src/hotspot/share/gc/shared/c2/barrierSetC2.cpp
changeset 50180 ffa644980dff
child 50599 ecc2af326b5f
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/gc/shared/c2/barrierSetC2.cpp	Fri May 18 14:51:06 2018 +0200
@@ -0,0 +1,588 @@
+/*
+ * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "gc/shared/c2/barrierSetC2.hpp"
+#include "opto/arraycopynode.hpp"
+#include "opto/graphKit.hpp"
+#include "opto/idealKit.hpp"
+#include "opto/narrowptrnode.hpp"
+#include "utilities/macros.hpp"
+
+// By default this is a no-op.
+void BarrierSetC2::resolve_address(C2Access& access) const { }
+
+void* C2Access::barrier_set_state() const {
+  return _kit->barrier_set_state();
+}
+
+bool C2Access::needs_cpu_membar() const {
+  bool mismatched = (_decorators & C2_MISMATCHED) != 0;
+  bool is_unordered = (_decorators & MO_UNORDERED) != 0;
+  bool anonymous = (_decorators & C2_UNSAFE_ACCESS) != 0;
+  bool on_heap = (_decorators & IN_HEAP) != 0;
+
+  bool is_write = (_decorators & C2_WRITE_ACCESS) != 0;
+  bool is_read = (_decorators & C2_READ_ACCESS) != 0;
+  bool is_atomic = is_read && is_write;
+
+  if (is_atomic) {
+    // Atomics always need to be wrapped in CPU membars
+    return true;
+  }
+
+  if (anonymous) {
+    // We will need memory barriers unless we can determine a unique
+    // alias category for this reference.  (Note:  If for some reason
+    // the barriers get omitted and the unsafe reference begins to "pollute"
+    // the alias analysis of the rest of the graph, either Compile::can_alias
+    // or Compile::must_alias will throw a diagnostic assert.)
+    if (!on_heap || !is_unordered || (mismatched && !_addr.type()->isa_aryptr())) {
+      return true;
+    }
+  }
+
+  return false;
+}
+
+Node* BarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const {
+  DecoratorSet decorators = access.decorators();
+  GraphKit* kit = access.kit();
+
+  bool mismatched = (decorators & C2_MISMATCHED) != 0;
+  bool unaligned = (decorators & C2_UNALIGNED) != 0;
+  bool requires_atomic_access = (decorators & MO_UNORDERED) == 0;
+
+  bool in_root = (decorators & IN_ROOT) != 0;
+  assert(!in_root, "not supported yet");
+
+  if (access.type() == T_DOUBLE) {
+    Node* new_val = kit->dstore_rounding(val.node());
+    val.set_node(new_val);
+  }
+
+  MemNode::MemOrd mo = access.mem_node_mo();
+
+  Node* store = kit->store_to_memory(kit->control(), access.addr().node(), val.node(), access.type(),
+                                     access.addr().type(), mo, requires_atomic_access, unaligned, mismatched);
+  access.set_raw_access(store);
+  return store;
+}
+
+Node* BarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
+  DecoratorSet decorators = access.decorators();
+  GraphKit* kit = access.kit();
+
+  Node* adr = access.addr().node();
+  const TypePtr* adr_type = access.addr().type();
+
+  bool mismatched = (decorators & C2_MISMATCHED) != 0;
+  bool requires_atomic_access = (decorators & MO_UNORDERED) == 0;
+  bool unaligned = (decorators & C2_UNALIGNED) != 0;
+  bool control_dependent = (decorators & C2_CONTROL_DEPENDENT_LOAD) != 0;
+  bool pinned = (decorators & C2_PINNED_LOAD) != 0;
+
+  bool in_root = (decorators & IN_ROOT) != 0;
+  assert(!in_root, "not supported yet");
+
+  MemNode::MemOrd mo = access.mem_node_mo();
+  LoadNode::ControlDependency dep = pinned ? LoadNode::Pinned : LoadNode::DependsOnlyOnTest;
+  Node* control = control_dependent ? kit->control() : NULL;
+
+  Node* load = kit->make_load(control, adr, val_type, access.type(), adr_type, mo,
+                              dep, requires_atomic_access, unaligned, mismatched);
+  access.set_raw_access(load);
+
+  return load;
+}
+
+class C2AccessFence: public StackObj {
+  C2Access& _access;
+
+public:
+  C2AccessFence(C2Access& access) :
+    _access(access) {
+    GraphKit* kit = access.kit();
+    DecoratorSet decorators = access.decorators();
+
+    bool is_write = (decorators & C2_WRITE_ACCESS) != 0;
+    bool is_read = (decorators & C2_READ_ACCESS) != 0;
+    bool is_atomic = is_read && is_write;
+
+    bool is_volatile = (decorators & MO_SEQ_CST) != 0;
+    bool is_release = (decorators & MO_RELEASE) != 0;
+
+    if (is_atomic) {
+      // Memory-model-wise, a LoadStore acts like a little synchronized
+      // block, so needs barriers on each side.  These don't translate
+      // into actual barriers on most machines, but we still need rest of
+      // compiler to respect ordering.
+      if (is_release) {
+        kit->insert_mem_bar(Op_MemBarRelease);
+      } else if (is_volatile) {
+        if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
+          kit->insert_mem_bar(Op_MemBarVolatile);
+        } else {
+          kit->insert_mem_bar(Op_MemBarRelease);
+        }
+      }
+    } else if (is_write) {
+      // If reference is volatile, prevent following memory ops from
+      // floating down past the volatile write.  Also prevents commoning
+      // another volatile read.
+      if (is_volatile || is_release) {
+        kit->insert_mem_bar(Op_MemBarRelease);
+      }
+    } else {
+      // Memory barrier to prevent normal and 'unsafe' accesses from
+      // bypassing each other.  Happens after null checks, so the
+      // exception paths do not take memory state from the memory barrier,
+      // so there's no problems making a strong assert about mixing users
+      // of safe & unsafe memory.
+      if (is_volatile && support_IRIW_for_not_multiple_copy_atomic_cpu) {
+        kit->insert_mem_bar(Op_MemBarVolatile);
+      }
+    }
+
+    if (access.needs_cpu_membar()) {
+      kit->insert_mem_bar(Op_MemBarCPUOrder);
+    }
+
+    if (is_atomic) {
+      // 4984716: MemBars must be inserted before this
+      //          memory node in order to avoid a false
+      //          dependency which will confuse the scheduler.
+      access.set_memory();
+    }
+  }
+
+  ~C2AccessFence() {
+    GraphKit* kit = _access.kit();
+    DecoratorSet decorators = _access.decorators();
+
+    bool is_write = (decorators & C2_WRITE_ACCESS) != 0;
+    bool is_read = (decorators & C2_READ_ACCESS) != 0;
+    bool is_atomic = is_read && is_write;
+
+    bool is_volatile = (decorators & MO_SEQ_CST) != 0;
+    bool is_acquire = (decorators & MO_ACQUIRE) != 0;
+
+    // If reference is volatile, prevent following volatiles ops from
+    // floating up before the volatile access.
+    if (_access.needs_cpu_membar()) {
+      kit->insert_mem_bar(Op_MemBarCPUOrder);
+    }
+
+    if (is_atomic) {
+      if (is_acquire || is_volatile) {
+        kit->insert_mem_bar(Op_MemBarAcquire);
+      }
+    } else if (is_write) {
+      // If not multiple copy atomic, we do the MemBarVolatile before the load.
+      if (is_volatile && !support_IRIW_for_not_multiple_copy_atomic_cpu) {
+        kit->insert_mem_bar(Op_MemBarVolatile); // Use fat membar
+      }
+    } else {
+      if (is_volatile || is_acquire) {
+        kit->insert_mem_bar(Op_MemBarAcquire, _access.raw_access());
+      }
+    }
+  }
+
+};
+
+Node* BarrierSetC2::store_at(C2Access& access, C2AccessValue& val) const {
+  C2AccessFence fence(access);
+  resolve_address(access);
+  return store_at_resolved(access, val);
+}
+
+Node* BarrierSetC2::load_at(C2Access& access, const Type* val_type) const {
+  C2AccessFence fence(access);
+  resolve_address(access);
+  return load_at_resolved(access, val_type);
+}
+
+MemNode::MemOrd C2Access::mem_node_mo() const {
+  bool is_write = (_decorators & C2_WRITE_ACCESS) != 0;
+  bool is_read = (_decorators & C2_READ_ACCESS) != 0;
+  if ((_decorators & MO_SEQ_CST) != 0) {
+    if (is_write && is_read) {
+      // For atomic operations
+      return MemNode::seqcst;
+    } else if (is_write) {
+      return MemNode::release;
+    } else {
+      assert(is_read, "what else?");
+      return MemNode::acquire;
+    }
+  } else if ((_decorators & MO_RELEASE) != 0) {
+    return MemNode::release;
+  } else if ((_decorators & MO_ACQUIRE) != 0) {
+    return MemNode::acquire;
+  } else if (is_write) {
+    // Volatile fields need releasing stores.
+    // Non-volatile fields also need releasing stores if they hold an
+    // object reference, because the object reference might point to
+    // a freshly created object.
+    // Conservatively release stores of object references.
+    return StoreNode::release_if_reference(_type);
+  } else {
+    return MemNode::unordered;
+  }
+}
+
+void C2Access::fixup_decorators() {
+  bool default_mo = (_decorators & MO_DECORATOR_MASK) == 0;
+  bool is_unordered = (_decorators & MO_UNORDERED) != 0 || default_mo;
+  bool anonymous = (_decorators & C2_UNSAFE_ACCESS) != 0;
+
+  bool is_read = (_decorators & C2_READ_ACCESS) != 0;
+  bool is_write = (_decorators & C2_WRITE_ACCESS) != 0;
+
+  if (AlwaysAtomicAccesses && is_unordered) {
+    _decorators &= ~MO_DECORATOR_MASK; // clear the MO bits
+    _decorators |= MO_RELAXED; // Force the MO_RELAXED decorator with AlwaysAtomicAccess
+  }
+
+  _decorators = AccessInternal::decorator_fixup(_decorators);
+
+  if (is_read && !is_write && anonymous) {
+    // To be valid, unsafe loads may depend on other conditions than
+    // the one that guards them: pin the Load node
+    _decorators |= C2_CONTROL_DEPENDENT_LOAD;
+    _decorators |= C2_PINNED_LOAD;
+    const TypePtr* adr_type = _addr.type();
+    Node* adr = _addr.node();
+    if (!needs_cpu_membar() && adr_type->isa_instptr()) {
+      assert(adr_type->meet(TypePtr::NULL_PTR) != adr_type->remove_speculative(), "should be not null");
+      intptr_t offset = Type::OffsetBot;
+      AddPNode::Ideal_base_and_offset(adr, &_kit->gvn(), offset);
+      if (offset >= 0) {
+        int s = Klass::layout_helper_size_in_bytes(adr_type->isa_instptr()->klass()->layout_helper());
+        if (offset < s) {
+          // Guaranteed to be a valid access, no need to pin it
+          _decorators ^= C2_CONTROL_DEPENDENT_LOAD;
+          _decorators ^= C2_PINNED_LOAD;
+        }
+      }
+    }
+  }
+}
+
+//--------------------------- atomic operations---------------------------------
+
+static void pin_atomic_op(C2AtomicAccess& access) {
+  if (!access.needs_pinning()) {
+    return;
+  }
+  // SCMemProjNodes represent the memory state of a LoadStore. Their
+  // main role is to prevent LoadStore nodes from being optimized away
+  // when their results aren't used.
+  GraphKit* kit = access.kit();
+  Node* load_store = access.raw_access();
+  assert(load_store != NULL, "must pin atomic op");
+  Node* proj = kit->gvn().transform(new SCMemProjNode(load_store));
+  kit->set_memory(proj, access.alias_idx());
+}
+
+void C2AtomicAccess::set_memory() {
+  Node *mem = _kit->memory(_alias_idx);
+  _memory = mem;
+}
+
+Node* BarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicAccess& access, Node* expected_val,
+                                                   Node* new_val, const Type* value_type) const {
+  GraphKit* kit = access.kit();
+  MemNode::MemOrd mo = access.mem_node_mo();
+  Node* mem = access.memory();
+
+  Node* adr = access.addr().node();
+  const TypePtr* adr_type = access.addr().type();
+
+  Node* load_store = NULL;
+
+  if (access.is_oop()) {
+#ifdef _LP64
+    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
+      Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
+      Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
+      load_store = kit->gvn().transform(new CompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
+    } else
+#endif
+    {
+      load_store = kit->gvn().transform(new CompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo));
+    }
+  } else {
+    switch (access.type()) {
+      case T_BYTE: {
+        load_store = kit->gvn().transform(new CompareAndExchangeBNode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo));
+        break;
+      }
+      case T_SHORT: {
+        load_store = kit->gvn().transform(new CompareAndExchangeSNode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo));
+        break;
+      }
+      case T_INT: {
+        load_store = kit->gvn().transform(new CompareAndExchangeINode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo));
+        break;
+      }
+      case T_LONG: {
+        load_store = kit->gvn().transform(new CompareAndExchangeLNode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo));
+        break;
+      }
+      default:
+        ShouldNotReachHere();
+    }
+  }
+
+  access.set_raw_access(load_store);
+  pin_atomic_op(access);
+
+#ifdef _LP64
+  if (access.is_oop() && adr->bottom_type()->is_ptr_to_narrowoop()) {
+    return kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
+  }
+#endif
+
+  return load_store;
+}
+
+Node* BarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicAccess& access, Node* expected_val,
+                                                    Node* new_val, const Type* value_type) const {
+  GraphKit* kit = access.kit();
+  DecoratorSet decorators = access.decorators();
+  MemNode::MemOrd mo = access.mem_node_mo();
+  Node* mem = access.memory();
+  bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0;
+  Node* load_store = NULL;
+  Node* adr = access.addr().node();
+
+  if (access.is_oop()) {
+#ifdef _LP64
+    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
+      Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
+      Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
+      if (is_weak_cas) {
+        load_store = kit->gvn().transform(new WeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
+      } else {
+        load_store = kit->gvn().transform(new CompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
+      }
+    } else
+#endif
+    {
+      if (is_weak_cas) {
+        load_store = kit->gvn().transform(new WeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
+      } else {
+        load_store = kit->gvn().transform(new CompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
+      }
+    }
+  } else {
+    switch(access.type()) {
+      case T_BYTE: {
+        if (is_weak_cas) {
+          load_store = kit->gvn().transform(new WeakCompareAndSwapBNode(kit->control(), mem, adr, new_val, expected_val, mo));
+        } else {
+          load_store = kit->gvn().transform(new CompareAndSwapBNode(kit->control(), mem, adr, new_val, expected_val, mo));
+        }
+        break;
+      }
+      case T_SHORT: {
+        if (is_weak_cas) {
+          load_store = kit->gvn().transform(new WeakCompareAndSwapSNode(kit->control(), mem, adr, new_val, expected_val, mo));
+        } else {
+          load_store = kit->gvn().transform(new CompareAndSwapSNode(kit->control(), mem, adr, new_val, expected_val, mo));
+        }
+        break;
+      }
+      case T_INT: {
+        if (is_weak_cas) {
+          load_store = kit->gvn().transform(new WeakCompareAndSwapINode(kit->control(), mem, adr, new_val, expected_val, mo));
+        } else {
+          load_store = kit->gvn().transform(new CompareAndSwapINode(kit->control(), mem, adr, new_val, expected_val, mo));
+        }
+        break;
+      }
+      case T_LONG: {
+        if (is_weak_cas) {
+          load_store = kit->gvn().transform(new WeakCompareAndSwapLNode(kit->control(), mem, adr, new_val, expected_val, mo));
+        } else {
+          load_store = kit->gvn().transform(new CompareAndSwapLNode(kit->control(), mem, adr, new_val, expected_val, mo));
+        }
+        break;
+      }
+      default:
+        ShouldNotReachHere();
+    }
+  }
+
+  access.set_raw_access(load_store);
+  pin_atomic_op(access);
+
+  return load_store;
+}
+
+Node* BarrierSetC2::atomic_xchg_at_resolved(C2AtomicAccess& access, Node* new_val, const Type* value_type) const {
+  GraphKit* kit = access.kit();
+  Node* mem = access.memory();
+  Node* adr = access.addr().node();
+  const TypePtr* adr_type = access.addr().type();
+  Node* load_store = NULL;
+
+  if (access.is_oop()) {
+#ifdef _LP64
+    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
+      Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
+      load_store = kit->gvn().transform(new GetAndSetNNode(kit->control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop()));
+    } else
+#endif
+    {
+      load_store = kit->gvn().transform(new GetAndSetPNode(kit->control(), mem, adr, new_val, adr_type, value_type->is_oopptr()));
+    }
+  } else  {
+    switch (access.type()) {
+      case T_BYTE:
+        load_store = kit->gvn().transform(new GetAndSetBNode(kit->control(), mem, adr, new_val, adr_type));
+        break;
+      case T_SHORT:
+        load_store = kit->gvn().transform(new GetAndSetSNode(kit->control(), mem, adr, new_val, adr_type));
+        break;
+      case T_INT:
+        load_store = kit->gvn().transform(new GetAndSetINode(kit->control(), mem, adr, new_val, adr_type));
+        break;
+      case T_LONG:
+        load_store = kit->gvn().transform(new GetAndSetLNode(kit->control(), mem, adr, new_val, adr_type));
+        break;
+      default:
+        ShouldNotReachHere();
+    }
+  }
+
+  access.set_raw_access(load_store);
+  pin_atomic_op(access);
+
+#ifdef _LP64
+  if (access.is_oop() && adr->bottom_type()->is_ptr_to_narrowoop()) {
+    return kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
+  }
+#endif
+
+  return load_store;
+}
+
+Node* BarrierSetC2::atomic_add_at_resolved(C2AtomicAccess& access, Node* new_val, const Type* value_type) const {
+  Node* load_store = NULL;
+  GraphKit* kit = access.kit();
+  Node* adr = access.addr().node();
+  const TypePtr* adr_type = access.addr().type();
+  Node* mem = access.memory();
+
+  switch(access.type()) {
+    case T_BYTE:
+      load_store = kit->gvn().transform(new GetAndAddBNode(kit->control(), mem, adr, new_val, adr_type));
+      break;
+    case T_SHORT:
+      load_store = kit->gvn().transform(new GetAndAddSNode(kit->control(), mem, adr, new_val, adr_type));
+      break;
+    case T_INT:
+      load_store = kit->gvn().transform(new GetAndAddINode(kit->control(), mem, adr, new_val, adr_type));
+      break;
+    case T_LONG:
+      load_store = kit->gvn().transform(new GetAndAddLNode(kit->control(), mem, adr, new_val, adr_type));
+      break;
+    default:
+      ShouldNotReachHere();
+  }
+
+  access.set_raw_access(load_store);
+  pin_atomic_op(access);
+
+  return load_store;
+}
+
+Node* BarrierSetC2::atomic_cmpxchg_val_at(C2AtomicAccess& access, Node* expected_val,
+                                          Node* new_val, const Type* value_type) const {
+  C2AccessFence fence(access);
+  resolve_address(access);
+  return atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type);
+}
+
+Node* BarrierSetC2::atomic_cmpxchg_bool_at(C2AtomicAccess& access, Node* expected_val,
+                                           Node* new_val, const Type* value_type) const {
+  C2AccessFence fence(access);
+  resolve_address(access);
+  return atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
+}
+
+Node* BarrierSetC2::atomic_xchg_at(C2AtomicAccess& access, Node* new_val, const Type* value_type) const {
+  C2AccessFence fence(access);
+  resolve_address(access);
+  return atomic_xchg_at_resolved(access, new_val, value_type);
+}
+
+Node* BarrierSetC2::atomic_add_at(C2AtomicAccess& access, Node* new_val, const Type* value_type) const {
+  C2AccessFence fence(access);
+  resolve_address(access);
+  return atomic_add_at_resolved(access, new_val, value_type);
+}
+
+void BarrierSetC2::clone(GraphKit* kit, Node* src, Node* dst, Node* size, bool is_array) const {
+  // Exclude the header but include array length to copy by 8 bytes words.
+  // Can't use base_offset_in_bytes(bt) since basic type is unknown.
+  int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
+                            instanceOopDesc::base_offset_in_bytes();
+  // base_off:
+  // 8  - 32-bit VM
+  // 12 - 64-bit VM, compressed klass
+  // 16 - 64-bit VM, normal klass
+  if (base_off % BytesPerLong != 0) {
+    assert(UseCompressedClassPointers, "");
+    if (is_array) {
+      // Exclude length to copy by 8 bytes words.
+      base_off += sizeof(int);
+    } else {
+      // Include klass to copy by 8 bytes words.
+      base_off = instanceOopDesc::klass_offset_in_bytes();
+    }
+    assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
+  }
+  Node* src_base  = kit->basic_plus_adr(src,  base_off);
+  Node* dst_base = kit->basic_plus_adr(dst, base_off);
+
+  // Compute the length also, if needed:
+  Node* countx = size;
+  countx = kit->gvn().transform(new SubXNode(countx, kit->MakeConX(base_off)));
+  countx = kit->gvn().transform(new URShiftXNode(countx, kit->intcon(LogBytesPerLong) ));
+
+  const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
+
+  ArrayCopyNode* ac = ArrayCopyNode::make(kit, false, src_base, NULL, dst_base, NULL, countx, false, false);
+  ac->set_clonebasic();
+  Node* n = kit->gvn().transform(ac);
+  if (n == ac) {
+    kit->set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
+  } else {
+    kit->set_all_memory(n);
+  }
+}