8031323: Optionally align objects copied to survivor spaces
Reviewed-by: brutisso, tschatzl
/*
* Copyright (c) 2002, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSADAPTIVESIZEPOLICY_HPP
#define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSADAPTIVESIZEPOLICY_HPP
#include "gc_implementation/shared/adaptiveSizePolicy.hpp"
#include "gc_implementation/shared/gcStats.hpp"
#include "gc_implementation/shared/gcUtil.hpp"
#include "gc_interface/gcCause.hpp"
// This class keeps statistical information and computes the
// optimal free space for both the young and old generation
// based on current application characteristics (based on gc cost
// and application footprint).
//
// It also computes an optimal tenuring threshold between the young
// and old generations, so as to equalize the cost of collections
// of those generations, as well as optimal survivor space sizes
// for the young generation.
//
// While this class is specifically intended for a generational system
// consisting of a young gen (containing an Eden and two semi-spaces)
// and a tenured gen, as well as a perm gen for reflective data, it
// makes NO references to specific generations.
//
// 05/02/2003 Update
// The 1.5 policy makes use of data gathered for the costs of GC on
// specific generations. That data does reference specific
// generation. Also diagnostics specific to generations have
// been added.
// Forward decls
class elapsedTimer;
class PSAdaptiveSizePolicy : public AdaptiveSizePolicy {
friend class PSGCAdaptivePolicyCounters;
private:
// These values are used to record decisions made during the
// policy. For example, if the young generation was decreased
// to decrease the GC cost of minor collections the value
// decrease_young_gen_for_throughput_true is used.
// Last calculated sizes, in bytes, and aligned
// NEEDS_CLEANUP should use sizes.hpp, but it works in ints, not size_t's
// Time statistics
AdaptivePaddedAverage* _avg_major_pause;
// Footprint statistics
AdaptiveWeightedAverage* _avg_base_footprint;
// Statistical data gathered for GC
GCStats _gc_stats;
size_t _survivor_size_limit; // Limit in bytes of survivor size
const double _collection_cost_margin_fraction;
// Variable for estimating the major and minor pause times.
// These variables represent linear least-squares fits of
// the data.
// major pause time vs. old gen size
LinearLeastSquareFit* _major_pause_old_estimator;
// major pause time vs. young gen size
LinearLeastSquareFit* _major_pause_young_estimator;
// These record the most recent collection times. They
// are available as an alternative to using the averages
// for making ergonomic decisions.
double _latest_major_mutator_interval_seconds;
const size_t _space_alignment; // alignment for eden, survivors
const double _gc_minor_pause_goal_sec; // goal for maximum minor gc pause
// The amount of live data in the heap at the last full GC, used
// as a baseline to help us determine when we need to perform the
// next full GC.
size_t _live_at_last_full_gc;
// decrease/increase the old generation for minor pause time
int _change_old_gen_for_min_pauses;
// increase/decrease the young generation for major pause time
int _change_young_gen_for_maj_pauses;
// Flag indicating that the adaptive policy is ready to use
bool _old_gen_policy_is_ready;
// Changing the generation sizing depends on the data that is
// gathered about the effects of changes on the pause times and
// throughput. These variable count the number of data points
// gathered. The policy may use these counters as a threshold
// for reliable data.
julong _young_gen_change_for_major_pause_count;
// To facilitate faster growth at start up, supplement the normal
// growth percentage for the young gen eden and the
// old gen space for promotion with these value which decay
// with increasing collections.
uint _young_gen_size_increment_supplement;
uint _old_gen_size_increment_supplement;
// The number of bytes absorbed from eden into the old gen by moving the
// boundary over live data.
size_t _bytes_absorbed_from_eden;
private:
// Accessors
AdaptivePaddedAverage* avg_major_pause() const { return _avg_major_pause; }
double gc_minor_pause_goal_sec() const { return _gc_minor_pause_goal_sec; }
// Change the young generation size to achieve a minor GC pause time goal
void adjust_promo_for_minor_pause_time(bool is_full_gc,
size_t* desired_promo_size_ptr,
size_t* desired_eden_size_ptr);
void adjust_eden_for_minor_pause_time(bool is_full_gc,
size_t* desired_eden_size_ptr);
// Change the generation sizes to achieve a GC pause time goal
// Returned sizes are not necessarily aligned.
void adjust_promo_for_pause_time(bool is_full_gc,
size_t* desired_promo_size_ptr,
size_t* desired_eden_size_ptr);
void adjust_eden_for_pause_time(bool is_full_gc,
size_t* desired_promo_size_ptr,
size_t* desired_eden_size_ptr);
// Change the generation sizes to achieve an application throughput goal
// Returned sizes are not necessarily aligned.
void adjust_promo_for_throughput(bool is_full_gc,
size_t* desired_promo_size_ptr);
void adjust_eden_for_throughput(bool is_full_gc,
size_t* desired_eden_size_ptr);
// Change the generation sizes to achieve minimum footprint
// Returned sizes are not aligned.
size_t adjust_promo_for_footprint(size_t desired_promo_size,
size_t desired_total);
size_t adjust_eden_for_footprint(size_t desired_promo_size,
size_t desired_total);
// Size in bytes for an increment or decrement of eden.
virtual size_t eden_increment(size_t cur_eden, uint percent_change);
virtual size_t eden_decrement(size_t cur_eden);
size_t eden_decrement_aligned_down(size_t cur_eden);
size_t eden_increment_with_supplement_aligned_up(size_t cur_eden);
// Size in bytes for an increment or decrement of the promotion area
virtual size_t promo_increment(size_t cur_promo, uint percent_change);
virtual size_t promo_decrement(size_t cur_promo);
size_t promo_decrement_aligned_down(size_t cur_promo);
size_t promo_increment_with_supplement_aligned_up(size_t cur_promo);
// Returns a change that has been scaled down. Result
// is not aligned. (If useful, move to some shared
// location.)
size_t scale_down(size_t change, double part, double total);
protected:
// Time accessors
// Footprint accessors
size_t live_space() const {
return (size_t)(avg_base_footprint()->average() +
avg_young_live()->average() +
avg_old_live()->average());
}
size_t free_space() const {
return _eden_size + _promo_size;
}
void set_promo_size(size_t new_size) {
_promo_size = new_size;
}
void set_survivor_size(size_t new_size) {
_survivor_size = new_size;
}
// Update estimators
void update_minor_pause_old_estimator(double minor_pause_in_ms);
virtual GCPolicyKind kind() const { return _gc_ps_adaptive_size_policy; }
public:
// Use by ASPSYoungGen and ASPSOldGen to limit boundary moving.
size_t eden_increment_aligned_up(size_t cur_eden);
size_t eden_increment_aligned_down(size_t cur_eden);
size_t promo_increment_aligned_up(size_t cur_promo);
size_t promo_increment_aligned_down(size_t cur_promo);
virtual size_t eden_increment(size_t cur_eden);
virtual size_t promo_increment(size_t cur_promo);
// Accessors for use by performance counters
AdaptivePaddedNoZeroDevAverage* avg_promoted() const {
return _gc_stats.avg_promoted();
}
AdaptiveWeightedAverage* avg_base_footprint() const {
return _avg_base_footprint;
}
// Input arguments are initial free space sizes for young and old
// generations, the initial survivor space size, the
// alignment values and the pause & throughput goals.
//
// NEEDS_CLEANUP this is a singleton object
PSAdaptiveSizePolicy(size_t init_eden_size,
size_t init_promo_size,
size_t init_survivor_size,
size_t space_alignment,
double gc_pause_goal_sec,
double gc_minor_pause_goal_sec,
uint gc_time_ratio);
// Methods indicating events of interest to the adaptive size policy,
// called by GC algorithms. It is the responsibility of users of this
// policy to call these methods at the correct times!
void major_collection_begin();
void major_collection_end(size_t amount_live, GCCause::Cause gc_cause);
void tenured_allocation(size_t size) {
_avg_pretenured->sample(size);
}
// Accessors
// NEEDS_CLEANUP should use sizes.hpp
static size_t calculate_free_based_on_live(size_t live, uintx ratio_as_percentage);
size_t calculated_old_free_size_in_bytes() const;
size_t average_old_live_in_bytes() const {
return (size_t) avg_old_live()->average();
}
size_t average_promoted_in_bytes() const {
return (size_t)avg_promoted()->average();
}
size_t padded_average_promoted_in_bytes() const {
return (size_t)avg_promoted()->padded_average();
}
int change_young_gen_for_maj_pauses() {
return _change_young_gen_for_maj_pauses;
}
void set_change_young_gen_for_maj_pauses(int v) {
_change_young_gen_for_maj_pauses = v;
}
int change_old_gen_for_min_pauses() {
return _change_old_gen_for_min_pauses;
}
void set_change_old_gen_for_min_pauses(int v) {
_change_old_gen_for_min_pauses = v;
}
// Return true if the old generation size was changed
// to try to reach a pause time goal.
bool old_gen_changed_for_pauses() {
bool result = _change_old_gen_for_maj_pauses != 0 ||
_change_old_gen_for_min_pauses != 0;
return result;
}
// Return true if the young generation size was changed
// to try to reach a pause time goal.
bool young_gen_changed_for_pauses() {
bool result = _change_young_gen_for_min_pauses != 0 ||
_change_young_gen_for_maj_pauses != 0;
return result;
}
// end flags for pause goal
// Return true if the old generation size was changed
// to try to reach a throughput goal.
bool old_gen_changed_for_throughput() {
bool result = _change_old_gen_for_throughput != 0;
return result;
}
// Return true if the young generation size was changed
// to try to reach a throughput goal.
bool young_gen_changed_for_throughput() {
bool result = _change_young_gen_for_throughput != 0;
return result;
}
int decrease_for_footprint() { return _decrease_for_footprint; }
// Accessors for estimators. The slope of the linear fit is
// currently all that is used for making decisions.
LinearLeastSquareFit* major_pause_old_estimator() {
return _major_pause_old_estimator;
}
LinearLeastSquareFit* major_pause_young_estimator() {
return _major_pause_young_estimator;
}
virtual void clear_generation_free_space_flags();
float major_pause_old_slope() { return _major_pause_old_estimator->slope(); }
float major_pause_young_slope() {
return _major_pause_young_estimator->slope();
}
float major_collection_slope() { return _major_collection_estimator->slope();}
bool old_gen_policy_is_ready() { return _old_gen_policy_is_ready; }
// Given the amount of live data in the heap, should we
// perform a Full GC?
bool should_full_GC(size_t live_in_old_gen);
// Calculates optimal (free) space sizes for both the young and old
// generations. Stores results in _eden_size and _promo_size.
// Takes current used space in all generations as input, as well
// as an indication if a full gc has just been performed, for use
// in deciding if an OOM error should be thrown.
void compute_generations_free_space(size_t young_live,
size_t eden_live,
size_t old_live,
size_t cur_eden, // current eden in bytes
size_t max_old_gen_size,
size_t max_eden_size,
bool is_full_gc);
void compute_eden_space_size(size_t young_live,
size_t eden_live,
size_t cur_eden, // current eden in bytes
size_t max_eden_size,
bool is_full_gc);
void compute_old_gen_free_space(size_t old_live,
size_t cur_eden, // current eden in bytes
size_t max_old_gen_size,
bool is_full_gc);
// Calculates new survivor space size; returns a new tenuring threshold
// value. Stores new survivor size in _survivor_size.
uint compute_survivor_space_size_and_threshold(bool is_survivor_overflow,
uint tenuring_threshold,
size_t survivor_limit);
// Return the maximum size of a survivor space if the young generation were of
// size gen_size.
size_t max_survivor_size(size_t gen_size) {
// Never allow the target survivor size to grow more than MinSurvivorRatio
// of the young generation size. We cannot grow into a two semi-space
// system, with Eden zero sized. Even if the survivor space grows, from()
// might grow by moving the bottom boundary "down" -- so from space will
// remain almost full anyway (top() will be near end(), but there will be a
// large filler object at the bottom).
const size_t sz = gen_size / MinSurvivorRatio;
const size_t alignment = _space_alignment;
return sz > alignment ? align_size_down(sz, alignment) : alignment;
}
size_t live_at_last_full_gc() {
return _live_at_last_full_gc;
}
size_t bytes_absorbed_from_eden() const { return _bytes_absorbed_from_eden; }
void reset_bytes_absorbed_from_eden() { _bytes_absorbed_from_eden = 0; }
void set_bytes_absorbed_from_eden(size_t val) {
_bytes_absorbed_from_eden = val;
}
// Update averages that are always used (even
// if adaptive sizing is turned off).
void update_averages(bool is_survivor_overflow,
size_t survived,
size_t promoted);
// Printing support
virtual bool print_adaptive_size_policy_on(outputStream* st) const;
// Decay the supplemental growth additive.
void decay_supplemental_growth(bool is_full_gc);
};
#endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSADAPTIVESIZEPOLICY_HPP