/*
* Copyright (c) 2017, Red Hat, Inc. and/or its affiliates.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/epsilon/epsilonHeap.hpp"
#include "gc/epsilon/epsilonMemoryPool.hpp"
jint EpsilonHeap::initialize() {
CollectedHeap::pre_initialize();
size_t init_byte_size = _policy->initial_heap_byte_size();
size_t max_byte_size = _policy->max_heap_byte_size();
size_t align = _policy->heap_alignment();
ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size, align);
_virtual_space.initialize(heap_rs, init_byte_size);
MemRegion committed_region((HeapWord*)_virtual_space.low(), (HeapWord*)_virtual_space.high());
MemRegion reserved_region((HeapWord*)_virtual_space.low_boundary(), (HeapWord*)_virtual_space.high_boundary());
initialize_reserved_region(reserved_region.start(), reserved_region.end());
_space = new ContiguousSpace();
_space->initialize(committed_region, true, true);
EpsilonBarrierSet* bs = new EpsilonBarrierSet();
set_barrier_set(bs);
_max_tlab_size = MIN2(CollectedHeap::max_tlab_size(), EpsilonMaxTLABSize / HeapWordSize);
_monitoring_support = new EpsilonMonitoringSupport(this);
_last_counter_update = 0;
if (init_byte_size != max_byte_size) {
log_info(gc)("Initialized with " SIZE_FORMAT "M heap, resizeable to up to " SIZE_FORMAT "M heap with " SIZE_FORMAT "M steps",
init_byte_size / M, max_byte_size / M, EpsilonMinHeapExpand / M);
} else {
log_info(gc)("Initialized with " SIZE_FORMAT "M non-resizeable heap", init_byte_size / M);
}
if (UseTLAB) {
log_info(gc)("Using TLAB allocation; min: " SIZE_FORMAT "K, max: " SIZE_FORMAT "K",
ThreadLocalAllocBuffer::min_size()*HeapWordSize / K,
_max_tlab_size*HeapWordSize / K);
} else {
log_info(gc)("Not using TLAB allocation");
}
return JNI_OK;
}
void EpsilonHeap::post_initialize() {
CollectedHeap::post_initialize();
}
void EpsilonHeap::initialize_serviceability() {
// _minor_gc_manager = MemoryManager::get_epsilon_memory_manager();
// _major_gc_manager = MemoryManager::get_epsilon_memory_manager();
// _managers_list->append(_minor_gc_manager);
// _managers_list->append(_major_gc_manager);
// EpsilonDummyMemoryPool* dummy = new EpsilonDummyMemoryPool();
//
// _minor_gc_manager->add_pool(dummy);
// _pools_list->append(dummy);
//
// EpsilonMemoryPool* pool = new EpsilonMemoryPool(this);
// _major_gc_manager->add_pool(pool);
// _pools_list->append(pool);
}
GrowableArray<GCMemoryManager*> EpsilonHeap::memory_managers() {
GrowableArray<GCMemoryManager*> memory_managers(2);
// memory_managers.append(&_memory_manager);
// memory_managers.append(&_full_gc_memory_manager);
return memory_managers;
}
GrowableArray<MemoryPool*> EpsilonHeap::memory_pools() {
GrowableArray<MemoryPool*> memory_pools(3);
// memory_pools.append(_eden_pool);
// memory_pools.append(_survivor_pool);
// memory_pools.append(_old_pool);
return memory_pools;
}
size_t EpsilonHeap::unsafe_max_tlab_alloc(Thread *thr) const {
// This is the only way we can control TLAB sizes without having safepoints.
// Implement exponential expansion within [MinTLABSize; _max_tlab_size], based
// on previously "used" TLAB size.
size_t size = MIN2(_max_tlab_size * HeapWordSize, MAX2(MinTLABSize, thr->tlab().used() * HeapWordSize * 2));
if (log_is_enabled(Trace, gc)) {
ResourceMark rm;
log_trace(gc)(
"Selecting TLAB size for \"%s\" (Desired: " SIZE_FORMAT "K, Used: " SIZE_FORMAT "K) -> " SIZE_FORMAT "K",
Thread::current()->name(),
thr->tlab().desired_size() * HeapWordSize / K,
thr->tlab().used() * HeapWordSize / K,
size / K);
}
return size;
}
EpsilonHeap* EpsilonHeap::heap() {
CollectedHeap* heap = Universe::heap();
assert(heap != NULL, "Uninitialized access to EpsilonHeap::heap()");
assert(heap->kind() == CollectedHeap::EpsilonHeap, "Not a EpsilonHeap");
return (EpsilonHeap*)heap;
}
HeapWord* EpsilonHeap::allocate_work(size_t size) {
HeapWord* res = _space->par_allocate(size);
while (res == NULL) {
// Allocation failed, attempt expansion, and retry:
MutexLockerEx ml(Heap_lock);
if (!_virtual_space.expand_by(MAX2(size, EpsilonMinHeapExpand))) {
return NULL;
}
_space->set_end((HeapWord *) _virtual_space.high());
res = _space->par_allocate(size);
}
size_t used = _space->used();
if (used - _last_counter_update >= 1024 * 1024) {
_last_counter_update = used;
_monitoring_support->update_counters();
}
return res;
}
HeapWord* EpsilonHeap::allocate_new_tlab(size_t size) {
return allocate_work(size);
}
HeapWord* EpsilonHeap::mem_allocate(size_t size, bool *gc_overhead_limit_was_exceeded) {
*gc_overhead_limit_was_exceeded = false;
return allocate_work(size);
}
void EpsilonHeap::collect(GCCause::Cause cause) {
log_info(gc)("GC was triggered with cause \"%s\". Ignoring.", GCCause::to_string(cause));
_monitoring_support->update_counters();
}
void EpsilonHeap::do_full_collection(bool clear_all_soft_refs) {
log_info(gc)("Full GC was triggered with cause \"%s\". Ignoring.", GCCause::to_string(gc_cause()));
_monitoring_support->update_counters();
}
void EpsilonHeap::safe_object_iterate(ObjectClosure *cl) {
_space->safe_object_iterate(cl);
}
void EpsilonHeap::print_on(outputStream *st) const {
st->print_cr("Epsilon Heap");
// Cast away constness:
((VirtualSpace)_virtual_space).print_on(st);
st->print_cr("Allocation space:");
_space->print_on(st);
}
void EpsilonHeap::print_tracing_info() const {
Log(gc) log;
size_t allocated_kb = used() / K;
log.info("Total allocated: " SIZE_FORMAT " KB",
allocated_kb);
log.info("Average allocation rate: " SIZE_FORMAT " KB/sec",
allocated_kb * NANOSECS_PER_SEC / os::elapsed_counter());
}