/*
* Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, 2018, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "code/compiledIC.hpp"
#include "memory/resourceArea.hpp"
#include "nativeInst_aarch64.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/ostream.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif
void NativeCall::verify() {
assert(NativeCall::is_call_at((address)this), "unexpected code at call site");
}
void NativeInstruction::wrote(int offset) {
ICache::invalidate_word(addr_at(offset));
}
void NativeLoadGot::report_and_fail() const {
tty->print_cr("Addr: " INTPTR_FORMAT, p2i(instruction_address()));
fatal("not a indirect rip mov to rbx");
}
void NativeLoadGot::verify() const {
assert(is_adrp_at((address)this), "must be adrp");
}
address NativeLoadGot::got_address() const {
return MacroAssembler::target_addr_for_insn((address)this);
}
intptr_t NativeLoadGot::data() const {
return *(intptr_t *) got_address();
}
address NativePltCall::destination() const {
NativeGotJump* jump = nativeGotJump_at(plt_jump());
return *(address*)MacroAssembler::target_addr_for_insn((address)jump);
}
address NativePltCall::plt_entry() const {
return MacroAssembler::target_addr_for_insn((address)this);
}
address NativePltCall::plt_jump() const {
address entry = plt_entry();
// Virtual PLT code has move instruction first
if (((NativeGotJump*)entry)->is_GotJump()) {
return entry;
} else {
return nativeLoadGot_at(entry)->next_instruction_address();
}
}
address NativePltCall::plt_load_got() const {
address entry = plt_entry();
if (!((NativeGotJump*)entry)->is_GotJump()) {
// Virtual PLT code has move instruction first
return entry;
} else {
// Static PLT code has move instruction second (from c2i stub)
return nativeGotJump_at(entry)->next_instruction_address();
}
}
address NativePltCall::plt_c2i_stub() const {
address entry = plt_load_got();
// This method should be called only for static calls which has C2I stub.
NativeLoadGot* load = nativeLoadGot_at(entry);
return entry;
}
address NativePltCall::plt_resolve_call() const {
NativeGotJump* jump = nativeGotJump_at(plt_jump());
address entry = jump->next_instruction_address();
if (((NativeGotJump*)entry)->is_GotJump()) {
return entry;
} else {
// c2i stub 2 instructions
entry = nativeLoadGot_at(entry)->next_instruction_address();
return nativeGotJump_at(entry)->next_instruction_address();
}
}
void NativePltCall::reset_to_plt_resolve_call() {
set_destination_mt_safe(plt_resolve_call());
}
void NativePltCall::set_destination_mt_safe(address dest) {
// rewriting the value in the GOT, it should always be aligned
NativeGotJump* jump = nativeGotJump_at(plt_jump());
address* got = (address *) jump->got_address();
*got = dest;
}
void NativePltCall::set_stub_to_clean() {
NativeLoadGot* method_loader = nativeLoadGot_at(plt_c2i_stub());
NativeGotJump* jump = nativeGotJump_at(method_loader->next_instruction_address());
method_loader->set_data(0);
jump->set_jump_destination((address)-1);
}
void NativePltCall::verify() const {
assert(NativeCall::is_call_at((address)this), "unexpected code at call site");
}
address NativeGotJump::got_address() const {
return MacroAssembler::target_addr_for_insn((address)this);
}
address NativeGotJump::destination() const {
address *got_entry = (address *) got_address();
return *got_entry;
}
bool NativeGotJump::is_GotJump() const {
NativeInstruction *insn =
nativeInstruction_at(addr_at(3 * NativeInstruction::instruction_size));
return insn->encoding() == 0xd61f0200; // br x16
}
void NativeGotJump::verify() const {
assert(is_adrp_at((address)this), "must be adrp");
}
address NativeCall::destination() const {
address addr = (address)this;
address destination = instruction_address() + displacement();
// Do we use a trampoline stub for this call?
CodeBlob* cb = CodeCache::find_blob_unsafe(addr); // Else we get assertion if nmethod is zombie.
assert(cb && cb->is_nmethod(), "sanity");
nmethod *nm = (nmethod *)cb;
if (nm->stub_contains(destination) && is_NativeCallTrampolineStub_at(destination)) {
// Yes we do, so get the destination from the trampoline stub.
const address trampoline_stub_addr = destination;
destination = nativeCallTrampolineStub_at(trampoline_stub_addr)->destination();
}
return destination;
}
// Similar to replace_mt_safe, but just changes the destination. The
// important thing is that free-running threads are able to execute this
// call instruction at all times.
//
// Used in the runtime linkage of calls; see class CompiledIC.
//
// Add parameter assert_lock to switch off assertion
// during code generation, where no patching lock is needed.
void NativeCall::set_destination_mt_safe(address dest, bool assert_lock) {
assert(!assert_lock ||
(Patching_lock->is_locked() || SafepointSynchronize::is_at_safepoint()) ||
CompiledICLocker::is_safe(addr_at(0)),
"concurrent code patching");
ResourceMark rm;
int code_size = NativeInstruction::instruction_size;
address addr_call = addr_at(0);
bool reachable = Assembler::reachable_from_branch_at(addr_call, dest);
assert(NativeCall::is_call_at(addr_call), "unexpected code at call site");
// Patch the constant in the call's trampoline stub.
address trampoline_stub_addr = get_trampoline();
if (trampoline_stub_addr != NULL) {
assert (! is_NativeCallTrampolineStub_at(dest), "chained trampolines");
nativeCallTrampolineStub_at(trampoline_stub_addr)->set_destination(dest);
}
// Patch the call.
if (reachable) {
set_destination(dest);
} else {
assert (trampoline_stub_addr != NULL, "we need a trampoline");
set_destination(trampoline_stub_addr);
}
ICache::invalidate_range(addr_call, instruction_size);
}
address NativeCall::get_trampoline() {
address call_addr = addr_at(0);
CodeBlob *code = CodeCache::find_blob(call_addr);
assert(code != NULL, "Could not find the containing code blob");
address bl_destination
= MacroAssembler::pd_call_destination(call_addr);
if (code->contains(bl_destination) &&
is_NativeCallTrampolineStub_at(bl_destination))
return bl_destination;
if (code->is_nmethod()) {
return trampoline_stub_Relocation::get_trampoline_for(call_addr, (nmethod*)code);
}
return NULL;
}
// Inserts a native call instruction at a given pc
void NativeCall::insert(address code_pos, address entry) { Unimplemented(); }
//-------------------------------------------------------------------
void NativeMovConstReg::verify() {
if (! (nativeInstruction_at(instruction_address())->is_movz() ||
is_adrp_at(instruction_address()) ||
is_ldr_literal_at(instruction_address())) ) {
fatal("should be MOVZ or ADRP or LDR (literal)");
}
}
intptr_t NativeMovConstReg::data() const {
// das(uint64_t(instruction_address()),2);
address addr = MacroAssembler::target_addr_for_insn(instruction_address());
if (maybe_cpool_ref(instruction_address())) {
return *(intptr_t*)addr;
} else {
return (intptr_t)addr;
}
}
void NativeMovConstReg::set_data(intptr_t x) {
if (maybe_cpool_ref(instruction_address())) {
address addr = MacroAssembler::target_addr_for_insn(instruction_address());
*(intptr_t*)addr = x;
} else {
// Store x into the instruction stream.
MacroAssembler::pd_patch_instruction(instruction_address(), (address)x);
ICache::invalidate_range(instruction_address(), instruction_size);
}
// Find and replace the oop/metadata corresponding to this
// instruction in oops section.
CodeBlob* cb = CodeCache::find_blob(instruction_address());
nmethod* nm = cb->as_nmethod_or_null();
if (nm != NULL) {
RelocIterator iter(nm, instruction_address(), next_instruction_address());
while (iter.next()) {
if (iter.type() == relocInfo::oop_type) {
oop* oop_addr = iter.oop_reloc()->oop_addr();
*oop_addr = cast_to_oop(x);
break;
} else if (iter.type() == relocInfo::metadata_type) {
Metadata** metadata_addr = iter.metadata_reloc()->metadata_addr();
*metadata_addr = (Metadata*)x;
break;
}
}
}
}
void NativeMovConstReg::print() {
tty->print_cr(PTR_FORMAT ": mov reg, " INTPTR_FORMAT,
p2i(instruction_address()), data());
}
//-------------------------------------------------------------------
int NativeMovRegMem::offset() const {
address pc = instruction_address();
unsigned insn = *(unsigned*)pc;
if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) {
address addr = MacroAssembler::target_addr_for_insn(pc);
return *addr;
} else {
return (int)(intptr_t)MacroAssembler::target_addr_for_insn(instruction_address());
}
}
void NativeMovRegMem::set_offset(int x) {
address pc = instruction_address();
unsigned insn = *(unsigned*)pc;
if (maybe_cpool_ref(pc)) {
address addr = MacroAssembler::target_addr_for_insn(pc);
*(long*)addr = x;
} else {
MacroAssembler::pd_patch_instruction(pc, (address)intptr_t(x));
ICache::invalidate_range(instruction_address(), instruction_size);
}
}
void NativeMovRegMem::verify() {
#ifdef ASSERT
address dest = MacroAssembler::target_addr_for_insn(instruction_address());
#endif
}
//--------------------------------------------------------------------------------
void NativeJump::verify() { ; }
void NativeJump::check_verified_entry_alignment(address entry, address verified_entry) {
}
address NativeJump::jump_destination() const {
address dest = MacroAssembler::target_addr_for_insn(instruction_address());
// We use jump to self as the unresolved address which the inline
// cache code (and relocs) know about
// As a special case we also use sequence movptr(r,0); br(r);
// i.e. jump to 0 when we need leave space for a wide immediate
// load
// return -1 if jump to self or to 0
if ((dest == (address)this) || dest == 0) {
dest = (address) -1;
}
return dest;
}
void NativeJump::set_jump_destination(address dest) {
// We use jump to self as the unresolved address which the inline
// cache code (and relocs) know about
if (dest == (address) -1)
dest = instruction_address();
MacroAssembler::pd_patch_instruction(instruction_address(), dest);
ICache::invalidate_range(instruction_address(), instruction_size);
};
//-------------------------------------------------------------------
address NativeGeneralJump::jump_destination() const {
NativeMovConstReg* move = nativeMovConstReg_at(instruction_address());
address dest = (address) move->data();
// We use jump to self as the unresolved address which the inline
// cache code (and relocs) know about
// As a special case we also use jump to 0 when first generating
// a general jump
// return -1 if jump to self or to 0
if ((dest == (address)this) || dest == 0) {
dest = (address) -1;
}
return dest;
}
void NativeGeneralJump::set_jump_destination(address dest) {
NativeMovConstReg* move = nativeMovConstReg_at(instruction_address());
// We use jump to self as the unresolved address which the inline
// cache code (and relocs) know about
if (dest == (address) -1) {
dest = instruction_address();
}
move->set_data((uintptr_t) dest);
};
//-------------------------------------------------------------------
bool NativeInstruction::is_safepoint_poll() {
// a safepoint_poll is implemented in two steps as either
//
// adrp(reg, polling_page);
// ldr(zr, [reg, #offset]);
//
// or
//
// mov(reg, polling_page);
// ldr(zr, [reg, #offset]);
//
// or
//
// ldr(reg, [rthread, #offset]);
// ldr(zr, [reg, #offset]);
//
// however, we cannot rely on the polling page address load always
// directly preceding the read from the page. C1 does that but C2
// has to do the load and read as two independent instruction
// generation steps. that's because with a single macro sequence the
// generic C2 code can only add the oop map before the mov/adrp and
// the trap handler expects an oop map to be associated with the
// load. with the load scheuled as a prior step the oop map goes
// where it is needed.
//
// so all we can do here is check that marked instruction is a load
// word to zr
return is_ldrw_to_zr(address(this));
}
bool NativeInstruction::is_adrp_at(address instr) {
unsigned insn = *(unsigned*)instr;
return (Instruction_aarch64::extract(insn, 31, 24) & 0b10011111) == 0b10010000;
}
bool NativeInstruction::is_ldr_literal_at(address instr) {
unsigned insn = *(unsigned*)instr;
return (Instruction_aarch64::extract(insn, 29, 24) & 0b011011) == 0b00011000;
}
bool NativeInstruction::is_ldrw_to_zr(address instr) {
unsigned insn = *(unsigned*)instr;
return (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 &&
Instruction_aarch64::extract(insn, 4, 0) == 0b11111);
}
bool NativeInstruction::is_general_jump() {
if (is_movz()) {
NativeInstruction* inst1 = nativeInstruction_at(addr_at(instruction_size * 1));
if (inst1->is_movk()) {
NativeInstruction* inst2 = nativeInstruction_at(addr_at(instruction_size * 2));
if (inst2->is_movk()) {
NativeInstruction* inst3 = nativeInstruction_at(addr_at(instruction_size * 3));
if (inst3->is_blr()) {
return true;
}
}
}
}
return false;
}
bool NativeInstruction::is_movz() {
return Instruction_aarch64::extract(int_at(0), 30, 23) == 0b10100101;
}
bool NativeInstruction::is_movk() {
return Instruction_aarch64::extract(int_at(0), 30, 23) == 0b11100101;
}
bool NativeInstruction::is_sigill_zombie_not_entrant() {
return uint_at(0) == 0xd4bbd5a1; // dcps1 #0xdead
}
void NativeIllegalInstruction::insert(address code_pos) {
*(juint*)code_pos = 0xd4bbd5a1; // dcps1 #0xdead
}
//-------------------------------------------------------------------
// MT-safe inserting of a jump over a jump or a nop (used by
// nmethod::make_not_entrant_or_zombie)
void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) {
assert(dest == SharedRuntime::get_handle_wrong_method_stub(), "expected fixed destination of patch");
#ifdef ASSERT
// This may be the temporary nmethod generated while we're AOT
// compiling. Such an nmethod doesn't begin with a NOP but with an ADRP.
if (! (CalculateClassFingerprint && UseAOT && is_adrp_at(verified_entry))) {
assert(nativeInstruction_at(verified_entry)->is_jump_or_nop()
|| nativeInstruction_at(verified_entry)->is_sigill_zombie_not_entrant(),
"Aarch64 cannot replace non-jump with jump");
}
#endif
// Patch this nmethod atomically.
if (Assembler::reachable_from_branch_at(verified_entry, dest)) {
ptrdiff_t disp = dest - verified_entry;
guarantee(disp < 1 << 27 && disp > - (1 << 27), "branch overflow");
unsigned int insn = (0b000101 << 26) | ((disp >> 2) & 0x3ffffff);
*(unsigned int*)verified_entry = insn;
} else {
// We use an illegal instruction for marking a method as
// not_entrant or zombie.
NativeIllegalInstruction::insert(verified_entry);
}
ICache::invalidate_range(verified_entry, instruction_size);
}
void NativeGeneralJump::verify() { }
void NativeGeneralJump::insert_unconditional(address code_pos, address entry) {
NativeGeneralJump* n_jump = (NativeGeneralJump*)code_pos;
CodeBuffer cb(code_pos, instruction_size);
MacroAssembler a(&cb);
a.movptr(rscratch1, (uintptr_t)entry);
a.br(rscratch1);
ICache::invalidate_range(code_pos, instruction_size);
}
// MT-safe patching of a long jump instruction.
void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) {
ShouldNotCallThis();
}
address NativeCallTrampolineStub::destination(nmethod *nm) const {
return ptr_at(data_offset);
}
void NativeCallTrampolineStub::set_destination(address new_destination) {
set_ptr_at(data_offset, new_destination);
OrderAccess::release();
}
// Generate a trampoline for a branch to dest. If there's no need for a
// trampoline, simply patch the call directly to dest.
address NativeCall::trampoline_jump(CodeBuffer &cbuf, address dest) {
MacroAssembler a(&cbuf);
address stub = NULL;
if (a.far_branches()
&& ! is_NativeCallTrampolineStub_at(instruction_address() + displacement())) {
stub = a.emit_trampoline_stub(instruction_address() - cbuf.insts()->start(), dest);
}
if (stub == NULL) {
// If we generated no stub, patch this call directly to dest.
// This will happen if we don't need far branches or if there
// already was a trampoline.
set_destination(dest);
}
return stub;
}