8071302: assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo], def)) failed: after block local
Summary: Add merge nodes to node to block mapping
Reviewed-by: kvn, vlivanov
/*
* Copyright (c) 2007, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "compiler/compileLog.hpp"
#include "libadt/vectset.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/addnode.hpp"
#include "opto/callnode.hpp"
#include "opto/castnode.hpp"
#include "opto/convertnode.hpp"
#include "opto/divnode.hpp"
#include "opto/matcher.hpp"
#include "opto/memnode.hpp"
#include "opto/mulnode.hpp"
#include "opto/opcodes.hpp"
#include "opto/opaquenode.hpp"
#include "opto/superword.hpp"
#include "opto/vectornode.hpp"
//
// S U P E R W O R D T R A N S F O R M
//=============================================================================
//------------------------------SuperWord---------------------------
SuperWord::SuperWord(PhaseIdealLoop* phase) :
_phase(phase),
_igvn(phase->_igvn),
_arena(phase->C->comp_arena()),
_packset(arena(), 8, 0, NULL), // packs for the current block
_bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
_block(arena(), 8, 0, NULL), // nodes in current block
_data_entry(arena(), 8, 0, NULL), // nodes with all inputs from outside
_mem_slice_head(arena(), 8, 0, NULL), // memory slice heads
_mem_slice_tail(arena(), 8, 0, NULL), // memory slice tails
_node_info(arena(), 8, 0, SWNodeInfo::initial), // info needed per node
_align_to_ref(NULL), // memory reference to align vectors to
_disjoint_ptrs(arena(), 8, 0, OrderedPair::initial), // runtime disambiguated pointer pairs
_dg(_arena), // dependence graph
_visited(arena()), // visited node set
_post_visited(arena()), // post visited node set
_n_idx_list(arena(), 8), // scratch list of (node,index) pairs
_stk(arena(), 8, 0, NULL), // scratch stack of nodes
_nlist(arena(), 8, 0, NULL), // scratch list of nodes
_lpt(NULL), // loop tree node
_lp(NULL), // LoopNode
_bb(NULL), // basic block
_iv(NULL) // induction var
{}
//------------------------------transform_loop---------------------------
void SuperWord::transform_loop(IdealLoopTree* lpt) {
assert(UseSuperWord, "should be");
// Do vectors exist on this architecture?
if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return;
assert(lpt->_head->is_CountedLoop(), "must be");
CountedLoopNode *cl = lpt->_head->as_CountedLoop();
if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop
if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
// Check for no control flow in body (other than exit)
Node *cl_exit = cl->loopexit();
if (cl_exit->in(0) != lpt->_head) return;
// Make sure the are no extra control users of the loop backedge
if (cl->back_control()->outcnt() != 1) {
return;
}
// Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
if (pre_end == NULL) return;
Node *pre_opaq1 = pre_end->limit();
if (pre_opaq1->Opcode() != Op_Opaque1) return;
init(); // initialize data structures
set_lpt(lpt);
set_lp(cl);
// For now, define one block which is the entire loop body
set_bb(cl);
assert(_packset.length() == 0, "packset must be empty");
SLP_extract();
}
//------------------------------SLP_extract---------------------------
// Extract the superword level parallelism
//
// 1) A reverse post-order of nodes in the block is constructed. By scanning
// this list from first to last, all definitions are visited before their uses.
//
// 2) A point-to-point dependence graph is constructed between memory references.
// This simplies the upcoming "independence" checker.
//
// 3) The maximum depth in the node graph from the beginning of the block
// to each node is computed. This is used to prune the graph search
// in the independence checker.
//
// 4) For integer types, the necessary bit width is propagated backwards
// from stores to allow packed operations on byte, char, and short
// integers. This reverses the promotion to type "int" that javac
// did for operations like: char c1,c2,c3; c1 = c2 + c3.
//
// 5) One of the memory references is picked to be an aligned vector reference.
// The pre-loop trip count is adjusted to align this reference in the
// unrolled body.
//
// 6) The initial set of pack pairs is seeded with memory references.
//
// 7) The set of pack pairs is extended by following use->def and def->use links.
//
// 8) The pairs are combined into vector sized packs.
//
// 9) Reorder the memory slices to co-locate members of the memory packs.
//
// 10) Generate ideal vector nodes for the final set of packs and where necessary,
// inserting scalar promotion, vector creation from multiple scalars, and
// extraction of scalar values from vectors.
//
void SuperWord::SLP_extract() {
// Ready the block
if (!construct_bb())
return; // Exit if no interesting nodes or complex graph.
dependence_graph();
compute_max_depth();
compute_vector_element_type();
// Attempt vectorization
find_adjacent_refs();
extend_packlist();
combine_packs();
construct_my_pack_map();
filter_packs();
schedule();
output();
}
//------------------------------find_adjacent_refs---------------------------
// Find the adjacent memory references and create pack pairs for them.
// This is the initial set of packs that will then be extended by
// following use->def and def->use links. The align positions are
// assigned relative to the reference "align_to_ref"
void SuperWord::find_adjacent_refs() {
// Get list of memory operations
Node_List memops;
for (int i = 0; i < _block.length(); i++) {
Node* n = _block.at(i);
if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) &&
is_java_primitive(n->as_Mem()->memory_type())) {
int align = memory_alignment(n->as_Mem(), 0);
if (align != bottom_align) {
memops.push(n);
}
}
}
Node_List align_to_refs;
int best_iv_adjustment = 0;
MemNode* best_align_to_mem_ref = NULL;
while (memops.size() != 0) {
// Find a memory reference to align to.
MemNode* mem_ref = find_align_to_ref(memops);
if (mem_ref == NULL) break;
align_to_refs.push(mem_ref);
int iv_adjustment = get_iv_adjustment(mem_ref);
if (best_align_to_mem_ref == NULL) {
// Set memory reference which is the best from all memory operations
// to be used for alignment. The pre-loop trip count is modified to align
// this reference to a vector-aligned address.
best_align_to_mem_ref = mem_ref;
best_iv_adjustment = iv_adjustment;
}
SWPointer align_to_ref_p(mem_ref, this);
// Set alignment relative to "align_to_ref" for all related memory operations.
for (int i = memops.size() - 1; i >= 0; i--) {
MemNode* s = memops.at(i)->as_Mem();
if (isomorphic(s, mem_ref)) {
SWPointer p2(s, this);
if (p2.comparable(align_to_ref_p)) {
int align = memory_alignment(s, iv_adjustment);
set_alignment(s, align);
}
}
}
// Create initial pack pairs of memory operations for which
// alignment is set and vectors will be aligned.
bool create_pack = true;
if (memory_alignment(mem_ref, best_iv_adjustment) == 0) {
if (!Matcher::misaligned_vectors_ok()) {
int vw = vector_width(mem_ref);
int vw_best = vector_width(best_align_to_mem_ref);
if (vw > vw_best) {
// Do not vectorize a memory access with more elements per vector
// if unaligned memory access is not allowed because number of
// iterations in pre-loop will be not enough to align it.
create_pack = false;
}
}
} else {
if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
// Can't allow vectorization of unaligned memory accesses with the
// same type since it could be overlapped accesses to the same array.
create_pack = false;
} else {
// Allow independent (different type) unaligned memory operations
// if HW supports them.
if (!Matcher::misaligned_vectors_ok()) {
create_pack = false;
} else {
// Check if packs of the same memory type but
// with a different alignment were created before.
for (uint i = 0; i < align_to_refs.size(); i++) {
MemNode* mr = align_to_refs.at(i)->as_Mem();
if (same_velt_type(mr, mem_ref) &&
memory_alignment(mr, iv_adjustment) != 0)
create_pack = false;
}
}
}
}
if (create_pack) {
for (uint i = 0; i < memops.size(); i++) {
Node* s1 = memops.at(i);
int align = alignment(s1);
if (align == top_align) continue;
for (uint j = 0; j < memops.size(); j++) {
Node* s2 = memops.at(j);
if (alignment(s2) == top_align) continue;
if (s1 != s2 && are_adjacent_refs(s1, s2)) {
if (stmts_can_pack(s1, s2, align)) {
Node_List* pair = new Node_List();
pair->push(s1);
pair->push(s2);
_packset.append(pair);
}
}
}
}
} else { // Don't create unaligned pack
// First, remove remaining memory ops of the same type from the list.
for (int i = memops.size() - 1; i >= 0; i--) {
MemNode* s = memops.at(i)->as_Mem();
if (same_velt_type(s, mem_ref)) {
memops.remove(i);
}
}
// Second, remove already constructed packs of the same type.
for (int i = _packset.length() - 1; i >= 0; i--) {
Node_List* p = _packset.at(i);
MemNode* s = p->at(0)->as_Mem();
if (same_velt_type(s, mem_ref)) {
remove_pack_at(i);
}
}
// If needed find the best memory reference for loop alignment again.
if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
// Put memory ops from remaining packs back on memops list for
// the best alignment search.
uint orig_msize = memops.size();
for (int i = 0; i < _packset.length(); i++) {
Node_List* p = _packset.at(i);
MemNode* s = p->at(0)->as_Mem();
assert(!same_velt_type(s, mem_ref), "sanity");
memops.push(s);
}
MemNode* best_align_to_mem_ref = find_align_to_ref(memops);
if (best_align_to_mem_ref == NULL) break;
best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref);
// Restore list.
while (memops.size() > orig_msize)
(void)memops.pop();
}
} // unaligned memory accesses
// Remove used mem nodes.
for (int i = memops.size() - 1; i >= 0; i--) {
MemNode* m = memops.at(i)->as_Mem();
if (alignment(m) != top_align) {
memops.remove(i);
}
}
} // while (memops.size() != 0
set_align_to_ref(best_align_to_mem_ref);
#ifndef PRODUCT
if (TraceSuperWord) {
tty->print_cr("\nAfter find_adjacent_refs");
print_packset();
}
#endif
}
//------------------------------find_align_to_ref---------------------------
// Find a memory reference to align the loop induction variable to.
// Looks first at stores then at loads, looking for a memory reference
// with the largest number of references similar to it.
MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
// Count number of comparable memory ops
for (uint i = 0; i < memops.size(); i++) {
MemNode* s1 = memops.at(i)->as_Mem();
SWPointer p1(s1, this);
// Discard if pre loop can't align this reference
if (!ref_is_alignable(p1)) {
*cmp_ct.adr_at(i) = 0;
continue;
}
for (uint j = i+1; j < memops.size(); j++) {
MemNode* s2 = memops.at(j)->as_Mem();
if (isomorphic(s1, s2)) {
SWPointer p2(s2, this);
if (p1.comparable(p2)) {
(*cmp_ct.adr_at(i))++;
(*cmp_ct.adr_at(j))++;
}
}
}
}
// Find Store (or Load) with the greatest number of "comparable" references,
// biggest vector size, smallest data size and smallest iv offset.
int max_ct = 0;
int max_vw = 0;
int max_idx = -1;
int min_size = max_jint;
int min_iv_offset = max_jint;
for (uint j = 0; j < memops.size(); j++) {
MemNode* s = memops.at(j)->as_Mem();
if (s->is_Store()) {
int vw = vector_width_in_bytes(s);
assert(vw > 1, "sanity");
SWPointer p(s, this);
if (cmp_ct.at(j) > max_ct ||
cmp_ct.at(j) == max_ct &&
(vw > max_vw ||
vw == max_vw &&
(data_size(s) < min_size ||
data_size(s) == min_size &&
(p.offset_in_bytes() < min_iv_offset)))) {
max_ct = cmp_ct.at(j);
max_vw = vw;
max_idx = j;
min_size = data_size(s);
min_iv_offset = p.offset_in_bytes();
}
}
}
// If no stores, look at loads
if (max_ct == 0) {
for (uint j = 0; j < memops.size(); j++) {
MemNode* s = memops.at(j)->as_Mem();
if (s->is_Load()) {
int vw = vector_width_in_bytes(s);
assert(vw > 1, "sanity");
SWPointer p(s, this);
if (cmp_ct.at(j) > max_ct ||
cmp_ct.at(j) == max_ct &&
(vw > max_vw ||
vw == max_vw &&
(data_size(s) < min_size ||
data_size(s) == min_size &&
(p.offset_in_bytes() < min_iv_offset)))) {
max_ct = cmp_ct.at(j);
max_vw = vw;
max_idx = j;
min_size = data_size(s);
min_iv_offset = p.offset_in_bytes();
}
}
}
}
#ifdef ASSERT
if (TraceSuperWord && Verbose) {
tty->print_cr("\nVector memops after find_align_to_refs");
for (uint i = 0; i < memops.size(); i++) {
MemNode* s = memops.at(i)->as_Mem();
s->dump();
}
}
#endif
if (max_ct > 0) {
#ifdef ASSERT
if (TraceSuperWord) {
tty->print("\nVector align to node: ");
memops.at(max_idx)->as_Mem()->dump();
}
#endif
return memops.at(max_idx)->as_Mem();
}
return NULL;
}
//------------------------------ref_is_alignable---------------------------
// Can the preloop align the reference to position zero in the vector?
bool SuperWord::ref_is_alignable(SWPointer& p) {
if (!p.has_iv()) {
return true; // no induction variable
}
CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
assert(pre_end != NULL, "we must have a correct pre-loop");
assert(pre_end->stride_is_con(), "pre loop stride is constant");
int preloop_stride = pre_end->stride_con();
int span = preloop_stride * p.scale_in_bytes();
// Stride one accesses are alignable.
if (ABS(span) == p.memory_size())
return true;
// If initial offset from start of object is computable,
// compute alignment within the vector.
int vw = vector_width_in_bytes(p.mem());
assert(vw > 1, "sanity");
if (vw % span == 0) {
Node* init_nd = pre_end->init_trip();
if (init_nd->is_Con() && p.invar() == NULL) {
int init = init_nd->bottom_type()->is_int()->get_con();
int init_offset = init * p.scale_in_bytes() + p.offset_in_bytes();
assert(init_offset >= 0, "positive offset from object start");
if (span > 0) {
return (vw - (init_offset % vw)) % span == 0;
} else {
assert(span < 0, "nonzero stride * scale");
return (init_offset % vw) % -span == 0;
}
}
}
return false;
}
//---------------------------get_iv_adjustment---------------------------
// Calculate loop's iv adjustment for this memory ops.
int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
SWPointer align_to_ref_p(mem_ref, this);
int offset = align_to_ref_p.offset_in_bytes();
int scale = align_to_ref_p.scale_in_bytes();
int vw = vector_width_in_bytes(mem_ref);
assert(vw > 1, "sanity");
int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1;
// At least one iteration is executed in pre-loop by default. As result
// several iterations are needed to align memory operations in main-loop even
// if offset is 0.
int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw));
int elt_size = align_to_ref_p.memory_size();
assert(((ABS(iv_adjustment_in_bytes) % elt_size) == 0),
err_msg_res("(%d) should be divisible by (%d)", iv_adjustment_in_bytes, elt_size));
int iv_adjustment = iv_adjustment_in_bytes/elt_size;
#ifndef PRODUCT
if (TraceSuperWord)
tty->print_cr("\noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d",
offset, iv_adjustment, elt_size, scale, iv_stride(), vw);
#endif
return iv_adjustment;
}
//---------------------------dependence_graph---------------------------
// Construct dependency graph.
// Add dependence edges to load/store nodes for memory dependence
// A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
void SuperWord::dependence_graph() {
// First, assign a dependence node to each memory node
for (int i = 0; i < _block.length(); i++ ) {
Node *n = _block.at(i);
if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
_dg.make_node(n);
}
}
// For each memory slice, create the dependences
for (int i = 0; i < _mem_slice_head.length(); i++) {
Node* n = _mem_slice_head.at(i);
Node* n_tail = _mem_slice_tail.at(i);
// Get slice in predecessor order (last is first)
mem_slice_preds(n_tail, n, _nlist);
// Make the slice dependent on the root
DepMem* slice = _dg.dep(n);
_dg.make_edge(_dg.root(), slice);
// Create a sink for the slice
DepMem* slice_sink = _dg.make_node(NULL);
_dg.make_edge(slice_sink, _dg.tail());
// Now visit each pair of memory ops, creating the edges
for (int j = _nlist.length() - 1; j >= 0 ; j--) {
Node* s1 = _nlist.at(j);
// If no dependency yet, use slice
if (_dg.dep(s1)->in_cnt() == 0) {
_dg.make_edge(slice, s1);
}
SWPointer p1(s1->as_Mem(), this);
bool sink_dependent = true;
for (int k = j - 1; k >= 0; k--) {
Node* s2 = _nlist.at(k);
if (s1->is_Load() && s2->is_Load())
continue;
SWPointer p2(s2->as_Mem(), this);
int cmp = p1.cmp(p2);
if (SuperWordRTDepCheck &&
p1.base() != p2.base() && p1.valid() && p2.valid()) {
// Create a runtime check to disambiguate
OrderedPair pp(p1.base(), p2.base());
_disjoint_ptrs.append_if_missing(pp);
} else if (!SWPointer::not_equal(cmp)) {
// Possibly same address
_dg.make_edge(s1, s2);
sink_dependent = false;
}
}
if (sink_dependent) {
_dg.make_edge(s1, slice_sink);
}
}
#ifndef PRODUCT
if (TraceSuperWord) {
tty->print_cr("\nDependence graph for slice: %d", n->_idx);
for (int q = 0; q < _nlist.length(); q++) {
_dg.print(_nlist.at(q));
}
tty->cr();
}
#endif
_nlist.clear();
}
#ifndef PRODUCT
if (TraceSuperWord) {
tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
for (int r = 0; r < _disjoint_ptrs.length(); r++) {
_disjoint_ptrs.at(r).print();
tty->cr();
}
tty->cr();
}
#endif
}
//---------------------------mem_slice_preds---------------------------
// Return a memory slice (node list) in predecessor order starting at "start"
void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
assert(preds.length() == 0, "start empty");
Node* n = start;
Node* prev = NULL;
while (true) {
assert(in_bb(n), "must be in block");
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
Node* out = n->fast_out(i);
if (out->is_Load()) {
if (in_bb(out)) {
preds.push(out);
}
} else {
// FIXME
if (out->is_MergeMem() && !in_bb(out)) {
// Either unrolling is causing a memory edge not to disappear,
// or need to run igvn.optimize() again before SLP
} else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
// Ditto. Not sure what else to check further.
} else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
// StoreCM has an input edge used as a precedence edge.
// Maybe an issue when oop stores are vectorized.
} else {
assert(out == prev || prev == NULL, "no branches off of store slice");
}
}
}
if (n == stop) break;
preds.push(n);
prev = n;
assert(n->is_Mem(), err_msg_res("unexpected node %s", n->Name()));
n = n->in(MemNode::Memory);
}
}
//------------------------------stmts_can_pack---------------------------
// Can s1 and s2 be in a pack with s1 immediately preceding s2 and
// s1 aligned at "align"
bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
// Do not use superword for non-primitives
BasicType bt1 = velt_basic_type(s1);
BasicType bt2 = velt_basic_type(s2);
if(!is_java_primitive(bt1) || !is_java_primitive(bt2))
return false;
if (Matcher::max_vector_size(bt1) < 2) {
return false; // No vectors for this type
}
if (isomorphic(s1, s2)) {
if (independent(s1, s2)) {
if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
int s1_align = alignment(s1);
int s2_align = alignment(s2);
if (s1_align == top_align || s1_align == align) {
if (s2_align == top_align || s2_align == align + data_size(s1)) {
return true;
}
}
}
}
}
}
return false;
}
//------------------------------exists_at---------------------------
// Does s exist in a pack at position pos?
bool SuperWord::exists_at(Node* s, uint pos) {
for (int i = 0; i < _packset.length(); i++) {
Node_List* p = _packset.at(i);
if (p->at(pos) == s) {
return true;
}
}
return false;
}
//------------------------------are_adjacent_refs---------------------------
// Is s1 immediately before s2 in memory?
bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
if (!s1->is_Mem() || !s2->is_Mem()) return false;
if (!in_bb(s1) || !in_bb(s2)) return false;
// Do not use superword for non-primitives
if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
!is_java_primitive(s2->as_Mem()->memory_type())) {
return false;
}
// FIXME - co_locate_pack fails on Stores in different mem-slices, so
// only pack memops that are in the same alias set until that's fixed.
if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
_phase->C->get_alias_index(s2->as_Mem()->adr_type()))
return false;
SWPointer p1(s1->as_Mem(), this);
SWPointer p2(s2->as_Mem(), this);
if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
return diff == data_size(s1);
}
//------------------------------isomorphic---------------------------
// Are s1 and s2 similar?
bool SuperWord::isomorphic(Node* s1, Node* s2) {
if (s1->Opcode() != s2->Opcode()) return false;
if (s1->req() != s2->req()) return false;
if (s1->in(0) != s2->in(0)) return false;
if (!same_velt_type(s1, s2)) return false;
return true;
}
//------------------------------independent---------------------------
// Is there no data path from s1 to s2 or s2 to s1?
bool SuperWord::independent(Node* s1, Node* s2) {
// assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
int d1 = depth(s1);
int d2 = depth(s2);
if (d1 == d2) return s1 != s2;
Node* deep = d1 > d2 ? s1 : s2;
Node* shallow = d1 > d2 ? s2 : s1;
visited_clear();
return independent_path(shallow, deep);
}
//------------------------------independent_path------------------------------
// Helper for independent
bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
if (dp >= 1000) return false; // stop deep recursion
visited_set(deep);
int shal_depth = depth(shallow);
assert(shal_depth <= depth(deep), "must be");
for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
Node* pred = preds.current();
if (in_bb(pred) && !visited_test(pred)) {
if (shallow == pred) {
return false;
}
if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
return false;
}
}
}
return true;
}
//------------------------------set_alignment---------------------------
void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
set_alignment(s1, align);
if (align == top_align || align == bottom_align) {
set_alignment(s2, align);
} else {
set_alignment(s2, align + data_size(s1));
}
}
//------------------------------data_size---------------------------
int SuperWord::data_size(Node* s) {
int bsize = type2aelembytes(velt_basic_type(s));
assert(bsize != 0, "valid size");
return bsize;
}
//------------------------------extend_packlist---------------------------
// Extend packset by following use->def and def->use links from pack members.
void SuperWord::extend_packlist() {
bool changed;
do {
changed = false;
for (int i = 0; i < _packset.length(); i++) {
Node_List* p = _packset.at(i);
changed |= follow_use_defs(p);
changed |= follow_def_uses(p);
}
} while (changed);
#ifndef PRODUCT
if (TraceSuperWord) {
tty->print_cr("\nAfter extend_packlist");
print_packset();
}
#endif
}
//------------------------------follow_use_defs---------------------------
// Extend the packset by visiting operand definitions of nodes in pack p
bool SuperWord::follow_use_defs(Node_List* p) {
assert(p->size() == 2, "just checking");
Node* s1 = p->at(0);
Node* s2 = p->at(1);
assert(s1->req() == s2->req(), "just checking");
assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
if (s1->is_Load()) return false;
int align = alignment(s1);
bool changed = false;
int start = s1->is_Store() ? MemNode::ValueIn : 1;
int end = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
for (int j = start; j < end; j++) {
Node* t1 = s1->in(j);
Node* t2 = s2->in(j);
if (!in_bb(t1) || !in_bb(t2))
continue;
if (stmts_can_pack(t1, t2, align)) {
if (est_savings(t1, t2) >= 0) {
Node_List* pair = new Node_List();
pair->push(t1);
pair->push(t2);
_packset.append(pair);
set_alignment(t1, t2, align);
changed = true;
}
}
}
return changed;
}
//------------------------------follow_def_uses---------------------------
// Extend the packset by visiting uses of nodes in pack p
bool SuperWord::follow_def_uses(Node_List* p) {
bool changed = false;
Node* s1 = p->at(0);
Node* s2 = p->at(1);
assert(p->size() == 2, "just checking");
assert(s1->req() == s2->req(), "just checking");
assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
if (s1->is_Store()) return false;
int align = alignment(s1);
int savings = -1;
Node* u1 = NULL;
Node* u2 = NULL;
for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
Node* t1 = s1->fast_out(i);
if (!in_bb(t1)) continue;
for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
Node* t2 = s2->fast_out(j);
if (!in_bb(t2)) continue;
if (!opnd_positions_match(s1, t1, s2, t2))
continue;
if (stmts_can_pack(t1, t2, align)) {
int my_savings = est_savings(t1, t2);
if (my_savings > savings) {
savings = my_savings;
u1 = t1;
u2 = t2;
}
}
}
}
if (savings >= 0) {
Node_List* pair = new Node_List();
pair->push(u1);
pair->push(u2);
_packset.append(pair);
set_alignment(u1, u2, align);
changed = true;
}
return changed;
}
//---------------------------opnd_positions_match-------------------------
// Is the use of d1 in u1 at the same operand position as d2 in u2?
bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
uint ct = u1->req();
if (ct != u2->req()) return false;
uint i1 = 0;
uint i2 = 0;
do {
for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
if (i1 != i2) {
if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) {
// Further analysis relies on operands position matching.
u2->swap_edges(i1, i2);
} else {
return false;
}
}
} while (i1 < ct);
return true;
}
//------------------------------est_savings---------------------------
// Estimate the savings from executing s1 and s2 as a pack
int SuperWord::est_savings(Node* s1, Node* s2) {
int save_in = 2 - 1; // 2 operations per instruction in packed form
// inputs
for (uint i = 1; i < s1->req(); i++) {
Node* x1 = s1->in(i);
Node* x2 = s2->in(i);
if (x1 != x2) {
if (are_adjacent_refs(x1, x2)) {
save_in += adjacent_profit(x1, x2);
} else if (!in_packset(x1, x2)) {
save_in -= pack_cost(2);
} else {
save_in += unpack_cost(2);
}
}
}
// uses of result
uint ct = 0;
int save_use = 0;
for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
Node* s1_use = s1->fast_out(i);
for (int j = 0; j < _packset.length(); j++) {
Node_List* p = _packset.at(j);
if (p->at(0) == s1_use) {
for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
Node* s2_use = s2->fast_out(k);
if (p->at(p->size()-1) == s2_use) {
ct++;
if (are_adjacent_refs(s1_use, s2_use)) {
save_use += adjacent_profit(s1_use, s2_use);
}
}
}
}
}
}
if (ct < s1->outcnt()) save_use += unpack_cost(1);
if (ct < s2->outcnt()) save_use += unpack_cost(1);
return MAX2(save_in, save_use);
}
//------------------------------costs---------------------------
int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
int SuperWord::pack_cost(int ct) { return ct; }
int SuperWord::unpack_cost(int ct) { return ct; }
//------------------------------combine_packs---------------------------
// Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
void SuperWord::combine_packs() {
bool changed = true;
// Combine packs regardless max vector size.
while (changed) {
changed = false;
for (int i = 0; i < _packset.length(); i++) {
Node_List* p1 = _packset.at(i);
if (p1 == NULL) continue;
for (int j = 0; j < _packset.length(); j++) {
Node_List* p2 = _packset.at(j);
if (p2 == NULL) continue;
if (i == j) continue;
if (p1->at(p1->size()-1) == p2->at(0)) {
for (uint k = 1; k < p2->size(); k++) {
p1->push(p2->at(k));
}
_packset.at_put(j, NULL);
changed = true;
}
}
}
}
// Split packs which have size greater then max vector size.
for (int i = 0; i < _packset.length(); i++) {
Node_List* p1 = _packset.at(i);
if (p1 != NULL) {
BasicType bt = velt_basic_type(p1->at(0));
uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector
assert(is_power_of_2(max_vlen), "sanity");
uint psize = p1->size();
if (!is_power_of_2(psize)) {
// Skip pack which can't be vector.
// case1: for(...) { a[i] = i; } elements values are different (i+x)
// case2: for(...) { a[i] = b[i+1]; } can't align both, load and store
_packset.at_put(i, NULL);
continue;
}
if (psize > max_vlen) {
Node_List* pack = new Node_List();
for (uint j = 0; j < psize; j++) {
pack->push(p1->at(j));
if (pack->size() >= max_vlen) {
assert(is_power_of_2(pack->size()), "sanity");
_packset.append(pack);
pack = new Node_List();
}
}
_packset.at_put(i, NULL);
}
}
}
// Compress list.
for (int i = _packset.length() - 1; i >= 0; i--) {
Node_List* p1 = _packset.at(i);
if (p1 == NULL) {
_packset.remove_at(i);
}
}
#ifndef PRODUCT
if (TraceSuperWord) {
tty->print_cr("\nAfter combine_packs");
print_packset();
}
#endif
}
//-----------------------------construct_my_pack_map--------------------------
// Construct the map from nodes to packs. Only valid after the
// point where a node is only in one pack (after combine_packs).
void SuperWord::construct_my_pack_map() {
Node_List* rslt = NULL;
for (int i = 0; i < _packset.length(); i++) {
Node_List* p = _packset.at(i);
for (uint j = 0; j < p->size(); j++) {
Node* s = p->at(j);
assert(my_pack(s) == NULL, "only in one pack");
set_my_pack(s, p);
}
}
}
//------------------------------filter_packs---------------------------
// Remove packs that are not implemented or not profitable.
void SuperWord::filter_packs() {
// Remove packs that are not implemented
for (int i = _packset.length() - 1; i >= 0; i--) {
Node_List* pk = _packset.at(i);
bool impl = implemented(pk);
if (!impl) {
#ifndef PRODUCT
if (TraceSuperWord && Verbose) {
tty->print_cr("Unimplemented");
pk->at(0)->dump();
}
#endif
remove_pack_at(i);
}
}
// Remove packs that are not profitable
bool changed;
do {
changed = false;
for (int i = _packset.length() - 1; i >= 0; i--) {
Node_List* pk = _packset.at(i);
bool prof = profitable(pk);
if (!prof) {
#ifndef PRODUCT
if (TraceSuperWord && Verbose) {
tty->print_cr("Unprofitable");
pk->at(0)->dump();
}
#endif
remove_pack_at(i);
changed = true;
}
}
} while (changed);
#ifndef PRODUCT
if (TraceSuperWord) {
tty->print_cr("\nAfter filter_packs");
print_packset();
tty->cr();
}
#endif
}
//------------------------------implemented---------------------------
// Can code be generated for pack p?
bool SuperWord::implemented(Node_List* p) {
Node* p0 = p->at(0);
return VectorNode::implemented(p0->Opcode(), p->size(), velt_basic_type(p0));
}
//------------------------------same_inputs--------------------------
// For pack p, are all idx operands the same?
static bool same_inputs(Node_List* p, int idx) {
Node* p0 = p->at(0);
uint vlen = p->size();
Node* p0_def = p0->in(idx);
for (uint i = 1; i < vlen; i++) {
Node* pi = p->at(i);
Node* pi_def = pi->in(idx);
if (p0_def != pi_def)
return false;
}
return true;
}
//------------------------------profitable---------------------------
// For pack p, are all operands and all uses (with in the block) vector?
bool SuperWord::profitable(Node_List* p) {
Node* p0 = p->at(0);
uint start, end;
VectorNode::vector_operands(p0, &start, &end);
// Return false if some inputs are not vectors or vectors with different
// size or alignment.
// Also, for now, return false if not scalar promotion case when inputs are
// the same. Later, implement PackNode and allow differing, non-vector inputs
// (maybe just the ones from outside the block.)
for (uint i = start; i < end; i++) {
if (!is_vector_use(p0, i))
return false;
}
if (VectorNode::is_shift(p0)) {
// For now, return false if shift count is vector or not scalar promotion
// case (different shift counts) because it is not supported yet.
Node* cnt = p0->in(2);
Node_List* cnt_pk = my_pack(cnt);
if (cnt_pk != NULL)
return false;
if (!same_inputs(p, 2))
return false;
}
if (!p0->is_Store()) {
// For now, return false if not all uses are vector.
// Later, implement ExtractNode and allow non-vector uses (maybe
// just the ones outside the block.)
for (uint i = 0; i < p->size(); i++) {
Node* def = p->at(i);
for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
Node* use = def->fast_out(j);
for (uint k = 0; k < use->req(); k++) {
Node* n = use->in(k);
if (def == n) {
if (!is_vector_use(use, k)) {
return false;
}
}
}
}
}
}
return true;
}
//------------------------------schedule---------------------------
// Adjust the memory graph for the packed operations
void SuperWord::schedule() {
// Co-locate in the memory graph the members of each memory pack
for (int i = 0; i < _packset.length(); i++) {
co_locate_pack(_packset.at(i));
}
}
//-------------------------------remove_and_insert-------------------
// Remove "current" from its current position in the memory graph and insert
// it after the appropriate insertion point (lip or uip).
void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
Node *uip, Unique_Node_List &sched_before) {
Node* my_mem = current->in(MemNode::Memory);
bool sched_up = sched_before.member(current);
// remove current_store from its current position in the memmory graph
for (DUIterator i = current->outs(); current->has_out(i); i++) {
Node* use = current->out(i);
if (use->is_Mem()) {
assert(use->in(MemNode::Memory) == current, "must be");
if (use == prev) { // connect prev to my_mem
_igvn.replace_input_of(use, MemNode::Memory, my_mem);
--i; //deleted this edge; rescan position
} else if (sched_before.member(use)) {
if (!sched_up) { // Will be moved together with current
_igvn.replace_input_of(use, MemNode::Memory, uip);
--i; //deleted this edge; rescan position
}
} else {
if (sched_up) { // Will be moved together with current
_igvn.replace_input_of(use, MemNode::Memory, lip);
--i; //deleted this edge; rescan position
}
}
}
}
Node *insert_pt = sched_up ? uip : lip;
// all uses of insert_pt's memory state should use current's instead
for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
Node* use = insert_pt->out(i);
if (use->is_Mem()) {
assert(use->in(MemNode::Memory) == insert_pt, "must be");
_igvn.replace_input_of(use, MemNode::Memory, current);
--i; //deleted this edge; rescan position
} else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
uint pos; //lip (lower insert point) must be the last one in the memory slice
for (pos=1; pos < use->req(); pos++) {
if (use->in(pos) == insert_pt) break;
}
_igvn.replace_input_of(use, pos, current);
--i;
}
}
//connect current to insert_pt
_igvn.replace_input_of(current, MemNode::Memory, insert_pt);
}
//------------------------------co_locate_pack----------------------------------
// To schedule a store pack, we need to move any sandwiched memory ops either before
// or after the pack, based upon dependence information:
// (1) If any store in the pack depends on the sandwiched memory op, the
// sandwiched memory op must be scheduled BEFORE the pack;
// (2) If a sandwiched memory op depends on any store in the pack, the
// sandwiched memory op must be scheduled AFTER the pack;
// (3) If a sandwiched memory op (say, memA) depends on another sandwiched
// memory op (say memB), memB must be scheduled before memA. So, if memA is
// scheduled before the pack, memB must also be scheduled before the pack;
// (4) If there is no dependence restriction for a sandwiched memory op, we simply
// schedule this store AFTER the pack
// (5) We know there is no dependence cycle, so there in no other case;
// (6) Finally, all memory ops in another single pack should be moved in the same direction.
//
// To schedule a load pack, we use the memory state of either the first or the last load in
// the pack, based on the dependence constraint.
void SuperWord::co_locate_pack(Node_List* pk) {
if (pk->at(0)->is_Store()) {
MemNode* first = executed_first(pk)->as_Mem();
MemNode* last = executed_last(pk)->as_Mem();
Unique_Node_List schedule_before_pack;
Unique_Node_List memops;
MemNode* current = last->in(MemNode::Memory)->as_Mem();
MemNode* previous = last;
while (true) {
assert(in_bb(current), "stay in block");
memops.push(previous);
for (DUIterator i = current->outs(); current->has_out(i); i++) {
Node* use = current->out(i);
if (use->is_Mem() && use != previous)
memops.push(use);
}
if (current == first) break;
previous = current;
current = current->in(MemNode::Memory)->as_Mem();
}
// determine which memory operations should be scheduled before the pack
for (uint i = 1; i < memops.size(); i++) {
Node *s1 = memops.at(i);
if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
for (uint j = 0; j< i; j++) {
Node *s2 = memops.at(j);
if (!independent(s1, s2)) {
if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
schedule_before_pack.push(s1); // s1 must be scheduled before
Node_List* mem_pk = my_pack(s1);
if (mem_pk != NULL) {
for (uint ii = 0; ii < mem_pk->size(); ii++) {
Node* s = mem_pk->at(ii); // follow partner
if (memops.member(s) && !schedule_before_pack.member(s))
schedule_before_pack.push(s);
}
}
break;
}
}
}
}
}
Node* upper_insert_pt = first->in(MemNode::Memory);
// Following code moves loads connected to upper_insert_pt below aliased stores.
// Collect such loads here and reconnect them back to upper_insert_pt later.
memops.clear();
for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) {
Node* use = upper_insert_pt->out(i);
if (use->is_Mem() && !use->is_Store()) {
memops.push(use);
}
}
MemNode* lower_insert_pt = last;
previous = last; //previous store in pk
current = last->in(MemNode::Memory)->as_Mem();
// start scheduling from "last" to "first"
while (true) {
assert(in_bb(current), "stay in block");
assert(in_pack(previous, pk), "previous stays in pack");
Node* my_mem = current->in(MemNode::Memory);
if (in_pack(current, pk)) {
// Forward users of my memory state (except "previous) to my input memory state
for (DUIterator i = current->outs(); current->has_out(i); i++) {
Node* use = current->out(i);
if (use->is_Mem() && use != previous) {
assert(use->in(MemNode::Memory) == current, "must be");
if (schedule_before_pack.member(use)) {
_igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt);
} else {
_igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt);
}
--i; // deleted this edge; rescan position
}
}
previous = current;
} else { // !in_pack(current, pk) ==> a sandwiched store
remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
}
if (current == first) break;
current = my_mem->as_Mem();
} // end while
// Reconnect loads back to upper_insert_pt.
for (uint i = 0; i < memops.size(); i++) {
Node *ld = memops.at(i);
if (ld->in(MemNode::Memory) != upper_insert_pt) {
_igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt);
}
}
} else if (pk->at(0)->is_Load()) { //load
// all loads in the pack should have the same memory state. By default,
// we use the memory state of the last load. However, if any load could
// not be moved down due to the dependence constraint, we use the memory
// state of the first load.
Node* last_mem = executed_last(pk)->in(MemNode::Memory);
Node* first_mem = executed_first(pk)->in(MemNode::Memory);
bool schedule_last = true;
for (uint i = 0; i < pk->size(); i++) {
Node* ld = pk->at(i);
for (Node* current = last_mem; current != ld->in(MemNode::Memory);
current=current->in(MemNode::Memory)) {
assert(current != first_mem, "corrupted memory graph");
if(current->is_Mem() && !independent(current, ld)){
schedule_last = false; // a later store depends on this load
break;
}
}
}
Node* mem_input = schedule_last ? last_mem : first_mem;
_igvn.hash_delete(mem_input);
// Give each load the same memory state
for (uint i = 0; i < pk->size(); i++) {
LoadNode* ld = pk->at(i)->as_Load();
_igvn.replace_input_of(ld, MemNode::Memory, mem_input);
}
}
}
//------------------------------output---------------------------
// Convert packs into vector node operations
void SuperWord::output() {
if (_packset.length() == 0) return;
#ifndef PRODUCT
if (TraceLoopOpts) {
tty->print("SuperWord ");
lpt()->dump_head();
}
#endif
// MUST ENSURE main loop's initial value is properly aligned:
// (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
align_initial_loop_index(align_to_ref());
// Insert extract (unpack) operations for scalar uses
for (int i = 0; i < _packset.length(); i++) {
insert_extracts(_packset.at(i));
}
Compile* C = _phase->C;
uint max_vlen_in_bytes = 0;
for (int i = 0; i < _block.length(); i++) {
Node* n = _block.at(i);
Node_List* p = my_pack(n);
if (p && n == executed_last(p)) {
uint vlen = p->size();
uint vlen_in_bytes = 0;
Node* vn = NULL;
Node* low_adr = p->at(0);
Node* first = executed_first(p);
int opc = n->Opcode();
if (n->is_Load()) {
Node* ctl = n->in(MemNode::Control);
Node* mem = first->in(MemNode::Memory);
SWPointer p1(n->as_Mem(), this);
// Identify the memory dependency for the new loadVector node by
// walking up through memory chain.
// This is done to give flexibility to the new loadVector node so that
// it can move above independent storeVector nodes.
while (mem->is_StoreVector()) {
SWPointer p2(mem->as_Mem(), this);
int cmp = p1.cmp(p2);
if (SWPointer::not_equal(cmp) || !SWPointer::comparable(cmp)) {
mem = mem->in(MemNode::Memory);
} else {
break; // dependent memory
}
}
Node* adr = low_adr->in(MemNode::Address);
const TypePtr* atyp = n->adr_type();
vn = LoadVectorNode::make(opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n));
vlen_in_bytes = vn->as_LoadVector()->memory_size();
} else if (n->is_Store()) {
// Promote value to be stored to vector
Node* val = vector_opd(p, MemNode::ValueIn);
Node* ctl = n->in(MemNode::Control);
Node* mem = first->in(MemNode::Memory);
Node* adr = low_adr->in(MemNode::Address);
const TypePtr* atyp = n->adr_type();
vn = StoreVectorNode::make(opc, ctl, mem, adr, atyp, val, vlen);
vlen_in_bytes = vn->as_StoreVector()->memory_size();
} else if (n->req() == 3) {
// Promote operands to vector
Node* in1 = vector_opd(p, 1);
Node* in2 = vector_opd(p, 2);
if (VectorNode::is_invariant_vector(in1) && (n->is_Add() || n->is_Mul())) {
// Move invariant vector input into second position to avoid register spilling.
Node* tmp = in1;
in1 = in2;
in2 = tmp;
}
vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n));
vlen_in_bytes = vn->as_Vector()->length_in_bytes();
} else {
ShouldNotReachHere();
}
assert(vn != NULL, "sanity");
_igvn.register_new_node_with_optimizer(vn);
_phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
for (uint j = 0; j < p->size(); j++) {
Node* pm = p->at(j);
_igvn.replace_node(pm, vn);
}
_igvn._worklist.push(vn);
if (vlen_in_bytes > max_vlen_in_bytes) {
max_vlen_in_bytes = vlen_in_bytes;
}
#ifdef ASSERT
if (TraceNewVectors) {
tty->print("new Vector node: ");
vn->dump();
}
#endif
}
}
C->set_max_vector_size(max_vlen_in_bytes);
}
//------------------------------vector_opd---------------------------
// Create a vector operand for the nodes in pack p for operand: in(opd_idx)
Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
Node* p0 = p->at(0);
uint vlen = p->size();
Node* opd = p0->in(opd_idx);
if (same_inputs(p, opd_idx)) {
if (opd->is_Vector() || opd->is_LoadVector()) {
assert(((opd_idx != 2) || !VectorNode::is_shift(p0)), "shift's count can't be vector");
return opd; // input is matching vector
}
if ((opd_idx == 2) && VectorNode::is_shift(p0)) {
Compile* C = _phase->C;
Node* cnt = opd;
// Vector instructions do not mask shift count, do it here.
juint mask = (p0->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
const TypeInt* t = opd->find_int_type();
if (t != NULL && t->is_con()) {
juint shift = t->get_con();
if (shift > mask) { // Unsigned cmp
cnt = ConNode::make(TypeInt::make(shift & mask));
}
} else {
if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
cnt = ConNode::make(TypeInt::make(mask));
_igvn.register_new_node_with_optimizer(cnt);
cnt = new AndINode(opd, cnt);
_igvn.register_new_node_with_optimizer(cnt);
_phase->set_ctrl(cnt, _phase->get_ctrl(opd));
}
assert(opd->bottom_type()->isa_int(), "int type only");
// Move non constant shift count into vector register.
cnt = VectorNode::shift_count(p0, cnt, vlen, velt_basic_type(p0));
}
if (cnt != opd) {
_igvn.register_new_node_with_optimizer(cnt);
_phase->set_ctrl(cnt, _phase->get_ctrl(opd));
}
return cnt;
}
assert(!opd->is_StoreVector(), "such vector is not expected here");
// Convert scalar input to vector with the same number of elements as
// p0's vector. Use p0's type because size of operand's container in
// vector should match p0's size regardless operand's size.
const Type* p0_t = velt_type(p0);
VectorNode* vn = VectorNode::scalar2vector(opd, vlen, p0_t);
_igvn.register_new_node_with_optimizer(vn);
_phase->set_ctrl(vn, _phase->get_ctrl(opd));
#ifdef ASSERT
if (TraceNewVectors) {
tty->print("new Vector node: ");
vn->dump();
}
#endif
return vn;
}
// Insert pack operation
BasicType bt = velt_basic_type(p0);
PackNode* pk = PackNode::make(opd, vlen, bt);
DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); )
for (uint i = 1; i < vlen; i++) {
Node* pi = p->at(i);
Node* in = pi->in(opd_idx);
assert(my_pack(in) == NULL, "Should already have been unpacked");
assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
pk->add_opd(in);
}
_igvn.register_new_node_with_optimizer(pk);
_phase->set_ctrl(pk, _phase->get_ctrl(opd));
#ifdef ASSERT
if (TraceNewVectors) {
tty->print("new Vector node: ");
pk->dump();
}
#endif
return pk;
}
//------------------------------insert_extracts---------------------------
// If a use of pack p is not a vector use, then replace the
// use with an extract operation.
void SuperWord::insert_extracts(Node_List* p) {
if (p->at(0)->is_Store()) return;
assert(_n_idx_list.is_empty(), "empty (node,index) list");
// Inspect each use of each pack member. For each use that is
// not a vector use, replace the use with an extract operation.
for (uint i = 0; i < p->size(); i++) {
Node* def = p->at(i);
for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
Node* use = def->fast_out(j);
for (uint k = 0; k < use->req(); k++) {
Node* n = use->in(k);
if (def == n) {
if (!is_vector_use(use, k)) {
_n_idx_list.push(use, k);
}
}
}
}
}
while (_n_idx_list.is_nonempty()) {
Node* use = _n_idx_list.node();
int idx = _n_idx_list.index();
_n_idx_list.pop();
Node* def = use->in(idx);
// Insert extract operation
_igvn.hash_delete(def);
int def_pos = alignment(def) / data_size(def);
Node* ex = ExtractNode::make(def, def_pos, velt_basic_type(def));
_igvn.register_new_node_with_optimizer(ex);
_phase->set_ctrl(ex, _phase->get_ctrl(def));
_igvn.replace_input_of(use, idx, ex);
_igvn._worklist.push(def);
bb_insert_after(ex, bb_idx(def));
set_velt_type(ex, velt_type(def));
}
}
//------------------------------is_vector_use---------------------------
// Is use->in(u_idx) a vector use?
bool SuperWord::is_vector_use(Node* use, int u_idx) {
Node_List* u_pk = my_pack(use);
if (u_pk == NULL) return false;
Node* def = use->in(u_idx);
Node_List* d_pk = my_pack(def);
if (d_pk == NULL) {
// check for scalar promotion
Node* n = u_pk->at(0)->in(u_idx);
for (uint i = 1; i < u_pk->size(); i++) {
if (u_pk->at(i)->in(u_idx) != n) return false;
}
return true;
}
if (u_pk->size() != d_pk->size())
return false;
for (uint i = 0; i < u_pk->size(); i++) {
Node* ui = u_pk->at(i);
Node* di = d_pk->at(i);
if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
return false;
}
return true;
}
//------------------------------construct_bb---------------------------
// Construct reverse postorder list of block members
bool SuperWord::construct_bb() {
Node* entry = bb();
assert(_stk.length() == 0, "stk is empty");
assert(_block.length() == 0, "block is empty");
assert(_data_entry.length() == 0, "data_entry is empty");
assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
// Find non-control nodes with no inputs from within block,
// create a temporary map from node _idx to bb_idx for use
// by the visited and post_visited sets,
// and count number of nodes in block.
int bb_ct = 0;
for (uint i = 0; i < lpt()->_body.size(); i++ ) {
Node *n = lpt()->_body.at(i);
set_bb_idx(n, i); // Create a temporary map
if (in_bb(n)) {
if (n->is_LoadStore() || n->is_MergeMem() ||
(n->is_Proj() && !n->as_Proj()->is_CFG())) {
// Bailout if the loop has LoadStore, MergeMem or data Proj
// nodes. Superword optimization does not work with them.
return false;
}
bb_ct++;
if (!n->is_CFG()) {
bool found = false;
for (uint j = 0; j < n->req(); j++) {
Node* def = n->in(j);
if (def && in_bb(def)) {
found = true;
break;
}
}
if (!found) {
assert(n != entry, "can't be entry");
_data_entry.push(n);
}
}
}
}
// Find memory slices (head and tail)
for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
Node *n = lp()->fast_out(i);
if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
Node* n_tail = n->in(LoopNode::LoopBackControl);
if (n_tail != n->in(LoopNode::EntryControl)) {
if (!n_tail->is_Mem()) {
assert(n_tail->is_Mem(), err_msg_res("unexpected node for memory slice: %s", n_tail->Name()));
return false; // Bailout
}
_mem_slice_head.push(n);
_mem_slice_tail.push(n_tail);
}
}
}
// Create an RPO list of nodes in block
visited_clear();
post_visited_clear();
// Push all non-control nodes with no inputs from within block, then control entry
for (int j = 0; j < _data_entry.length(); j++) {
Node* n = _data_entry.at(j);
visited_set(n);
_stk.push(n);
}
visited_set(entry);
_stk.push(entry);
// Do a depth first walk over out edges
int rpo_idx = bb_ct - 1;
int size;
while ((size = _stk.length()) > 0) {
Node* n = _stk.top(); // Leave node on stack
if (!visited_test_set(n)) {
// forward arc in graph
} else if (!post_visited_test(n)) {
// cross or back arc
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
Node *use = n->fast_out(i);
if (in_bb(use) && !visited_test(use) &&
// Don't go around backedge
(!use->is_Phi() || n == entry)) {
_stk.push(use);
}
}
if (_stk.length() == size) {
// There were no additional uses, post visit node now
_stk.pop(); // Remove node from stack
assert(rpo_idx >= 0, "");
_block.at_put_grow(rpo_idx, n);
rpo_idx--;
post_visited_set(n);
assert(rpo_idx >= 0 || _stk.is_empty(), "");
}
} else {
_stk.pop(); // Remove post-visited node from stack
}
}
// Create real map of block indices for nodes
for (int j = 0; j < _block.length(); j++) {
Node* n = _block.at(j);
set_bb_idx(n, j);
}
initialize_bb(); // Ensure extra info is allocated.
#ifndef PRODUCT
if (TraceSuperWord) {
print_bb();
tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
for (int m = 0; m < _data_entry.length(); m++) {
tty->print("%3d ", m);
_data_entry.at(m)->dump();
}
tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
for (int m = 0; m < _mem_slice_head.length(); m++) {
tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
tty->print(" "); _mem_slice_tail.at(m)->dump();
}
}
#endif
assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
return (_mem_slice_head.length() > 0) || (_data_entry.length() > 0);
}
//------------------------------initialize_bb---------------------------
// Initialize per node info
void SuperWord::initialize_bb() {
Node* last = _block.at(_block.length() - 1);
grow_node_info(bb_idx(last));
}
//------------------------------bb_insert_after---------------------------
// Insert n into block after pos
void SuperWord::bb_insert_after(Node* n, int pos) {
int n_pos = pos + 1;
// Make room
for (int i = _block.length() - 1; i >= n_pos; i--) {
_block.at_put_grow(i+1, _block.at(i));
}
for (int j = _node_info.length() - 1; j >= n_pos; j--) {
_node_info.at_put_grow(j+1, _node_info.at(j));
}
// Set value
_block.at_put_grow(n_pos, n);
_node_info.at_put_grow(n_pos, SWNodeInfo::initial);
// Adjust map from node->_idx to _block index
for (int i = n_pos; i < _block.length(); i++) {
set_bb_idx(_block.at(i), i);
}
}
//------------------------------compute_max_depth---------------------------
// Compute max depth for expressions from beginning of block
// Use to prune search paths during test for independence.
void SuperWord::compute_max_depth() {
int ct = 0;
bool again;
do {
again = false;
for (int i = 0; i < _block.length(); i++) {
Node* n = _block.at(i);
if (!n->is_Phi()) {
int d_orig = depth(n);
int d_in = 0;
for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
Node* pred = preds.current();
if (in_bb(pred)) {
d_in = MAX2(d_in, depth(pred));
}
}
if (d_in + 1 != d_orig) {
set_depth(n, d_in + 1);
again = true;
}
}
}
ct++;
} while (again);
#ifndef PRODUCT
if (TraceSuperWord && Verbose)
tty->print_cr("compute_max_depth iterated: %d times", ct);
#endif
}
//-------------------------compute_vector_element_type-----------------------
// Compute necessary vector element type for expressions
// This propagates backwards a narrower integer type when the
// upper bits of the value are not needed.
// Example: char a,b,c; a = b + c;
// Normally the type of the add is integer, but for packed character
// operations the type of the add needs to be char.
void SuperWord::compute_vector_element_type() {
#ifndef PRODUCT
if (TraceSuperWord && Verbose)
tty->print_cr("\ncompute_velt_type:");
#endif
// Initial type
for (int i = 0; i < _block.length(); i++) {
Node* n = _block.at(i);
set_velt_type(n, container_type(n));
}
// Propagate integer narrowed type backwards through operations
// that don't depend on higher order bits
for (int i = _block.length() - 1; i >= 0; i--) {
Node* n = _block.at(i);
// Only integer types need be examined
const Type* vtn = velt_type(n);
if (vtn->basic_type() == T_INT) {
uint start, end;
VectorNode::vector_operands(n, &start, &end);
for (uint j = start; j < end; j++) {
Node* in = n->in(j);
// Don't propagate through a memory
if (!in->is_Mem() && in_bb(in) && velt_type(in)->basic_type() == T_INT &&
data_size(n) < data_size(in)) {
bool same_type = true;
for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
Node *use = in->fast_out(k);
if (!in_bb(use) || !same_velt_type(use, n)) {
same_type = false;
break;
}
}
if (same_type) {
// For right shifts of small integer types (bool, byte, char, short)
// we need precise information about sign-ness. Only Load nodes have
// this information because Store nodes are the same for signed and
// unsigned values. And any arithmetic operation after a load may
// expand a value to signed Int so such right shifts can't be used
// because vector elements do not have upper bits of Int.
const Type* vt = vtn;
if (VectorNode::is_shift(in)) {
Node* load = in->in(1);
if (load->is_Load() && in_bb(load) && (velt_type(load)->basic_type() == T_INT)) {
vt = velt_type(load);
} else if (in->Opcode() != Op_LShiftI) {
// Widen type to Int to avoid creation of right shift vector
// (align + data_size(s1) check in stmts_can_pack() will fail).
// Note, left shifts work regardless type.
vt = TypeInt::INT;
}
}
set_velt_type(in, vt);
}
}
}
}
}
#ifndef PRODUCT
if (TraceSuperWord && Verbose) {
for (int i = 0; i < _block.length(); i++) {
Node* n = _block.at(i);
velt_type(n)->dump();
tty->print("\t");
n->dump();
}
}
#endif
}
//------------------------------memory_alignment---------------------------
// Alignment within a vector memory reference
int SuperWord::memory_alignment(MemNode* s, int iv_adjust) {
SWPointer p(s, this);
if (!p.valid()) {
return bottom_align;
}
int vw = vector_width_in_bytes(s);
if (vw < 2) {
return bottom_align; // No vectors for this type
}
int offset = p.offset_in_bytes();
offset += iv_adjust*p.memory_size();
int off_rem = offset % vw;
int off_mod = off_rem >= 0 ? off_rem : off_rem + vw;
return off_mod;
}
//---------------------------container_type---------------------------
// Smallest type containing range of values
const Type* SuperWord::container_type(Node* n) {
if (n->is_Mem()) {
BasicType bt = n->as_Mem()->memory_type();
if (n->is_Store() && (bt == T_CHAR)) {
// Use T_SHORT type instead of T_CHAR for stored values because any
// preceding arithmetic operation extends values to signed Int.
bt = T_SHORT;
}
if (n->Opcode() == Op_LoadUB) {
// Adjust type for unsigned byte loads, it is important for right shifts.
// T_BOOLEAN is used because there is no basic type representing type
// TypeInt::UBYTE. Use of T_BOOLEAN for vectors is fine because only
// size (one byte) and sign is important.
bt = T_BOOLEAN;
}
return Type::get_const_basic_type(bt);
}
const Type* t = _igvn.type(n);
if (t->basic_type() == T_INT) {
// A narrow type of arithmetic operations will be determined by
// propagating the type of memory operations.
return TypeInt::INT;
}
return t;
}
bool SuperWord::same_velt_type(Node* n1, Node* n2) {
const Type* vt1 = velt_type(n1);
const Type* vt2 = velt_type(n2);
if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) {
// Compare vectors element sizes for integer types.
return data_size(n1) == data_size(n2);
}
return vt1 == vt2;
}
//------------------------------in_packset---------------------------
// Are s1 and s2 in a pack pair and ordered as s1,s2?
bool SuperWord::in_packset(Node* s1, Node* s2) {
for (int i = 0; i < _packset.length(); i++) {
Node_List* p = _packset.at(i);
assert(p->size() == 2, "must be");
if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
return true;
}
}
return false;
}
//------------------------------in_pack---------------------------
// Is s in pack p?
Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
for (uint i = 0; i < p->size(); i++) {
if (p->at(i) == s) {
return p;
}
}
return NULL;
}
//------------------------------remove_pack_at---------------------------
// Remove the pack at position pos in the packset
void SuperWord::remove_pack_at(int pos) {
Node_List* p = _packset.at(pos);
for (uint i = 0; i < p->size(); i++) {
Node* s = p->at(i);
set_my_pack(s, NULL);
}
_packset.remove_at(pos);
}
//------------------------------executed_first---------------------------
// Return the node executed first in pack p. Uses the RPO block list
// to determine order.
Node* SuperWord::executed_first(Node_List* p) {
Node* n = p->at(0);
int n_rpo = bb_idx(n);
for (uint i = 1; i < p->size(); i++) {
Node* s = p->at(i);
int s_rpo = bb_idx(s);
if (s_rpo < n_rpo) {
n = s;
n_rpo = s_rpo;
}
}
return n;
}
//------------------------------executed_last---------------------------
// Return the node executed last in pack p.
Node* SuperWord::executed_last(Node_List* p) {
Node* n = p->at(0);
int n_rpo = bb_idx(n);
for (uint i = 1; i < p->size(); i++) {
Node* s = p->at(i);
int s_rpo = bb_idx(s);
if (s_rpo > n_rpo) {
n = s;
n_rpo = s_rpo;
}
}
return n;
}
//----------------------------align_initial_loop_index---------------------------
// Adjust pre-loop limit so that in main loop, a load/store reference
// to align_to_ref will be a position zero in the vector.
// (iv + k) mod vector_align == 0
void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
CountedLoopNode *main_head = lp()->as_CountedLoop();
assert(main_head->is_main_loop(), "");
CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
assert(pre_end != NULL, "we must have a correct pre-loop");
Node *pre_opaq1 = pre_end->limit();
assert(pre_opaq1->Opcode() == Op_Opaque1, "");
Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
Node *lim0 = pre_opaq->in(1);
// Where we put new limit calculations
Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
// Ensure the original loop limit is available from the
// pre-loop Opaque1 node.
Node *orig_limit = pre_opaq->original_loop_limit();
assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
SWPointer align_to_ref_p(align_to_ref, this);
assert(align_to_ref_p.valid(), "sanity");
// Given:
// lim0 == original pre loop limit
// V == v_align (power of 2)
// invar == extra invariant piece of the address expression
// e == offset [ +/- invar ]
//
// When reassociating expressions involving '%' the basic rules are:
// (a - b) % k == 0 => a % k == b % k
// and:
// (a + b) % k == 0 => a % k == (k - b) % k
//
// For stride > 0 && scale > 0,
// Derive the new pre-loop limit "lim" such that the two constraints:
// (1) lim = lim0 + N (where N is some positive integer < V)
// (2) (e + lim) % V == 0
// are true.
//
// Substituting (1) into (2),
// (e + lim0 + N) % V == 0
// solve for N:
// N = (V - (e + lim0)) % V
// substitute back into (1), so that new limit
// lim = lim0 + (V - (e + lim0)) % V
//
// For stride > 0 && scale < 0
// Constraints:
// lim = lim0 + N
// (e - lim) % V == 0
// Solving for lim:
// (e - lim0 - N) % V == 0
// N = (e - lim0) % V
// lim = lim0 + (e - lim0) % V
//
// For stride < 0 && scale > 0
// Constraints:
// lim = lim0 - N
// (e + lim) % V == 0
// Solving for lim:
// (e + lim0 - N) % V == 0
// N = (e + lim0) % V
// lim = lim0 - (e + lim0) % V
//
// For stride < 0 && scale < 0
// Constraints:
// lim = lim0 - N
// (e - lim) % V == 0
// Solving for lim:
// (e - lim0 + N) % V == 0
// N = (V - (e - lim0)) % V
// lim = lim0 - (V - (e - lim0)) % V
int vw = vector_width_in_bytes(align_to_ref);
int stride = iv_stride();
int scale = align_to_ref_p.scale_in_bytes();
int elt_size = align_to_ref_p.memory_size();
int v_align = vw / elt_size;
assert(v_align > 1, "sanity");
int offset = align_to_ref_p.offset_in_bytes() / elt_size;
Node *offsn = _igvn.intcon(offset);
Node *e = offsn;
if (align_to_ref_p.invar() != NULL) {
// incorporate any extra invariant piece producing (offset +/- invar) >>> log2(elt)
Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
Node* aref = new URShiftINode(align_to_ref_p.invar(), log2_elt);
_igvn.register_new_node_with_optimizer(aref);
_phase->set_ctrl(aref, pre_ctrl);
if (align_to_ref_p.negate_invar()) {
e = new SubINode(e, aref);
} else {
e = new AddINode(e, aref);
}
_igvn.register_new_node_with_optimizer(e);
_phase->set_ctrl(e, pre_ctrl);
}
if (vw > ObjectAlignmentInBytes) {
// incorporate base e +/- base && Mask >>> log2(elt)
Node* xbase = new CastP2XNode(NULL, align_to_ref_p.base());
_igvn.register_new_node_with_optimizer(xbase);
#ifdef _LP64
xbase = new ConvL2INode(xbase);
_igvn.register_new_node_with_optimizer(xbase);
#endif
Node* mask = _igvn.intcon(vw-1);
Node* masked_xbase = new AndINode(xbase, mask);
_igvn.register_new_node_with_optimizer(masked_xbase);
Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
Node* bref = new URShiftINode(masked_xbase, log2_elt);
_igvn.register_new_node_with_optimizer(bref);
_phase->set_ctrl(bref, pre_ctrl);
e = new AddINode(e, bref);
_igvn.register_new_node_with_optimizer(e);
_phase->set_ctrl(e, pre_ctrl);
}
// compute e +/- lim0
if (scale < 0) {
e = new SubINode(e, lim0);
} else {
e = new AddINode(e, lim0);
}
_igvn.register_new_node_with_optimizer(e);
_phase->set_ctrl(e, pre_ctrl);
if (stride * scale > 0) {
// compute V - (e +/- lim0)
Node* va = _igvn.intcon(v_align);
e = new SubINode(va, e);
_igvn.register_new_node_with_optimizer(e);
_phase->set_ctrl(e, pre_ctrl);
}
// compute N = (exp) % V
Node* va_msk = _igvn.intcon(v_align - 1);
Node* N = new AndINode(e, va_msk);
_igvn.register_new_node_with_optimizer(N);
_phase->set_ctrl(N, pre_ctrl);
// substitute back into (1), so that new limit
// lim = lim0 + N
Node* lim;
if (stride < 0) {
lim = new SubINode(lim0, N);
} else {
lim = new AddINode(lim0, N);
}
_igvn.register_new_node_with_optimizer(lim);
_phase->set_ctrl(lim, pre_ctrl);
Node* constrained =
(stride > 0) ? (Node*) new MinINode(lim, orig_limit)
: (Node*) new MaxINode(lim, orig_limit);
_igvn.register_new_node_with_optimizer(constrained);
_phase->set_ctrl(constrained, pre_ctrl);
_igvn.hash_delete(pre_opaq);
pre_opaq->set_req(1, constrained);
}
//----------------------------get_pre_loop_end---------------------------
// Find pre loop end from main loop. Returns null if none.
CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode *cl) {
Node *ctrl = cl->in(LoopNode::EntryControl);
if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL;
Node *iffm = ctrl->in(0);
if (!iffm->is_If()) return NULL;
Node *p_f = iffm->in(0);
if (!p_f->is_IfFalse()) return NULL;
if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
CountedLoopNode* loop_node = pre_end->loopnode();
if (loop_node == NULL || !loop_node->is_pre_loop()) return NULL;
return pre_end;
}
//------------------------------init---------------------------
void SuperWord::init() {
_dg.init();
_packset.clear();
_disjoint_ptrs.clear();
_block.clear();
_data_entry.clear();
_mem_slice_head.clear();
_mem_slice_tail.clear();
_node_info.clear();
_align_to_ref = NULL;
_lpt = NULL;
_lp = NULL;
_bb = NULL;
_iv = NULL;
}
//------------------------------print_packset---------------------------
void SuperWord::print_packset() {
#ifndef PRODUCT
tty->print_cr("packset");
for (int i = 0; i < _packset.length(); i++) {
tty->print_cr("Pack: %d", i);
Node_List* p = _packset.at(i);
print_pack(p);
}
#endif
}
//------------------------------print_pack---------------------------
void SuperWord::print_pack(Node_List* p) {
for (uint i = 0; i < p->size(); i++) {
print_stmt(p->at(i));
}
}
//------------------------------print_bb---------------------------
void SuperWord::print_bb() {
#ifndef PRODUCT
tty->print_cr("\nBlock");
for (int i = 0; i < _block.length(); i++) {
Node* n = _block.at(i);
tty->print("%d ", i);
if (n) {
n->dump();
}
}
#endif
}
//------------------------------print_stmt---------------------------
void SuperWord::print_stmt(Node* s) {
#ifndef PRODUCT
tty->print(" align: %d \t", alignment(s));
s->dump();
#endif
}
//------------------------------blank---------------------------
char* SuperWord::blank(uint depth) {
static char blanks[101];
assert(depth < 101, "too deep");
for (uint i = 0; i < depth; i++) blanks[i] = ' ';
blanks[depth] = '\0';
return blanks;
}
//==============================SWPointer===========================
//----------------------------SWPointer------------------------
SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
_mem(mem), _slp(slp), _base(NULL), _adr(NULL),
_scale(0), _offset(0), _invar(NULL), _negate_invar(false) {
Node* adr = mem->in(MemNode::Address);
if (!adr->is_AddP()) {
assert(!valid(), "too complex");
return;
}
// Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
Node* base = adr->in(AddPNode::Base);
//unsafe reference could not be aligned appropriately without runtime checking
if (base == NULL || base->bottom_type() == Type::TOP) {
assert(!valid(), "unsafe access");
return;
}
for (int i = 0; i < 3; i++) {
if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
assert(!valid(), "too complex");
return;
}
adr = adr->in(AddPNode::Address);
if (base == adr || !adr->is_AddP()) {
break; // stop looking at addp's
}
}
_base = base;
_adr = adr;
assert(valid(), "Usable");
}
// Following is used to create a temporary object during
// the pattern match of an address expression.
SWPointer::SWPointer(SWPointer* p) :
_mem(p->_mem), _slp(p->_slp), _base(NULL), _adr(NULL),
_scale(0), _offset(0), _invar(NULL), _negate_invar(false) {}
//------------------------scaled_iv_plus_offset--------------------
// Match: k*iv + offset
// where: k is a constant that maybe zero, and
// offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
bool SWPointer::scaled_iv_plus_offset(Node* n) {
if (scaled_iv(n)) {
return true;
}
if (offset_plus_k(n)) {
return true;
}
int opc = n->Opcode();
if (opc == Op_AddI) {
if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
return true;
}
if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
return true;
}
} else if (opc == Op_SubI) {
if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
return true;
}
if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
_scale *= -1;
return true;
}
}
return false;
}
//----------------------------scaled_iv------------------------
// Match: k*iv where k is a constant that's not zero
bool SWPointer::scaled_iv(Node* n) {
if (_scale != 0) {
return false; // already found a scale
}
if (n == iv()) {
_scale = 1;
return true;
}
int opc = n->Opcode();
if (opc == Op_MulI) {
if (n->in(1) == iv() && n->in(2)->is_Con()) {
_scale = n->in(2)->get_int();
return true;
} else if (n->in(2) == iv() && n->in(1)->is_Con()) {
_scale = n->in(1)->get_int();
return true;
}
} else if (opc == Op_LShiftI) {
if (n->in(1) == iv() && n->in(2)->is_Con()) {
_scale = 1 << n->in(2)->get_int();
return true;
}
} else if (opc == Op_ConvI2L) {
if (scaled_iv_plus_offset(n->in(1))) {
return true;
}
} else if (opc == Op_LShiftL) {
if (!has_iv() && _invar == NULL) {
// Need to preserve the current _offset value, so
// create a temporary object for this expression subtree.
// Hacky, so should re-engineer the address pattern match.
SWPointer tmp(this);
if (tmp.scaled_iv_plus_offset(n->in(1))) {
if (tmp._invar == NULL) {
int mult = 1 << n->in(2)->get_int();
_scale = tmp._scale * mult;
_offset += tmp._offset * mult;
return true;
}
}
}
}
return false;
}
//----------------------------offset_plus_k------------------------
// Match: offset is (k [+/- invariant])
// where k maybe zero and invariant is optional, but not both.
bool SWPointer::offset_plus_k(Node* n, bool negate) {
int opc = n->Opcode();
if (opc == Op_ConI) {
_offset += negate ? -(n->get_int()) : n->get_int();
return true;
} else if (opc == Op_ConL) {
// Okay if value fits into an int
const TypeLong* t = n->find_long_type();
if (t->higher_equal(TypeLong::INT)) {
jlong loff = n->get_long();
jint off = (jint)loff;
_offset += negate ? -off : loff;
return true;
}
return false;
}
if (_invar != NULL) return false; // already have an invariant
if (opc == Op_AddI) {
if (n->in(2)->is_Con() && invariant(n->in(1))) {
_negate_invar = negate;
_invar = n->in(1);
_offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
return true;
} else if (n->in(1)->is_Con() && invariant(n->in(2))) {
_offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
_negate_invar = negate;
_invar = n->in(2);
return true;
}
}
if (opc == Op_SubI) {
if (n->in(2)->is_Con() && invariant(n->in(1))) {
_negate_invar = negate;
_invar = n->in(1);
_offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
return true;
} else if (n->in(1)->is_Con() && invariant(n->in(2))) {
_offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
_negate_invar = !negate;
_invar = n->in(2);
return true;
}
}
if (invariant(n)) {
_negate_invar = negate;
_invar = n;
return true;
}
return false;
}
//----------------------------print------------------------
void SWPointer::print() {
#ifndef PRODUCT
tty->print("base: %d adr: %d scale: %d offset: %d invar: %c%d\n",
_base != NULL ? _base->_idx : 0,
_adr != NULL ? _adr->_idx : 0,
_scale, _offset,
_negate_invar?'-':'+',
_invar != NULL ? _invar->_idx : 0);
#endif
}
// ========================= OrderedPair =====================
const OrderedPair OrderedPair::initial;
// ========================= SWNodeInfo =====================
const SWNodeInfo SWNodeInfo::initial;
// ============================ DepGraph ===========================
//------------------------------make_node---------------------------
// Make a new dependence graph node for an ideal node.
DepMem* DepGraph::make_node(Node* node) {
DepMem* m = new (_arena) DepMem(node);
if (node != NULL) {
assert(_map.at_grow(node->_idx) == NULL, "one init only");
_map.at_put_grow(node->_idx, m);
}
return m;
}
//------------------------------make_edge---------------------------
// Make a new dependence graph edge from dpred -> dsucc
DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
dpred->set_out_head(e);
dsucc->set_in_head(e);
return e;
}
// ========================== DepMem ========================
//------------------------------in_cnt---------------------------
int DepMem::in_cnt() {
int ct = 0;
for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
return ct;
}
//------------------------------out_cnt---------------------------
int DepMem::out_cnt() {
int ct = 0;
for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
return ct;
}
//------------------------------print-----------------------------
void DepMem::print() {
#ifndef PRODUCT
tty->print(" DepNode %d (", _node->_idx);
for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
Node* pred = p->pred()->node();
tty->print(" %d", pred != NULL ? pred->_idx : 0);
}
tty->print(") [");
for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
Node* succ = s->succ()->node();
tty->print(" %d", succ != NULL ? succ->_idx : 0);
}
tty->print_cr(" ]");
#endif
}
// =========================== DepEdge =========================
//------------------------------DepPreds---------------------------
void DepEdge::print() {
#ifndef PRODUCT
tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
#endif
}
// =========================== DepPreds =========================
// Iterator over predecessor edges in the dependence graph.
//------------------------------DepPreds---------------------------
DepPreds::DepPreds(Node* n, DepGraph& dg) {
_n = n;
_done = false;
if (_n->is_Store() || _n->is_Load()) {
_next_idx = MemNode::Address;
_end_idx = n->req();
_dep_next = dg.dep(_n)->in_head();
} else if (_n->is_Mem()) {
_next_idx = 0;
_end_idx = 0;
_dep_next = dg.dep(_n)->in_head();
} else {
_next_idx = 1;
_end_idx = _n->req();
_dep_next = NULL;
}
next();
}
//------------------------------next---------------------------
void DepPreds::next() {
if (_dep_next != NULL) {
_current = _dep_next->pred()->node();
_dep_next = _dep_next->next_in();
} else if (_next_idx < _end_idx) {
_current = _n->in(_next_idx++);
} else {
_done = true;
}
}
// =========================== DepSuccs =========================
// Iterator over successor edges in the dependence graph.
//------------------------------DepSuccs---------------------------
DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
_n = n;
_done = false;
if (_n->is_Load()) {
_next_idx = 0;
_end_idx = _n->outcnt();
_dep_next = dg.dep(_n)->out_head();
} else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
_next_idx = 0;
_end_idx = 0;
_dep_next = dg.dep(_n)->out_head();
} else {
_next_idx = 0;
_end_idx = _n->outcnt();
_dep_next = NULL;
}
next();
}
//-------------------------------next---------------------------
void DepSuccs::next() {
if (_dep_next != NULL) {
_current = _dep_next->succ()->node();
_dep_next = _dep_next->next_out();
} else if (_next_idx < _end_idx) {
_current = _n->raw_out(_next_idx++);
} else {
_done = true;
}
}