hotspot/src/share/vm/gc/g1/heapRegion.hpp
changeset 30764 fec48bf5a827
parent 30265 609384e91c30
child 31346 a70d45c06136
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/gc/g1/heapRegion.hpp	Wed May 13 15:16:06 2015 +0200
@@ -0,0 +1,793 @@
+/*
+ * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifndef SHARE_VM_GC_G1_HEAPREGION_HPP
+#define SHARE_VM_GC_G1_HEAPREGION_HPP
+
+#include "gc/g1/g1AllocationContext.hpp"
+#include "gc/g1/g1BlockOffsetTable.hpp"
+#include "gc/g1/heapRegionType.hpp"
+#include "gc/g1/survRateGroup.hpp"
+#include "gc/shared/ageTable.hpp"
+#include "gc/shared/spaceDecorator.hpp"
+#include "gc/shared/watermark.hpp"
+#include "utilities/macros.hpp"
+
+// A HeapRegion is the smallest piece of a G1CollectedHeap that
+// can be collected independently.
+
+// NOTE: Although a HeapRegion is a Space, its
+// Space::initDirtyCardClosure method must not be called.
+// The problem is that the existence of this method breaks
+// the independence of barrier sets from remembered sets.
+// The solution is to remove this method from the definition
+// of a Space.
+
+class G1CollectedHeap;
+class HeapRegionRemSet;
+class HeapRegionRemSetIterator;
+class HeapRegion;
+class HeapRegionSetBase;
+class nmethod;
+
+#define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
+#define HR_FORMAT_PARAMS(_hr_) \
+                (_hr_)->hrm_index(), \
+                (_hr_)->get_short_type_str(), \
+                p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
+
+// sentinel value for hrm_index
+#define G1_NO_HRM_INDEX ((uint) -1)
+
+// A dirty card to oop closure for heap regions. It
+// knows how to get the G1 heap and how to use the bitmap
+// in the concurrent marker used by G1 to filter remembered
+// sets.
+
+class HeapRegionDCTOC : public DirtyCardToOopClosure {
+private:
+  HeapRegion* _hr;
+  G1ParPushHeapRSClosure* _rs_scan;
+  G1CollectedHeap* _g1;
+
+  // Walk the given memory region from bottom to (actual) top
+  // looking for objects and applying the oop closure (_cl) to
+  // them. The base implementation of this treats the area as
+  // blocks, where a block may or may not be an object. Sub-
+  // classes should override this to provide more accurate
+  // or possibly more efficient walking.
+  void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
+
+public:
+  HeapRegionDCTOC(G1CollectedHeap* g1,
+                  HeapRegion* hr,
+                  G1ParPushHeapRSClosure* cl,
+                  CardTableModRefBS::PrecisionStyle precision);
+};
+
+// The complicating factor is that BlockOffsetTable diverged
+// significantly, and we need functionality that is only in the G1 version.
+// So I copied that code, which led to an alternate G1 version of
+// OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
+// be reconciled, then G1OffsetTableContigSpace could go away.
+
+// The idea behind time stamps is the following. We want to keep track of
+// the highest address where it's safe to scan objects for each region.
+// This is only relevant for current GC alloc regions so we keep a time stamp
+// per region to determine if the region has been allocated during the current
+// GC or not. If the time stamp is current we report a scan_top value which
+// was saved at the end of the previous GC for retained alloc regions and which is
+// equal to the bottom for all other regions.
+// There is a race between card scanners and allocating gc workers where we must ensure
+// that card scanners do not read the memory allocated by the gc workers.
+// In order to enforce that, we must not return a value of _top which is more recent than the
+// time stamp. This is due to the fact that a region may become a gc alloc region at
+// some point after we've read the timestamp value as being < the current time stamp.
+// The time stamps are re-initialized to zero at cleanup and at Full GCs.
+// The current scheme that uses sequential unsigned ints will fail only if we have 4b
+// evacuation pauses between two cleanups, which is _highly_ unlikely.
+class G1OffsetTableContigSpace: public CompactibleSpace {
+  friend class VMStructs;
+  HeapWord* _top;
+  HeapWord* volatile _scan_top;
+ protected:
+  G1BlockOffsetArrayContigSpace _offsets;
+  Mutex _par_alloc_lock;
+  volatile unsigned _gc_time_stamp;
+  // When we need to retire an allocation region, while other threads
+  // are also concurrently trying to allocate into it, we typically
+  // allocate a dummy object at the end of the region to ensure that
+  // no more allocations can take place in it. However, sometimes we
+  // want to know where the end of the last "real" object we allocated
+  // into the region was and this is what this keeps track.
+  HeapWord* _pre_dummy_top;
+
+ public:
+  G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
+                           MemRegion mr);
+
+  void set_top(HeapWord* value) { _top = value; }
+  HeapWord* top() const { return _top; }
+
+ protected:
+  // Reset the G1OffsetTableContigSpace.
+  virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
+
+  HeapWord** top_addr() { return &_top; }
+  // Allocation helpers (return NULL if full).
+  inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
+  inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
+
+ public:
+  void reset_after_compaction() { set_top(compaction_top()); }
+
+  size_t used() const { return byte_size(bottom(), top()); }
+  size_t free() const { return byte_size(top(), end()); }
+  bool is_free_block(const HeapWord* p) const { return p >= top(); }
+
+  MemRegion used_region() const { return MemRegion(bottom(), top()); }
+
+  void object_iterate(ObjectClosure* blk);
+  void safe_object_iterate(ObjectClosure* blk);
+
+  void set_bottom(HeapWord* value);
+  void set_end(HeapWord* value);
+
+  void mangle_unused_area() PRODUCT_RETURN;
+  void mangle_unused_area_complete() PRODUCT_RETURN;
+
+  HeapWord* scan_top() const;
+  void record_timestamp();
+  void reset_gc_time_stamp() { _gc_time_stamp = 0; }
+  unsigned get_gc_time_stamp() { return _gc_time_stamp; }
+  void record_retained_region();
+
+  // See the comment above in the declaration of _pre_dummy_top for an
+  // explanation of what it is.
+  void set_pre_dummy_top(HeapWord* pre_dummy_top) {
+    assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
+    _pre_dummy_top = pre_dummy_top;
+  }
+  HeapWord* pre_dummy_top() {
+    return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
+  }
+  void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
+
+  virtual void clear(bool mangle_space);
+
+  HeapWord* block_start(const void* p);
+  HeapWord* block_start_const(const void* p) const;
+
+  // Add offset table update.
+  virtual HeapWord* allocate(size_t word_size);
+  HeapWord* par_allocate(size_t word_size);
+
+  HeapWord* saved_mark_word() const { ShouldNotReachHere(); return NULL; }
+
+  // MarkSweep support phase3
+  virtual HeapWord* initialize_threshold();
+  virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
+
+  virtual void print() const;
+
+  void reset_bot() {
+    _offsets.reset_bot();
+  }
+
+  void print_bot_on(outputStream* out) {
+    _offsets.print_on(out);
+  }
+};
+
+class HeapRegion: public G1OffsetTableContigSpace {
+  friend class VMStructs;
+  // Allow scan_and_forward to call (private) overrides for auxiliary functions on this class
+  template <typename SpaceType>
+  friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
+ private:
+
+  // The remembered set for this region.
+  // (Might want to make this "inline" later, to avoid some alloc failure
+  // issues.)
+  HeapRegionRemSet* _rem_set;
+
+  G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
+
+  // Auxiliary functions for scan_and_forward support.
+  // See comments for CompactibleSpace for more information.
+  inline HeapWord* scan_limit() const {
+    return top();
+  }
+
+  inline bool scanned_block_is_obj(const HeapWord* addr) const {
+    return true; // Always true, since scan_limit is top
+  }
+
+  inline size_t scanned_block_size(const HeapWord* addr) const {
+    return HeapRegion::block_size(addr); // Avoid virtual call
+  }
+
+ protected:
+  // The index of this region in the heap region sequence.
+  uint  _hrm_index;
+
+  AllocationContext_t _allocation_context;
+
+  HeapRegionType _type;
+
+  // For a humongous region, region in which it starts.
+  HeapRegion* _humongous_start_region;
+
+  // True iff an attempt to evacuate an object in the region failed.
+  bool _evacuation_failed;
+
+  // A heap region may be a member one of a number of special subsets, each
+  // represented as linked lists through the field below.  Currently, there
+  // is only one set:
+  //   The collection set.
+  HeapRegion* _next_in_special_set;
+
+  // next region in the young "generation" region set
+  HeapRegion* _next_young_region;
+
+  // Next region whose cards need cleaning
+  HeapRegion* _next_dirty_cards_region;
+
+  // Fields used by the HeapRegionSetBase class and subclasses.
+  HeapRegion* _next;
+  HeapRegion* _prev;
+#ifdef ASSERT
+  HeapRegionSetBase* _containing_set;
+#endif // ASSERT
+
+  // We use concurrent marking to determine the amount of live data
+  // in each heap region.
+  size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
+  size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
+
+  // The calculated GC efficiency of the region.
+  double _gc_efficiency;
+
+  int  _young_index_in_cset;
+  SurvRateGroup* _surv_rate_group;
+  int  _age_index;
+
+  // The start of the unmarked area. The unmarked area extends from this
+  // word until the top and/or end of the region, and is the part
+  // of the region for which no marking was done, i.e. objects may
+  // have been allocated in this part since the last mark phase.
+  // "prev" is the top at the start of the last completed marking.
+  // "next" is the top at the start of the in-progress marking (if any.)
+  HeapWord* _prev_top_at_mark_start;
+  HeapWord* _next_top_at_mark_start;
+  // If a collection pause is in progress, this is the top at the start
+  // of that pause.
+
+  void init_top_at_mark_start() {
+    assert(_prev_marked_bytes == 0 &&
+           _next_marked_bytes == 0,
+           "Must be called after zero_marked_bytes.");
+    HeapWord* bot = bottom();
+    _prev_top_at_mark_start = bot;
+    _next_top_at_mark_start = bot;
+  }
+
+  // Cached attributes used in the collection set policy information
+
+  // The RSet length that was added to the total value
+  // for the collection set.
+  size_t _recorded_rs_length;
+
+  // The predicted elapsed time that was added to total value
+  // for the collection set.
+  double _predicted_elapsed_time_ms;
+
+  // The predicted number of bytes to copy that was added to
+  // the total value for the collection set.
+  size_t _predicted_bytes_to_copy;
+
+ public:
+  HeapRegion(uint hrm_index,
+             G1BlockOffsetSharedArray* sharedOffsetArray,
+             MemRegion mr);
+
+  // Initializing the HeapRegion not only resets the data structure, but also
+  // resets the BOT for that heap region.
+  // The default values for clear_space means that we will do the clearing if
+  // there's clearing to be done ourselves. We also always mangle the space.
+  virtual void initialize(MemRegion mr, bool clear_space = false, bool mangle_space = SpaceDecorator::Mangle);
+
+  static int    LogOfHRGrainBytes;
+  static int    LogOfHRGrainWords;
+
+  static size_t GrainBytes;
+  static size_t GrainWords;
+  static size_t CardsPerRegion;
+
+  static size_t align_up_to_region_byte_size(size_t sz) {
+    return (sz + (size_t) GrainBytes - 1) &
+                                      ~((1 << (size_t) LogOfHRGrainBytes) - 1);
+  }
+
+  static size_t max_region_size();
+
+  // It sets up the heap region size (GrainBytes / GrainWords), as
+  // well as other related fields that are based on the heap region
+  // size (LogOfHRGrainBytes / LogOfHRGrainWords /
+  // CardsPerRegion). All those fields are considered constant
+  // throughout the JVM's execution, therefore they should only be set
+  // up once during initialization time.
+  static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
+
+  // All allocated blocks are occupied by objects in a HeapRegion
+  bool block_is_obj(const HeapWord* p) const;
+
+  // Returns the object size for all valid block starts
+  // and the amount of unallocated words if called on top()
+  size_t block_size(const HeapWord* p) const;
+
+  // Override for scan_and_forward support.
+  void prepare_for_compaction(CompactPoint* cp);
+
+  inline HeapWord* par_allocate_no_bot_updates(size_t word_size);
+  inline HeapWord* allocate_no_bot_updates(size_t word_size);
+
+  // If this region is a member of a HeapRegionManager, the index in that
+  // sequence, otherwise -1.
+  uint hrm_index() const { return _hrm_index; }
+
+  // The number of bytes marked live in the region in the last marking phase.
+  size_t marked_bytes()    { return _prev_marked_bytes; }
+  size_t live_bytes() {
+    return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
+  }
+
+  // The number of bytes counted in the next marking.
+  size_t next_marked_bytes() { return _next_marked_bytes; }
+  // The number of bytes live wrt the next marking.
+  size_t next_live_bytes() {
+    return
+      (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
+  }
+
+  // A lower bound on the amount of garbage bytes in the region.
+  size_t garbage_bytes() {
+    size_t used_at_mark_start_bytes =
+      (prev_top_at_mark_start() - bottom()) * HeapWordSize;
+    assert(used_at_mark_start_bytes >= marked_bytes(),
+           "Can't mark more than we have.");
+    return used_at_mark_start_bytes - marked_bytes();
+  }
+
+  // Return the amount of bytes we'll reclaim if we collect this
+  // region. This includes not only the known garbage bytes in the
+  // region but also any unallocated space in it, i.e., [top, end),
+  // since it will also be reclaimed if we collect the region.
+  size_t reclaimable_bytes() {
+    size_t known_live_bytes = live_bytes();
+    assert(known_live_bytes <= capacity(), "sanity");
+    return capacity() - known_live_bytes;
+  }
+
+  // An upper bound on the number of live bytes in the region.
+  size_t max_live_bytes() { return used() - garbage_bytes(); }
+
+  void add_to_marked_bytes(size_t incr_bytes) {
+    _next_marked_bytes = _next_marked_bytes + incr_bytes;
+    assert(_next_marked_bytes <= used(), "invariant" );
+  }
+
+  void zero_marked_bytes()      {
+    _prev_marked_bytes = _next_marked_bytes = 0;
+  }
+
+  const char* get_type_str() const { return _type.get_str(); }
+  const char* get_short_type_str() const { return _type.get_short_str(); }
+
+  bool is_free() const { return _type.is_free(); }
+
+  bool is_young()    const { return _type.is_young();    }
+  bool is_eden()     const { return _type.is_eden();     }
+  bool is_survivor() const { return _type.is_survivor(); }
+
+  bool is_humongous() const { return _type.is_humongous(); }
+  bool is_starts_humongous() const { return _type.is_starts_humongous(); }
+  bool is_continues_humongous() const { return _type.is_continues_humongous();   }
+
+  bool is_old() const { return _type.is_old(); }
+
+  // For a humongous region, region in which it starts.
+  HeapRegion* humongous_start_region() const {
+    return _humongous_start_region;
+  }
+
+  // Return the number of distinct regions that are covered by this region:
+  // 1 if the region is not humongous, >= 1 if the region is humongous.
+  uint region_num() const {
+    if (!is_humongous()) {
+      return 1U;
+    } else {
+      assert(is_starts_humongous(), "doesn't make sense on HC regions");
+      assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
+      return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
+    }
+  }
+
+  // Return the index + 1 of the last HC regions that's associated
+  // with this HS region.
+  uint last_hc_index() const {
+    assert(is_starts_humongous(), "don't call this otherwise");
+    return hrm_index() + region_num();
+  }
+
+  // Same as Space::is_in_reserved, but will use the original size of the region.
+  // The original size is different only for start humongous regions. They get
+  // their _end set up to be the end of the last continues region of the
+  // corresponding humongous object.
+  bool is_in_reserved_raw(const void* p) const {
+    return _bottom <= p && p < orig_end();
+  }
+
+  // Makes the current region be a "starts humongous" region, i.e.,
+  // the first region in a series of one or more contiguous regions
+  // that will contain a single "humongous" object. The two parameters
+  // are as follows:
+  //
+  // new_top : The new value of the top field of this region which
+  // points to the end of the humongous object that's being
+  // allocated. If there is more than one region in the series, top
+  // will lie beyond this region's original end field and on the last
+  // region in the series.
+  //
+  // new_end : The new value of the end field of this region which
+  // points to the end of the last region in the series. If there is
+  // one region in the series (namely: this one) end will be the same
+  // as the original end of this region.
+  //
+  // Updating top and end as described above makes this region look as
+  // if it spans the entire space taken up by all the regions in the
+  // series and an single allocation moved its top to new_top. This
+  // ensures that the space (capacity / allocated) taken up by all
+  // humongous regions can be calculated by just looking at the
+  // "starts humongous" regions and by ignoring the "continues
+  // humongous" regions.
+  void set_starts_humongous(HeapWord* new_top, HeapWord* new_end);
+
+  // Makes the current region be a "continues humongous'
+  // region. first_hr is the "start humongous" region of the series
+  // which this region will be part of.
+  void set_continues_humongous(HeapRegion* first_hr);
+
+  // Unsets the humongous-related fields on the region.
+  void clear_humongous();
+
+  // If the region has a remembered set, return a pointer to it.
+  HeapRegionRemSet* rem_set() const {
+    return _rem_set;
+  }
+
+  bool in_collection_set() const;
+
+  HeapRegion* next_in_collection_set() {
+    assert(in_collection_set(), "should only invoke on member of CS.");
+    assert(_next_in_special_set == NULL ||
+           _next_in_special_set->in_collection_set(),
+           "Malformed CS.");
+    return _next_in_special_set;
+  }
+  void set_next_in_collection_set(HeapRegion* r) {
+    assert(in_collection_set(), "should only invoke on member of CS.");
+    assert(r == NULL || r->in_collection_set(), "Malformed CS.");
+    _next_in_special_set = r;
+  }
+
+  void set_allocation_context(AllocationContext_t context) {
+    _allocation_context = context;
+  }
+
+  AllocationContext_t  allocation_context() const {
+    return _allocation_context;
+  }
+
+  // Methods used by the HeapRegionSetBase class and subclasses.
+
+  // Getter and setter for the next and prev fields used to link regions into
+  // linked lists.
+  HeapRegion* next()              { return _next; }
+  HeapRegion* prev()              { return _prev; }
+
+  void set_next(HeapRegion* next) { _next = next; }
+  void set_prev(HeapRegion* prev) { _prev = prev; }
+
+  // Every region added to a set is tagged with a reference to that
+  // set. This is used for doing consistency checking to make sure that
+  // the contents of a set are as they should be and it's only
+  // available in non-product builds.
+#ifdef ASSERT
+  void set_containing_set(HeapRegionSetBase* containing_set) {
+    assert((containing_set == NULL && _containing_set != NULL) ||
+           (containing_set != NULL && _containing_set == NULL),
+           err_msg("containing_set: "PTR_FORMAT" "
+                   "_containing_set: "PTR_FORMAT,
+                   p2i(containing_set), p2i(_containing_set)));
+
+    _containing_set = containing_set;
+  }
+
+  HeapRegionSetBase* containing_set() { return _containing_set; }
+#else // ASSERT
+  void set_containing_set(HeapRegionSetBase* containing_set) { }
+
+  // containing_set() is only used in asserts so there's no reason
+  // to provide a dummy version of it.
+#endif // ASSERT
+
+  HeapRegion* get_next_young_region() { return _next_young_region; }
+  void set_next_young_region(HeapRegion* hr) {
+    _next_young_region = hr;
+  }
+
+  HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
+  HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
+  void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
+  bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
+
+  // For the start region of a humongous sequence, it's original end().
+  HeapWord* orig_end() const { return _bottom + GrainWords; }
+
+  // Reset HR stuff to default values.
+  void hr_clear(bool par, bool clear_space, bool locked = false);
+  void par_clear();
+
+  // Get the start of the unmarked area in this region.
+  HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
+  HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
+
+  // Note the start or end of marking. This tells the heap region
+  // that the collector is about to start or has finished (concurrently)
+  // marking the heap.
+
+  // Notify the region that concurrent marking is starting. Initialize
+  // all fields related to the next marking info.
+  inline void note_start_of_marking();
+
+  // Notify the region that concurrent marking has finished. Copy the
+  // (now finalized) next marking info fields into the prev marking
+  // info fields.
+  inline void note_end_of_marking();
+
+  // Notify the region that it will be used as to-space during a GC
+  // and we are about to start copying objects into it.
+  inline void note_start_of_copying(bool during_initial_mark);
+
+  // Notify the region that it ceases being to-space during a GC and
+  // we will not copy objects into it any more.
+  inline void note_end_of_copying(bool during_initial_mark);
+
+  // Notify the region that we are about to start processing
+  // self-forwarded objects during evac failure handling.
+  void note_self_forwarding_removal_start(bool during_initial_mark,
+                                          bool during_conc_mark);
+
+  // Notify the region that we have finished processing self-forwarded
+  // objects during evac failure handling.
+  void note_self_forwarding_removal_end(bool during_initial_mark,
+                                        bool during_conc_mark,
+                                        size_t marked_bytes);
+
+  // Returns "false" iff no object in the region was allocated when the
+  // last mark phase ended.
+  bool is_marked() { return _prev_top_at_mark_start != bottom(); }
+
+  void reset_during_compaction() {
+    assert(is_starts_humongous(),
+           "should only be called for starts humongous regions");
+
+    zero_marked_bytes();
+    init_top_at_mark_start();
+  }
+
+  void calc_gc_efficiency(void);
+  double gc_efficiency() { return _gc_efficiency;}
+
+  int  young_index_in_cset() const { return _young_index_in_cset; }
+  void set_young_index_in_cset(int index) {
+    assert( (index == -1) || is_young(), "pre-condition" );
+    _young_index_in_cset = index;
+  }
+
+  int age_in_surv_rate_group() {
+    assert( _surv_rate_group != NULL, "pre-condition" );
+    assert( _age_index > -1, "pre-condition" );
+    return _surv_rate_group->age_in_group(_age_index);
+  }
+
+  void record_surv_words_in_group(size_t words_survived) {
+    assert( _surv_rate_group != NULL, "pre-condition" );
+    assert( _age_index > -1, "pre-condition" );
+    int age_in_group = age_in_surv_rate_group();
+    _surv_rate_group->record_surviving_words(age_in_group, words_survived);
+  }
+
+  int age_in_surv_rate_group_cond() {
+    if (_surv_rate_group != NULL)
+      return age_in_surv_rate_group();
+    else
+      return -1;
+  }
+
+  SurvRateGroup* surv_rate_group() {
+    return _surv_rate_group;
+  }
+
+  void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
+    assert( surv_rate_group != NULL, "pre-condition" );
+    assert( _surv_rate_group == NULL, "pre-condition" );
+    assert( is_young(), "pre-condition" );
+
+    _surv_rate_group = surv_rate_group;
+    _age_index = surv_rate_group->next_age_index();
+  }
+
+  void uninstall_surv_rate_group() {
+    if (_surv_rate_group != NULL) {
+      assert( _age_index > -1, "pre-condition" );
+      assert( is_young(), "pre-condition" );
+
+      _surv_rate_group = NULL;
+      _age_index = -1;
+    } else {
+      assert( _age_index == -1, "pre-condition" );
+    }
+  }
+
+  void set_free() { _type.set_free(); }
+
+  void set_eden()        { _type.set_eden();        }
+  void set_eden_pre_gc() { _type.set_eden_pre_gc(); }
+  void set_survivor()    { _type.set_survivor();    }
+
+  void set_old() { _type.set_old(); }
+
+  // Determine if an object has been allocated since the last
+  // mark performed by the collector. This returns true iff the object
+  // is within the unmarked area of the region.
+  bool obj_allocated_since_prev_marking(oop obj) const {
+    return (HeapWord *) obj >= prev_top_at_mark_start();
+  }
+  bool obj_allocated_since_next_marking(oop obj) const {
+    return (HeapWord *) obj >= next_top_at_mark_start();
+  }
+
+  // Returns the "evacuation_failed" property of the region.
+  bool evacuation_failed() { return _evacuation_failed; }
+
+  // Sets the "evacuation_failed" property of the region.
+  void set_evacuation_failed(bool b) {
+    _evacuation_failed = b;
+
+    if (b) {
+      _next_marked_bytes = 0;
+    }
+  }
+
+  // Requires that "mr" be entirely within the region.
+  // Apply "cl->do_object" to all objects that intersect with "mr".
+  // If the iteration encounters an unparseable portion of the region,
+  // or if "cl->abort()" is true after a closure application,
+  // terminate the iteration and return the address of the start of the
+  // subregion that isn't done.  (The two can be distinguished by querying
+  // "cl->abort()".)  Return of "NULL" indicates that the iteration
+  // completed.
+  HeapWord*
+  object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
+
+  // filter_young: if true and the region is a young region then we
+  // skip the iteration.
+  // card_ptr: if not NULL, and we decide that the card is not young
+  // and we iterate over it, we'll clean the card before we start the
+  // iteration.
+  HeapWord*
+  oops_on_card_seq_iterate_careful(MemRegion mr,
+                                   FilterOutOfRegionClosure* cl,
+                                   bool filter_young,
+                                   jbyte* card_ptr);
+
+  size_t recorded_rs_length() const        { return _recorded_rs_length; }
+  double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
+  size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
+
+  void set_recorded_rs_length(size_t rs_length) {
+    _recorded_rs_length = rs_length;
+  }
+
+  void set_predicted_elapsed_time_ms(double ms) {
+    _predicted_elapsed_time_ms = ms;
+  }
+
+  void set_predicted_bytes_to_copy(size_t bytes) {
+    _predicted_bytes_to_copy = bytes;
+  }
+
+  virtual CompactibleSpace* next_compaction_space() const;
+
+  virtual void reset_after_compaction();
+
+  // Routines for managing a list of code roots (attached to the
+  // this region's RSet) that point into this heap region.
+  void add_strong_code_root(nmethod* nm);
+  void add_strong_code_root_locked(nmethod* nm);
+  void remove_strong_code_root(nmethod* nm);
+
+  // Applies blk->do_code_blob() to each of the entries in
+  // the strong code roots list for this region
+  void strong_code_roots_do(CodeBlobClosure* blk) const;
+
+  // Verify that the entries on the strong code root list for this
+  // region are live and include at least one pointer into this region.
+  void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
+
+  void print() const;
+  void print_on(outputStream* st) const;
+
+  // vo == UsePrevMarking  -> use "prev" marking information,
+  // vo == UseNextMarking -> use "next" marking information
+  // vo == UseMarkWord    -> use the mark word in the object header
+  //
+  // NOTE: Only the "prev" marking information is guaranteed to be
+  // consistent most of the time, so most calls to this should use
+  // vo == UsePrevMarking.
+  // Currently, there is only one case where this is called with
+  // vo == UseNextMarking, which is to verify the "next" marking
+  // information at the end of remark.
+  // Currently there is only one place where this is called with
+  // vo == UseMarkWord, which is to verify the marking during a
+  // full GC.
+  void verify(VerifyOption vo, bool *failures) const;
+
+  // Override; it uses the "prev" marking information
+  virtual void verify() const;
+};
+
+// HeapRegionClosure is used for iterating over regions.
+// Terminates the iteration when the "doHeapRegion" method returns "true".
+class HeapRegionClosure : public StackObj {
+  friend class HeapRegionManager;
+  friend class G1CollectedHeap;
+
+  bool _complete;
+  void incomplete() { _complete = false; }
+
+ public:
+  HeapRegionClosure(): _complete(true) {}
+
+  // Typically called on each region until it returns true.
+  virtual bool doHeapRegion(HeapRegion* r) = 0;
+
+  // True after iteration if the closure was applied to all heap regions
+  // and returned "false" in all cases.
+  bool complete() { return _complete; }
+};
+
+#endif // SHARE_VM_GC_G1_HEAPREGION_HPP