8071302: assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo], def)) failed: after block local
Summary: Add merge nodes to node to block mapping
Reviewed-by: kvn, vlivanov
/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_OPTO_MATCHER_HPP
#define SHARE_VM_OPTO_MATCHER_HPP
#include "libadt/vectset.hpp"
#include "memory/resourceArea.hpp"
#include "opto/node.hpp"
#include "opto/phaseX.hpp"
#include "opto/regmask.hpp"
class Compile;
class Node;
class MachNode;
class MachTypeNode;
class MachOper;
//---------------------------Matcher-------------------------------------------
class Matcher : public PhaseTransform {
friend class VMStructs;
// Private arena of State objects
ResourceArea _states_arena;
VectorSet _visited; // Visit bits
// Used to control the Label pass
VectorSet _shared; // Shared Ideal Node
VectorSet _dontcare; // Nothing the matcher cares about
// Private methods which perform the actual matching and reduction
// Walks the label tree, generating machine nodes
MachNode *ReduceInst( State *s, int rule, Node *&mem);
void ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach);
uint ReduceInst_Interior(State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds);
void ReduceOper( State *s, int newrule, Node *&mem, MachNode *mach );
// If this node already matched using "rule", return the MachNode for it.
MachNode* find_shared_node(Node* n, uint rule);
// Convert a dense opcode number to an expanded rule number
const int *_reduceOp;
const int *_leftOp;
const int *_rightOp;
// Map dense opcode number to info on when rule is swallowed constant.
const bool *_swallowed;
// Map dense rule number to determine if this is an instruction chain rule
const uint _begin_inst_chain_rule;
const uint _end_inst_chain_rule;
// We want to clone constants and possible CmpI-variants.
// If we do not clone CmpI, then we can have many instances of
// condition codes alive at once. This is OK on some chips and
// bad on others. Hence the machine-dependent table lookup.
const char *_must_clone;
// Find shared Nodes, or Nodes that otherwise are Matcher roots
void find_shared( Node *n );
#ifdef X86
bool is_bmi_pattern(Node *n, Node *m);
#endif
// Debug and profile information for nodes in old space:
GrowableArray<Node_Notes*>* _old_node_note_array;
// Node labeling iterator for instruction selection
Node *Label_Root( const Node *n, State *svec, Node *control, const Node *mem );
Node *transform( Node *dummy );
Node_List _projection_list; // For Machine nodes killing many values
Node_Array _shared_nodes;
debug_only(Node_Array _old2new_map;) // Map roots of ideal-trees to machine-roots
debug_only(Node_Array _new2old_map;) // Maps machine nodes back to ideal
// Accessors for the inherited field PhaseTransform::_nodes:
void grow_new_node_array(uint idx_limit) {
_nodes.map(idx_limit-1, NULL);
}
bool has_new_node(const Node* n) const {
return _nodes.at(n->_idx) != NULL;
}
Node* new_node(const Node* n) const {
assert(has_new_node(n), "set before get");
return _nodes.at(n->_idx);
}
void set_new_node(const Node* n, Node *nn) {
assert(!has_new_node(n), "set only once");
_nodes.map(n->_idx, nn);
}
#ifdef ASSERT
// Make sure only new nodes are reachable from this node
void verify_new_nodes_only(Node* root);
Node* _mem_node; // Ideal memory node consumed by mach node
#endif
// Mach node for ConP #NULL
MachNode* _mach_null;
public:
int LabelRootDepth;
// Convert ideal machine register to a register mask for spill-loads
static const RegMask *idealreg2regmask[];
RegMask *idealreg2spillmask [_last_machine_leaf];
RegMask *idealreg2debugmask [_last_machine_leaf];
RegMask *idealreg2mhdebugmask[_last_machine_leaf];
void init_spill_mask( Node *ret );
// Convert machine register number to register mask
static uint mreg2regmask_max;
static RegMask mreg2regmask[];
static RegMask STACK_ONLY_mask;
MachNode* mach_null() const { return _mach_null; }
bool is_shared( Node *n ) { return _shared.test(n->_idx) != 0; }
void set_shared( Node *n ) { _shared.set(n->_idx); }
bool is_visited( Node *n ) { return _visited.test(n->_idx) != 0; }
void set_visited( Node *n ) { _visited.set(n->_idx); }
bool is_dontcare( Node *n ) { return _dontcare.test(n->_idx) != 0; }
void set_dontcare( Node *n ) { _dontcare.set(n->_idx); }
// Mode bit to tell DFA and expand rules whether we are running after
// (or during) register selection. Usually, the matcher runs before,
// but it will also get called to generate post-allocation spill code.
// In this situation, it is a deadly error to attempt to allocate more
// temporary registers.
bool _allocation_started;
// Machine register names
static const char *regName[];
// Machine register encodings
static const unsigned char _regEncode[];
// Machine Node names
const char **_ruleName;
// Rules that are cheaper to rematerialize than to spill
static const uint _begin_rematerialize;
static const uint _end_rematerialize;
// An array of chars, from 0 to _last_Mach_Reg.
// No Save = 'N' (for register windows)
// Save on Entry = 'E'
// Save on Call = 'C'
// Always Save = 'A' (same as SOE + SOC)
const char *_register_save_policy;
const char *_c_reg_save_policy;
// Convert a machine register to a machine register type, so-as to
// properly match spill code.
const int *_register_save_type;
// Maps from machine register to boolean; true if machine register can
// be holding a call argument in some signature.
static bool can_be_java_arg( int reg );
// Maps from machine register to boolean; true if machine register holds
// a spillable argument.
static bool is_spillable_arg( int reg );
// List of IfFalse or IfTrue Nodes that indicate a taken null test.
// List is valid in the post-matching space.
Node_List _null_check_tests;
void collect_null_checks( Node *proj, Node *orig_proj );
void validate_null_checks( );
Matcher();
// Get a projection node at position pos
Node* get_projection(uint pos) {
return _projection_list[pos];
}
// Push a projection node onto the projection list
void push_projection(Node* node) {
_projection_list.push(node);
}
Node* pop_projection() {
return _projection_list.pop();
}
// Number of nodes in the projection list
uint number_of_projections() const {
return _projection_list.size();
}
// Select instructions for entire method
void match();
// Helper for match
OptoReg::Name warp_incoming_stk_arg( VMReg reg );
// Transform, then walk. Does implicit DCE while walking.
// Name changed from "transform" to avoid it being virtual.
Node *xform( Node *old_space_node, int Nodes );
// Match a single Ideal Node - turn it into a 1-Node tree; Label & Reduce.
MachNode *match_tree( const Node *n );
MachNode *match_sfpt( SafePointNode *sfpt );
// Helper for match_sfpt
OptoReg::Name warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call );
// Initialize first stack mask and related masks.
void init_first_stack_mask();
// If we should save-on-entry this register
bool is_save_on_entry( int reg );
// Fixup the save-on-entry registers
void Fixup_Save_On_Entry( );
// --- Frame handling ---
// Register number of the stack slot corresponding to the incoming SP.
// Per the Big Picture in the AD file, it is:
// SharedInfo::stack0 + locks + in_preserve_stack_slots + pad2.
OptoReg::Name _old_SP;
// Register number of the stack slot corresponding to the highest incoming
// argument on the stack. Per the Big Picture in the AD file, it is:
// _old_SP + out_preserve_stack_slots + incoming argument size.
OptoReg::Name _in_arg_limit;
// Register number of the stack slot corresponding to the new SP.
// Per the Big Picture in the AD file, it is:
// _in_arg_limit + pad0
OptoReg::Name _new_SP;
// Register number of the stack slot corresponding to the highest outgoing
// argument on the stack. Per the Big Picture in the AD file, it is:
// _new_SP + max outgoing arguments of all calls
OptoReg::Name _out_arg_limit;
OptoRegPair *_parm_regs; // Array of machine registers per argument
RegMask *_calling_convention_mask; // Array of RegMasks per argument
// Does matcher have a match rule for this ideal node?
static const bool has_match_rule(int opcode);
static const bool _hasMatchRule[_last_opcode];
// Does matcher have a match rule for this ideal node and is the
// predicate (if there is one) true?
// NOTE: If this function is used more commonly in the future, ADLC
// should generate this one.
static const bool match_rule_supported(int opcode);
// Used to determine if we have fast l2f conversion
// USII has it, USIII doesn't
static const bool convL2FSupported(void);
// Vector width in bytes
static const int vector_width_in_bytes(BasicType bt);
// Limits on vector size (number of elements).
static const int max_vector_size(const BasicType bt);
static const int min_vector_size(const BasicType bt);
static const bool vector_size_supported(const BasicType bt, int size) {
return (Matcher::max_vector_size(bt) >= size &&
Matcher::min_vector_size(bt) <= size);
}
// Vector ideal reg
static const int vector_ideal_reg(int len);
static const int vector_shift_count_ideal_reg(int len);
// CPU supports misaligned vectors store/load.
static const bool misaligned_vectors_ok();
// Should original key array reference be passed to AES stubs
static const bool pass_original_key_for_aes();
// Used to determine a "low complexity" 64-bit constant. (Zero is simple.)
// The standard of comparison is one (StoreL ConL) vs. two (StoreI ConI).
// Depends on the details of 64-bit constant generation on the CPU.
static const bool isSimpleConstant64(jlong con);
// These calls are all generated by the ADLC
// TRUE - grows up, FALSE - grows down (Intel)
virtual bool stack_direction() const;
// Java-Java calling convention
// (what you use when Java calls Java)
// Alignment of stack in bytes, standard Intel word alignment is 4.
// Sparc probably wants at least double-word (8).
static uint stack_alignment_in_bytes();
// Alignment of stack, measured in stack slots.
// The size of stack slots is defined by VMRegImpl::stack_slot_size.
static uint stack_alignment_in_slots() {
return stack_alignment_in_bytes() / (VMRegImpl::stack_slot_size);
}
// Array mapping arguments to registers. Argument 0 is usually the 'this'
// pointer. Registers can include stack-slots and regular registers.
static void calling_convention( BasicType *, VMRegPair *, uint len, bool is_outgoing );
// Convert a sig into a calling convention register layout
// and find interesting things about it.
static OptoReg::Name find_receiver( bool is_outgoing );
// Return address register. On Intel it is a stack-slot. On PowerPC
// it is the Link register. On Sparc it is r31?
virtual OptoReg::Name return_addr() const;
RegMask _return_addr_mask;
// Return value register. On Intel it is EAX. On Sparc i0/o0.
static OptoRegPair return_value(int ideal_reg, bool is_outgoing);
static OptoRegPair c_return_value(int ideal_reg, bool is_outgoing);
RegMask _return_value_mask;
// Inline Cache Register
static OptoReg::Name inline_cache_reg();
static int inline_cache_reg_encode();
// Register for DIVI projection of divmodI
static RegMask divI_proj_mask();
// Register for MODI projection of divmodI
static RegMask modI_proj_mask();
// Register for DIVL projection of divmodL
static RegMask divL_proj_mask();
// Register for MODL projection of divmodL
static RegMask modL_proj_mask();
// Use hardware DIV instruction when it is faster than
// a code which use multiply for division by constant.
static bool use_asm_for_ldiv_by_con( jlong divisor );
static const RegMask method_handle_invoke_SP_save_mask();
// Java-Interpreter calling convention
// (what you use when calling between compiled-Java and Interpreted-Java
// Number of callee-save + always-save registers
// Ignores frame pointer and "special" registers
static int number_of_saved_registers();
// The Method-klass-holder may be passed in the inline_cache_reg
// and then expanded into the inline_cache_reg and a method_oop register
static OptoReg::Name interpreter_method_oop_reg();
static int interpreter_method_oop_reg_encode();
static OptoReg::Name compiler_method_oop_reg();
static const RegMask &compiler_method_oop_reg_mask();
static int compiler_method_oop_reg_encode();
// Interpreter's Frame Pointer Register
static OptoReg::Name interpreter_frame_pointer_reg();
// Java-Native calling convention
// (what you use when intercalling between Java and C++ code)
// Array mapping arguments to registers. Argument 0 is usually the 'this'
// pointer. Registers can include stack-slots and regular registers.
static void c_calling_convention( BasicType*, VMRegPair *, uint );
// Frame pointer. The frame pointer is kept at the base of the stack
// and so is probably the stack pointer for most machines. On Intel
// it is ESP. On the PowerPC it is R1. On Sparc it is SP.
OptoReg::Name c_frame_pointer() const;
static RegMask c_frame_ptr_mask;
// !!!!! Special stuff for building ScopeDescs
virtual int regnum_to_fpu_offset(int regnum);
// Is this branch offset small enough to be addressed by a short branch?
bool is_short_branch_offset(int rule, int br_size, int offset);
// Optional scaling for the parameter to the ClearArray/CopyArray node.
static const bool init_array_count_is_in_bytes;
// Threshold small size (in bytes) for a ClearArray/CopyArray node.
// Anything this size or smaller may get converted to discrete scalar stores.
static const int init_array_short_size;
// Some hardware needs 2 CMOV's for longs.
static const int long_cmove_cost();
// Some hardware have expensive CMOV for float and double.
static const int float_cmove_cost();
// Should the Matcher clone shifts on addressing modes, expecting them to
// be subsumed into complex addressing expressions or compute them into
// registers? True for Intel but false for most RISCs
static const bool clone_shift_expressions;
static bool narrow_oop_use_complex_address();
static bool narrow_klass_use_complex_address();
// Generate implicit null check for narrow oops if it can fold
// into address expression (x64).
//
// [R12 + narrow_oop_reg<<3 + offset] // fold into address expression
// NullCheck narrow_oop_reg
//
// When narrow oops can't fold into address expression (Sparc) and
// base is not null use decode_not_null and normal implicit null check.
// Note, decode_not_null node can be used here since it is referenced
// only on non null path but it requires special handling, see
// collect_null_checks():
//
// decode_not_null narrow_oop_reg, oop_reg // 'shift' and 'add base'
// [oop_reg + offset]
// NullCheck oop_reg
//
// With Zero base and when narrow oops can not fold into address
// expression use normal implicit null check since only shift
// is needed to decode narrow oop.
//
// decode narrow_oop_reg, oop_reg // only 'shift'
// [oop_reg + offset]
// NullCheck oop_reg
//
inline static bool gen_narrow_oop_implicit_null_checks() {
// Advice matcher to perform null checks on the narrow oop side.
// Implicit checks are not possible on the uncompressed oop side anyway
// (at least not for read accesses).
// Performs significantly better (especially on Power 6).
if (!os::zero_page_read_protected()) {
return true;
}
return Universe::narrow_oop_use_implicit_null_checks() &&
(narrow_oop_use_complex_address() ||
Universe::narrow_oop_base() != NULL);
}
// Is it better to copy float constants, or load them directly from memory?
// Intel can load a float constant from a direct address, requiring no
// extra registers. Most RISCs will have to materialize an address into a
// register first, so they may as well materialize the constant immediately.
static const bool rematerialize_float_constants;
// If CPU can load and store mis-aligned doubles directly then no fixup is
// needed. Else we split the double into 2 integer pieces and move it
// piece-by-piece. Only happens when passing doubles into C code or when
// calling i2c adapters as the Java calling convention forces doubles to be
// aligned.
static const bool misaligned_doubles_ok;
// Does the CPU require postalloc expand (see block.cpp for description of
// postalloc expand)?
static const bool require_postalloc_expand;
// Perform a platform dependent implicit null fixup. This is needed
// on windows95 to take care of some unusual register constraints.
void pd_implicit_null_fixup(MachNode *load, uint idx);
// Advertise here if the CPU requires explicit rounding operations
// to implement the UseStrictFP mode.
static const bool strict_fp_requires_explicit_rounding;
// Are floats conerted to double when stored to stack during deoptimization?
static bool float_in_double();
// Do ints take an entire long register or just half?
static const bool int_in_long;
// Do the processor's shift instructions only use the low 5/6 bits
// of the count for 32/64 bit ints? If not we need to do the masking
// ourselves.
static const bool need_masked_shift_count;
// This routine is run whenever a graph fails to match.
// If it returns, the compiler should bailout to interpreter without error.
// In non-product mode, SoftMatchFailure is false to detect non-canonical
// graphs. Print a message and exit.
static void soft_match_failure() {
if( SoftMatchFailure ) return;
else { fatal("SoftMatchFailure is not allowed except in product"); }
}
// Check for a following volatile memory barrier without an
// intervening load and thus we don't need a barrier here. We
// retain the Node to act as a compiler ordering barrier.
static bool post_store_load_barrier(const Node* mb);
// Does n lead to an uncommon trap that can cause deoptimization?
static bool branches_to_uncommon_trap(const Node *n);
#ifdef ASSERT
void dump_old2new_map(); // machine-independent to machine-dependent
Node* find_old_node(Node* new_node) {
return _new2old_map[new_node->_idx];
}
#endif
};
#endif // SHARE_VM_OPTO_MATCHER_HPP