8071302: assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo], def)) failed: after block local
Summary: Add merge nodes to node to block mapping
Reviewed-by: kvn, vlivanov
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_OPTO_BLOCK_HPP
#define SHARE_VM_OPTO_BLOCK_HPP
#include "opto/multnode.hpp"
#include "opto/node.hpp"
#include "opto/phase.hpp"
// Optimization - Graph Style
class Block;
class CFGLoop;
class MachCallNode;
class Matcher;
class RootNode;
class VectorSet;
struct Tarjan;
//------------------------------Block_Array------------------------------------
// Map dense integer indices to Blocks. Uses classic doubling-array trick.
// Abstractly provides an infinite array of Block*'s, initialized to NULL.
// Note that the constructor just zeros things, and since I use Arena
// allocation I do not need a destructor to reclaim storage.
class Block_Array : public ResourceObj {
friend class VMStructs;
uint _size; // allocated size, as opposed to formal limit
debug_only(uint _limit;) // limit to formal domain
Arena *_arena; // Arena to allocate in
protected:
Block **_blocks;
void grow( uint i ); // Grow array node to fit
public:
Block_Array(Arena *a) : _arena(a), _size(OptoBlockListSize) {
debug_only(_limit=0);
_blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize );
for( int i = 0; i < OptoBlockListSize; i++ ) {
_blocks[i] = NULL;
}
}
Block *lookup( uint i ) const // Lookup, or NULL for not mapped
{ return (i<Max()) ? _blocks[i] : (Block*)NULL; }
Block *operator[] ( uint i ) const // Lookup, or assert for not mapped
{ assert( i < Max(), "oob" ); return _blocks[i]; }
// Extend the mapping: index i maps to Block *n.
void map( uint i, Block *n ) { if( i>=Max() ) grow(i); _blocks[i] = n; }
uint Max() const { debug_only(return _limit); return _size; }
};
class Block_List : public Block_Array {
friend class VMStructs;
public:
uint _cnt;
Block_List() : Block_Array(Thread::current()->resource_area()), _cnt(0) {}
void push( Block *b ) { map(_cnt++,b); }
Block *pop() { return _blocks[--_cnt]; }
Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;}
void remove( uint i );
void insert( uint i, Block *n );
uint size() const { return _cnt; }
void reset() { _cnt = 0; }
void print();
};
class CFGElement : public ResourceObj {
friend class VMStructs;
public:
double _freq; // Execution frequency (estimate)
CFGElement() : _freq(0.0) {}
virtual bool is_block() { return false; }
virtual bool is_loop() { return false; }
Block* as_Block() { assert(is_block(), "must be block"); return (Block*)this; }
CFGLoop* as_CFGLoop() { assert(is_loop(), "must be loop"); return (CFGLoop*)this; }
};
//------------------------------Block------------------------------------------
// This class defines a Basic Block.
// Basic blocks are used during the output routines, and are not used during
// any optimization pass. They are created late in the game.
class Block : public CFGElement {
friend class VMStructs;
private:
// Nodes in this block, in order
Node_List _nodes;
public:
// Get the node at index 'at_index', if 'at_index' is out of bounds return NULL
Node* get_node(uint at_index) const {
return _nodes[at_index];
}
// Get the number of nodes in this block
uint number_of_nodes() const {
return _nodes.size();
}
// Map a node 'node' to index 'to_index' in the block, if the index is out of bounds the size of the node list is increased
void map_node(Node* node, uint to_index) {
_nodes.map(to_index, node);
}
// Insert a node 'node' at index 'at_index', moving all nodes that are on a higher index one step, if 'at_index' is out of bounds we crash
void insert_node(Node* node, uint at_index) {
_nodes.insert(at_index, node);
}
// Remove a node at index 'at_index'
void remove_node(uint at_index) {
_nodes.remove(at_index);
}
// Push a node 'node' onto the node list
void push_node(Node* node) {
_nodes.push(node);
}
// Pop the last node off the node list
Node* pop_node() {
return _nodes.pop();
}
// Basic blocks have a Node which defines Control for all Nodes pinned in
// this block. This Node is a RegionNode. Exception-causing Nodes
// (division, subroutines) and Phi functions are always pinned. Later,
// every Node will get pinned to some block.
Node *head() const { return get_node(0); }
// CAUTION: num_preds() is ONE based, so that predecessor numbers match
// input edges to Regions and Phis.
uint num_preds() const { return head()->req(); }
Node *pred(uint i) const { return head()->in(i); }
// Array of successor blocks, same size as projs array
Block_Array _succs;
// Basic blocks have some number of Nodes which split control to all
// following blocks. These Nodes are always Projections. The field in
// the Projection and the block-ending Node determine which Block follows.
uint _num_succs;
// Basic blocks also carry all sorts of good old fashioned DFS information
// used to find loops, loop nesting depth, dominators, etc.
uint _pre_order; // Pre-order DFS number
// Dominator tree
uint _dom_depth; // Depth in dominator tree for fast LCA
Block* _idom; // Immediate dominator block
CFGLoop *_loop; // Loop to which this block belongs
uint _rpo; // Number in reverse post order walk
virtual bool is_block() { return true; }
float succ_prob(uint i); // return probability of i'th successor
int num_fall_throughs(); // How many fall-through candidate this block has
void update_uncommon_branch(Block* un); // Lower branch prob to uncommon code
bool succ_fall_through(uint i); // Is successor "i" is a fall-through candidate
Block* lone_fall_through(); // Return lone fall-through Block or null
Block* dom_lca(Block* that); // Compute LCA in dominator tree.
#ifdef ASSERT
bool dominates(Block* that) {
int dom_diff = this->_dom_depth - that->_dom_depth;
if (dom_diff > 0) return false;
for (; dom_diff < 0; dom_diff++) that = that->_idom;
return this == that;
}
#endif
// Report the alignment required by this block. Must be a power of 2.
// The previous block will insert nops to get this alignment.
uint code_alignment();
uint compute_loop_alignment();
// BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies.
// It is currently also used to scale such frequencies relative to
// FreqCountInvocations relative to the old value of 1500.
#define BLOCK_FREQUENCY(f) ((f * (double) 1500) / FreqCountInvocations)
// Register Pressure (estimate) for Splitting heuristic
uint _reg_pressure;
uint _ihrp_index;
uint _freg_pressure;
uint _fhrp_index;
// Mark and visited bits for an LCA calculation in insert_anti_dependences.
// Since they hold unique node indexes, they do not need reinitialization.
node_idx_t _raise_LCA_mark;
void set_raise_LCA_mark(node_idx_t x) { _raise_LCA_mark = x; }
node_idx_t raise_LCA_mark() const { return _raise_LCA_mark; }
node_idx_t _raise_LCA_visited;
void set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; }
node_idx_t raise_LCA_visited() const { return _raise_LCA_visited; }
// Estimated size in bytes of first instructions in a loop.
uint _first_inst_size;
uint first_inst_size() const { return _first_inst_size; }
void set_first_inst_size(uint s) { _first_inst_size = s; }
// Compute the size of first instructions in this block.
uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra);
// Compute alignment padding if the block needs it.
// Align a loop if loop's padding is less or equal to padding limit
// or the size of first instructions in the loop > padding.
uint alignment_padding(int current_offset) {
int block_alignment = code_alignment();
int max_pad = block_alignment-relocInfo::addr_unit();
if( max_pad > 0 ) {
assert(is_power_of_2(max_pad+relocInfo::addr_unit()), "");
int current_alignment = current_offset & max_pad;
if( current_alignment != 0 ) {
uint padding = (block_alignment-current_alignment) & max_pad;
if( has_loop_alignment() &&
padding > (uint)MaxLoopPad &&
first_inst_size() <= padding ) {
return 0;
}
return padding;
}
}
return 0;
}
// Connector blocks. Connector blocks are basic blocks devoid of
// instructions, but may have relevant non-instruction Nodes, such as
// Phis or MergeMems. Such blocks are discovered and marked during the
// RemoveEmpty phase, and elided during Output.
bool _connector;
void set_connector() { _connector = true; }
bool is_connector() const { return _connector; };
// Loop_alignment will be set for blocks which are at the top of loops.
// The block layout pass may rotate loops such that the loop head may not
// be the sequentially first block of the loop encountered in the linear
// list of blocks. If the layout pass is not run, loop alignment is set
// for each block which is the head of a loop.
uint _loop_alignment;
void set_loop_alignment(Block *loop_top) {
uint new_alignment = loop_top->compute_loop_alignment();
if (new_alignment > _loop_alignment) {
_loop_alignment = new_alignment;
}
}
uint loop_alignment() const { return _loop_alignment; }
bool has_loop_alignment() const { return loop_alignment() > 0; }
// Create a new Block with given head Node.
// Creates the (empty) predecessor arrays.
Block( Arena *a, Node *headnode )
: CFGElement(),
_nodes(a),
_succs(a),
_num_succs(0),
_pre_order(0),
_idom(0),
_loop(NULL),
_reg_pressure(0),
_ihrp_index(1),
_freg_pressure(0),
_fhrp_index(1),
_raise_LCA_mark(0),
_raise_LCA_visited(0),
_first_inst_size(999999),
_connector(false),
_loop_alignment(0) {
_nodes.push(headnode);
}
// Index of 'end' Node
uint end_idx() const {
// %%%%% add a proj after every goto
// so (last->is_block_proj() != last) always, then simplify this code
// This will not give correct end_idx for block 0 when it only contains root.
int last_idx = _nodes.size() - 1;
Node *last = _nodes[last_idx];
assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], "");
return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs);
}
// Basic blocks have a Node which ends them. This Node determines which
// basic block follows this one in the program flow. This Node is either an
// IfNode, a GotoNode, a JmpNode, or a ReturnNode.
Node *end() const { return _nodes[end_idx()]; }
// Add an instruction to an existing block. It must go after the head
// instruction and before the end instruction.
void add_inst( Node *n ) { insert_node(n, end_idx()); }
// Find node in block. Fails if node not in block.
uint find_node( const Node *n ) const;
// Find and remove n from block list
void find_remove( const Node *n );
// Check wether the node is in the block.
bool contains (const Node *n) const;
// Return the empty status of a block
enum { not_empty, empty_with_goto, completely_empty };
int is_Empty() const;
// Forward through connectors
Block* non_connector() {
Block* s = this;
while (s->is_connector()) {
s = s->_succs[0];
}
return s;
}
// Return true if b is a successor of this block
bool has_successor(Block* b) const {
for (uint i = 0; i < _num_succs; i++ ) {
if (non_connector_successor(i) == b) {
return true;
}
}
return false;
}
// Successor block, after forwarding through connectors
Block* non_connector_successor(int i) const {
return _succs[i]->non_connector();
}
// Examine block's code shape to predict if it is not commonly executed.
bool has_uncommon_code() const;
#ifndef PRODUCT
// Debugging print of basic block
void dump_bidx(const Block* orig, outputStream* st = tty) const;
void dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st = tty) const;
void dump_head(const PhaseCFG* cfg, outputStream* st = tty) const;
void dump() const;
void dump(const PhaseCFG* cfg) const;
#endif
};
//------------------------------PhaseCFG---------------------------------------
// Build an array of Basic Block pointers, one per Node.
class PhaseCFG : public Phase {
friend class VMStructs;
private:
// Root of whole program
RootNode* _root;
// The block containing the root node
Block* _root_block;
// List of basic blocks that are created during CFG creation
Block_List _blocks;
// Count of basic blocks
uint _number_of_blocks;
// Arena for the blocks to be stored in
Arena* _block_arena;
// The matcher for this compilation
Matcher& _matcher;
// Map nodes to owning basic block
Block_Array _node_to_block_mapping;
// Loop from the root
CFGLoop* _root_loop;
// Outmost loop frequency
double _outer_loop_frequency;
// Per node latency estimation, valid only during GCM
GrowableArray<uint>* _node_latency;
// Build a proper looking cfg. Return count of basic blocks
uint build_cfg();
// Build the dominator tree so that we know where we can move instructions
void build_dominator_tree();
// Estimate block frequencies based on IfNode probabilities, so that we know where we want to move instructions
void estimate_block_frequency();
// Global Code Motion. See Click's PLDI95 paper. Place Nodes in specific
// basic blocks; i.e. _node_to_block_mapping now maps _idx for all Nodes to some Block.
// Move nodes to ensure correctness from GVN and also try to move nodes out of loops.
void global_code_motion();
// Schedule Nodes early in their basic blocks.
bool schedule_early(VectorSet &visited, Node_List &roots);
// For each node, find the latest block it can be scheduled into
// and then select the cheapest block between the latest and earliest
// block to place the node.
void schedule_late(VectorSet &visited, Node_List &stack);
// Compute the (backwards) latency of a node from a single use
int latency_from_use(Node *n, const Node *def, Node *use);
// Compute the (backwards) latency of a node from the uses of this instruction
void partial_latency_of_defs(Node *n);
// Compute the instruction global latency with a backwards walk
void compute_latencies_backwards(VectorSet &visited, Node_List &stack);
// Pick a block between early and late that is a cheaper alternative
// to late. Helper for schedule_late.
Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);
bool schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call);
void set_next_call(Block* block, Node* n, VectorSet& next_call);
void needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call);
// Perform basic-block local scheduling
Node* select(Block* block, Node_List& worklist, GrowableArray<int>& ready_cnt, VectorSet& next_call, uint sched_slot);
// Schedule a call next in the block
uint sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call);
// Cleanup if any code lands between a Call and his Catch
void call_catch_cleanup(Block* block);
Node* catch_cleanup_find_cloned_def(Block* use_blk, Node* def, Block* def_blk, int n_clone_idx);
void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx);
// Detect implicit-null-check opportunities. Basically, find NULL checks
// with suitable memory ops nearby. Use the memory op to do the NULL check.
// I can generate a memory op if there is not one nearby.
void implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons);
// Perform a Depth First Search (DFS).
// Setup 'vertex' as DFS to vertex mapping.
// Setup 'semi' as vertex to DFS mapping.
// Set 'parent' to DFS parent.
uint do_DFS(Tarjan* tarjan, uint rpo_counter);
// Helper function to insert a node into a block
void schedule_node_into_block( Node *n, Block *b );
void replace_block_proj_ctrl( Node *n );
// Set the basic block for pinned Nodes
void schedule_pinned_nodes( VectorSet &visited );
// I'll need a few machine-specific GotoNodes. Clone from this one.
// Used when building the CFG and creating end nodes for blocks.
MachNode* _goto;
Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false);
void verify_anti_dependences(Block* LCA, Node* load) {
assert(LCA == get_block_for_node(load), "should already be scheduled");
insert_anti_dependences(LCA, load, true);
}
bool move_to_next(Block* bx, uint b_index);
void move_to_end(Block* bx, uint b_index);
void insert_goto_at(uint block_no, uint succ_no);
// Check for NeverBranch at block end. This needs to become a GOTO to the
// true target. NeverBranch are treated as a conditional branch that always
// goes the same direction for most of the optimizer and are used to give a
// fake exit path to infinite loops. At this late stage they need to turn
// into Goto's so that when you enter the infinite loop you indeed hang.
void convert_NeverBranch_to_Goto(Block *b);
CFGLoop* create_loop_tree();
#ifndef PRODUCT
bool _trace_opto_pipelining; // tracing flag
#endif
public:
PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher);
void set_latency_for_node(Node* node, int latency) {
_node_latency->at_put_grow(node->_idx, latency);
}
uint get_latency_for_node(Node* node) {
return _node_latency->at_grow(node->_idx);
}
// Get the outer most frequency
double get_outer_loop_frequency() const {
return _outer_loop_frequency;
}
// Get the root node of the CFG
RootNode* get_root_node() const {
return _root;
}
// Get the block of the root node
Block* get_root_block() const {
return _root_block;
}
// Add a block at a position and moves the later ones one step
void add_block_at(uint pos, Block* block) {
_blocks.insert(pos, block);
_number_of_blocks++;
}
// Adds a block to the top of the block list
void add_block(Block* block) {
_blocks.push(block);
_number_of_blocks++;
}
// Clear the list of blocks
void clear_blocks() {
_blocks.reset();
_number_of_blocks = 0;
}
// Get the block at position pos in _blocks
Block* get_block(uint pos) const {
return _blocks[pos];
}
// Number of blocks
uint number_of_blocks() const {
return _number_of_blocks;
}
// set which block this node should reside in
void map_node_to_block(const Node* node, Block* block) {
_node_to_block_mapping.map(node->_idx, block);
}
// removes the mapping from a node to a block
void unmap_node_from_block(const Node* node) {
_node_to_block_mapping.map(node->_idx, NULL);
}
// get the block in which this node resides
Block* get_block_for_node(const Node* node) const {
return _node_to_block_mapping[node->_idx];
}
// does this node reside in a block; return true
bool has_block(const Node* node) const {
return (_node_to_block_mapping.lookup(node->_idx) != NULL);
}
// Use frequency calculations and code shape to predict if the block
// is uncommon.
bool is_uncommon(const Block* block);
#ifdef ASSERT
Unique_Node_List _raw_oops;
#endif
// Do global code motion by first building dominator tree and estimate block frequency
// Returns true on success
bool do_global_code_motion();
// Compute the (backwards) latency of a node from the uses
void latency_from_uses(Node *n);
// Set loop alignment
void set_loop_alignment();
// Remove empty basic blocks
void remove_empty_blocks();
Block *fixup_trap_based_check(Node *branch, Block *block, int block_pos, Block *bnext);
void fixup_flow();
// Insert a node into a block at index and map the node to the block
void insert(Block *b, uint idx, Node *n) {
b->insert_node(n , idx);
map_node_to_block(n, b);
}
// Check all nodes and postalloc_expand them if necessary.
void postalloc_expand(PhaseRegAlloc* _ra);
#ifndef PRODUCT
bool trace_opto_pipelining() const { return _trace_opto_pipelining; }
// Debugging print of CFG
void dump( ) const; // CFG only
void _dump_cfg( const Node *end, VectorSet &visited ) const;
void verify() const;
void dump_headers();
#else
bool trace_opto_pipelining() const { return false; }
#endif
};
//------------------------------UnionFind--------------------------------------
// Map Block indices to a block-index for a cfg-cover.
// Array lookup in the optimized case.
class UnionFind : public ResourceObj {
uint _cnt, _max;
uint* _indices;
ReallocMark _nesting; // assertion check for reallocations
public:
UnionFind( uint max );
void reset( uint max ); // Reset to identity map for [0..max]
uint lookup( uint nidx ) const {
return _indices[nidx];
}
uint operator[] (uint nidx) const { return lookup(nidx); }
void map( uint from_idx, uint to_idx ) {
assert( from_idx < _cnt, "oob" );
_indices[from_idx] = to_idx;
}
void extend( uint from_idx, uint to_idx );
uint Size() const { return _cnt; }
uint Find( uint idx ) {
assert( idx < 65536, "Must fit into uint");
uint uf_idx = lookup(idx);
return (uf_idx == idx) ? uf_idx : Find_compress(idx);
}
uint Find_compress( uint idx );
uint Find_const( uint idx ) const;
void Union( uint idx1, uint idx2 );
};
//----------------------------BlockProbPair---------------------------
// Ordered pair of Node*.
class BlockProbPair VALUE_OBJ_CLASS_SPEC {
protected:
Block* _target; // block target
double _prob; // probability of edge to block
public:
BlockProbPair() : _target(NULL), _prob(0.0) {}
BlockProbPair(Block* b, double p) : _target(b), _prob(p) {}
Block* get_target() const { return _target; }
double get_prob() const { return _prob; }
};
//------------------------------CFGLoop-------------------------------------------
class CFGLoop : public CFGElement {
friend class VMStructs;
int _id;
int _depth;
CFGLoop *_parent; // root of loop tree is the method level "pseudo" loop, it's parent is null
CFGLoop *_sibling; // null terminated list
CFGLoop *_child; // first child, use child's sibling to visit all immediately nested loops
GrowableArray<CFGElement*> _members; // list of members of loop
GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities
double _exit_prob; // probability any loop exit is taken on a single loop iteration
void update_succ_freq(Block* b, double freq);
public:
CFGLoop(int id) :
CFGElement(),
_id(id),
_depth(0),
_parent(NULL),
_sibling(NULL),
_child(NULL),
_exit_prob(1.0f) {}
CFGLoop* parent() { return _parent; }
void push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg);
void add_member(CFGElement *s) { _members.push(s); }
void add_nested_loop(CFGLoop* cl);
Block* head() {
assert(_members.at(0)->is_block(), "head must be a block");
Block* hd = _members.at(0)->as_Block();
assert(hd->_loop == this, "just checking");
assert(hd->head()->is_Loop(), "must begin with loop head node");
return hd;
}
Block* backedge_block(); // Return the block on the backedge of the loop (else NULL)
void compute_loop_depth(int depth);
void compute_freq(); // compute frequency with loop assuming head freq 1.0f
void scale_freq(); // scale frequency by loop trip count (including outer loops)
double outer_loop_freq() const; // frequency of outer loop
bool in_loop_nest(Block* b);
double trip_count() const { return 1.0 / _exit_prob; }
virtual bool is_loop() { return true; }
int id() { return _id; }
#ifndef PRODUCT
void dump( ) const;
void dump_tree() const;
#endif
};
//----------------------------------CFGEdge------------------------------------
// A edge between two basic blocks that will be embodied by a branch or a
// fall-through.
class CFGEdge : public ResourceObj {
friend class VMStructs;
private:
Block * _from; // Source basic block
Block * _to; // Destination basic block
double _freq; // Execution frequency (estimate)
int _state;
bool _infrequent;
int _from_pct;
int _to_pct;
// Private accessors
int from_pct() const { return _from_pct; }
int to_pct() const { return _to_pct; }
int from_infrequent() const { return from_pct() < BlockLayoutMinDiamondPercentage; }
int to_infrequent() const { return to_pct() < BlockLayoutMinDiamondPercentage; }
public:
enum {
open, // initial edge state; unprocessed
connected, // edge used to connect two traces together
interior // edge is interior to trace (could be backedge)
};
CFGEdge(Block *from, Block *to, double freq, int from_pct, int to_pct) :
_from(from), _to(to), _freq(freq),
_from_pct(from_pct), _to_pct(to_pct), _state(open) {
_infrequent = from_infrequent() || to_infrequent();
}
double freq() const { return _freq; }
Block* from() const { return _from; }
Block* to () const { return _to; }
int infrequent() const { return _infrequent; }
int state() const { return _state; }
void set_state(int state) { _state = state; }
#ifndef PRODUCT
void dump( ) const;
#endif
};
//-----------------------------------Trace-------------------------------------
// An ordered list of basic blocks.
class Trace : public ResourceObj {
private:
uint _id; // Unique Trace id (derived from initial block)
Block ** _next_list; // Array mapping index to next block
Block ** _prev_list; // Array mapping index to previous block
Block * _first; // First block in the trace
Block * _last; // Last block in the trace
// Return the block that follows "b" in the trace.
Block * next(Block *b) const { return _next_list[b->_pre_order]; }
void set_next(Block *b, Block *n) const { _next_list[b->_pre_order] = n; }
// Return the block that precedes "b" in the trace.
Block * prev(Block *b) const { return _prev_list[b->_pre_order]; }
void set_prev(Block *b, Block *p) const { _prev_list[b->_pre_order] = p; }
// We've discovered a loop in this trace. Reset last to be "b", and first as
// the block following "b
void break_loop_after(Block *b) {
_last = b;
_first = next(b);
set_prev(_first, NULL);
set_next(_last, NULL);
}
public:
Trace(Block *b, Block **next_list, Block **prev_list) :
_first(b),
_last(b),
_next_list(next_list),
_prev_list(prev_list),
_id(b->_pre_order) {
set_next(b, NULL);
set_prev(b, NULL);
};
// Return the id number
uint id() const { return _id; }
void set_id(uint id) { _id = id; }
// Return the first block in the trace
Block * first_block() const { return _first; }
// Return the last block in the trace
Block * last_block() const { return _last; }
// Insert a trace in the middle of this one after b
void insert_after(Block *b, Trace *tr) {
set_next(tr->last_block(), next(b));
if (next(b) != NULL) {
set_prev(next(b), tr->last_block());
}
set_next(b, tr->first_block());
set_prev(tr->first_block(), b);
if (b == _last) {
_last = tr->last_block();
}
}
void insert_before(Block *b, Trace *tr) {
Block *p = prev(b);
assert(p != NULL, "use append instead");
insert_after(p, tr);
}
// Append another trace to this one.
void append(Trace *tr) {
insert_after(_last, tr);
}
// Append a block at the end of this trace
void append(Block *b) {
set_next(_last, b);
set_prev(b, _last);
_last = b;
}
// Adjust the the blocks in this trace
void fixup_blocks(PhaseCFG &cfg);
bool backedge(CFGEdge *e);
#ifndef PRODUCT
void dump( ) const;
#endif
};
//------------------------------PhaseBlockLayout-------------------------------
// Rearrange blocks into some canonical order, based on edges and their frequencies
class PhaseBlockLayout : public Phase {
friend class VMStructs;
PhaseCFG &_cfg; // Control flow graph
GrowableArray<CFGEdge *> *edges;
Trace **traces;
Block **next;
Block **prev;
UnionFind *uf;
// Given a block, find its encompassing Trace
Trace * trace(Block *b) {
return traces[uf->Find_compress(b->_pre_order)];
}
public:
PhaseBlockLayout(PhaseCFG &cfg);
void find_edges();
void grow_traces();
void merge_traces(bool loose_connections);
void reorder_traces(int count);
void union_traces(Trace* from, Trace* to);
};
#endif // SHARE_VM_OPTO_BLOCK_HPP