8055494: Add C2 x86 intrinsic for BigInteger::multiplyToLen() method
Summary: Add new C2 intrinsic for BigInteger::multiplyToLen() on x86 in 64-bit VM.
Reviewed-by: roland
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
#define CPU_X86_VM_MACROASSEMBLER_X86_HPP
#include "asm/assembler.hpp"
#include "utilities/macros.hpp"
#include "runtime/rtmLocking.hpp"
// MacroAssembler extends Assembler by frequently used macros.
//
// Instructions for which a 'better' code sequence exists depending
// on arguments should also go in here.
class MacroAssembler: public Assembler {
friend class LIR_Assembler;
friend class Runtime1; // as_Address()
protected:
Address as_Address(AddressLiteral adr);
Address as_Address(ArrayAddress adr);
// Support for VM calls
//
// This is the base routine called by the different versions of call_VM_leaf. The interpreter
// may customize this version by overriding it for its purposes (e.g., to save/restore
// additional registers when doing a VM call).
#ifdef CC_INTERP
// c++ interpreter never wants to use interp_masm version of call_VM
#define VIRTUAL
#else
#define VIRTUAL virtual
#endif
VIRTUAL void call_VM_leaf_base(
address entry_point, // the entry point
int number_of_arguments // the number of arguments to pop after the call
);
// This is the base routine called by the different versions of call_VM. The interpreter
// may customize this version by overriding it for its purposes (e.g., to save/restore
// additional registers when doing a VM call).
//
// If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
// returns the register which contains the thread upon return. If a thread register has been
// specified, the return value will correspond to that register. If no last_java_sp is specified
// (noreg) than rsp will be used instead.
VIRTUAL void call_VM_base( // returns the register containing the thread upon return
Register oop_result, // where an oop-result ends up if any; use noreg otherwise
Register java_thread, // the thread if computed before ; use noreg otherwise
Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
address entry_point, // the entry point
int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
bool check_exceptions // whether to check for pending exceptions after return
);
// These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
// The implementation is only non-empty for the InterpreterMacroAssembler,
// as only the interpreter handles PopFrame and ForceEarlyReturn requests.
virtual void check_and_handle_popframe(Register java_thread);
virtual void check_and_handle_earlyret(Register java_thread);
void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
// helpers for FPU flag access
// tmp is a temporary register, if none is available use noreg
void save_rax (Register tmp);
void restore_rax(Register tmp);
public:
MacroAssembler(CodeBuffer* code) : Assembler(code) {}
// Support for NULL-checks
//
// Generates code that causes a NULL OS exception if the content of reg is NULL.
// If the accessed location is M[reg + offset] and the offset is known, provide the
// offset. No explicit code generation is needed if the offset is within a certain
// range (0 <= offset <= page_size).
void null_check(Register reg, int offset = -1);
static bool needs_explicit_null_check(intptr_t offset);
// Required platform-specific helpers for Label::patch_instructions.
// They _shadow_ the declarations in AbstractAssembler, which are undefined.
void pd_patch_instruction(address branch, address target) {
unsigned char op = branch[0];
assert(op == 0xE8 /* call */ ||
op == 0xE9 /* jmp */ ||
op == 0xEB /* short jmp */ ||
(op & 0xF0) == 0x70 /* short jcc */ ||
op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
"Invalid opcode at patch point");
if (op == 0xEB || (op & 0xF0) == 0x70) {
// short offset operators (jmp and jcc)
char* disp = (char*) &branch[1];
int imm8 = target - (address) &disp[1];
guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
*disp = imm8;
} else {
int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
int imm32 = target - (address) &disp[1];
*disp = imm32;
}
}
// The following 4 methods return the offset of the appropriate move instruction
// Support for fast byte/short loading with zero extension (depending on particular CPU)
int load_unsigned_byte(Register dst, Address src);
int load_unsigned_short(Register dst, Address src);
// Support for fast byte/short loading with sign extension (depending on particular CPU)
int load_signed_byte(Register dst, Address src);
int load_signed_short(Register dst, Address src);
// Support for sign-extension (hi:lo = extend_sign(lo))
void extend_sign(Register hi, Register lo);
// Load and store values by size and signed-ness
void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
// Support for inc/dec with optimal instruction selection depending on value
void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
void decrementl(Address dst, int value = 1);
void decrementl(Register reg, int value = 1);
void decrementq(Register reg, int value = 1);
void decrementq(Address dst, int value = 1);
void incrementl(Address dst, int value = 1);
void incrementl(Register reg, int value = 1);
void incrementq(Register reg, int value = 1);
void incrementq(Address dst, int value = 1);
// Support optimal SSE move instructions.
void movflt(XMMRegister dst, XMMRegister src) {
if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
else { movss (dst, src); return; }
}
void movflt(XMMRegister dst, Address src) { movss(dst, src); }
void movflt(XMMRegister dst, AddressLiteral src);
void movflt(Address dst, XMMRegister src) { movss(dst, src); }
void movdbl(XMMRegister dst, XMMRegister src) {
if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
else { movsd (dst, src); return; }
}
void movdbl(XMMRegister dst, AddressLiteral src);
void movdbl(XMMRegister dst, Address src) {
if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
else { movlpd(dst, src); return; }
}
void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
void incrementl(AddressLiteral dst);
void incrementl(ArrayAddress dst);
void incrementq(AddressLiteral dst);
// Alignment
void align(int modulus);
// A 5 byte nop that is safe for patching (see patch_verified_entry)
void fat_nop();
// Stack frame creation/removal
void enter();
void leave();
// Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
// The pointer will be loaded into the thread register.
void get_thread(Register thread);
// Support for VM calls
//
// It is imperative that all calls into the VM are handled via the call_VM macros.
// They make sure that the stack linkage is setup correctly. call_VM's correspond
// to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
void call_VM(Register oop_result,
address entry_point,
bool check_exceptions = true);
void call_VM(Register oop_result,
address entry_point,
Register arg_1,
bool check_exceptions = true);
void call_VM(Register oop_result,
address entry_point,
Register arg_1, Register arg_2,
bool check_exceptions = true);
void call_VM(Register oop_result,
address entry_point,
Register arg_1, Register arg_2, Register arg_3,
bool check_exceptions = true);
// Overloadings with last_Java_sp
void call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
int number_of_arguments = 0,
bool check_exceptions = true);
void call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1, bool
check_exceptions = true);
void call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1, Register arg_2,
bool check_exceptions = true);
void call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1, Register arg_2, Register arg_3,
bool check_exceptions = true);
void get_vm_result (Register oop_result, Register thread);
void get_vm_result_2(Register metadata_result, Register thread);
// These always tightly bind to MacroAssembler::call_VM_base
// bypassing the virtual implementation
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
void call_VM_leaf(address entry_point,
int number_of_arguments = 0);
void call_VM_leaf(address entry_point,
Register arg_1);
void call_VM_leaf(address entry_point,
Register arg_1, Register arg_2);
void call_VM_leaf(address entry_point,
Register arg_1, Register arg_2, Register arg_3);
// These always tightly bind to MacroAssembler::call_VM_leaf_base
// bypassing the virtual implementation
void super_call_VM_leaf(address entry_point);
void super_call_VM_leaf(address entry_point, Register arg_1);
void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
// last Java Frame (fills frame anchor)
void set_last_Java_frame(Register thread,
Register last_java_sp,
Register last_java_fp,
address last_java_pc);
// thread in the default location (r15_thread on 64bit)
void set_last_Java_frame(Register last_java_sp,
Register last_java_fp,
address last_java_pc);
void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
// thread in the default location (r15_thread on 64bit)
void reset_last_Java_frame(bool clear_fp, bool clear_pc);
// Stores
void store_check(Register obj); // store check for obj - register is destroyed afterwards
void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed)
#if INCLUDE_ALL_GCS
void g1_write_barrier_pre(Register obj,
Register pre_val,
Register thread,
Register tmp,
bool tosca_live,
bool expand_call);
void g1_write_barrier_post(Register store_addr,
Register new_val,
Register thread,
Register tmp,
Register tmp2);
#endif // INCLUDE_ALL_GCS
// split store_check(Register obj) to enhance instruction interleaving
void store_check_part_1(Register obj);
void store_check_part_2(Register obj);
// C 'boolean' to Java boolean: x == 0 ? 0 : 1
void c2bool(Register x);
// C++ bool manipulation
void movbool(Register dst, Address src);
void movbool(Address dst, bool boolconst);
void movbool(Address dst, Register src);
void testbool(Register dst);
// oop manipulations
void load_klass(Register dst, Register src);
void store_klass(Register dst, Register src);
void load_heap_oop(Register dst, Address src);
void load_heap_oop_not_null(Register dst, Address src);
void store_heap_oop(Address dst, Register src);
void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
// Used for storing NULL. All other oop constants should be
// stored using routines that take a jobject.
void store_heap_oop_null(Address dst);
void load_prototype_header(Register dst, Register src);
#ifdef _LP64
void store_klass_gap(Register dst, Register src);
// This dummy is to prevent a call to store_heap_oop from
// converting a zero (like NULL) into a Register by giving
// the compiler two choices it can't resolve
void store_heap_oop(Address dst, void* dummy);
void encode_heap_oop(Register r);
void decode_heap_oop(Register r);
void encode_heap_oop_not_null(Register r);
void decode_heap_oop_not_null(Register r);
void encode_heap_oop_not_null(Register dst, Register src);
void decode_heap_oop_not_null(Register dst, Register src);
void set_narrow_oop(Register dst, jobject obj);
void set_narrow_oop(Address dst, jobject obj);
void cmp_narrow_oop(Register dst, jobject obj);
void cmp_narrow_oop(Address dst, jobject obj);
void encode_klass_not_null(Register r);
void decode_klass_not_null(Register r);
void encode_klass_not_null(Register dst, Register src);
void decode_klass_not_null(Register dst, Register src);
void set_narrow_klass(Register dst, Klass* k);
void set_narrow_klass(Address dst, Klass* k);
void cmp_narrow_klass(Register dst, Klass* k);
void cmp_narrow_klass(Address dst, Klass* k);
// Returns the byte size of the instructions generated by decode_klass_not_null()
// when compressed klass pointers are being used.
static int instr_size_for_decode_klass_not_null();
// if heap base register is used - reinit it with the correct value
void reinit_heapbase();
DEBUG_ONLY(void verify_heapbase(const char* msg);)
#endif // _LP64
// Int division/remainder for Java
// (as idivl, but checks for special case as described in JVM spec.)
// returns idivl instruction offset for implicit exception handling
int corrected_idivl(Register reg);
// Long division/remainder for Java
// (as idivq, but checks for special case as described in JVM spec.)
// returns idivq instruction offset for implicit exception handling
int corrected_idivq(Register reg);
void int3();
// Long operation macros for a 32bit cpu
// Long negation for Java
void lneg(Register hi, Register lo);
// Long multiplication for Java
// (destroys contents of eax, ebx, ecx and edx)
void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
// Long shifts for Java
// (semantics as described in JVM spec.)
void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f)
void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f)
// Long compare for Java
// (semantics as described in JVM spec.)
void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
// misc
// Sign extension
void sign_extend_short(Register reg);
void sign_extend_byte(Register reg);
// Division by power of 2, rounding towards 0
void division_with_shift(Register reg, int shift_value);
// Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
//
// CF (corresponds to C0) if x < y
// PF (corresponds to C2) if unordered
// ZF (corresponds to C3) if x = y
//
// The arguments are in reversed order on the stack (i.e., top of stack is first argument).
// tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
void fcmp(Register tmp);
// Variant of the above which allows y to be further down the stack
// and which only pops x and y if specified. If pop_right is
// specified then pop_left must also be specified.
void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
// Floating-point comparison for Java
// Compares the top-most stack entries on the FPU stack and stores the result in dst.
// The arguments are in reversed order on the stack (i.e., top of stack is first argument).
// (semantics as described in JVM spec.)
void fcmp2int(Register dst, bool unordered_is_less);
// Variant of the above which allows y to be further down the stack
// and which only pops x and y if specified. If pop_right is
// specified then pop_left must also be specified.
void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
// Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
// tmp is a temporary register, if none is available use noreg
void fremr(Register tmp);
// same as fcmp2int, but using SSE2
void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
// Inlined sin/cos generator for Java; must not use CPU instruction
// directly on Intel as it does not have high enough precision
// outside of the range [-pi/4, pi/4]. Extra argument indicate the
// number of FPU stack slots in use; all but the topmost will
// require saving if a slow case is necessary. Assumes argument is
// on FP TOS; result is on FP TOS. No cpu registers are changed by
// this code.
void trigfunc(char trig, int num_fpu_regs_in_use = 1);
// branch to L if FPU flag C2 is set/not set
// tmp is a temporary register, if none is available use noreg
void jC2 (Register tmp, Label& L);
void jnC2(Register tmp, Label& L);
// Pop ST (ffree & fincstp combined)
void fpop();
// pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
void push_fTOS();
// pops double TOS element from CPU stack and pushes on FPU stack
void pop_fTOS();
void empty_FPU_stack();
void push_IU_state();
void pop_IU_state();
void push_FPU_state();
void pop_FPU_state();
void push_CPU_state();
void pop_CPU_state();
// Round up to a power of two
void round_to(Register reg, int modulus);
// Callee saved registers handling
void push_callee_saved_registers();
void pop_callee_saved_registers();
// allocation
void eden_allocate(
Register obj, // result: pointer to object after successful allocation
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
int con_size_in_bytes, // object size in bytes if known at compile time
Register t1, // temp register
Label& slow_case // continuation point if fast allocation fails
);
void tlab_allocate(
Register obj, // result: pointer to object after successful allocation
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
int con_size_in_bytes, // object size in bytes if known at compile time
Register t1, // temp register
Register t2, // temp register
Label& slow_case // continuation point if fast allocation fails
);
Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
void incr_allocated_bytes(Register thread,
Register var_size_in_bytes, int con_size_in_bytes,
Register t1 = noreg);
// interface method calling
void lookup_interface_method(Register recv_klass,
Register intf_klass,
RegisterOrConstant itable_index,
Register method_result,
Register scan_temp,
Label& no_such_interface);
// virtual method calling
void lookup_virtual_method(Register recv_klass,
RegisterOrConstant vtable_index,
Register method_result);
// Test sub_klass against super_klass, with fast and slow paths.
// The fast path produces a tri-state answer: yes / no / maybe-slow.
// One of the three labels can be NULL, meaning take the fall-through.
// If super_check_offset is -1, the value is loaded up from super_klass.
// No registers are killed, except temp_reg.
void check_klass_subtype_fast_path(Register sub_klass,
Register super_klass,
Register temp_reg,
Label* L_success,
Label* L_failure,
Label* L_slow_path,
RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
// The rest of the type check; must be wired to a corresponding fast path.
// It does not repeat the fast path logic, so don't use it standalone.
// The temp_reg and temp2_reg can be noreg, if no temps are available.
// Updates the sub's secondary super cache as necessary.
// If set_cond_codes, condition codes will be Z on success, NZ on failure.
void check_klass_subtype_slow_path(Register sub_klass,
Register super_klass,
Register temp_reg,
Register temp2_reg,
Label* L_success,
Label* L_failure,
bool set_cond_codes = false);
// Simplified, combined version, good for typical uses.
// Falls through on failure.
void check_klass_subtype(Register sub_klass,
Register super_klass,
Register temp_reg,
Label& L_success);
// method handles (JSR 292)
Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
//----
void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
// Debugging
// only if +VerifyOops
// TODO: Make these macros with file and line like sparc version!
void verify_oop(Register reg, const char* s = "broken oop");
void verify_oop_addr(Address addr, const char * s = "broken oop addr");
// TODO: verify method and klass metadata (compare against vptr?)
void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
// only if +VerifyFPU
void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
// Verify or restore cpu control state after JNI call
void restore_cpu_control_state_after_jni();
// prints msg, dumps registers and stops execution
void stop(const char* msg);
// prints msg and continues
void warn(const char* msg);
// dumps registers and other state
void print_state();
static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
static void debug64(char* msg, int64_t pc, int64_t regs[]);
static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
static void print_state64(int64_t pc, int64_t regs[]);
void os_breakpoint();
void untested() { stop("untested"); }
void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, 1024, "unimplemented: %s", what); stop(b); }
void should_not_reach_here() { stop("should not reach here"); }
void print_CPU_state();
// Stack overflow checking
void bang_stack_with_offset(int offset) {
// stack grows down, caller passes positive offset
assert(offset > 0, "must bang with negative offset");
movl(Address(rsp, (-offset)), rax);
}
// Writes to stack successive pages until offset reached to check for
// stack overflow + shadow pages. Also, clobbers tmp
void bang_stack_size(Register size, Register tmp);
virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
Register tmp,
int offset);
// Support for serializing memory accesses between threads
void serialize_memory(Register thread, Register tmp);
void verify_tlab();
// Biased locking support
// lock_reg and obj_reg must be loaded up with the appropriate values.
// swap_reg must be rax, and is killed.
// tmp_reg is optional. If it is supplied (i.e., != noreg) it will
// be killed; if not supplied, push/pop will be used internally to
// allocate a temporary (inefficient, avoid if possible).
// Optional slow case is for implementations (interpreter and C1) which branch to
// slow case directly. Leaves condition codes set for C2's Fast_Lock node.
// Returns offset of first potentially-faulting instruction for null
// check info (currently consumed only by C1). If
// swap_reg_contains_mark is true then returns -1 as it is assumed
// the calling code has already passed any potential faults.
int biased_locking_enter(Register lock_reg, Register obj_reg,
Register swap_reg, Register tmp_reg,
bool swap_reg_contains_mark,
Label& done, Label* slow_case = NULL,
BiasedLockingCounters* counters = NULL);
void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
#ifdef COMPILER2
// Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
// See full desription in macroAssembler_x86.cpp.
void fast_lock(Register obj, Register box, Register tmp,
Register scr, Register cx1, Register cx2,
BiasedLockingCounters* counters,
RTMLockingCounters* rtm_counters,
RTMLockingCounters* stack_rtm_counters,
Metadata* method_data,
bool use_rtm, bool profile_rtm);
void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
#if INCLUDE_RTM_OPT
void rtm_counters_update(Register abort_status, Register rtm_counters);
void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
RTMLockingCounters* rtm_counters,
Metadata* method_data);
void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
void rtm_stack_locking(Register obj, Register tmp, Register scr,
Register retry_on_abort_count,
RTMLockingCounters* stack_rtm_counters,
Metadata* method_data, bool profile_rtm,
Label& DONE_LABEL, Label& IsInflated);
void rtm_inflated_locking(Register obj, Register box, Register tmp,
Register scr, Register retry_on_busy_count,
Register retry_on_abort_count,
RTMLockingCounters* rtm_counters,
Metadata* method_data, bool profile_rtm,
Label& DONE_LABEL);
#endif
#endif
Condition negate_condition(Condition cond);
// Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
// operands. In general the names are modified to avoid hiding the instruction in Assembler
// so that we don't need to implement all the varieties in the Assembler with trivial wrappers
// here in MacroAssembler. The major exception to this rule is call
// Arithmetics
void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
void addptr(Address dst, Register src);
void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
void addptr(Register dst, int32_t src);
void addptr(Register dst, Register src);
void addptr(Register dst, RegisterOrConstant src) {
if (src.is_constant()) addptr(dst, (int) src.as_constant());
else addptr(dst, src.as_register());
}
void andptr(Register dst, int32_t src);
void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
void cmp8(AddressLiteral src1, int imm);
// renamed to drag out the casting of address to int32_t/intptr_t
void cmp32(Register src1, int32_t imm);
void cmp32(AddressLiteral src1, int32_t imm);
// compare reg - mem, or reg - &mem
void cmp32(Register src1, AddressLiteral src2);
void cmp32(Register src1, Address src2);
#ifndef _LP64
void cmpklass(Address dst, Metadata* obj);
void cmpklass(Register dst, Metadata* obj);
void cmpoop(Address dst, jobject obj);
void cmpoop(Register dst, jobject obj);
#endif // _LP64
// NOTE src2 must be the lval. This is NOT an mem-mem compare
void cmpptr(Address src1, AddressLiteral src2);
void cmpptr(Register src1, AddressLiteral src2);
void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
// void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
// cmp64 to avoild hiding cmpq
void cmp64(Register src1, AddressLiteral src);
void cmpxchgptr(Register reg, Address adr);
void locked_cmpxchgptr(Register reg, AddressLiteral adr);
void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
void shlptr(Register dst, int32_t shift);
void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
void shrptr(Register dst, int32_t shift);
void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
void subptr(Register dst, int32_t src);
// Force generation of a 4 byte immediate value even if it fits into 8bit
void subptr_imm32(Register dst, int32_t src);
void subptr(Register dst, Register src);
void subptr(Register dst, RegisterOrConstant src) {
if (src.is_constant()) subptr(dst, (int) src.as_constant());
else subptr(dst, src.as_register());
}
void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
// Helper functions for statistics gathering.
// Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
void cond_inc32(Condition cond, AddressLiteral counter_addr);
// Unconditional atomic increment.
void atomic_incl(Address counter_addr);
void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
#ifdef _LP64
void atomic_incq(Address counter_addr);
void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
#endif
void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
void lea(Register dst, AddressLiteral adr);
void lea(Address dst, AddressLiteral adr);
void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
void leal32(Register dst, Address src) { leal(dst, src); }
// Import other testl() methods from the parent class or else
// they will be hidden by the following overriding declaration.
using Assembler::testl;
void testl(Register dst, AddressLiteral src);
void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
void testptr(Register src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
void testptr(Register src1, Register src2);
void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
// Calls
void call(Label& L, relocInfo::relocType rtype);
void call(Register entry);
// NOTE: this call tranfers to the effective address of entry NOT
// the address contained by entry. This is because this is more natural
// for jumps/calls.
void call(AddressLiteral entry);
// Emit the CompiledIC call idiom
void ic_call(address entry);
// Jumps
// NOTE: these jumps tranfer to the effective address of dst NOT
// the address contained by dst. This is because this is more natural
// for jumps/calls.
void jump(AddressLiteral dst);
void jump_cc(Condition cc, AddressLiteral dst);
// 32bit can do a case table jump in one instruction but we no longer allow the base
// to be installed in the Address class. This jump will tranfers to the address
// contained in the location described by entry (not the address of entry)
void jump(ArrayAddress entry);
// Floating
void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
void andpd(XMMRegister dst, AddressLiteral src);
void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
void andps(XMMRegister dst, AddressLiteral src);
void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
void comiss(XMMRegister dst, AddressLiteral src);
void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
void comisd(XMMRegister dst, AddressLiteral src);
void fadd_s(Address src) { Assembler::fadd_s(src); }
void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
void fldcw(Address src) { Assembler::fldcw(src); }
void fldcw(AddressLiteral src);
void fld_s(int index) { Assembler::fld_s(index); }
void fld_s(Address src) { Assembler::fld_s(src); }
void fld_s(AddressLiteral src);
void fld_d(Address src) { Assembler::fld_d(src); }
void fld_d(AddressLiteral src);
void fld_x(Address src) { Assembler::fld_x(src); }
void fld_x(AddressLiteral src);
void fmul_s(Address src) { Assembler::fmul_s(src); }
void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
void ldmxcsr(AddressLiteral src);
// compute pow(x,y) and exp(x) with x86 instructions. Don't cover
// all corner cases and may result in NaN and require fallback to a
// runtime call.
void fast_pow();
void fast_exp();
void increase_precision();
void restore_precision();
// computes exp(x). Fallback to runtime call included.
void exp_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(true, num_fpu_regs_in_use); }
// computes pow(x,y). Fallback to runtime call included.
void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(false, num_fpu_regs_in_use); }
private:
// call runtime as a fallback for trig functions and pow/exp.
void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
// computes 2^(Ylog2X); Ylog2X in ST(0)
void pow_exp_core_encoding();
// computes pow(x,y) or exp(x). Fallback to runtime call included.
void pow_or_exp(bool is_exp, int num_fpu_regs_in_use);
// these are private because users should be doing movflt/movdbl
void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); }
void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); }
void movss(XMMRegister dst, AddressLiteral src);
void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); }
void movlpd(XMMRegister dst, AddressLiteral src);
public:
void addsd(XMMRegister dst, XMMRegister src) { Assembler::addsd(dst, src); }
void addsd(XMMRegister dst, Address src) { Assembler::addsd(dst, src); }
void addsd(XMMRegister dst, AddressLiteral src);
void addss(XMMRegister dst, XMMRegister src) { Assembler::addss(dst, src); }
void addss(XMMRegister dst, Address src) { Assembler::addss(dst, src); }
void addss(XMMRegister dst, AddressLiteral src);
void divsd(XMMRegister dst, XMMRegister src) { Assembler::divsd(dst, src); }
void divsd(XMMRegister dst, Address src) { Assembler::divsd(dst, src); }
void divsd(XMMRegister dst, AddressLiteral src);
void divss(XMMRegister dst, XMMRegister src) { Assembler::divss(dst, src); }
void divss(XMMRegister dst, Address src) { Assembler::divss(dst, src); }
void divss(XMMRegister dst, AddressLiteral src);
// Move Unaligned Double Quadword
void movdqu(Address dst, XMMRegister src) { Assembler::movdqu(dst, src); }
void movdqu(XMMRegister dst, Address src) { Assembler::movdqu(dst, src); }
void movdqu(XMMRegister dst, XMMRegister src) { Assembler::movdqu(dst, src); }
void movdqu(XMMRegister dst, AddressLiteral src);
// Move Aligned Double Quadword
void movdqa(XMMRegister dst, Address src) { Assembler::movdqa(dst, src); }
void movdqa(XMMRegister dst, XMMRegister src) { Assembler::movdqa(dst, src); }
void movdqa(XMMRegister dst, AddressLiteral src);
void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); }
void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); }
void movsd(XMMRegister dst, AddressLiteral src);
void mulsd(XMMRegister dst, XMMRegister src) { Assembler::mulsd(dst, src); }
void mulsd(XMMRegister dst, Address src) { Assembler::mulsd(dst, src); }
void mulsd(XMMRegister dst, AddressLiteral src);
void mulss(XMMRegister dst, XMMRegister src) { Assembler::mulss(dst, src); }
void mulss(XMMRegister dst, Address src) { Assembler::mulss(dst, src); }
void mulss(XMMRegister dst, AddressLiteral src);
// Carry-Less Multiplication Quadword
void pclmulldq(XMMRegister dst, XMMRegister src) {
// 0x00 - multiply lower 64 bits [0:63]
Assembler::pclmulqdq(dst, src, 0x00);
}
void pclmulhdq(XMMRegister dst, XMMRegister src) {
// 0x11 - multiply upper 64 bits [64:127]
Assembler::pclmulqdq(dst, src, 0x11);
}
void sqrtsd(XMMRegister dst, XMMRegister src) { Assembler::sqrtsd(dst, src); }
void sqrtsd(XMMRegister dst, Address src) { Assembler::sqrtsd(dst, src); }
void sqrtsd(XMMRegister dst, AddressLiteral src);
void sqrtss(XMMRegister dst, XMMRegister src) { Assembler::sqrtss(dst, src); }
void sqrtss(XMMRegister dst, Address src) { Assembler::sqrtss(dst, src); }
void sqrtss(XMMRegister dst, AddressLiteral src);
void subsd(XMMRegister dst, XMMRegister src) { Assembler::subsd(dst, src); }
void subsd(XMMRegister dst, Address src) { Assembler::subsd(dst, src); }
void subsd(XMMRegister dst, AddressLiteral src);
void subss(XMMRegister dst, XMMRegister src) { Assembler::subss(dst, src); }
void subss(XMMRegister dst, Address src) { Assembler::subss(dst, src); }
void subss(XMMRegister dst, AddressLiteral src);
void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
void ucomiss(XMMRegister dst, AddressLiteral src);
void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
void ucomisd(XMMRegister dst, AddressLiteral src);
// Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); }
void xorpd(XMMRegister dst, AddressLiteral src);
// Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); }
void xorps(XMMRegister dst, AddressLiteral src);
// Shuffle Bytes
void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
void pshufb(XMMRegister dst, Address src) { Assembler::pshufb(dst, src); }
void pshufb(XMMRegister dst, AddressLiteral src);
// AVX 3-operands instructions
void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
void vaddsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddsd(dst, nds, src); }
void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
void vaddss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddss(dst, nds, src); }
void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandpd(dst, nds, src, vector256); }
void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vandpd(dst, nds, src, vector256); }
void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandps(dst, nds, src, vector256); }
void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vandps(dst, nds, src, vector256); }
void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
void vdivsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivsd(dst, nds, src); }
void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
void vdivss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivss(dst, nds, src); }
void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
void vmulsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulsd(dst, nds, src); }
void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
void vmulss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulss(dst, nds, src); }
void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
void vsubsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubsd(dst, nds, src); }
void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
void vsubss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubss(dst, nds, src); }
void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
// AVX Vector instructions
void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
Assembler::vpxor(dst, nds, src, vector256);
else
Assembler::vxorpd(dst, nds, src, vector256);
}
void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
Assembler::vpxor(dst, nds, src, vector256);
else
Assembler::vxorpd(dst, nds, src, vector256);
}
// Simple version for AVX2 256bit vectors
void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
// Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector.
void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
if (UseAVX > 1) // vinserti128h is available only in AVX2
Assembler::vinserti128h(dst, nds, src);
else
Assembler::vinsertf128h(dst, nds, src);
}
// Carry-Less Multiplication Quadword
void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
// 0x00 - multiply lower 64 bits [0:63]
Assembler::vpclmulqdq(dst, nds, src, 0x00);
}
void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
// 0x11 - multiply upper 64 bits [64:127]
Assembler::vpclmulqdq(dst, nds, src, 0x11);
}
// Data
void cmov32( Condition cc, Register dst, Address src);
void cmov32( Condition cc, Register dst, Register src);
void cmov( Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
void movoop(Register dst, jobject obj);
void movoop(Address dst, jobject obj);
void mov_metadata(Register dst, Metadata* obj);
void mov_metadata(Address dst, Metadata* obj);
void movptr(ArrayAddress dst, Register src);
// can this do an lea?
void movptr(Register dst, ArrayAddress src);
void movptr(Register dst, Address src);
#ifdef _LP64
void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
#else
void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
#endif
void movptr(Register dst, intptr_t src);
void movptr(Register dst, Register src);
void movptr(Address dst, intptr_t src);
void movptr(Address dst, Register src);
void movptr(Register dst, RegisterOrConstant src) {
if (src.is_constant()) movptr(dst, src.as_constant());
else movptr(dst, src.as_register());
}
#ifdef _LP64
// Generally the next two are only used for moving NULL
// Although there are situations in initializing the mark word where
// they could be used. They are dangerous.
// They only exist on LP64 so that int32_t and intptr_t are not the same
// and we have ambiguous declarations.
void movptr(Address dst, int32_t imm32);
void movptr(Register dst, int32_t imm32);
#endif // _LP64
// to avoid hiding movl
void mov32(AddressLiteral dst, Register src);
void mov32(Register dst, AddressLiteral src);
// to avoid hiding movb
void movbyte(ArrayAddress dst, int src);
// Import other mov() methods from the parent class or else
// they will be hidden by the following overriding declaration.
using Assembler::movdl;
using Assembler::movq;
void movdl(XMMRegister dst, AddressLiteral src);
void movq(XMMRegister dst, AddressLiteral src);
// Can push value or effective address
void pushptr(AddressLiteral src);
void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
void pushoop(jobject obj);
void pushklass(Metadata* obj);
// sign extend as need a l to ptr sized element
void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
// C2 compiled method's prolog code.
void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
// clear memory of size 'cnt' qwords, starting at 'base'.
void clear_mem(Register base, Register cnt, Register rtmp);
// IndexOf strings.
// Small strings are loaded through stack if they cross page boundary.
void string_indexof(Register str1, Register str2,
Register cnt1, Register cnt2,
int int_cnt2, Register result,
XMMRegister vec, Register tmp);
// IndexOf for constant substrings with size >= 8 elements
// which don't need to be loaded through stack.
void string_indexofC8(Register str1, Register str2,
Register cnt1, Register cnt2,
int int_cnt2, Register result,
XMMRegister vec, Register tmp);
// Smallest code: we don't need to load through stack,
// check string tail.
// Compare strings.
void string_compare(Register str1, Register str2,
Register cnt1, Register cnt2, Register result,
XMMRegister vec1);
// Compare char[] arrays.
void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
Register limit, Register result, Register chr,
XMMRegister vec1, XMMRegister vec2);
// Fill primitive arrays
void generate_fill(BasicType t, bool aligned,
Register to, Register value, Register count,
Register rtmp, XMMRegister xtmp);
void encode_iso_array(Register src, Register dst, Register len,
XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
XMMRegister tmp4, Register tmp5, Register result);
#ifdef _LP64
void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
Register y, Register y_idx, Register z,
Register carry, Register product,
Register idx, Register kdx);
void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
Register yz_idx, Register idx,
Register carry, Register product, int offset);
void multiply_128_x_128_bmi2_loop(Register y, Register z,
Register carry, Register carry2,
Register idx, Register jdx,
Register yz_idx1, Register yz_idx2,
Register tmp, Register tmp3, Register tmp4);
void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
Register yz_idx, Register idx, Register jdx,
Register carry, Register product,
Register carry2);
void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
#endif
// CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
void update_byte_crc32(Register crc, Register val, Register table);
void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
// Fold 128-bit data chunk
void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
// Fold 8-bit data
void fold_8bit_crc32(Register crc, Register table, Register tmp);
void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
#undef VIRTUAL
};
/**
* class SkipIfEqual:
*
* Instantiating this class will result in assembly code being output that will
* jump around any code emitted between the creation of the instance and it's
* automatic destruction at the end of a scope block, depending on the value of
* the flag passed to the constructor, which will be checked at run-time.
*/
class SkipIfEqual {
private:
MacroAssembler* _masm;
Label _label;
public:
SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
~SkipIfEqual();
};
#endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP