/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_SPARC_VM_INTERP_MASM_SPARC_HPP
#define CPU_SPARC_VM_INTERP_MASM_SPARC_HPP
#include "asm/macroAssembler.inline.hpp"
#include "interpreter/invocationCounter.hpp"
// This file specializes the assember with interpreter-specific macros
typedef ByteSize (*OffsetFunction)(uint);
REGISTER_DECLARATION( Register, Otos_i , O0); // tos for ints, etc
REGISTER_DECLARATION( Register, Otos_l , O0); // for longs
REGISTER_DECLARATION( Register, Otos_l1, O0); // for 1st part of longs
REGISTER_DECLARATION( Register, Otos_l2, O1); // for 2nd part of longs
REGISTER_DECLARATION(FloatRegister, Ftos_f , F0); // for floats
REGISTER_DECLARATION(FloatRegister, Ftos_d , F0); // for doubles
REGISTER_DECLARATION(FloatRegister, Ftos_d1, F0); // for 1st part of double
REGISTER_DECLARATION(FloatRegister, Ftos_d2, F1); // for 2nd part of double
#ifndef DONT_USE_REGISTER_DEFINES
#define Otos_i O0
#define Otos_l O0
#define Otos_l1 O0
#define Otos_l2 O1
#define Ftos_f F0
#define Ftos_d F0
#define Ftos_d1 F0
#define Ftos_d2 F1
#endif // DONT_USE_REGISTER_DEFINES
class InterpreterMacroAssembler: public MacroAssembler {
protected:
#ifndef CC_INTERP
// Interpreter specific version of call_VM_base
virtual void call_VM_leaf_base(
Register java_thread,
address entry_point,
int number_of_arguments
);
virtual void call_VM_base(
Register oop_result,
Register java_thread,
Register last_java_sp,
address entry_point,
int number_of_arguments,
bool check_exception=true
);
virtual void check_and_handle_popframe(Register java_thread);
virtual void check_and_handle_earlyret(Register java_thread);
// base routine for all dispatches
void dispatch_base(TosState state, address* table);
#endif /* CC_INTERP */
public:
InterpreterMacroAssembler(CodeBuffer* c)
: MacroAssembler(c) {}
void jump_to_entry(address entry);
#ifndef CC_INTERP
virtual void load_earlyret_value(TosState state);
static const Address l_tmp ;
static const Address d_tmp ;
#endif /* CC_INTERP */
// helper routine for frame allocation/deallocation
// compute the delta by which the caller's SP has to
// be adjusted to accomodate for the non-argument
// locals
void compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta);
#ifndef CC_INTERP
// dispatch routines
void dispatch_prolog(TosState state, int step = 0);
void dispatch_epilog(TosState state, int step = 0);
void dispatch_only(TosState state);
void dispatch_normal(TosState state);
void dispatch_next(TosState state, int step = 0);
void dispatch_next_noverify_oop(TosState state, int step = 0);
void dispatch_via (TosState state, address* table);
// Removes the current activation (incl. unlocking of monitors).
// Additionally this code is used for earlyReturn in which case we
// want to skip throwing an exception and installing an exception.
void remove_activation(TosState state,
bool throw_monitor_exception = true,
bool install_monitor_exception = true);
protected:
void dispatch_Lbyte_code(TosState state, address* table, int bcp_incr = 0, bool verify = true);
#endif /* CC_INTERP */
public:
// Super call_VM calls - correspond to MacroAssembler::call_VM(_leaf) calls
void super_call_VM(Register thread_cache,
Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1,
Register arg_2,
bool check_exception = true);
#ifndef CC_INTERP
void super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
// Generate a subtype check: branch to ok_is_subtype if sub_klass is
// a subtype of super_klass. Blows registers tmp1, tmp2 and tmp3.
void gen_subtype_check( Register sub_klass, Register super_klass, Register tmp1, Register tmp2, Register tmp3, Label &ok_is_subtype );
// helpers for tossing exceptions
void throw_if_not_1_icc( Condition ok_condition, Label& ok );
void throw_if_not_1_xcc( Condition ok_condition, Label& ok );
void throw_if_not_1_x ( Condition ok_condition, Label& ok ); // chooses icc or xcc based on _LP64
void throw_if_not_2( address throw_entry_point, Register Rscratch, Label& ok);
void throw_if_not_icc( Condition ok_condition, address throw_entry_point, Register Rscratch );
void throw_if_not_xcc( Condition ok_condition, address throw_entry_point, Register Rscratch );
void throw_if_not_x ( Condition ok_condition, address throw_entry_point, Register Rscratch );
// helpers for expression stack
void pop_i( Register r = Otos_i);
void pop_ptr( Register r = Otos_i, Register scratch = O4);
void pop_l( Register r = Otos_l1);
// G4_scratch and Lscratch are used at call sites!!
void pop_f(FloatRegister f = Ftos_f, Register scratch = G1_scratch);
void pop_d(FloatRegister f = Ftos_d1, Register scratch = G1_scratch);
void push_i( Register r = Otos_i);
void push_ptr( Register r = Otos_i);
void push_l( Register r = Otos_l1);
void push_f(FloatRegister f = Ftos_f);
void push_d(FloatRegister f = Ftos_d1);
void pop (TosState state); // transition vtos -> state
void push(TosState state); // transition state -> vtos
void empty_expression_stack(); // resets both Lesp and SP
#ifdef ASSERT
void verify_sp(Register Rsp, Register Rtemp);
void verify_esp(Register Resp); // verify that Lesp points to a word in the temp stack
#endif // ASSERT
public:
void if_cmp(Condition cc, bool ptr_compare);
// Load values from bytecode stream:
enum signedOrNot { Signed, Unsigned };
enum setCCOrNot { set_CC, dont_set_CC };
void get_2_byte_integer_at_bcp( int bcp_offset,
Register Rtmp,
Register Rdst,
signedOrNot is_signed,
setCCOrNot should_set_CC = dont_set_CC );
void get_4_byte_integer_at_bcp( int bcp_offset,
Register Rtmp,
Register Rdst,
setCCOrNot should_set_CC = dont_set_CC );
// Note: "get_cache_and_index" really means "get the index, use it to get the cache entry, and throw away the index".
void get_cache_and_index_at_bcp(Register cache, Register tmp, int bcp_offset, size_t index_size = sizeof(u2));
void get_cache_and_index_and_bytecode_at_bcp(Register cache, Register temp, Register bytecode, int byte_no, int bcp_offset, size_t index_size = sizeof(u2));
void get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset, size_t index_size = sizeof(u2));
// Note: This one does not fetch the cache. The first argument is a temp which may be killed.
void get_cache_index_at_bcp(Register temp, Register index, int bcp_offset, size_t index_size = sizeof(u2));
// load cpool->resolved_references(index);
void load_resolved_reference_at_index(Register result, Register index);
// common code
void field_offset_at(int n, Register tmp, Register dest, Register base);
int field_offset_at(Register object, address bcp, int offset);
void fast_iaaccess(int n, address bcp);
void fast_iaputfield(address bcp, bool do_store_check );
void index_check(Register array, Register index, int index_shift, Register tmp, Register res);
void index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res);
void get_const(Register Rdst);
void get_constant_pool(Register Rdst);
void get_constant_pool_cache(Register Rdst);
void get_cpool_and_tags(Register Rcpool, Register Rtags);
void is_a(Label& L);
// Load compiled (i2c) or interpreter entry and call from interpreted
void call_from_interpreter(Register target, Register scratch, Register Rret);
// --------------------------------------------------
void unlock_if_synchronized_method(TosState state, bool throw_monitor_exception = true, bool install_monitor_exception = true);
void add_monitor_to_stack( bool stack_is_empty,
Register Rtemp,
Register Rtemp2 );
// Load/store aligned in _LP64 but unaligned otherwise
// These only apply to the Interpreter expression stack and locals!
void load_unaligned_double(Register r1, int offset, FloatRegister d);
void store_unaligned_double(FloatRegister d, Register r1, int offset );
// Load/store aligned in _LP64 but unaligned otherwise
void load_unaligned_long(Register r1, int offset, Register d);
void store_unaligned_long(Register d, Register r1, int offset );
void access_local_int( Register index, Register dst );
void access_local_ptr( Register index, Register dst );
void access_local_returnAddress( Register index, Register dst );
void access_local_long( Register index, Register dst );
void access_local_float( Register index, FloatRegister dst );
void access_local_double( Register index, FloatRegister dst );
#ifdef ASSERT
void check_for_regarea_stomp( Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1);
#endif // ASSERT
void store_local_int( Register index, Register src );
void store_local_ptr( Register index, Register src );
void store_local_ptr( int n, Register src );
void store_local_long( Register index, Register src );
void store_local_float( Register index, FloatRegister src );
void store_local_double( Register index, FloatRegister src );
// Helpers for swap and dup
void load_ptr(int n, Register val);
void store_ptr(int n, Register val);
// Helper for getting receiver in register.
void load_receiver(Register param_count, Register recv);
static int top_most_monitor_byte_offset(); // offset in bytes to top of monitor block
Address top_most_monitor();
void compute_stack_base( Register Rdest );
#endif /* CC_INTERP */
void get_method_counters(Register method, Register Rcounters, Label& skip);
void increment_invocation_counter( Register Rcounters, Register Rtmp, Register Rtmp2 );
void increment_backedge_counter( Register Rcounters, Register Rtmp, Register Rtmp2 );
#ifndef CC_INTERP
void test_backedge_count_for_osr(Register backedge_count, Register method_counters, Register branch_bcp, Register Rtmp );
#endif /* CC_INTERP */
// Object locking
void lock_object (Register lock_reg, Register obj_reg);
void unlock_object(Register lock_reg);
#ifndef CC_INTERP
// Interpreter profiling operations
void set_method_data_pointer();
void set_method_data_pointer_for_bcp();
void test_method_data_pointer(Label& zero_continue);
void verify_method_data_pointer();
void test_invocation_counter_for_mdp(Register invocation_count, Register method_counters, Register Rtmp, Label &profile_continue);
void set_mdp_data_at(int constant, Register value);
void increment_mdp_data_at(Address counter, Register bumped_count,
bool decrement = false);
void increment_mdp_data_at(int constant, Register bumped_count,
bool decrement = false);
void increment_mdp_data_at(Register reg, int constant,
Register bumped_count, Register scratch2,
bool decrement = false);
void increment_mask_and_jump(Address counter_addr,
int increment, Address mask_addr,
Register scratch1, Register scratch2,
Condition cond, Label *where);
void set_mdp_flag_at(int flag_constant, Register scratch);
void test_mdp_data_at(int offset, Register value, Label& not_equal_continue,
Register scratch);
void record_klass_in_profile(Register receiver, Register scratch, bool is_virtual_call);
void record_klass_in_profile_helper(Register receiver, Register scratch,
Label& done, bool is_virtual_call);
void record_item_in_profile_helper(Register item,
Register scratch, int start_row, Label& done, int total_rows,
OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
int non_profiled_offset);
void update_mdp_by_offset(int offset_of_disp, Register scratch);
void update_mdp_by_offset(Register reg, int offset_of_disp,
Register scratch);
void update_mdp_by_constant(int constant);
void update_mdp_for_ret(TosState state, Register return_bci);
void profile_taken_branch(Register scratch, Register bumped_count);
void profile_not_taken_branch(Register scratch);
void profile_call(Register scratch);
void profile_final_call(Register scratch);
void profile_virtual_call(Register receiver, Register scratch, bool receiver_can_be_null = false);
void profile_called_method(Register method, Register scratch) NOT_JVMCI_RETURN;
void profile_ret(TosState state, Register return_bci, Register scratch);
void profile_null_seen(Register scratch);
void profile_typecheck(Register klass, Register scratch);
void profile_typecheck_failed(Register scratch);
void profile_switch_default(Register scratch);
void profile_switch_case(Register index,
Register scratch1,
Register scratch2,
Register scratch3);
void profile_obj_type(Register obj, const Address& mdo_addr, Register tmp);
void profile_arguments_type(Register callee, Register tmp1, Register tmp2, bool is_virtual);
void profile_return_type(Register ret, Register tmp1, Register tmp2);
void profile_parameters_type(Register tmp1, Register tmp2, Register tmp3, Register tmp4);
// Debugging
void interp_verify_oop(Register reg, TosState state, const char * file, int line); // only if +VerifyOops && state == atos
void verify_oop_or_return_address(Register reg, Register rtmp); // for astore
void verify_FPU(int stack_depth, TosState state = ftos); // only if +VerifyFPU && (state == ftos || state == dtos)
#endif /* CC_INTERP */
// support for JVMTI/Dtrace
typedef enum { NotifyJVMTI, SkipNotifyJVMTI } NotifyMethodExitMode;
void notify_method_entry();
void notify_method_exit(
bool save_result, TosState state, NotifyMethodExitMode mode);
void save_return_value(TosState state, bool is_native_call);
void restore_return_value(TosState state, bool is_native_call);
};
#endif // CPU_SPARC_VM_INTERP_MASM_SPARC_HPP