8202639: Use concrete Generation classes in SerialHeap and CMSHeap
Reviewed-by: eosterlund, ehelin
/*
* Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/cms/cmsCardTable.hpp"
#include "gc/cms/compactibleFreeListSpace.hpp"
#include "gc/cms/concurrentMarkSweepGeneration.hpp"
#include "gc/cms/concurrentMarkSweepThread.hpp"
#include "gc/cms/cmsHeap.hpp"
#include "gc/cms/parNewGeneration.hpp"
#include "gc/cms/vmCMSOperations.hpp"
#include "gc/shared/genCollectedHeap.hpp"
#include "gc/shared/genMemoryPools.hpp"
#include "gc/shared/genOopClosures.inline.hpp"
#include "gc/shared/strongRootsScope.hpp"
#include "gc/shared/workgroup.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/vmThread.hpp"
#include "services/memoryManager.hpp"
#include "utilities/stack.inline.hpp"
class CompactibleFreeListSpacePool : public CollectedMemoryPool {
private:
CompactibleFreeListSpace* _space;
public:
CompactibleFreeListSpacePool(CompactibleFreeListSpace* space,
const char* name,
size_t max_size,
bool support_usage_threshold) :
CollectedMemoryPool(name, space->capacity(), max_size, support_usage_threshold),
_space(space) {
}
MemoryUsage get_memory_usage() {
size_t max_heap_size = (available_for_allocation() ? max_size() : 0);
size_t used = used_in_bytes();
size_t committed = _space->capacity();
return MemoryUsage(initial_size(), used, committed, max_heap_size);
}
size_t used_in_bytes() {
return _space->used();
}
};
CMSHeap::CMSHeap(GenCollectorPolicy *policy) :
GenCollectedHeap(policy,
Generation::ParNew,
Generation::ConcurrentMarkSweep,
"ParNew::CMS"),
_eden_pool(NULL),
_survivor_pool(NULL),
_old_pool(NULL) {
_workers = new WorkGang("GC Thread", ParallelGCThreads,
/* are_GC_task_threads */true,
/* are_ConcurrentGC_threads */false);
_workers->initialize_workers();
}
jint CMSHeap::initialize() {
jint status = GenCollectedHeap::initialize();
if (status != JNI_OK) return status;
// If we are running CMS, create the collector responsible
// for collecting the CMS generations.
if (!create_cms_collector()) {
return JNI_ENOMEM;
}
return JNI_OK;
}
CardTableRS* CMSHeap::create_rem_set(const MemRegion& reserved_region) {
return new CMSCardTable(reserved_region);
}
void CMSHeap::initialize_serviceability() {
_young_manager = new GCMemoryManager("ParNew", "end of minor GC");
_old_manager = new GCMemoryManager("ConcurrentMarkSweep", "end of major GC");
ParNewGeneration* young = young_gen();
_eden_pool = new ContiguousSpacePool(young->eden(),
"Par Eden Space",
young->max_eden_size(),
false);
_survivor_pool = new SurvivorContiguousSpacePool(young,
"Par Survivor Space",
young->max_survivor_size(),
false);
ConcurrentMarkSweepGeneration* old = (ConcurrentMarkSweepGeneration*) old_gen();
_old_pool = new CompactibleFreeListSpacePool(old->cmsSpace(),
"CMS Old Gen",
old->reserved().byte_size(),
true);
_young_manager->add_pool(_eden_pool);
_young_manager->add_pool(_survivor_pool);
young->set_gc_manager(_young_manager);
_old_manager->add_pool(_eden_pool);
_old_manager->add_pool(_survivor_pool);
_old_manager->add_pool(_old_pool);
old ->set_gc_manager(_old_manager);
}
CMSHeap* CMSHeap::heap() {
CollectedHeap* heap = Universe::heap();
assert(heap != NULL, "Uninitialized access to CMSHeap::heap()");
assert(heap->kind() == CollectedHeap::CMS, "Invalid name");
return static_cast<CMSHeap*>(heap);
}
void CMSHeap::gc_threads_do(ThreadClosure* tc) const {
assert(workers() != NULL, "should have workers here");
workers()->threads_do(tc);
ConcurrentMarkSweepThread::threads_do(tc);
}
void CMSHeap::print_gc_threads_on(outputStream* st) const {
assert(workers() != NULL, "should have workers here");
workers()->print_worker_threads_on(st);
ConcurrentMarkSweepThread::print_all_on(st);
}
void CMSHeap::print_on_error(outputStream* st) const {
GenCollectedHeap::print_on_error(st);
st->cr();
CMSCollector::print_on_error(st);
}
bool CMSHeap::create_cms_collector() {
assert(old_gen()->kind() == Generation::ConcurrentMarkSweep,
"Unexpected generation kinds");
CMSCollector* collector =
new CMSCollector((ConcurrentMarkSweepGeneration*) old_gen(),
rem_set(),
(ConcurrentMarkSweepPolicy*) gen_policy());
if (collector == NULL || !collector->completed_initialization()) {
if (collector) {
delete collector; // Be nice in embedded situation
}
vm_shutdown_during_initialization("Could not create CMS collector");
return false;
}
return true; // success
}
void CMSHeap::collect(GCCause::Cause cause) {
if (should_do_concurrent_full_gc(cause)) {
// Mostly concurrent full collection.
collect_mostly_concurrent(cause);
} else {
GenCollectedHeap::collect(cause);
}
}
bool CMSHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
switch (cause) {
case GCCause::_gc_locker: return GCLockerInvokesConcurrent;
case GCCause::_java_lang_system_gc:
case GCCause::_dcmd_gc_run: return ExplicitGCInvokesConcurrent;
default: return false;
}
}
void CMSHeap::collect_mostly_concurrent(GCCause::Cause cause) {
assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
MutexLocker ml(Heap_lock);
// Read the GC counts while holding the Heap_lock
unsigned int full_gc_count_before = total_full_collections();
unsigned int gc_count_before = total_collections();
{
MutexUnlocker mu(Heap_lock);
VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
VMThread::execute(&op);
}
}
void CMSHeap::stop() {
ConcurrentMarkSweepThread::cmst()->stop();
}
void CMSHeap::safepoint_synchronize_begin() {
ConcurrentMarkSweepThread::synchronize(false);
}
void CMSHeap::safepoint_synchronize_end() {
ConcurrentMarkSweepThread::desynchronize(false);
}
void CMSHeap::cms_process_roots(StrongRootsScope* scope,
bool young_gen_as_roots,
ScanningOption so,
bool only_strong_roots,
OopsInGenClosure* root_closure,
CLDClosure* cld_closure) {
MarkingCodeBlobClosure mark_code_closure(root_closure, !CodeBlobToOopClosure::FixRelocations);
OopsInGenClosure* weak_roots = only_strong_roots ? NULL : root_closure;
CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
process_roots(scope, so, root_closure, weak_roots, cld_closure, weak_cld_closure, &mark_code_closure);
if (!only_strong_roots) {
process_string_table_roots(scope, root_closure);
}
if (young_gen_as_roots &&
!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
root_closure->set_generation(young_gen());
young_gen()->oop_iterate(root_closure);
root_closure->reset_generation();
}
_process_strong_tasks->all_tasks_completed(scope->n_threads());
}
void CMSHeap::gc_prologue(bool full) {
always_do_update_barrier = false;
GenCollectedHeap::gc_prologue(full);
};
void CMSHeap::gc_epilogue(bool full) {
GenCollectedHeap::gc_epilogue(full);
always_do_update_barrier = true;
};
GrowableArray<GCMemoryManager*> CMSHeap::memory_managers() {
GrowableArray<GCMemoryManager*> memory_managers(2);
memory_managers.append(_young_manager);
memory_managers.append(_old_manager);
return memory_managers;
}
GrowableArray<MemoryPool*> CMSHeap::memory_pools() {
GrowableArray<MemoryPool*> memory_pools(3);
memory_pools.append(_eden_pool);
memory_pools.append(_survivor_pool);
memory_pools.append(_old_pool);
return memory_pools;
}