeEmitInfo results in a leaf call
__ move(call_result, result);
}
// Example: object.getClass ()
void LIRGenerator::do_getClass(Intrinsic* x) {
assert(x->number_of_arguments() == 1, "wrong type");
LIRItem rcvr(x->argument_at(0), this);
rcvr.load_item();
LIR_Opr temp = new_register(T_METADATA);
LIR_Opr result = rlock_result(x);
// need to perform the null check on the rcvr
CodeEmitInfo* info = NULL;
if (x->needs_null_check()) {
info = state_for(x);
}
// FIXME T_ADDRESS should actually be T_METADATA but it can't because the
// meaning of these two is mixed up (see JDK-8026837).
__ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
__ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
}
// Example: Thread.currentThread()
void LIRGenerator::do_currentThread(Intrinsic* x) {
assert(x->number_of_arguments() == 0, "wrong type");
LIR_Opr reg = rlock_result(x);
__ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
}
void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
assert(x->number_of_arguments() == 1, "wrong type");
LIRItem receiver(x->argument_at(0), this);
receiver.load_item();
BasicTypeList signature;
signature.append(T_OBJECT); // receiver
LIR_OprList* args = new LIR_OprList();
args->append(receiver.result());
CodeEmitInfo* info = state_for(x, x->state());
call_runtime(&signature, args,
CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
voidType, info);
set_no_result(x);
}
//------------------------local access--------------------------------------
LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
if (x->operand()->is_illegal()) {
Constant* c = x->as_Constant();
if (c != NULL) {
x->set_operand(LIR_OprFact::value_type(c->type()));
} else {
assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
// allocate a virtual register for this local or phi
x->set_operand(rlock(x));
_instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
}
}
return x->operand();
}
Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
if (opr->is_virtual()) {
return instruction_for_vreg(opr->vreg_number());
}
return NULL;
}
Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
if (reg_num < _instruction_for_operand.length()) {
return _instruction_for_operand.at(reg_num);
}
return NULL;
}
void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
if (_vreg_flags.size_in_bits() == 0) {
BitMap2D temp(100, num_vreg_flags);
temp.clear();
_vreg_flags = temp;
}
_vreg_flags.at_put_grow(vreg_num, f, true);
}
bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
if (!_vreg_flags.is_valid_index(vreg_num, f)) {
return false;
}
return _vreg_flags.at(vreg_num, f);
}
// Block local constant handling. This code is useful for keeping
// unpinned constants and constants which aren't exposed in the IR in
// registers. Unpinned Constant instructions have their operands
// cleared when the block is finished so that other blocks can't end
// up referring to their registers.
LIR_Opr LIRGenerator::load_constant(Constant* x) {
assert(!x->is_pinned(), "only for unpinned constants");
_unpinned_constants.append(x);
return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
}
LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
BasicType t = c->type();
for (int i = 0; i < _constants.length(); i++) {
LIR_Const* other = _constants.at(i);
if (t == other->type()) {
switch (t) {
case T_INT:
case T_FLOAT:
if (c->as_jint_bits() != other->as_jint_bits()) continue;
break;
case T_LONG:
case T_DOUBLE:
if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
break;
case T_OBJECT:
if (c->as_jobject() != other->as_jobject()) continue;
break;
}
return _reg_for_constants.at(i);
}
}
LIR_Opr result = new_register(t);
__ move((LIR_Opr)c, result);
_constants.append(c);
_reg_for_constants.append(result);
return result;
}
// Various barriers
void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
bool do_load, bool patch, CodeEmitInfo* info) {
// Do the pre-write barrier, if any.
switch (_bs->kind()) {
#if INCLUDE_ALL_GCS
case BarrierSet::G1SATBCTLogging:
G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
break;
#endif // INCLUDE_ALL_GCS
case BarrierSet::CardTableModRef:
case BarrierSet::CardTableExtension:
// No pre barriers
break;
case BarrierSet::ModRef:
// No pre barriers
break;
default :
ShouldNotReachHere();
}
}
void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
switch (_bs->kind()) {
#if INCLUDE_ALL_GCS
case BarrierSet::G1SATBCTLogging:
G1SATBCardTableModRef_post_barrier(addr, new_val);
break;
#endif // INCLUDE_ALL_GCS
case BarrierSet::CardTableModRef:
case BarrierSet::CardTableExtension:
CardTableModRef_post_barrier(addr, new_val);
break;
case BarrierSet::ModRef:
// No post barriers
break;
default :
ShouldNotReachHere();
}
}
////////////////////////////////////////////////////////////////////////
#if INCLUDE_ALL_GCS
void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
bool do_load, bool patch, CodeEmitInfo* info) {
// First we test whether marking is in progress.
BasicType flag_type;
if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
flag_type = T_INT;
} else {
guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
"Assumption");
// Use unsigned type T_BOOLEAN here rather than signed T_BYTE since some platforms, eg. ARM,
// need to use unsigned instructions to use the large offset to load the satb_mark_queue.
flag_type = T_BOOLEAN;
}
LIR_Opr thrd = getThreadPointer();
LIR_Address* mark_active_flag_addr =
new LIR_Address(thrd,
in_bytes(JavaThread::satb_mark_queue_offset() +
PtrQueue::byte_offset_of_active()),
flag_type);
// Read the marking-in-progress flag.
LIR_Opr flag_val = new_register(T_INT);
__ load(mark_active_flag_addr, flag_val);
__ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
LIR_PatchCode pre_val_patch_code = lir_patch_none;
CodeStub* slow;
if (do_load) {
assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
if (patch)
pre_val_patch_code = lir_patch_normal;
pre_val = new_register(T_OBJECT);
if (!addr_opr->is_address()) {
assert(addr_opr->is_register(), "must be");
addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
}
slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
} else {
assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
assert(pre_val->is_register(), "must be");
assert(pre_val->type() == T_OBJECT, "must be an object");
assert(info == NULL, "sanity");
slow = new G1PreBarrierStub(pre_val);
}
__ branch(lir_cond_notEqual, T_INT, slow);
__ branch_destination(slow->continuation());
}
void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
// If the "new_val" is a constant NULL, no barrier is necessary.
if (new_val->is_constant() &&
new_val->as_constant_ptr()->as_jobject() == NULL) return;
if (!new_val->is_register()) {
LIR_Opr new_val_reg = new_register(T_OBJECT);
if (new_val->is_constant()) {
__ move(new_val, new_val_reg);
} else {
__ leal(new_val, new_val_reg);
}
new_val = new_val_reg;
}
assert(new_val->is_register(), "must be a register at this point");
if (addr->is_address()) {
LIR_Address* address = addr->as_address_ptr();
LIR_Opr ptr = new_pointer_register();
if (!address->index()->is_valid() && address->disp() == 0) {
__ move(address->base(), ptr);
} else {
assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
__ leal(addr, ptr);
}
addr = ptr;
}
assert(addr->is_register(), "must be a register at this point");
LIR_Opr xor_res = new_pointer_register();
LIR_Opr xor_shift_res = new_pointer_register();
if (TwoOperandLIRForm ) {
__ move(addr, xor_res);
__ logical_xor(xor_res, new_val, xor_res);
__ move(xor_res, xor_shift_res);
__ unsigned_shift_right(xor_shift_res,
LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
xor_shift_res,
LIR_OprDesc::illegalOpr());
} else {
__ logical_xor(addr, new_val, xor_res);
__ unsigned_shift_right(xor_res,
LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
xor_shift_res,
LIR_OprDesc::illegalOpr());
}
if (!new_val->is_register()) {
LIR_Opr new_val_reg = new_register(T_OBJECT);
__ leal(new_val, new_val_reg);
new_val = new_val_reg;
}
assert(new_val->is_register(), "must be a register at this point");
__ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
CodeStub* slow = new G1PostBarrierStub(addr, new_val);
__ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
__ branch_destination(slow->continuation());
}
#endif // INCLUDE_ALL_GCS
////////////////////////////////////////////////////////////////////////
void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(_bs);
assert(sizeof(*(ct->byte_map_base)) == sizeof(jbyte), "adjust this code");
LIR_Const* card_table_base = new LIR_Const(ct->byte_map_base);
if (addr->is_address()) {
LIR_Address* address = addr->as_address_ptr();
// ptr cannot be an object because we use this barrier for array card marks
// and addr can point in the middle of an array.
LIR_Opr ptr = new_pointer_register();
if (!address->index()->is_valid() && address->disp() == 0) {
__ move(address->base(), ptr);
} else {
assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
__ leal(addr, ptr);
}
addr = ptr;
}
assert(addr->is_register(), "must be a register at this point");
#ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
CardTableModRef_post_barrier_helper(addr, card_table_base);
#else
LIR_Opr tmp = new_pointer_register();
if (TwoOperandLIRForm) {
__ move(addr, tmp);
__ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
} else {
__ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
}
LIR_Address* card_addr;
if (can_inline_as_constant(card_table_base)) {
card_addr = new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE);
} else {
card_addr = new LIR_Address(tmp, load_constant(card_table_base), T_BYTE);
}
LIR_Opr dirty = LIR_OprFact::intConst(CardTableModRefBS::dirty_card_val());
if (UseCondCardMark) {
LIR_Opr cur_value = new_register(T_INT);
if (UseConcMarkSweepGC) {
__ membar_storeload();
}
__ move(card_addr, cur_value);
LabelObj* L_already_dirty = new LabelObj();
__ cmp(lir_cond_equal, cur_value, dirty);
__ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
__ move(dirty, card_addr);
__ branch_destination(L_already_dirty->label());
} else {
__ move(dirty, card_addr);
}
#endif
}
//------------------------field access--------------------------------------
// Comment copied form templateTable_i486.cpp
// ----------------------------------------------------------------------------
// Volatile variables demand their effects be made known to all CPU's in
// order. Store buffers on most chips allow reads & writes to reorder; the
// JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
// memory barrier (i.e., it's not sufficient that the interpreter does not
// reorder volatile references, the hardware also must not reorder them).
//
// According to the new Java Memory Model (JMM):
// (1) All volatiles are serialized wrt to each other.
// ALSO reads & writes act as aquire & release, so:
// (2) A read cannot let unrelated NON-volatile memory refs that happen after
// the read float up to before the read. It's OK for non-volatile memory refs
// that happen before the volatile read to float down below it.
// (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
// that happen BEFORE the write float down to after the write. It's OK for
// non-volatile memory refs that happen after the volatile write to float up
// before it.
//
// We only put in barriers around volatile refs (they are expensive), not
// _between_ memory refs (that would require us to track the flavor of the
// previous memory refs). Requirements (2) and (3) require some barriers
// before volatile stores and after volatile loads. These nearly cover
// requirement (1) but miss the volatile-store-volatile-load case. This final
// case is placed after volatile-stores although it could just as well go
// before volatile-loads.
void LIRGenerator::do_StoreField(StoreField* x) {
bool needs_patching = x->needs_patching();
bool is_volatile = x->field()->is_volatile();
BasicType field_type = x->field_type();
bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
CodeEmitInfo* info = NULL;
if (needs_patching) {
assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
info = state_for(x, x->state_before());
} else if (x->needs_null_check()) {
NullCheck* nc = x->explicit_null_check();
if (nc == NULL) {
info = state_for(x);
} else {
info = state_for(nc);
}
}
LIRItem object(x->obj(), this);
LIRItem value(x->value(), this);
object.load_item();
if (is_volatile || needs_patching) {
// load item if field is volatile (fewer special cases for volatiles)
// load item if field not initialized
// load item if field not constant
// because of code patching we cannot inline constants
if (field_type == T_BYTE || field_type == T_BOOLEAN) {
value.load_byte_item();
} else {
value.load_item();
}
} else {
value.load_for_store(field_type);
}
set_no_result(x);
#ifndef PRODUCT
if (PrintNotLoaded && needs_patching) {
tty->print_cr(" ###class not loaded at store_%s bci %d",
x->is_static() ? "static" : "field", x->printable_bci());
}
#endif
if (x->needs_null_check() &&
(needs_patching ||
MacroAssembler::needs_explicit_null_check(x->offset()))) {
// emit an explicit null check because the offset is too large
__ null_check(object.result(), new CodeEmitInfo(info));
}
LIR_Address* address;
if (needs_patching) {
// we need to patch the offset in the instruction so don't allow
// generate_address to try to be smart about emitting the -1.
// Otherwise the patching code won't know how to find the
// instruction to patch.
address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
} else {
address = generate_address(object.result(), x->offset(), field_type);
}
if (is_volatile && os::is_MP()) {
__ membar_release();
}
if (is_oop) {
// Do the pre-write barrier, if any.
pre_barrier(LIR_OprFact::address(address),
LIR_OprFact::illegalOpr /* pre_val */,
true /* do_load*/,
needs_patching,
(info ? new CodeEmitInfo(info) : NULL));
}
bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
if (needs_atomic_access && !needs_patching) {
volatile_field_store(value.result(), address, info);
} else {
LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
__ store(value.result(), address, info, patch_code);
}
if (is_oop) {
// Store to object so mark the card of the header
post_barrier(object.result(), value.result());
}
if (is_volatile && os::is_MP()) {
__ membar();
}
}
void LIRGenerator::do_LoadField(LoadField* x) {
bool needs_patching = x->needs_patching();
bool is_volatile = x->field()->is_volatile();
BasicType field_type = x->field_type();
CodeEmitInfo* info = NULL;
if (needs_patching) {
assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
info = state_for(x, x->state_before());
} else if (x->needs_null_check()) {
NullCheck* nc = x->explicit_null_check();
if (nc == NULL) {
info = state_for(x);
} else {
info = state_for(nc);
}
}
LIRItem object(x->obj(), this);
object.load_item();
#ifndef PRODUCT
if (PrintNotLoaded && needs_patching) {
tty->print_cr(" ###class not loaded at load_%s bci %d",
x->is_static() ? "static" : "field", x->printable_bci());
}
#endif
bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
if (x->needs_null_check() &&
(needs_patching ||
MacroAssembler::needs_explicit_null_check(x->offset()) ||
stress_deopt)) {
LIR_Opr obj = object.result();
if (stress_deopt) {
obj = new_register(T_OBJECT);
__ move(LIR_OprFact::oopConst(NULL), obj);
}
// emit an explicit null check because the offset is too large
__ null_check(obj, new CodeEmitInfo(info));
}
LIR_Opr reg = rlock_result(x, field_type);
LIR_Address* address;
if (needs_patching) {
// we need to patch the offset in the instruction so don't allow
// generate_address to try to be smart about emitting the -1.
// Otherwise the patching code won't know how to find the
// instruction to patch.
address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
} else {
address = generate_address(object.result(), x->offset(), field_type);
}
bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
if (needs_atomic_access && !needs_patching) {
volatile_field_load(address, reg, info);
} else {
LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
__ load(address, reg, info, patch_code);
}
if (is_volatile && os::is_MP()) {
__ membar_acquire();
}
}
//------------------------java.nio.Buffer.checkIndex------------------------
// int java.nio.Buffer.checkIndex(int)
void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
// NOTE: by the time we are in checkIndex() we are guaranteed that
// the buffer is non-null (because checkIndex is package-private and
// only called from within other methods in the buffer).
assert(x->number_of_arguments() == 2, "wrong type");
LIRItem buf (x->argument_at(0), this);
LIRItem index(x->argument_at(1), this);
buf.load_item();
index.load_item();
LIR_Opr result = rlock_result(x);
if (GenerateRangeChecks) {
CodeEmitInfo* info = state_for(x);
CodeStub* stub = new RangeCheckStub(info, index.result(), true);
if (index.result()->is_constant()) {
cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
__ branch(lir_cond_belowEqual, T_INT, stub);
} else {
cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
java_nio_Buffer::limit_offset(), T_INT, info);
__ branch(lir_cond_aboveEqual, T_INT, stub);
}
__ move(index.result(), result);
} else {
// Just load the index into the result register
__ move(index.result(), result);
}
}
//------------------------array access--------------------------------------
void LIRGenerator::do_ArrayLength(ArrayLength* x) {
LIRItem array(x->array(), this);
array.load_item();
LIR_Opr reg = rlock_result(x);
CodeEmitInfo* info = NULL;
if (x->needs_null_check()) {
NullCheck* nc = x->explicit_null_check();
if (nc == NULL) {
info = state_for(x);
} else {
info = state_for(nc);
}
if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
LIR_Opr obj = new_register(T_OBJECT);
__ move(LIR_OprFact::oopConst(NULL), obj);
__ null_check(obj, new CodeEmitInfo(info));
}
}
__ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
}
void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
bool use_length = x->length() != NULL;
LIRItem array(x->array(), this);
LIRItem index(x->index(), this);
LIRItem length(this);
bool needs_range_check = x->compute_needs_range_check();
if (use_length && needs_range_check) {
length.set_instruction(x->length());
length.load_item();
}
array.load_item();
if (index.is_constant() && can_inline_as_constant(x->index())) {
// let it be a constant
index.dont_load_item();
} else {
index.load_item();
}
CodeEmitInfo* range_check_info = state_for(x);
CodeEmitInfo* null_check_info = NULL;
if (x->needs_null_check()) {
NullCheck* nc = x->explicit_null_check();
if (nc != NULL) {
null_check_info = state_for(nc);
} else {
null_check_info = range_check_info;
}
if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
LIR_Opr obj = new_register(T_OBJECT);
__ move(LIR_OprFact::oopConst(NULL), obj);
__ null_check(obj, new CodeEmitInfo(null_check_info));
}
}
// emit array address setup early so it schedules better
LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
if (GenerateRangeChecks && needs_range_check) {
if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
__ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
} else if (use_length) {
// TODO: use a (modified) version of array_range_check that does not require a
// constant length to be loaded to a register
__ cmp(lir_cond_belowEqual, length.result(), index.result());
__ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
} else {
array_range_check(array.result(), index.result(), null_check_info, range_check_info);
// The range check performs the null check, so clear it out for the load
null_check_info = NULL;
}
}
__ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
}
void LIRGenerator::do_NullCheck(NullCheck* x) {
if (x->can_trap()) {
LIRItem value(x->obj(), this);
value.load_item();
CodeEmitInfo* info = state_for(x);
__ null_check(value.result(), info);
}
}
void LIRGenerator::do_TypeCast(TypeCast* x) {
LIRItem value(x->obj(), this);
value.load_item();
// the result is the same as from the node we are casting
set_result(x, value.result());
}
void LIRGenerator::do_Throw(Throw* x) {
LIRItem exception(x->exception(), this);
exception.load_item();
set_no_result(x);
LIR_Opr exception_opr = exception.result();
CodeEmitInfo* info = state_for(x, x->state());
#ifndef PRODUCT
if (PrintC1Statistics) {
increment_counter(Runtime1::throw_count_address(), T_INT);
}
#endif
// check if the instruction has an xhandler in any of the nested scopes
bool unwind = false;
if (info->exception_handlers()->length() == 0) {
// this throw is not inside an xhandler
unwind = true;
} else {
// get some idea of the throw type
bool type_is_exact = true;
ciType* throw_type = x->exception()->exact_type();
if (throw_type == NULL) {
type_is_exact = false;
throw_type = x->exception()->declared_type();
}
if (throw_type != NULL && throw_type->is_instance_klass()) {
ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
}
}
// do null check before moving exception oop into fixed register
// to avoid a fixed interval with an oop during the null check.
// Use a copy of the CodeEmitInfo because debug information is
// different for null_check and throw.
if (GenerateCompilerNullChecks &&
(x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
// if the exception object wasn't created using new then it might be null.
__ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
}
if (compilation()->env()->jvmti_can_post_on_exceptions()) {
// we need to go through the exception lookup path to get JVMTI
// notification done
unwind = false;
}
// move exception oop into fixed register
__ move(exception_opr, exceptionOopOpr());
if (unwind) {
__ unwind_exception(exceptionOopOpr());
} else {
__ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
}
}
void LIRGenerator::do_RoundFP(RoundFP* x) {
LIRItem input(x->input(), this);
input.load_item();
LIR_Opr input_opr = input.result();
assert(input_opr->is_register(), "why round if value is not in a register?");
assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
if (input_opr->is_single_fpu()) {
set_result(x, round_item(input_opr)); // This code path not currently taken
} else {
LIR_Opr result = new_register(T_DOUBLE);
set_vreg_flag(result, must_start_in_memory);
__ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
set_result(x, result);
}
}
// Here UnsafeGetRaw may have x->base() and x->index() be int or long
// on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
LIRItem base(x->base(), this);
LIRItem idx(this);
base.load_item();
if (x->has_index()) {
idx.set_instruction(x->index());
idx.load_nonconstant();
}
LIR_Opr reg = rlock_result(x, x->basic_type());
int log2_scale = 0;
if (x->has_index()) {
log2_scale = x->log2_scale();
}
assert(!x->has_index() || idx.value() == x->index(), "should match");
LIR_Opr base_op = base.result();
LIR_Opr index_op = idx.result();
#ifndef _LP64
if (base_op->type() == T_LONG) {
base_op = new_register(T_INT);
__ convert(Bytecodes::_l2i, base.result(), base_op);
}
if (x->has_index()) {
if (index_op->type() == T_LONG) {
LIR_Opr long_index_op = index_op;
if (index_op->is_constant()) {
long_index_op = new_register(T_LONG);
__ move(index_op, long_index_op);
}
index_op = new_register(T_INT);
__ convert(Bytecodes::_l2i, long_index_op, index_op);
} else {
assert(x->index()->type()->tag() == intTag, "must be");
}
}
// At this point base and index should be all ints.
assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
#else
if (x->has_index()) {
if (index_op->type() == T_INT) {
if (!index_op->is_constant()) {
index_op = new_register(T_LONG);
__ convert(Bytecodes::_i2l, idx.result(), index_op);
}
} else {
assert(index_op->type() == T_LONG, "must be");
if (index_op->is_constant()) {
index_op = new_register(T_LONG);
__ move(idx.result(), index_op);
}
}
}
// At this point base is a long non-constant
// Index is a long register or a int constant.
// We allow the constant to stay an int because that would allow us a more compact encoding by
// embedding an immediate offset in the address expression. If we have a long constant, we have to
// move it into a register first.
assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
(index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
#endif
BasicType dst_type = x->basic_type();
LIR_Address* addr;
if (index_op->is_constant()) {
assert(log2_scale == 0, "must not have a scale");
assert(index_op->type() == T_INT, "only int constants supported");
addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
} else {
#ifdef X86
addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
#elif defined(GENERATE_ADDRESS_IS_PREFERRED)
addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
#else
if (index_op->is_illegal() || log2_scale == 0) {
addr = new LIR_Address(base_op, index_op, dst_type);
} else {
LIR_Opr tmp = new_pointer_register();
__ shift_left(index_op, log2_scale, tmp);
addr = new LIR_Address(base_op, tmp, dst_type);
}
#endif
}
if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
__ unaligned_move(addr, reg);
} else {
if (dst_type == T_OBJECT && x->is_wide()) {
__ move_wide(addr, reg);
} else {
__ move(addr, reg);
}
}
}
void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
int log2_scale = 0;
BasicType type = x->basic_type();
if (x->has_index()) {
log2_scale = x->log2_scale();
}
LIRItem base(x->base(), this);
LIRItem value(x->value(), this);
LIRItem idx(this);
base.load_item();
if (x->has_index()) {
idx.set_instruction(x->index());
idx.load_item();
}
if (type == T_BYTE || type == T_BOOLEAN) {
value.load_byte_item();
} else {
value.load_item();
}
set_no_result(x);
LIR_Opr base_op = base.result();
LIR_Opr index_op = idx.result();
#ifdef GENERATE_ADDRESS_IS_PREFERRED
LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
#else
#ifndef _LP64
if (base_op->type() == T_LONG) {
base_op = new_register(T_INT);
__ convert(Bytecodes::_l2i, base.result(), base_op);
}
if (x->has_index()) {
if (index_op->type() == T_LONG) {
index_op = new_register(T_INT);
__ convert(Bytecodes::_l2i, idx.result(), index_op);
}
}
// At this point base and index should be all ints and not constants
assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
#else
if (x->has_index()) {
if (index_op->type() == T_INT) {
index_op = new_register(T_LONG);
__ convert(Bytecodes::_i2l, idx.result(), index_op);
}
}
// At this point base and index are long and non-constant
assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
#endif
if (log2_scale != 0) {
// temporary fix (platform dependent code without shift on Intel would be better)
// TODO: ARM also allows embedded shift in the address
__ shift_left(index_op, log2_scale, index_op);
}
LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
#endif // !GENERATE_ADDRESS_IS_PREFERRED
__ move(value.result(), addr);
}
void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
BasicType type = x->basic_type();
LIRItem src(x->object(), this);
LIRItem off(x->offset(), this);
off.load_item();
src.load_item();
LIR_Opr value = rlock_result(x, x->basic_type());
get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
#if INCLUDE_ALL_GCS
// We might be reading the value of the referent field of a
// Reference object in order to attach it back to the live
// object graph. If G1 is enabled then we need to record
// the value that is being returned in an SATB log buffer.
//
// We need to generate code similar to the following...
//
// if (offset == java_lang_ref_Reference::referent_offset) {
// if (src != NULL) {
// if (klass(src)->reference_type() != REF_NONE) {
// pre_barrier(..., value, ...);
// }
// }
// }
if (UseG1GC && type == T_OBJECT) {
bool gen_pre_barrier = true; // Assume we need to generate pre_barrier.
bool gen_offset_check = true; // Assume we need to generate the offset guard.
bool gen_source_check = true; // Assume we need to check the src object for null.
bool gen_type_check = true; // Assume we need to check the reference_type.
if (off.is_constant()) {
jlong off_con = (off.type()->is_int() ?
(jlong) off.get_jint_constant() :
off.get_jlong_constant());
if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
// The constant offset is something other than referent_offset.
// We can skip generating/checking the remaining guards and
// skip generation of the code stub.
gen_pre_barrier = false;
} else {
// The constant offset is the same as referent_offset -
// we do not need to generate a runtime offset check.
gen_offset_check = false;
}
}
// We don't need to generate stub if the source object is an array
if (gen_pre_barrier && src.type()->is_array()) {
gen_pre_barrier = false;
}
if (gen_pre_barrier) {
// We still need to continue with the checks.
if (src.is_constant()) {
ciObject* src_con = src.get_jobject_constant();
guarantee(src_con != NULL, "no source constant");
if (src_con->is_null_object()) {
// The constant src object is null - We can skip
// generating the code stub.
gen_pre_barrier = false;
} else {
// Non-null constant source object. We still have to generate
// the slow stub - but we don't need to generate the runtime
// null object check.
gen_source_check = false;
}
}
}
if (gen_pre_barrier && !PatchALot) {
// Can the klass of object be statically determined to be
// a sub-class of Reference?
ciType* type = src.value()->declared_type();
if ((type != NULL) && type->is_loaded()) {
if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
gen_type_check = false;
} else if (type->is_klass() &&
!compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
// Not Reference and not Object klass.
gen_pre_barrier = false;
}
}
}
if (gen_pre_barrier) {
LabelObj* Lcont = new LabelObj();
// We can have generate one runtime check here. Let's start with
// the offset check.
if (gen_offset_check) {
// if (offset != referent_offset) -> continue
// If offset is an int then we can do the comparison with the
// referent_offset constant; otherwise we need to move
// referent_offset into a temporary register and generate
// a reg-reg compare.
LIR_Opr referent_off;
if (off.type()->is_int()) {
referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
} else {
assert(off.type()->is_long(), "what else?");
referent_off = new_register(T_LONG);
__ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
}
__ cmp(lir_cond_notEqual, off.result(), referent_off);
__ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
}
if (gen_source_check) {
// offset is a const and equals referent offset
// if (source == null) -> continue
__ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
__ branch(lir_cond_equal, T_OBJECT, Lcont->label());
}
LIR_Opr src_klass = new_register(T_OBJECT);
if (gen_type_check) {
// We have determined that offset == referent_offset && src != null.
// if (src->_klass->_reference_type == REF_NONE) -> continue
__ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
LIR_Opr reference_type = new_register(T_INT);
__ move(reference_type_addr, reference_type);
__ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
__ branch(lir_cond_equal, T_INT, Lcont->label());
}
{
// We have determined that src->_klass->_reference_type != REF_NONE
// so register the value in the referent field with the pre-barrier.
pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
value /* pre_val */,
false /* do_load */,
false /* patch */,
NULL /* info */);
}
__ branch_destination(Lcont->label());
}
}
#endif // INCLUDE_ALL_GCS
if (x->is_volatile() && os::is_MP()) __ membar_acquire();
}
void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
BasicType type = x->basic_type();
LIRItem src(x->object(), this);
LIRItem off(x->offset(), this);
LIRItem data(x->value(), this);
src.load_item();
if (type == T_BOOLEAN || type == T_BYTE) {
data.load_byte_item();
} else {
data.load_item();
}
off.load_item();
set_no_result(x);
if (x->is_volatile() && os::is_MP()) __ membar_release();
put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
if (x->is_volatile() && os::is_MP()) __ membar();
}
void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
int lng = x->length();
for (int i = 0; i < lng; i++) {
SwitchRange* one_range = x->at(i);
int low_key = one_range->low_key();
int high_key = one_range->high_key();
BlockBegin* dest = one_range->sux();
if (low_key == high_key) {
__ cmp(lir_cond_equal, value, low_key);
__ branch(lir_cond_equal, T_INT, dest);
} else if (high_key - low_key == 1) {
__ cmp(lir_cond_equal, value, low_key);
__ branch(lir_cond_equal, T_INT, dest);
__ cmp(lir_cond_equal, value, high_key);
__ branch(lir_cond_equal, T_INT, dest);
} else {
LabelObj* L = new LabelObj();
__ cmp(lir_cond_less, value, low_key);
__ branch(lir_cond_less, T_INT, L->label());
__ cmp(lir_cond_lessEqual, value, high_key);
__ branch(lir_cond_lessEqual, T_INT, dest);
__ branch_destination(L->label());
}
}
__ jump(default_sux);
}
SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
SwitchRangeList* res = new SwitchRangeList();
int len = x->length();
if (len > 0) {
BlockBegin* sux = x->sux_at(0);
int key = x->lo_key();
BlockBegin* default_sux = x->default_sux();
SwitchRange* range = new SwitchRange(key, sux);
for (int i = 0; i < len; i++, key++) {
BlockBegin* new_sux = x->sux_at(i);
if (sux == new_sux) {
// still in same range
range->set_high_key(key);
} else {
// skip tests which explicitly dispatch to the default
if (sux != default_sux) {
res->append(range);
}
range = new SwitchRange(key, new_sux);
}
sux = new_sux;
}
if (res->length() == 0 || res->last() != range) res->append(range);
}
return res;
}
// we expect the keys to be sorted by increasing value
SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
SwitchRangeList* res = new SwitchRangeList();
int len = x->length();
if (len > 0) {
BlockBegin* default_sux = x->default_sux();
int key = x->key_at(0);
BlockBegin* sux = x->sux_at(0);
SwitchRange* range = new SwitchRange(key, sux);
for (int i = 1; i < len; i++) {
int new_key = x->key_at(i);
BlockBegin* new_sux = x->sux_at(i);
if (key+1 == new_key && sux == new_sux) {
// still in same range
range->set_high_key(new_key);
} else {
// skip tests which explicitly dispatch to the default
if (range->sux() != default_sux) {
res->append(range);
}
range = new SwitchRange(new_key, new_sux);
}
key = new_key;
sux = new_sux;
}
if (res->length() == 0 || res->last() != range) res->append(range);
}
return res;
}
void LIRGenerator::do_TableSwitch(TableSwitch* x) {
LIRItem tag(x->tag(), this);
tag.load_item();
set_no_result(x);
if (x->is_safepoint()) {
__ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
}
// move values into phi locations
move_to_phi(x->state());
int lo_key = x->lo_key();
int hi_key = x->hi_key();
int len = x->length();
LIR_Opr value = tag.result();
if (UseTableRanges) {
do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
} else {
for (int i = 0; i < len; i++) {
__ cmp(lir_cond_equal, value, i + lo_key);
__ branch(lir_cond_equal, T_INT, x->sux_at(i));
}
__ jump(x->default_sux());
}
}
void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
LIRItem tag(x->tag(), this);
tag.load_item();
set_no_result(x);
if (x->is_safepoint()) {
__ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
}
// move values into phi locations
move_to_phi(x->state());
LIR_Opr value = tag.result();
if (UseTableRanges) {
do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
} else {
int len = x->length();
for (int i = 0; i < len; i++) {
__ cmp(lir_cond_equal, value, x->key_at(i));
__ branch(lir_cond_equal, T_INT, x->sux_at(i));
}
__ jump(x->default_sux());
}
}
void LIRGenerator::do_Goto(Goto* x) {
set_no_result(x);
if (block()->next()->as_OsrEntry()) {
// need to free up storage used for OSR entry point
LIR_Opr osrBuffer = block()->next()->operand();
BasicTypeList signature;
signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
__ move(osrBuffer, cc->args()->at(0));
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
}
if (x->is_safepoint()) {
ValueStack* state = x->state_before() ? x->state_before() : x->state();
// increment backedge counter if needed
CodeEmitInfo* info = state_for(x, state);
increment_backedge_counter(info, x->profiled_bci());
CodeEmitInfo* safepoint_info = state_for(x, state);
__ safepoint(safepoint_poll_register(), safepoint_info);
}
// Gotos can be folded Ifs, handle this case.
if (x->should_profile()) {
ciMethod* method = x->profiled_method();
assert(method != NULL, "method should be set if branch is profiled");
ciMethodData* md = method->method_data_or_null();
assert(md != NULL, "Sanity");
ciProfileData* data = md->bci_to_data(x->profiled_bci());
assert(data != NULL, "must have profiling data");
int offset;
if (x->direction() == Goto::taken) {
assert(data->is_BranchData(), "need BranchData for two-way branches");
offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
} else if (x->direction() == Goto::not_taken) {
assert(data->is_BranchData(), "need BranchData for two-way branches");
offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
} else {
assert(data->is_JumpData(), "need JumpData for branches");
offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
}
LIR_Opr md_reg = new_register(T_METADATA);
__ metadata2reg(md->constant_encoding(), md_reg);
increment_counter(new LIR_Address(md_reg, offset,
NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
}
// emit phi-instruction move after safepoint since this simplifies
// describing the state as the safepoint.
move_to_phi(x->state());
__ jump(x->default_sux());
}
/**
* Emit profiling code if needed for arguments, parameters, return value types
*
* @param md MDO the code will update at runtime
* @param md_base_offset common offset in the MDO for this profile and subsequent ones
* @param md_offset offset in the MDO (on top of md_base_offset) for this profile
* @param profiled_k current profile
* @param obj IR node for the object to be profiled
* @param mdp register to hold the pointer inside the MDO (md + md_base_offset).
* Set once we find an update to make and use for next ones.
* @param not_null true if we know obj cannot be null
* @param signature_at_call_k signature at call for obj
* @param callee_signature_k signature of callee for obj
* at call and callee signatures differ at method handle call
* @return the only klass we know will ever be seen at this profile point
*/
ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
ciKlass* callee_signature_k) {
ciKlass* result = NULL;
bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
bool do_update = !TypeEntries::is_type_unknown(profiled_k);
// known not to be null or null bit already set and already set to
// unknown: nothing we can do to improve profiling
if (!do_null && !do_update) {
return result;
}
ciKlass* exact_klass = NULL;
Compilation* comp = Compilation::current();
if (do_update) {
// try to find exact type, using CHA if possible, so that loading
// the klass from the object can be avoided
ciType* type = obj->exact_type();
if (type == NULL) {
type = obj->declared_type();
type = comp->cha_exact_type(type);
}
assert(type == NULL || type->is_klass(), "type should be class");
exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
}
if (!do_null && !do_update) {
return result;
}
ciKlass* exact_signature_k = NULL;
if (do_update) {
// Is the type from the signature exact (the only one possible)?
exact_signature_k = signature_at_call_k->exact_klass();
if (exact_signature_k == NULL) {
exact_signature_k = comp->cha_exact_type(signature_at_call_k);
} else {
result = exact_signature_k;
// Known statically. No need to emit any code: prevent
// LIR_Assembler::emit_profile_type() from emitting useless code
profiled_k = ciTypeEntries::with_status(result, profiled_k);
}
// exact_klass and exact_signature_k can be both non NULL but
// different if exact_klass is loaded after the ciObject for
// exact_signature_k is created.
if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
// sometimes the type of the signature is better than the best type
// the compiler has
exact_klass = exact_signature_k;
}
if (callee_signature_k != NULL &&
callee_signature_k != signature_at_call_k) {
ciKlass* improved_klass = callee_signature_k->exact_klass();
if (improved_klass == NULL) {
improved_klass = comp->cha_exact_type(callee_signature_k);
}
if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
exact_klass = exact_signature_k;
}
}
do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
}
if (!do_null && !do_update) {
return result;
}
if (mdp == LIR_OprFact::illegalOpr) {
mdp = new_register(T_METADATA);
__ metadata2reg(md->constant_encoding(), mdp);
if (md_base_offset != 0) {
LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
mdp = new_pointer_register();
__ leal(LIR_OprFact::address(base_type_address), mdp);
}
}
LIRItem value(obj, this);
value.load_item();
__ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
return result;
}
// profile parameters on entry to the root of the compilation
void LIRGenerator::profile_parameters(Base* x) {
if (compilation()->profile_parameters()) {
CallingConvention* args = compilation()->frame_map()->incoming_arguments();
ciMethodData* md = scope()->method()->method_data_or_null();
assert(md != NULL, "Sanity");
if (md->parameters_type_data() != NULL) {
ciParametersTypeData* parameters_type_data = md->parameters_type_data();
ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
LIR_Opr mdp = LIR_OprFact::illegalOpr;
for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
LIR_Opr src = args->at(i);
assert(!src->is_illegal(), "check");
BasicType t = src->type();
if (t == T_OBJECT || t == T_ARRAY) {
intptr_t profiled_k = parameters->type(j);
Local* local = x->state()->local_at(java_index)->as_Local();
ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
// If the profile is known statically set it once for all and do not emit any code
if (exact != NULL) {
md->set_parameter_type(j, exact);
}
j++;
}
java_index += type2size[t];
}
}
}
}
void LIRGenerator::do_Base(Base* x) {
__ std_entry(LIR_OprFact::illegalOpr);
// Emit moves from physical registers / stack slots to virtual registers
CallingConvention* args = compilation()->frame_map()->incoming_arguments();
IRScope* irScope = compilation()->hir()->top_scope();
int java_index = 0;
for (int i = 0; i < args->length(); i++) {
LIR_Opr src = args->at(i);
assert(!src->is_illegal(), "check");
BasicType t = src->type();
// Types which are smaller than int are passed as int, so
// correct the type which passed.
switch (t) {
case T_BYTE:
case T_BOOLEAN:
case T_SHORT:
case T_CHAR:
t = T_INT;
break;
}
LIR_Opr dest = new_register(t);
__ move(src, dest);
// Assign new location to Local instruction for this local
Local* local = x->state()->local_at(java_index)->as_Local();
assert(local != NULL, "Locals for incoming arguments must have been created");
#ifndef __SOFTFP__
// The java calling convention passes double as long and float as int.
assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
#endif // __SOFTFP__
local->set_operand(dest);
_instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
java_index += type2size[t];
}
if (compilation()->env()->dtrace_method_probes()) {
BasicTypeList signature;
signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
signature.append(T_METADATA); // Method*
LIR_OprList* args = new LIR_OprList();
args->append(getThreadPointer());
LIR_Opr meth = new_register(T_METADATA);
__ metadata2reg(method()->constant_encoding(), meth);
args->append(meth);
call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
}
if (method()->is_synchronized()) {
LIR_Opr obj;
if (method()->is_static()) {
obj = new_register(T_OBJECT);
__ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
} else {
Local* receiver = x->state()->local_at(0)->as_Local();
assert(receiver != NULL, "must already exist");
obj = receiver->operand();
}
assert(obj->is_valid(), "must be valid");
if (method()->is_synchronized() && GenerateSynchronizationCode) {
LIR_Opr lock = new_register(T_INT);
__ load_stack_address_monitor(0, lock);
CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
// receiver is guaranteed non-NULL so don't need CodeEmitInfo
__ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
}
}
if (compilation()->age_code()) {
CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
decrement_age(info);
}
// increment invocation counters if needed
if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
profile_parameters(x);
CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
increment_invocation_counter(info);
}
// all blocks with a successor must end with an unconditional jump
// to the successor even if they are consecutive
__ jump(x->default_sux());
}
void LIRGenerator::do_OsrEntry(OsrEntry* x) {
// construct our frame and model the production of incoming pointer
// to the OSR buffer.
__ osr_entry(LIR_Assembler::osrBufferPointer());
LIR_Opr result = rlock_result(x);
__ move(LIR_Assembler::osrBufferPointer(), result);
}
void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
assert(args->length() == arg_list->length(),
err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
LIRItem* param = args->at(i);
LIR_Opr loc = arg_list->at(i);
if (loc->is_register()) {
param->load_item_force(loc);
} else {
LIR_Address* addr = loc->as_address_ptr();
param->load_for_store(addr->type());
if (addr->type() == T_OBJECT) {
__ move_wide(param->result(), addr);
} else
if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
__ unaligned_move(param->result(), addr);
} else {
__ move(param->result(), addr);
}
}
}
if (x->has_receiver()) {
LIRItem* receiver = args->at(0);
LIR_Opr loc = arg_list->at(0);
if (loc->is_register()) {
receiver->load_item_force(loc);
} else {
assert(loc->is_address(), "just checking");
receiver->load_for_store(T_OBJECT);
__ move_wide(receiver->result(), loc->as_address_ptr());
}
}
}
// Visits all arguments, returns appropriate items without loading them
LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
LIRItemList* argument_items = new LIRItemList();
if (x->has_receiver()) {
LIRItem* receiver = new LIRItem(x->receiver(), this);
argument_items->append(receiver);
}
for (int i = 0; i < x->number_of_arguments(); i++) {
LIRItem* param = new LIRItem(x->argument_at(i), this);
argument_items->append(param);
}
return argument_items;
}
// The invoke with receiver has following phases:
// a) traverse and load/lock receiver;
// b) traverse all arguments -> item-array (invoke_visit_argument)
// c) push receiver on stack
// d) load each of the items and push on stack
// e) unlock receiver
// f) move receiver into receiver-register %o0
// g) lock result registers and emit call operation
//
// Before issuing a call, we must spill-save all values on stack
// that are in caller-save register. "spill-save" moves those registers
// either in a free callee-save register or spills them if no free
// callee save register is available.
//
// The problem is where to invoke spill-save.
// - if invoked between e) and f), we may lock callee save
// register in "spill-save" that destroys the receiver register
// before f) is executed
// - if we rearrange f) to be earlier (by loading %o0) it
// may destroy a value on the stack that is currently in %o0
// and is waiting to be spilled
// - if we keep the receiver locked while doing spill-save,
// we cannot spill it as it is spill-locked
//
void LIRGenerator::do_Invoke(Invoke* x) {
CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
LIR_OprList* arg_list = cc->args();
LIRItemList* args = invoke_visit_arguments(x);
LIR_Opr receiver = LIR_OprFact::illegalOpr;
// setup result register
LIR_Opr result_register = LIR_OprFact::illegalOpr;
if (x->type() != voidType) {
result_register = result_register_for(x->type());
}
CodeEmitInfo* info = state_for(x, x->state());
invoke_load_arguments(x, args, arg_list);
if (x->has_receiver()) {
args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
receiver = args->at(0)->result();
}
// emit invoke code
bool optimized = x->target_is_loaded() && x->target_is_final();
assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
// JSR 292
// Preserve the SP over MethodHandle call sites, if needed.
ciMethod* target = x->target();
bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
target->is_method_handle_intrinsic() ||
target->is_compiled_lambda_form());
if (is_method_handle_invoke) {
info->set_is_method_handle_invoke(true);
if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
__ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
}
}
switch (x->code()) {
case Bytecodes::_invokestatic:
__ call_static(target, result_register,
SharedRuntime::get_resolve_static_call_stub(),
arg_list, info);
break;
case Bytecodes::_invokespecial:
case Bytecodes::_invokevirtual:
case Bytecodes::_invokeinterface:
// for final target we still produce an inline cache, in order
// to be able to call mixed mode
if (x->code() == Bytecodes::_invokespecial || optimized) {
__ call_opt_virtual(target, receiver, result_register,
SharedRuntime::get_resolve_opt_virtual_call_stub(),
arg_list, info);
} else if (x->vtable_index() < 0) {
__ call_icvirtual(target, receiver, result_register,
SharedRuntime::get_resolve_virtual_call_stub(),
arg_list, info);
} else {
int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
__ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
}
break;
case Bytecodes::_invokedynamic: {
__ call_dynamic(target, receiver, result_register,
SharedRuntime::get_resolve_static_call_stub(),
arg_list, info);
break;
}
default:
fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
break;
}
// JSR 292
// Restore the SP after MethodHandle call sites, if needed.
if (is_method_handle_invoke
&& FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
__ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
}
if (x->type()->is_float() || x->type()->is_double()) {
// Force rounding of results from non-strictfp when in strictfp
// scope (or when we don't know the strictness of the callee, to
// be safe.)
if (method()->is_strict()) {
if (!x->target_is_loaded() || !x->target_is_strictfp()) {
result_register = round_item(result_register);
}
}
}
if (result_register->is_valid()) {
LIR_Opr result = rlock_result(x);
__ move(result_register, result);
}
}
void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
assert(x->number_of_arguments() == 1, "wrong type");
LIRItem value (x->argument_at(0), this);
LIR_Opr reg = rlock_result(x);
value.load_item();
LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
__ move(tmp, reg);
}
// Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
void LIRGenerator::do_IfOp(IfOp* x) {
#ifdef ASSERT
{
ValueTag xtag = x->x()->type()->tag();
ValueTag ttag = x->tval()->type()->tag();
assert(xtag == intTag || xtag == objectTag, "cannot handle others");
assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
assert(ttag == x->fval()->type()->tag(), "cannot handle others");
}
#endif
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
left.load_item();
if (can_inline_as_constant(right.value())) {
right.dont_load_item();
} else {
right.load_item();
}
LIRItem t_val(x->tval(), this);
LIRItem f_val(x->fval(), this);
t_val.dont_load_item();
f_val.dont_load_item();
LIR_Opr reg = rlock_result(x);
__ cmp(lir_cond(x->cond()), left.result(), right.result());
__ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
}
void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
assert(x->number_of_arguments() == expected_arguments, "wrong type");
LIR_Opr reg = result_register_for(x->type());
__ call_runtime_leaf(routine, getThreadTemp(),
reg, new LIR_OprList());
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
#ifdef TRACE_HAVE_INTRINSICS
void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
LIR_Opr thread = getThreadPointer();
LIR_Opr osthread = new_pointer_register();
__ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
size_t thread_id_size = OSThread::thread_id_size();
if (thread_id_size == (size_t) BytesPerLong) {
LIR_Opr id = new_register(T_LONG);
__ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
__ convert(Bytecodes::_l2i, id, rlock_result(x));
} else if (thread_id_size == (size_t) BytesPerInt) {
__ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
} else {
ShouldNotReachHere();
}
}
void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
CodeEmitInfo* info = state_for(x);
CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
assert(info != NULL, "must have info");
LIRItem arg(x->argument_at(1), this);
arg.load_item();
LIR_Opr klass = new_pointer_register();
__ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
LIR_Opr id = new_register(T_LONG);
ByteSize offset = TRACE_ID_OFFSET;
LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
__ move(trace_id_addr, id);
__ logical_or(id, LIR_OprFact::longConst(0x01l), id);
__ store(id, trace_id_addr);
__ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
__ move(id, rlock_result(x));
}
#endif
void LIRGenerator::do_Intrinsic(Intrinsic* x) {
switch (x->id()) {
case vmIntrinsics::_intBitsToFloat :
case vmIntrinsics::_doubleToRawLongBits :
case vmIntrinsics::_longBitsToDouble :
case vmIntrinsics::_floatToRawIntBits : {
do_FPIntrinsics(x);
break;
}
#ifdef TRACE_HAVE_INTRINSICS
case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
case vmIntrinsics::_counterTime:
do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
break;
#endif
case vmIntrinsics::_currentTimeMillis:
do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
break;
case vmIntrinsics::_nanoTime:
do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
break;
case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break;
case vmIntrinsics::_isInstance: do_isInstance(x); break;
case vmIntrinsics::_getClass: do_getClass(x); break;
case vmIntrinsics::_currentThread: do_currentThread(x); break;
case vmIntrinsics::_dlog: // fall through
case vmIntrinsics::_dlog10: // fall through
case vmIntrinsics::_dabs: // fall through
case vmIntrinsics::_dsqrt: // fall through
case vmIntrinsics::_dtan: // fall through
case vmIntrinsics::_dsin : // fall through
case vmIntrinsics::_dcos : // fall through
case vmIntrinsics::_dexp : // fall through
case vmIntrinsics::_dpow : do_MathIntrinsic(x); break;
case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break;
// java.nio.Buffer.checkIndex
case vmIntrinsics::_checkIndex: do_NIOCheckIndex(x); break;
case vmIntrinsics::_compareAndSwapObject:
do_CompareAndSwap(x, objectType);
break;
case vmIntrinsics::_compareAndSwapInt:
do_CompareAndSwap(x, intType);
break;
case vmIntrinsics::_compareAndSwapLong:
do_CompareAndSwap(x, longType);
break;
case vmIntrinsics::_loadFence :
if (os::is_MP()) __ membar_acquire();
break;
case vmIntrinsics::_storeFence:
if (os::is_MP()) __ membar_release();
break;
case vmIntrinsics::_fullFence :
if (os::is_MP()) __ membar();
break;
case vmIntrinsics::_Reference_get:
do_Reference_get(x);
break;
case vmIntrinsics::_updateCRC32:
case vmIntrinsics::_updateBytesCRC32:
case vmIntrinsics::_updateByteBufferCRC32:
do_update_CRC32(x);
break;
default: ShouldNotReachHere(); break;
}
}
void LIRGenerator::profile_arguments(ProfileCall* x) {
if (compilation()->profile_arguments()) {
int bci = x->bci_of_invoke();
ciMethodData* md = x->method()->method_data_or_null();
ciProfileData* data = md->bci_to_data(bci);
if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
(data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
int base_offset = md->byte_offset_of_slot(data, extra);
LIR_Opr mdp = LIR_OprFact::illegalOpr;
ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
int start = 0;
int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
if (x->inlined() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
// first argument is not profiled at call (method handle invoke)
assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
start = 1;
}
ciSignature* callee_signature = x->callee()->signature();
// method handle call to virtual method
bool has_receiver = x->inlined() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
bool ignored_will_link;
ciSignature* signature_at_call = NULL;
x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
ciSignatureStream signature_at_call_stream(signature_at_call);
// if called through method handle invoke, some arguments may have been popped
for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
ciKlass* exact = profile_type(md, base_offset, off,
args->type(i), x->profiled_arg_at(i+start), mdp,
!x->arg_needs_null_check(i+start),
signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
if (exact != NULL) {
md->set_argument_type(bci, i, exact);
}
}
} else {
#ifdef ASSERT
Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
int n = x->nb_profiled_args();
assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
(x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
"only at JSR292 bytecodes");
#endif
}
}
}
// profile parameters on entry to an inlined method
void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
if (compilation()->profile_parameters() && x->inlined()) {
ciMethodData* md = x->callee()->method_data_or_null();
if (md != NULL) {
ciParametersTypeData* parameters_type_data = md->parameters_type_data();
if (parameters_type_data != NULL) {
ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
LIR_Opr mdp = LIR_OprFact::illegalOpr;
bool has_receiver = !x->callee()->is_static();
ciSignature* sig = x->callee()->signature();
ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
int i = 0; // to iterate on the Instructions
Value arg = x->recv();
bool not_null = false;
int bci = x->bci_of_invoke();
Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
// The first parameter is the receiver so that's what we start
// with if it exists. One exception is method handle call to
// virtual method: the receiver is in the args list
if (arg == NULL || !Bytecodes::has_receiver(bc)) {
i = 1;
arg = x->profiled_arg_at(0);
not_null = !x->arg_needs_null_check(0);
}
int k = 0; // to iterate on the profile data
for (;;) {
intptr_t profiled_k = parameters->type(k);
ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
// If the profile is known statically set it once for all and do not emit any code
if (exact != NULL) {
md->set_parameter_type(k, exact);
}
k++;
if (k >= parameters_type_data->number_of_parameters()) {
#ifdef ASSERT
int extra = 0;
if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
x->nb_profiled_args() >= TypeProfileParmsLimit &&
x->recv() != NULL && Bytecodes::has_receiver(bc)) {
extra += 1;
}
assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
#endif
break;
}
arg = x->profiled_arg_at(i);
not_null = !x->arg_needs_null_check(i);
i++;
}
}
}
}
}
void LIRGenerator::do_ProfileCall(ProfileCall* x) {
// Need recv in a temporary register so it interferes with the other temporaries
LIR_Opr recv = LIR_OprFact::illegalOpr;
LIR_Opr mdo = new_register(T_OBJECT);
// tmp is used to hold the counters on SPARC
LIR_Opr tmp = new_pointer_register();
if (x->nb_profiled_args() > 0) {
profile_arguments(x);
}
// profile parameters on inlined method entry including receiver
if (x->recv() != NULL || x->nb_profiled_args() > 0) {
profile_parameters_at_call(x);
}
if (x->recv() != NULL) {
LIRItem value(x->recv(), this);
value.load_item();
recv = new_register(T_OBJECT);
__ move(value.result(), recv);
}
__ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
}
void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
int bci = x->bci_of_invoke();
ciMethodData* md = x->method()->method_data_or_null();
ciProfileData* data = md->bci_to_data(bci);
assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
LIR_Opr mdp = LIR_OprFact::illegalOpr;
bool ignored_will_link;
ciSignature* signature_at_call = NULL;
x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
// The offset within the MDO of the entry to update may be too large
// to be used in load/store instructions on some platforms. So have
// profile_type() compute the address of the profile in a register.
ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
ret->type(), x->ret(), mdp,
!x->needs_null_check(),
signature_at_call->return_type()->as_klass(),
x->callee()->signature()->return_type()->as_klass());
if (exact != NULL) {
md->set_return_type(bci, exact);
}
}
void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
// We can safely ignore accessors here, since c2 will inline them anyway,
// accessors are also always mature.
if (!x->inlinee()->is_accessor()) {
CodeEmitInfo* info = state_for(x, x->state(), true);
// Notify the runtime very infrequently only to take care of counter overflows
int freq_log = Tier23InlineeNotifyFreqLog;
double scale;
if (_method->has_option_value("CompileThresholdScaling", scale)) {
freq_log = Arguments::scaled_freq_log(freq_log, scale);
}
increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
}
}
void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
int freq_log;
int level = compilation()->env()->comp_level();
if (level == CompLevel_limited_profile) {
freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
} else if (level == CompLevel_full_profile) {
freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
} else {
ShouldNotReachHere();
}
// Increment the appropriate invocation/backedge counter and notify the runtime.
double scale;
if (_method->has_option_value("CompileThresholdScaling", scale)) {
freq_log = Arguments::scaled_freq_log(freq_log, scale);
}
increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
}
void LIRGenerator::decrement_age(CodeEmitInfo* info) {
ciMethod* method = info->scope()->method();
MethodCounters* mc_adr = method->ensure_method_counters();
if (mc_adr != NULL) {
LIR_Opr mc = new_pointer_register();
__ move(LIR_OprFact::intptrConst(mc_adr), mc);
int offset = in_bytes(MethodCounters::nmethod_age_offset());
LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
LIR_Opr result = new_register(T_INT);
__ load(counter, result);
__ sub(result, LIR_OprFact::intConst(1), result);
__ store(result, counter);
// DeoptimizeStub will reexecute from the current state in code info.
CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
Deoptimization::Action_make_not_entrant);
__ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
__ branch(lir_cond_lessEqual, T_INT, deopt);
}
}
void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
ciMethod *method, int frequency,
int bci, bool backedge, bool notify) {
assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
int level = _compilation->env()->comp_level();
assert(level > CompLevel_simple, "Shouldn't be here");
int offset = -1;
LIR_Opr counter_holder;
if (level == CompLevel_limited_profile) {
MethodCounters* counters_adr = method->ensure_method_counters();
if (counters_adr == NULL) {
bailout("method counters allocation failed");
return;
}
counter_holder = new_pointer_register();
__ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
MethodCounters::invocation_counter_offset());
} else if (level == CompLevel_full_profile) {
counter_holder = new_register(T_METADATA);
offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
MethodData::invocation_counter_offset());
ciMethodData* md = method->method_data_or_null();
assert(md != NULL, "Sanity");
__ metadata2reg(md->constant_encoding(), counter_holder);
} else {
ShouldNotReachHere();
}
LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
LIR_Opr result = new_register(T_INT);
__ load(counter, result);
__ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
__ store(result, counter);
if (notify) {
LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
LIR_Opr meth = new_register(T_METADATA);
__ metadata2reg(method->constant_encoding(), meth);
__ logical_and(result, mask, result);
__ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
// The bci for info can point to cmp for if's we want the if bci
CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
__ branch(lir_cond_equal, T_INT, overflow);
__ branch_destination(overflow->continuation());
}
}
void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
if (x->pass_thread()) {
signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
args->append(getThreadPointer());
}
for (int i = 0; i < x->number_of_arguments(); i++) {
Value a = x->argument_at(i);
LIRItem* item = new LIRItem(a, this);
item->load_item();
args->append(item->result());
signature->append(as_BasicType(a->type()));
}
LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
if (x->type() == voidType) {
set_no_result(x);
} else {
__ move(result, rlock_result(x));
}
}
#ifdef ASSERT
void LIRGenerator::do_Assert(Assert *x) {
ValueTag tag = x->x()->type()->tag();
If::Condition cond = x->cond();
LIRItem xitem(x->x(), this);
LIRItem yitem(x->y(), this);
LIRItem* xin = &xitem;
LIRItem* yin = &yitem;
assert(tag == intTag, "Only integer assertions are valid!");
xin->load_item();
yin->dont_load_item();
set_no_result(x);
LIR_Opr left = xin->result();
LIR_Opr right = yin->result();
__ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
}
#endif
void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
Instruction *a = x->x();
Instruction *b = x->y();
if (!a || StressRangeCheckElimination) {
assert(!b || StressRangeCheckElimination, "B must also be null");
CodeEmitInfo *info = state_for(x, x->state());
CodeStub* stub = new PredicateFailedStub(info);
__ jump(stub);
} else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
int a_int = a->type()->as_IntConstant()->value();
int b_int = b->type()->as_IntConstant()->value();
bool ok = false;
switch(x->cond()) {
case Instruction::eql: ok = (a_int == b_int); break;
case Instruction::neq: ok = (a_int != b_int); break;
case Instruction::lss: ok = (a_int < b_int); break;
case Instruction::leq: ok = (a_int <= b_int); break;
case Instruction::gtr: ok = (a_int > b_int); break;
case Instruction::geq: ok = (a_int >= b_int); break;
case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
default: ShouldNotReachHere();
}
if (ok) {
CodeEmitInfo *info = state_for(x, x->state());
CodeStub* stub = new PredicateFailedStub(info);
__ jump(stub);
}
} else {
ValueTag tag = x->x()->type()->tag();
If::Condition cond = x->cond();
LIRItem xitem(x->x(), this);
LIRItem yitem(x->y(), this);
LIRItem* xin = &xitem;
LIRItem* yin = &yitem;
assert(tag == intTag, "Only integer deoptimizations are valid!");
xin->load_item();
yin->dont_load_item();
set_no_result(x);
LIR_Opr left = xin->result();
LIR_Opr right = yin->result();
CodeEmitInfo *info = state_for(x, x->state());
CodeStub* stub = new PredicateFailedStub(info);
__ cmp(lir_cond(cond), left, right);
__ branch(lir_cond(cond), right->type(), stub);
}
}
LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
LIRItemList args(1);
LIRItem value(arg1, this);
args.append(&value);
BasicTypeList signature;
signature.append(as_BasicType(arg1->type()));
return call_runtime(&signature, &args, entry, result_type, info);
}
LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
LIRItemList args(2);
LIRItem value1(arg1, this);
LIRItem value2(arg2, this);
args.append(&value1);
args.append(&value2);
BasicTypeList signature;
signature.append(as_BasicType(arg1->type()));
signature.append(as_BasicType(arg2->type()));
return call_runtime(&signature, &args, entry, result_type, info);
}
LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
address entry, ValueType* result_type, CodeEmitInfo* info) {
// get a result register
LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
LIR_Opr result = LIR_OprFact::illegalOpr;
if (result_type->tag() != voidTag) {
result = new_register(result_type);
phys_reg = result_register_for(result_type);
}
// move the arguments into the correct location
CallingConvention* cc = frame_map()->c_calling_convention(signature);
assert(cc->length() == args->length(), "argument mismatch");
for (int i = 0; i < args->length(); i++) {
LIR_Opr arg = args->at(i);
LIR_Opr loc = cc->at(i);
if (loc->is_register()) {
__ move(arg, loc);
} else {
LIR_Address* addr = loc->as_address_ptr();
// if (!can_store_as_constant(arg)) {
// LIR_Opr tmp = new_register(arg->type());
// __ move(arg, tmp);
// arg = tmp;
// }
if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
__ unaligned_move(arg, addr);
} else {
__ move(arg, addr);
}
}
}
if (info) {
__ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
} else {
__ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
}
if (result->is_valid()) {
__ move(phys_reg, result);
}
return result;
}
LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
address entry, ValueType* result_type, CodeEmitInfo* info) {
// get a result register
LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
LIR_Opr result = LIR_OprFact::illegalOpr;
if (result_type->tag() != voidTag) {
result = new_register(result_type);
phys_reg = result_register_for(result_type);
}
// move the arguments into the correct location
CallingConvention* cc = frame_map()->c_calling_convention(signature);
assert(cc->length() == args->length(), "argument mismatch");
for (int i = 0; i < args->length(); i++) {
LIRItem* arg = args->at(i);
LIR_Opr loc = cc->at(i);
if (loc->is_register()) {
arg->load_item_force(loc);
} else {
LIR_Address* addr = loc->as_address_ptr();
arg->load_for_store(addr->type());
if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
__ unaligned_move(arg->result(), addr);
} else {
__ move(arg->result(), addr);
}
}
}
if (info) {
__ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
} else {
__ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
}
if (result->is_valid()) {
__ move(phys_reg, result);
}
return result;
}
void LIRGenerator::do_MemBar(MemBar* x) {
if (os::is_MP()) {
LIR_Code code = x->code();
switch(code) {
case lir_membar_acquire : __ membar_acquire(); break;
case lir_membar_release : __ membar_release(); break;
case lir_membar : __ membar(); break;
case lir_membar_loadload : __ membar_loadload(); break;
case lir_membar_storestore: __ membar_storestore(); break;
case lir_membar_loadstore : __ membar_loadstore(); break;
case lir_membar_storeload : __ membar_storeload(); break;
default : ShouldNotReachHere(); break;
}
}
}