8230505: Replace JVM type comparisons to T_OBJECT and T_ARRAY with call to is_reference_type
Summary: Consistently use is_reference_type when comparing type for T_OBJECT or T_ARRAY.
Reviewed-by: dlong, coleenp, hseigel
Contributed-by: lois.foltan@oracle.com, john.r.rose@oracle.com
/*
* Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1BarrierSetAssembler.hpp"
#include "gc/g1/g1BarrierSetRuntime.hpp"
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/g1DirtyCardQueue.hpp"
#include "gc/g1/g1SATBMarkQueueSet.hpp"
#include "gc/g1/g1ThreadLocalData.hpp"
#include "gc/g1/heapRegion.hpp"
#include "interpreter/interp_masm.hpp"
#include "runtime/sharedRuntime.hpp"
#include "utilities/macros.hpp"
#ifdef COMPILER1
#include "c1/c1_LIRAssembler.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "gc/g1/c1/g1BarrierSetC1.hpp"
#endif
#define __ masm->
void G1BarrierSetAssembler::gen_write_ref_array_pre_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register addr, Register count) {
bool dest_uninitialized = (decorators & IS_DEST_UNINITIALIZED) != 0;
// With G1, don't generate the call if we statically know that the target in uninitialized
if (!dest_uninitialized) {
Register tmp = O5;
assert_different_registers(addr, count, tmp);
Label filtered;
// Is marking active?
if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
__ ld(G2, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()), tmp);
} else {
guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
__ ldsb(G2, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()), tmp);
}
// Is marking active?
__ cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
__ save_frame(0);
// Save the necessary global regs... will be used after.
if (addr->is_global()) {
__ mov(addr, L0);
}
if (count->is_global()) {
__ mov(count, L1);
}
__ mov(addr->after_save(), O0);
// Get the count into O1
address slowpath = UseCompressedOops ? CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_array_pre_narrow_oop_entry)
: CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_array_pre_oop_entry);
__ call(slowpath);
__ delayed()->mov(count->after_save(), O1);
if (addr->is_global()) {
__ mov(L0, addr);
}
if (count->is_global()) {
__ mov(L1, count);
}
__ restore();
__ bind(filtered);
DEBUG_ONLY(__ set(0xDEADC0DE, tmp);) // we have killed tmp
}
}
void G1BarrierSetAssembler::gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register addr, Register count, Register tmp) {
// Get some new fresh output registers.
__ save_frame(0);
__ mov(addr->after_save(), O0);
__ call(CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_array_post_entry));
__ delayed()->mov(count->after_save(), O1);
__ restore();
}
#undef __
static address satb_log_enqueue_with_frame = NULL;
static u_char* satb_log_enqueue_with_frame_end = NULL;
static address satb_log_enqueue_frameless = NULL;
static u_char* satb_log_enqueue_frameless_end = NULL;
static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
static void generate_satb_log_enqueue(bool with_frame) {
BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
CodeBuffer buf(bb);
MacroAssembler masm(&buf);
#define __ masm.
address start = __ pc();
Register pre_val;
Label refill, restart;
if (with_frame) {
__ save_frame(0);
pre_val = I0; // Was O0 before the save.
} else {
pre_val = O0;
}
int satb_q_index_byte_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset());
int satb_q_buf_byte_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset());
assert(in_bytes(SATBMarkQueue::byte_width_of_index()) == sizeof(intptr_t) &&
in_bytes(SATBMarkQueue::byte_width_of_buf()) == sizeof(intptr_t),
"check sizes in assembly below");
__ bind(restart);
// Load the index into the SATB buffer. SATBMarkQueue::_index is a size_t
// so ld_ptr is appropriate.
__ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
// index == 0?
__ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
__ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
__ sub(L0, oopSize, L0);
__ st_ptr(pre_val, L1, L0); // [_buf + index] := I0
if (!with_frame) {
// Use return-from-leaf
__ retl();
__ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
} else {
// Not delayed.
__ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
}
if (with_frame) {
__ ret();
__ delayed()->restore();
}
__ bind(refill);
address handle_zero =
CAST_FROM_FN_PTR(address,
&G1SATBMarkQueueSet::handle_zero_index_for_thread);
// This should be rare enough that we can afford to save all the
// scratch registers that the calling context might be using.
__ mov(G1_scratch, L0);
__ mov(G3_scratch, L1);
__ mov(G4, L2);
// We need the value of O0 above (for the write into the buffer), so we
// save and restore it.
__ mov(O0, L3);
// Since the call will overwrite O7, we save and restore that, as well.
__ mov(O7, L4);
__ call_VM_leaf(L5, handle_zero, G2_thread);
__ mov(L0, G1_scratch);
__ mov(L1, G3_scratch);
__ mov(L2, G4);
__ mov(L3, O0);
__ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
__ delayed()->mov(L4, O7);
if (with_frame) {
satb_log_enqueue_with_frame = start;
satb_log_enqueue_with_frame_end = __ pc();
} else {
satb_log_enqueue_frameless = start;
satb_log_enqueue_frameless_end = __ pc();
}
#undef __
}
#define __ masm->
void G1BarrierSetAssembler::g1_write_barrier_pre(MacroAssembler* masm,
Register obj,
Register index,
int offset,
Register pre_val,
Register tmp,
bool preserve_o_regs) {
Label filtered;
if (obj == noreg) {
// We are not loading the previous value so make
// sure that we don't trash the value in pre_val
// with the code below.
assert_different_registers(pre_val, tmp);
} else {
// We will be loading the previous value
// in this code so...
assert(offset == 0 || index == noreg, "choose one");
assert(pre_val == noreg, "check this code");
}
// Is marking active?
if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
__ ld(G2, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()), tmp);
} else {
guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
__ ldsb(G2, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()), tmp);
}
// Is marking active?
__ cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
// Do we need to load the previous value?
if (obj != noreg) {
// Load the previous value...
if (index == noreg) {
if (Assembler::is_simm13(offset)) {
__ load_heap_oop(obj, offset, tmp);
} else {
__ set(offset, tmp);
__ load_heap_oop(obj, tmp, tmp);
}
} else {
__ load_heap_oop(obj, index, tmp);
}
// Previous value has been loaded into tmp
pre_val = tmp;
}
assert(pre_val != noreg, "must have a real register");
// Is the previous value null?
__ cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
// OK, it's not filtered, so we'll need to call enqueue. In the normal
// case, pre_val will be a scratch G-reg, but there are some cases in
// which it's an O-reg. In the first case, do a normal call. In the
// latter, do a save here and call the frameless version.
guarantee(pre_val->is_global() || pre_val->is_out(),
"Or we need to think harder.");
if (pre_val->is_global() && !preserve_o_regs) {
__ call(satb_log_enqueue_with_frame);
__ delayed()->mov(pre_val, O0);
} else {
__ save_frame(0);
__ call(satb_log_enqueue_frameless);
__ delayed()->mov(pre_val->after_save(), O0);
__ restore();
}
__ bind(filtered);
}
#undef __
static address dirty_card_log_enqueue = 0;
static u_char* dirty_card_log_enqueue_end = 0;
// This gets to assume that o0 contains the object address.
static void generate_dirty_card_log_enqueue(CardTable::CardValue* byte_map_base) {
BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
CodeBuffer buf(bb);
MacroAssembler masm(&buf);
#define __ masm.
address start = __ pc();
Label not_already_dirty, restart, refill, young_card;
__ srlx(O0, CardTable::card_shift, O0);
AddressLiteral addrlit(byte_map_base);
__ set(addrlit, O1); // O1 := <card table base>
__ ldub(O0, O1, O2); // O2 := [O0 + O1]
__ cmp_and_br_short(O2, G1CardTable::g1_young_card_val(), Assembler::equal, Assembler::pt, young_card);
__ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
__ ldub(O0, O1, O2); // O2 := [O0 + O1]
assert(G1CardTable::dirty_card_val() == 0, "otherwise check this code");
__ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
__ bind(young_card);
// We didn't take the branch, so we're already dirty: return.
// Use return-from-leaf
__ retl();
__ delayed()->nop();
// Not dirty.
__ bind(not_already_dirty);
// Get O0 + O1 into a reg by itself
__ add(O0, O1, O3);
// First, dirty it.
__ stb(G0, O3, G0); // [cardPtr] := 0 (i.e., dirty).
int dirty_card_q_index_byte_offset = in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset());
int dirty_card_q_buf_byte_offset = in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset());
__ bind(restart);
// Load the index into the update buffer. G1DirtyCardQueue::_index is
// a size_t so ld_ptr is appropriate here.
__ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
// index == 0?
__ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
__ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
__ sub(L0, oopSize, L0);
__ st_ptr(O3, L1, L0); // [_buf + index] := I0
// Use return-from-leaf
__ retl();
__ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
__ bind(refill);
address handle_zero =
CAST_FROM_FN_PTR(address,
&G1DirtyCardQueueSet::handle_zero_index_for_thread);
// This should be rare enough that we can afford to save all the
// scratch registers that the calling context might be using.
__ mov(G1_scratch, L3);
__ mov(G3_scratch, L5);
// We need the value of O3 above (for the write into the buffer), so we
// save and restore it.
__ mov(O3, L6);
// Since the call will overwrite O7, we save and restore that, as well.
__ mov(O7, L4);
__ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
__ mov(L3, G1_scratch);
__ mov(L5, G3_scratch);
__ mov(L6, O3);
__ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
__ delayed()->mov(L4, O7);
dirty_card_log_enqueue = start;
dirty_card_log_enqueue_end = __ pc();
// XXX Should have a guarantee here about not going off the end!
// Does it already do so? Do an experiment...
#undef __
}
#define __ masm->
void G1BarrierSetAssembler::g1_write_barrier_post(MacroAssembler* masm, Register store_addr, Register new_val, Register tmp) {
Label filtered;
MacroAssembler* post_filter_masm = masm;
if (new_val == G0) return;
G1BarrierSet* bs = barrier_set_cast<G1BarrierSet>(BarrierSet::barrier_set());
__ xor3(store_addr, new_val, tmp);
__ srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
__ cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
// If the "store_addr" register is an "in" or "local" register, move it to
// a scratch reg so we can pass it as an argument.
bool use_scr = !(store_addr->is_global() || store_addr->is_out());
// Pick a scratch register different from "tmp".
Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
// Make sure we use up the delay slot!
if (use_scr) {
post_filter_masm->mov(store_addr, scr);
} else {
post_filter_masm->nop();
}
__ save_frame(0);
__ call(dirty_card_log_enqueue);
if (use_scr) {
__ delayed()->mov(scr, O0);
} else {
__ delayed()->mov(store_addr->after_save(), O0);
}
__ restore();
__ bind(filtered);
}
void G1BarrierSetAssembler::oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register val, Address dst, Register tmp) {
bool in_heap = (decorators & IN_HEAP) != 0;
bool as_normal = (decorators & AS_NORMAL) != 0;
assert((decorators & IS_DEST_UNINITIALIZED) == 0, "unsupported");
bool needs_pre_barrier = as_normal;
// No need for post barrier if storing NULL
bool needs_post_barrier = val != G0 && in_heap;
bool is_array = (decorators & IS_ARRAY) != 0;
bool on_anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
bool precise = is_array || on_anonymous;
Register index = dst.has_index() ? dst.index() : noreg;
int disp = dst.has_disp() ? dst.disp() : 0;
if (needs_pre_barrier) {
// Load and record the previous value.
g1_write_barrier_pre(masm, dst.base(), index, disp,
noreg /* pre_val */,
tmp, true /*preserve_o_regs*/);
}
Register new_val = val;
if (needs_post_barrier) {
// G1 barrier needs uncompressed oop for region cross check.
if (UseCompressedOops && val != G0) {
new_val = tmp;
__ mov(val, new_val);
}
}
BarrierSetAssembler::store_at(masm, decorators, type, val, dst, tmp);
if (needs_post_barrier) {
Register base = dst.base();
if (precise) {
if (!dst.has_index()) {
__ add(base, disp, base);
} else {
assert(!dst.has_disp(), "not supported yet");
__ add(base, index, base);
}
}
g1_write_barrier_post(masm, base, new_val, tmp);
}
}
void G1BarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address src, Register dst, Register tmp) {
bool on_oop = is_reference_type(type);
bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0;
bool on_phantom = (decorators & ON_PHANTOM_OOP_REF) != 0;
bool on_reference = on_weak || on_phantom;
// Load the value of the referent field.
ModRefBarrierSetAssembler::load_at(masm, decorators, type, src, dst, tmp);
if (on_oop && on_reference) {
// Generate the G1 pre-barrier code to log the value of
// the referent field in an SATB buffer. Note with
// these parameters the pre-barrier does not generate
// the load of the previous value
Register pre_val = dst;
bool saved = false;
if (pre_val->is_in()) {
// The g1_write_barrier_pre method assumes that the pre_val
// is not in an input register.
__ save_frame_and_mov(0, pre_val, O0);
pre_val = O0;
saved = true;
}
g1_write_barrier_pre(masm, noreg /* obj */, noreg /* index */, 0 /* offset */,
pre_val /* pre_val */,
tmp /* tmp */,
true /* preserve_o_regs */);
if (saved) {
__ restore();
}
}
}
void G1BarrierSetAssembler::barrier_stubs_init() {
if (dirty_card_log_enqueue == 0) {
G1BarrierSet* bs = barrier_set_cast<G1BarrierSet>(BarrierSet::barrier_set());
CardTable *ct = bs->card_table();
generate_dirty_card_log_enqueue(ct->byte_map_base());
assert(dirty_card_log_enqueue != 0, "postcondition.");
}
if (satb_log_enqueue_with_frame == 0) {
generate_satb_log_enqueue(true);
assert(satb_log_enqueue_with_frame != 0, "postcondition.");
}
if (satb_log_enqueue_frameless == 0) {
generate_satb_log_enqueue(false);
assert(satb_log_enqueue_frameless != 0, "postcondition.");
}
}
#ifdef COMPILER1
#undef __
#define __ ce->masm()->
void G1BarrierSetAssembler::gen_pre_barrier_stub(LIR_Assembler* ce, G1PreBarrierStub* stub) {
G1BarrierSetC1* bs = (G1BarrierSetC1*)BarrierSet::barrier_set()->barrier_set_c1();
// At this point we know that marking is in progress.
// If do_load() is true then we have to emit the
// load of the previous value; otherwise it has already
// been loaded into _pre_val.
__ bind(*stub->entry());
assert(stub->pre_val()->is_register(), "Precondition.");
Register pre_val_reg = stub->pre_val()->as_register();
if (stub->do_load()) {
ce->mem2reg(stub->addr(), stub->pre_val(), T_OBJECT, stub->patch_code(), stub->info(), false /*wide*/, false /*unaligned*/);
}
if (__ is_in_wdisp16_range(*stub->continuation())) {
__ br_null(pre_val_reg, /*annul*/false, Assembler::pt, *stub->continuation());
} else {
__ cmp(pre_val_reg, G0);
__ brx(Assembler::equal, false, Assembler::pn, *stub->continuation());
}
__ delayed()->nop();
__ call(bs->pre_barrier_c1_runtime_code_blob()->code_begin());
__ delayed()->mov(pre_val_reg, G4);
__ br(Assembler::always, false, Assembler::pt, *stub->continuation());
__ delayed()->nop();
}
void G1BarrierSetAssembler::gen_post_barrier_stub(LIR_Assembler* ce, G1PostBarrierStub* stub) {
G1BarrierSetC1* bs = (G1BarrierSetC1*)BarrierSet::barrier_set()->barrier_set_c1();
__ bind(*stub->entry());
assert(stub->addr()->is_register(), "Precondition.");
assert(stub->new_val()->is_register(), "Precondition.");
Register addr_reg = stub->addr()->as_pointer_register();
Register new_val_reg = stub->new_val()->as_register();
if (__ is_in_wdisp16_range(*stub->continuation())) {
__ br_null(new_val_reg, /*annul*/false, Assembler::pt, *stub->continuation());
} else {
__ cmp(new_val_reg, G0);
__ brx(Assembler::equal, false, Assembler::pn, *stub->continuation());
}
__ delayed()->nop();
__ call(bs->post_barrier_c1_runtime_code_blob()->code_begin());
__ delayed()->mov(addr_reg, G4);
__ br(Assembler::always, false, Assembler::pt, *stub->continuation());
__ delayed()->nop();
}
#undef __
#define __ sasm->
void G1BarrierSetAssembler::generate_c1_pre_barrier_runtime_stub(StubAssembler* sasm) {
__ prologue("g1_pre_barrier", false);
// G4: previous value of memory
Register pre_val = G4;
Register tmp = G1_scratch;
Register tmp2 = G3_scratch;
Label refill, restart;
int satb_q_active_byte_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
int satb_q_index_byte_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset());
int satb_q_buf_byte_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset());
// Is marking still active?
if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
__ ld(G2_thread, satb_q_active_byte_offset, tmp);
} else {
assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
__ ldsb(G2_thread, satb_q_active_byte_offset, tmp);
}
__ cmp_and_br_short(tmp, G0, Assembler::notEqual, Assembler::pt, restart);
__ retl();
__ delayed()->nop();
__ bind(restart);
// Load the index into the SATB buffer. SATBMarkQueue::_index is a
// size_t so ld_ptr is appropriate
__ ld_ptr(G2_thread, satb_q_index_byte_offset, tmp);
// index == 0?
__ cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pn, refill);
__ ld_ptr(G2_thread, satb_q_buf_byte_offset, tmp2);
__ sub(tmp, oopSize, tmp);
__ st_ptr(pre_val, tmp2, tmp); // [_buf + index] := <address_of_card>
// Use return-from-leaf
__ retl();
__ delayed()->st_ptr(tmp, G2_thread, satb_q_index_byte_offset);
__ bind(refill);
__ save_live_registers_no_oop_map(true);
__ call_VM_leaf(L7_thread_cache,
CAST_FROM_FN_PTR(address,
G1SATBMarkQueueSet::handle_zero_index_for_thread),
G2_thread);
__ restore_live_registers(true);
__ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
__ epilogue();
}
void G1BarrierSetAssembler::generate_c1_post_barrier_runtime_stub(StubAssembler* sasm) {
__ prologue("g1_post_barrier", false);
G1BarrierSet* bs = barrier_set_cast<G1BarrierSet>(BarrierSet::barrier_set());
Register addr = G4;
Register cardtable = G5;
Register tmp = G1_scratch;
Register tmp2 = G3_scratch;
CardTable::CardValue* byte_map_base = bs->card_table()->byte_map_base();
Label not_already_dirty, restart, refill, young_card;
#ifdef _LP64
__ srlx(addr, CardTable::card_shift, addr);
#else
__ srl(addr, CardTable::card_shift, addr);
#endif
AddressLiteral rs((address)byte_map_base);
__ set(rs, cardtable); // cardtable := <card table base>
__ ldub(addr, cardtable, tmp); // tmp := [addr + cardtable]
__ cmp_and_br_short(tmp, G1CardTable::g1_young_card_val(), Assembler::equal, Assembler::pt, young_card);
__ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
__ ldub(addr, cardtable, tmp); // tmp := [addr + cardtable]
assert(G1CardTable::dirty_card_val() == 0, "otherwise check this code");
__ cmp_and_br_short(tmp, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
__ bind(young_card);
// We didn't take the branch, so we're already dirty: return.
// Use return-from-leaf
__ retl();
__ delayed()->nop();
// Not dirty.
__ bind(not_already_dirty);
// Get cardtable + tmp into a reg by itself
__ add(addr, cardtable, tmp2);
// First, dirty it.
__ stb(G0, tmp2, 0); // [cardPtr] := 0 (i.e., dirty).
Register tmp3 = cardtable;
Register tmp4 = tmp;
// these registers are now dead
addr = cardtable = tmp = noreg;
int dirty_card_q_index_byte_offset = in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset());
int dirty_card_q_buf_byte_offset = in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset());
__ bind(restart);
// Get the index into the update buffer. G1DirtyCardQueue::_index is
// a size_t so ld_ptr is appropriate here.
__ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, tmp3);
// index == 0?
__ cmp_and_brx_short(tmp3, G0, Assembler::equal, Assembler::pn, refill);
__ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, tmp4);
__ sub(tmp3, oopSize, tmp3);
__ st_ptr(tmp2, tmp4, tmp3); // [_buf + index] := <address_of_card>
// Use return-from-leaf
__ retl();
__ delayed()->st_ptr(tmp3, G2_thread, dirty_card_q_index_byte_offset);
__ bind(refill);
__ save_live_registers_no_oop_map(true);
__ call_VM_leaf(L7_thread_cache,
CAST_FROM_FN_PTR(address,
G1DirtyCardQueueSet::handle_zero_index_for_thread),
G2_thread);
__ restore_live_registers(true);
__ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
__ epilogue();
}
#undef __
#endif // COMPILER1