hotspot/src/share/vm/gc/g1/concurrentMark.hpp
changeset 30764 fec48bf5a827
parent 30611 6f7f529bdeed
child 31994 3721b7aa3a0d
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/gc/g1/concurrentMark.hpp	Wed May 13 15:16:06 2015 +0200
@@ -0,0 +1,1227 @@
+/*
+ * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifndef SHARE_VM_GC_G1_CONCURRENTMARK_HPP
+#define SHARE_VM_GC_G1_CONCURRENTMARK_HPP
+
+#include "classfile/javaClasses.hpp"
+#include "gc/g1/g1RegionToSpaceMapper.hpp"
+#include "gc/g1/heapRegionSet.hpp"
+#include "gc/shared/gcId.hpp"
+#include "gc/shared/taskqueue.hpp"
+
+class G1CollectedHeap;
+class CMBitMap;
+class CMTask;
+class ConcurrentMark;
+typedef GenericTaskQueue<oop, mtGC>            CMTaskQueue;
+typedef GenericTaskQueueSet<CMTaskQueue, mtGC> CMTaskQueueSet;
+
+// Closure used by CM during concurrent reference discovery
+// and reference processing (during remarking) to determine
+// if a particular object is alive. It is primarily used
+// to determine if referents of discovered reference objects
+// are alive. An instance is also embedded into the
+// reference processor as the _is_alive_non_header field
+class G1CMIsAliveClosure: public BoolObjectClosure {
+  G1CollectedHeap* _g1;
+ public:
+  G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
+
+  bool do_object_b(oop obj);
+};
+
+// A generic CM bit map.  This is essentially a wrapper around the BitMap
+// class, with one bit per (1<<_shifter) HeapWords.
+
+class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
+ protected:
+  HeapWord* _bmStartWord;      // base address of range covered by map
+  size_t    _bmWordSize;       // map size (in #HeapWords covered)
+  const int _shifter;          // map to char or bit
+  BitMap    _bm;               // the bit map itself
+
+ public:
+  // constructor
+  CMBitMapRO(int shifter);
+
+  enum { do_yield = true };
+
+  // inquiries
+  HeapWord* startWord()   const { return _bmStartWord; }
+  size_t    sizeInWords() const { return _bmWordSize;  }
+  // the following is one past the last word in space
+  HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
+
+  // read marks
+
+  bool isMarked(HeapWord* addr) const {
+    assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
+           "outside underlying space?");
+    return _bm.at(heapWordToOffset(addr));
+  }
+
+  // iteration
+  inline bool iterate(BitMapClosure* cl, MemRegion mr);
+  inline bool iterate(BitMapClosure* cl);
+
+  // Return the address corresponding to the next marked bit at or after
+  // "addr", and before "limit", if "limit" is non-NULL.  If there is no
+  // such bit, returns "limit" if that is non-NULL, or else "endWord()".
+  HeapWord* getNextMarkedWordAddress(const HeapWord* addr,
+                                     const HeapWord* limit = NULL) const;
+  // Return the address corresponding to the next unmarked bit at or after
+  // "addr", and before "limit", if "limit" is non-NULL.  If there is no
+  // such bit, returns "limit" if that is non-NULL, or else "endWord()".
+  HeapWord* getNextUnmarkedWordAddress(const HeapWord* addr,
+                                       const HeapWord* limit = NULL) const;
+
+  // conversion utilities
+  HeapWord* offsetToHeapWord(size_t offset) const {
+    return _bmStartWord + (offset << _shifter);
+  }
+  size_t heapWordToOffset(const HeapWord* addr) const {
+    return pointer_delta(addr, _bmStartWord) >> _shifter;
+  }
+  int heapWordDiffToOffsetDiff(size_t diff) const;
+
+  // The argument addr should be the start address of a valid object
+  HeapWord* nextObject(HeapWord* addr) {
+    oop obj = (oop) addr;
+    HeapWord* res =  addr + obj->size();
+    assert(offsetToHeapWord(heapWordToOffset(res)) == res, "sanity");
+    return res;
+  }
+
+  void print_on_error(outputStream* st, const char* prefix) const;
+
+  // debugging
+  NOT_PRODUCT(bool covers(MemRegion rs) const;)
+};
+
+class CMBitMapMappingChangedListener : public G1MappingChangedListener {
+ private:
+  CMBitMap* _bm;
+ public:
+  CMBitMapMappingChangedListener() : _bm(NULL) {}
+
+  void set_bitmap(CMBitMap* bm) { _bm = bm; }
+
+  virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
+};
+
+class CMBitMap : public CMBitMapRO {
+ private:
+  CMBitMapMappingChangedListener _listener;
+
+ public:
+  static size_t compute_size(size_t heap_size);
+  // Returns the amount of bytes on the heap between two marks in the bitmap.
+  static size_t mark_distance();
+  // Returns how many bytes (or bits) of the heap a single byte (or bit) of the
+  // mark bitmap corresponds to. This is the same as the mark distance above.
+  static size_t heap_map_factor() {
+    return mark_distance();
+  }
+
+  CMBitMap() : CMBitMapRO(LogMinObjAlignment), _listener() { _listener.set_bitmap(this); }
+
+  // Initializes the underlying BitMap to cover the given area.
+  void initialize(MemRegion heap, G1RegionToSpaceMapper* storage);
+
+  // Write marks.
+  inline void mark(HeapWord* addr);
+  inline void clear(HeapWord* addr);
+  inline bool parMark(HeapWord* addr);
+  inline bool parClear(HeapWord* addr);
+
+  void markRange(MemRegion mr);
+  void clearRange(MemRegion mr);
+
+  // Starting at the bit corresponding to "addr" (inclusive), find the next
+  // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
+  // the end of this run (stopping at "end_addr").  Return the MemRegion
+  // covering from the start of the region corresponding to the first bit
+  // of the run to the end of the region corresponding to the last bit of
+  // the run.  If there is no "1" bit at or after "addr", return an empty
+  // MemRegion.
+  MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
+
+  // Clear the whole mark bitmap.
+  void clearAll();
+};
+
+// Represents a marking stack used by ConcurrentMarking in the G1 collector.
+class CMMarkStack VALUE_OBJ_CLASS_SPEC {
+  VirtualSpace _virtual_space;   // Underlying backing store for actual stack
+  ConcurrentMark* _cm;
+  oop* _base;        // bottom of stack
+  jint _index;       // one more than last occupied index
+  jint _capacity;    // max #elements
+  jint _saved_index; // value of _index saved at start of GC
+
+  bool  _overflow;
+  bool  _should_expand;
+  DEBUG_ONLY(bool _drain_in_progress;)
+  DEBUG_ONLY(bool _drain_in_progress_yields;)
+
+  oop pop() {
+    if (!isEmpty()) {
+      return _base[--_index] ;
+    }
+    return NULL;
+  }
+
+ public:
+  CMMarkStack(ConcurrentMark* cm);
+  ~CMMarkStack();
+
+  bool allocate(size_t capacity);
+
+  // Pushes the first "n" elements of "ptr_arr" on the stack.
+  // Locking impl: concurrency is allowed only with
+  // "par_push_arr" and/or "par_pop_arr" operations, which use the same
+  // locking strategy.
+  void par_push_arr(oop* ptr_arr, int n);
+
+  // If returns false, the array was empty.  Otherwise, removes up to "max"
+  // elements from the stack, and transfers them to "ptr_arr" in an
+  // unspecified order.  The actual number transferred is given in "n" ("n
+  // == 0" is deliberately redundant with the return value.)  Locking impl:
+  // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
+  // operations, which use the same locking strategy.
+  bool par_pop_arr(oop* ptr_arr, int max, int* n);
+
+  // Drain the mark stack, applying the given closure to all fields of
+  // objects on the stack.  (That is, continue until the stack is empty,
+  // even if closure applications add entries to the stack.)  The "bm"
+  // argument, if non-null, may be used to verify that only marked objects
+  // are on the mark stack.  If "yield_after" is "true", then the
+  // concurrent marker performing the drain offers to yield after
+  // processing each object.  If a yield occurs, stops the drain operation
+  // and returns false.  Otherwise, returns true.
+  template<class OopClosureClass>
+  bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
+
+  bool isEmpty()    { return _index == 0; }
+  int  maxElems()   { return _capacity; }
+
+  bool overflow() { return _overflow; }
+  void clear_overflow() { _overflow = false; }
+
+  bool should_expand() const { return _should_expand; }
+  void set_should_expand();
+
+  // Expand the stack, typically in response to an overflow condition
+  void expand();
+
+  int  size() { return _index; }
+
+  void setEmpty()   { _index = 0; clear_overflow(); }
+
+  // Record the current index.
+  void note_start_of_gc();
+
+  // Make sure that we have not added any entries to the stack during GC.
+  void note_end_of_gc();
+
+  // iterate over the oops in the mark stack, up to the bound recorded via
+  // the call above.
+  void oops_do(OopClosure* f);
+};
+
+class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
+private:
+#ifndef PRODUCT
+  uintx _num_remaining;
+  bool _force;
+#endif // !defined(PRODUCT)
+
+public:
+  void init() PRODUCT_RETURN;
+  void update() PRODUCT_RETURN;
+  bool should_force() PRODUCT_RETURN_( return false; );
+};
+
+// this will enable a variety of different statistics per GC task
+#define _MARKING_STATS_       0
+// this will enable the higher verbose levels
+#define _MARKING_VERBOSE_     0
+
+#if _MARKING_STATS_
+#define statsOnly(statement)  \
+do {                          \
+  statement ;                 \
+} while (0)
+#else // _MARKING_STATS_
+#define statsOnly(statement)  \
+do {                          \
+} while (0)
+#endif // _MARKING_STATS_
+
+typedef enum {
+  no_verbose  = 0,   // verbose turned off
+  stats_verbose,     // only prints stats at the end of marking
+  low_verbose,       // low verbose, mostly per region and per major event
+  medium_verbose,    // a bit more detailed than low
+  high_verbose       // per object verbose
+} CMVerboseLevel;
+
+class YoungList;
+
+// Root Regions are regions that are not empty at the beginning of a
+// marking cycle and which we might collect during an evacuation pause
+// while the cycle is active. Given that, during evacuation pauses, we
+// do not copy objects that are explicitly marked, what we have to do
+// for the root regions is to scan them and mark all objects reachable
+// from them. According to the SATB assumptions, we only need to visit
+// each object once during marking. So, as long as we finish this scan
+// before the next evacuation pause, we can copy the objects from the
+// root regions without having to mark them or do anything else to them.
+//
+// Currently, we only support root region scanning once (at the start
+// of the marking cycle) and the root regions are all the survivor
+// regions populated during the initial-mark pause.
+class CMRootRegions VALUE_OBJ_CLASS_SPEC {
+private:
+  YoungList*           _young_list;
+  ConcurrentMark*      _cm;
+
+  volatile bool        _scan_in_progress;
+  volatile bool        _should_abort;
+  HeapRegion* volatile _next_survivor;
+
+public:
+  CMRootRegions();
+  // We actually do most of the initialization in this method.
+  void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
+
+  // Reset the claiming / scanning of the root regions.
+  void prepare_for_scan();
+
+  // Forces get_next() to return NULL so that the iteration aborts early.
+  void abort() { _should_abort = true; }
+
+  // Return true if the CM thread are actively scanning root regions,
+  // false otherwise.
+  bool scan_in_progress() { return _scan_in_progress; }
+
+  // Claim the next root region to scan atomically, or return NULL if
+  // all have been claimed.
+  HeapRegion* claim_next();
+
+  // Flag that we're done with root region scanning and notify anyone
+  // who's waiting on it. If aborted is false, assume that all regions
+  // have been claimed.
+  void scan_finished();
+
+  // If CM threads are still scanning root regions, wait until they
+  // are done. Return true if we had to wait, false otherwise.
+  bool wait_until_scan_finished();
+};
+
+class ConcurrentMarkThread;
+
+class ConcurrentMark: public CHeapObj<mtGC> {
+  friend class CMMarkStack;
+  friend class ConcurrentMarkThread;
+  friend class CMTask;
+  friend class CMBitMapClosure;
+  friend class CMRemarkTask;
+  friend class CMConcurrentMarkingTask;
+  friend class G1ParNoteEndTask;
+  friend class CalcLiveObjectsClosure;
+  friend class G1CMRefProcTaskProxy;
+  friend class G1CMRefProcTaskExecutor;
+  friend class G1CMKeepAliveAndDrainClosure;
+  friend class G1CMDrainMarkingStackClosure;
+
+protected:
+  ConcurrentMarkThread* _cmThread;   // The thread doing the work
+  G1CollectedHeap*      _g1h;        // The heap
+  uint                  _parallel_marking_threads; // The number of marking
+                                                   // threads we're using
+  uint                  _max_parallel_marking_threads; // Max number of marking
+                                                       // threads we'll ever use
+  double                _sleep_factor; // How much we have to sleep, with
+                                       // respect to the work we just did, to
+                                       // meet the marking overhead goal
+  double                _marking_task_overhead; // Marking target overhead for
+                                                // a single task
+
+  // Same as the two above, but for the cleanup task
+  double                _cleanup_sleep_factor;
+  double                _cleanup_task_overhead;
+
+  FreeRegionList        _cleanup_list;
+
+  // Concurrent marking support structures
+  CMBitMap                _markBitMap1;
+  CMBitMap                _markBitMap2;
+  CMBitMapRO*             _prevMarkBitMap; // Completed mark bitmap
+  CMBitMap*               _nextMarkBitMap; // Under-construction mark bitmap
+
+  BitMap                  _region_bm;
+  BitMap                  _card_bm;
+
+  // Heap bounds
+  HeapWord*               _heap_start;
+  HeapWord*               _heap_end;
+
+  // Root region tracking and claiming
+  CMRootRegions           _root_regions;
+
+  // For gray objects
+  CMMarkStack             _markStack; // Grey objects behind global finger
+  HeapWord* volatile      _finger;  // The global finger, region aligned,
+                                    // always points to the end of the
+                                    // last claimed region
+
+  // Marking tasks
+  uint                    _max_worker_id;// Maximum worker id
+  uint                    _active_tasks; // Task num currently active
+  CMTask**                _tasks;        // Task queue array (max_worker_id len)
+  CMTaskQueueSet*         _task_queues;  // Task queue set
+  ParallelTaskTerminator  _terminator;   // For termination
+
+  // Two sync barriers that are used to synchronize tasks when an
+  // overflow occurs. The algorithm is the following. All tasks enter
+  // the first one to ensure that they have all stopped manipulating
+  // the global data structures. After they exit it, they re-initialize
+  // their data structures and task 0 re-initializes the global data
+  // structures. Then, they enter the second sync barrier. This
+  // ensure, that no task starts doing work before all data
+  // structures (local and global) have been re-initialized. When they
+  // exit it, they are free to start working again.
+  WorkGangBarrierSync     _first_overflow_barrier_sync;
+  WorkGangBarrierSync     _second_overflow_barrier_sync;
+
+  // This is set by any task, when an overflow on the global data
+  // structures is detected
+  volatile bool           _has_overflown;
+  // True: marking is concurrent, false: we're in remark
+  volatile bool           _concurrent;
+  // Set at the end of a Full GC so that marking aborts
+  volatile bool           _has_aborted;
+  GCId                    _aborted_gc_id;
+
+  // Used when remark aborts due to an overflow to indicate that
+  // another concurrent marking phase should start
+  volatile bool           _restart_for_overflow;
+
+  // This is true from the very start of concurrent marking until the
+  // point when all the tasks complete their work. It is really used
+  // to determine the points between the end of concurrent marking and
+  // time of remark.
+  volatile bool           _concurrent_marking_in_progress;
+
+  // Verbose level
+  CMVerboseLevel          _verbose_level;
+
+  // All of these times are in ms
+  NumberSeq _init_times;
+  NumberSeq _remark_times;
+  NumberSeq _remark_mark_times;
+  NumberSeq _remark_weak_ref_times;
+  NumberSeq _cleanup_times;
+  double    _total_counting_time;
+  double    _total_rs_scrub_time;
+
+  double*   _accum_task_vtime;   // Accumulated task vtime
+
+  FlexibleWorkGang* _parallel_workers;
+
+  ForceOverflowSettings _force_overflow_conc;
+  ForceOverflowSettings _force_overflow_stw;
+
+  void weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes);
+  void weakRefsWork(bool clear_all_soft_refs);
+
+  void swapMarkBitMaps();
+
+  // It resets the global marking data structures, as well as the
+  // task local ones; should be called during initial mark.
+  void reset();
+
+  // Resets all the marking data structures. Called when we have to restart
+  // marking or when marking completes (via set_non_marking_state below).
+  void reset_marking_state(bool clear_overflow = true);
+
+  // We do this after we're done with marking so that the marking data
+  // structures are initialized to a sensible and predictable state.
+  void set_non_marking_state();
+
+  // Called to indicate how many threads are currently active.
+  void set_concurrency(uint active_tasks);
+
+  // It should be called to indicate which phase we're in (concurrent
+  // mark or remark) and how many threads are currently active.
+  void set_concurrency_and_phase(uint active_tasks, bool concurrent);
+
+  // Prints all gathered CM-related statistics
+  void print_stats();
+
+  bool cleanup_list_is_empty() {
+    return _cleanup_list.is_empty();
+  }
+
+  // Accessor methods
+  uint parallel_marking_threads() const     { return _parallel_marking_threads; }
+  uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
+  double sleep_factor()                     { return _sleep_factor; }
+  double marking_task_overhead()            { return _marking_task_overhead;}
+  double cleanup_sleep_factor()             { return _cleanup_sleep_factor; }
+  double cleanup_task_overhead()            { return _cleanup_task_overhead;}
+
+  HeapWord*               finger()          { return _finger;   }
+  bool                    concurrent()      { return _concurrent; }
+  uint                    active_tasks()    { return _active_tasks; }
+  ParallelTaskTerminator* terminator()      { return &_terminator; }
+
+  // It claims the next available region to be scanned by a marking
+  // task/thread. It might return NULL if the next region is empty or
+  // we have run out of regions. In the latter case, out_of_regions()
+  // determines whether we've really run out of regions or the task
+  // should call claim_region() again. This might seem a bit
+  // awkward. Originally, the code was written so that claim_region()
+  // either successfully returned with a non-empty region or there
+  // were no more regions to be claimed. The problem with this was
+  // that, in certain circumstances, it iterated over large chunks of
+  // the heap finding only empty regions and, while it was working, it
+  // was preventing the calling task to call its regular clock
+  // method. So, this way, each task will spend very little time in
+  // claim_region() and is allowed to call the regular clock method
+  // frequently.
+  HeapRegion* claim_region(uint worker_id);
+
+  // It determines whether we've run out of regions to scan. Note that
+  // the finger can point past the heap end in case the heap was expanded
+  // to satisfy an allocation without doing a GC. This is fine, because all
+  // objects in those regions will be considered live anyway because of
+  // SATB guarantees (i.e. their TAMS will be equal to bottom).
+  bool        out_of_regions() { return _finger >= _heap_end; }
+
+  // Returns the task with the given id
+  CMTask* task(int id) {
+    assert(0 <= id && id < (int) _active_tasks,
+           "task id not within active bounds");
+    return _tasks[id];
+  }
+
+  // Returns the task queue with the given id
+  CMTaskQueue* task_queue(int id) {
+    assert(0 <= id && id < (int) _active_tasks,
+           "task queue id not within active bounds");
+    return (CMTaskQueue*) _task_queues->queue(id);
+  }
+
+  // Returns the task queue set
+  CMTaskQueueSet* task_queues()  { return _task_queues; }
+
+  // Access / manipulation of the overflow flag which is set to
+  // indicate that the global stack has overflown
+  bool has_overflown()           { return _has_overflown; }
+  void set_has_overflown()       { _has_overflown = true; }
+  void clear_has_overflown()     { _has_overflown = false; }
+  bool restart_for_overflow()    { return _restart_for_overflow; }
+
+  // Methods to enter the two overflow sync barriers
+  void enter_first_sync_barrier(uint worker_id);
+  void enter_second_sync_barrier(uint worker_id);
+
+  ForceOverflowSettings* force_overflow_conc() {
+    return &_force_overflow_conc;
+  }
+
+  ForceOverflowSettings* force_overflow_stw() {
+    return &_force_overflow_stw;
+  }
+
+  ForceOverflowSettings* force_overflow() {
+    if (concurrent()) {
+      return force_overflow_conc();
+    } else {
+      return force_overflow_stw();
+    }
+  }
+
+  // Live Data Counting data structures...
+  // These data structures are initialized at the start of
+  // marking. They are written to while marking is active.
+  // They are aggregated during remark; the aggregated values
+  // are then used to populate the _region_bm, _card_bm, and
+  // the total live bytes, which are then subsequently updated
+  // during cleanup.
+
+  // An array of bitmaps (one bit map per task). Each bitmap
+  // is used to record the cards spanned by the live objects
+  // marked by that task/worker.
+  BitMap*  _count_card_bitmaps;
+
+  // Used to record the number of marked live bytes
+  // (for each region, by worker thread).
+  size_t** _count_marked_bytes;
+
+  // Card index of the bottom of the G1 heap. Used for biasing indices into
+  // the card bitmaps.
+  intptr_t _heap_bottom_card_num;
+
+  // Set to true when initialization is complete
+  bool _completed_initialization;
+
+public:
+  // Manipulation of the global mark stack.
+  // The push and pop operations are used by tasks for transfers
+  // between task-local queues and the global mark stack, and use
+  // locking for concurrency safety.
+  bool mark_stack_push(oop* arr, int n) {
+    _markStack.par_push_arr(arr, n);
+    if (_markStack.overflow()) {
+      set_has_overflown();
+      return false;
+    }
+    return true;
+  }
+  void mark_stack_pop(oop* arr, int max, int* n) {
+    _markStack.par_pop_arr(arr, max, n);
+  }
+  size_t mark_stack_size()                { return _markStack.size(); }
+  size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
+  bool mark_stack_overflow()              { return _markStack.overflow(); }
+  bool mark_stack_empty()                 { return _markStack.isEmpty(); }
+
+  CMRootRegions* root_regions() { return &_root_regions; }
+
+  bool concurrent_marking_in_progress() {
+    return _concurrent_marking_in_progress;
+  }
+  void set_concurrent_marking_in_progress() {
+    _concurrent_marking_in_progress = true;
+  }
+  void clear_concurrent_marking_in_progress() {
+    _concurrent_marking_in_progress = false;
+  }
+
+  void update_accum_task_vtime(int i, double vtime) {
+    _accum_task_vtime[i] += vtime;
+  }
+
+  double all_task_accum_vtime() {
+    double ret = 0.0;
+    for (uint i = 0; i < _max_worker_id; ++i)
+      ret += _accum_task_vtime[i];
+    return ret;
+  }
+
+  // Attempts to steal an object from the task queues of other tasks
+  bool try_stealing(uint worker_id, int* hash_seed, oop& obj);
+
+  ConcurrentMark(G1CollectedHeap* g1h,
+                 G1RegionToSpaceMapper* prev_bitmap_storage,
+                 G1RegionToSpaceMapper* next_bitmap_storage);
+  ~ConcurrentMark();
+
+  ConcurrentMarkThread* cmThread() { return _cmThread; }
+
+  CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
+  CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
+
+  // Returns the number of GC threads to be used in a concurrent
+  // phase based on the number of GC threads being used in a STW
+  // phase.
+  uint scale_parallel_threads(uint n_par_threads);
+
+  // Calculates the number of GC threads to be used in a concurrent phase.
+  uint calc_parallel_marking_threads();
+
+  // The following three are interaction between CM and
+  // G1CollectedHeap
+
+  // This notifies CM that a root during initial-mark needs to be
+  // grayed. It is MT-safe. word_size is the size of the object in
+  // words. It is passed explicitly as sometimes we cannot calculate
+  // it from the given object because it might be in an inconsistent
+  // state (e.g., in to-space and being copied). So the caller is
+  // responsible for dealing with this issue (e.g., get the size from
+  // the from-space image when the to-space image might be
+  // inconsistent) and always passing the size. hr is the region that
+  // contains the object and it's passed optionally from callers who
+  // might already have it (no point in recalculating it).
+  inline void grayRoot(oop obj,
+                       size_t word_size,
+                       uint worker_id,
+                       HeapRegion* hr = NULL);
+
+  // It iterates over the heap and for each object it comes across it
+  // will dump the contents of its reference fields, as well as
+  // liveness information for the object and its referents. The dump
+  // will be written to a file with the following name:
+  // G1PrintReachableBaseFile + "." + str.
+  // vo decides whether the prev (vo == UsePrevMarking), the next
+  // (vo == UseNextMarking) marking information, or the mark word
+  // (vo == UseMarkWord) will be used to determine the liveness of
+  // each object / referent.
+  // If all is true, all objects in the heap will be dumped, otherwise
+  // only the live ones. In the dump the following symbols / breviations
+  // are used:
+  //   M : an explicitly live object (its bitmap bit is set)
+  //   > : an implicitly live object (over tams)
+  //   O : an object outside the G1 heap (typically: in the perm gen)
+  //   NOT : a reference field whose referent is not live
+  //   AND MARKED : indicates that an object is both explicitly and
+  //   implicitly live (it should be one or the other, not both)
+  void print_reachable(const char* str,
+                       VerifyOption vo,
+                       bool all) PRODUCT_RETURN;
+
+  // Clear the next marking bitmap (will be called concurrently).
+  void clearNextBitmap();
+
+  // Return whether the next mark bitmap has no marks set. To be used for assertions
+  // only. Will not yield to pause requests.
+  bool nextMarkBitmapIsClear();
+
+  // These two do the work that needs to be done before and after the
+  // initial root checkpoint. Since this checkpoint can be done at two
+  // different points (i.e. an explicit pause or piggy-backed on a
+  // young collection), then it's nice to be able to easily share the
+  // pre/post code. It might be the case that we can put everything in
+  // the post method. TP
+  void checkpointRootsInitialPre();
+  void checkpointRootsInitialPost();
+
+  // Scan all the root regions and mark everything reachable from
+  // them.
+  void scanRootRegions();
+
+  // Scan a single root region and mark everything reachable from it.
+  void scanRootRegion(HeapRegion* hr, uint worker_id);
+
+  // Do concurrent phase of marking, to a tentative transitive closure.
+  void markFromRoots();
+
+  void checkpointRootsFinal(bool clear_all_soft_refs);
+  void checkpointRootsFinalWork();
+  void cleanup();
+  void completeCleanup();
+
+  // Mark in the previous bitmap.  NB: this is usually read-only, so use
+  // this carefully!
+  inline void markPrev(oop p);
+
+  // Clears marks for all objects in the given range, for the prev or
+  // next bitmaps.  NB: the previous bitmap is usually
+  // read-only, so use this carefully!
+  void clearRangePrevBitmap(MemRegion mr);
+  void clearRangeNextBitmap(MemRegion mr);
+
+  // Notify data structures that a GC has started.
+  void note_start_of_gc() {
+    _markStack.note_start_of_gc();
+  }
+
+  // Notify data structures that a GC is finished.
+  void note_end_of_gc() {
+    _markStack.note_end_of_gc();
+  }
+
+  // Verify that there are no CSet oops on the stacks (taskqueues /
+  // global mark stack) and fingers (global / per-task).
+  // If marking is not in progress, it's a no-op.
+  void verify_no_cset_oops() PRODUCT_RETURN;
+
+  bool isPrevMarked(oop p) const {
+    assert(p != NULL && p->is_oop(), "expected an oop");
+    HeapWord* addr = (HeapWord*)p;
+    assert(addr >= _prevMarkBitMap->startWord() ||
+           addr < _prevMarkBitMap->endWord(), "in a region");
+
+    return _prevMarkBitMap->isMarked(addr);
+  }
+
+  inline bool do_yield_check(uint worker_i = 0);
+
+  // Called to abort the marking cycle after a Full GC takes place.
+  void abort();
+
+  bool has_aborted()      { return _has_aborted; }
+
+  const GCId& concurrent_gc_id();
+
+  // This prints the global/local fingers. It is used for debugging.
+  NOT_PRODUCT(void print_finger();)
+
+  void print_summary_info();
+
+  void print_worker_threads_on(outputStream* st) const;
+
+  void print_on_error(outputStream* st) const;
+
+  // The following indicate whether a given verbose level has been
+  // set. Notice that anything above stats is conditional to
+  // _MARKING_VERBOSE_ having been set to 1
+  bool verbose_stats() {
+    return _verbose_level >= stats_verbose;
+  }
+  bool verbose_low() {
+    return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
+  }
+  bool verbose_medium() {
+    return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
+  }
+  bool verbose_high() {
+    return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
+  }
+
+  // Liveness counting
+
+  // Utility routine to set an exclusive range of cards on the given
+  // card liveness bitmap
+  inline void set_card_bitmap_range(BitMap* card_bm,
+                                    BitMap::idx_t start_idx,
+                                    BitMap::idx_t end_idx,
+                                    bool is_par);
+
+  // Returns the card number of the bottom of the G1 heap.
+  // Used in biasing indices into accounting card bitmaps.
+  intptr_t heap_bottom_card_num() const {
+    return _heap_bottom_card_num;
+  }
+
+  // Returns the card bitmap for a given task or worker id.
+  BitMap* count_card_bitmap_for(uint worker_id) {
+    assert(worker_id < _max_worker_id, "oob");
+    assert(_count_card_bitmaps != NULL, "uninitialized");
+    BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
+    assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
+    return task_card_bm;
+  }
+
+  // Returns the array containing the marked bytes for each region,
+  // for the given worker or task id.
+  size_t* count_marked_bytes_array_for(uint worker_id) {
+    assert(worker_id < _max_worker_id, "oob");
+    assert(_count_marked_bytes != NULL, "uninitialized");
+    size_t* marked_bytes_array = _count_marked_bytes[worker_id];
+    assert(marked_bytes_array != NULL, "uninitialized");
+    return marked_bytes_array;
+  }
+
+  // Returns the index in the liveness accounting card table bitmap
+  // for the given address
+  inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
+
+  // Counts the size of the given memory region in the the given
+  // marked_bytes array slot for the given HeapRegion.
+  // Sets the bits in the given card bitmap that are associated with the
+  // cards that are spanned by the memory region.
+  inline void count_region(MemRegion mr,
+                           HeapRegion* hr,
+                           size_t* marked_bytes_array,
+                           BitMap* task_card_bm);
+
+  // Counts the given memory region in the task/worker counting
+  // data structures for the given worker id.
+  inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
+
+  // Counts the given object in the given task/worker counting
+  // data structures.
+  inline void count_object(oop obj,
+                           HeapRegion* hr,
+                           size_t* marked_bytes_array,
+                           BitMap* task_card_bm);
+
+  // Attempts to mark the given object and, if successful, counts
+  // the object in the given task/worker counting structures.
+  inline bool par_mark_and_count(oop obj,
+                                 HeapRegion* hr,
+                                 size_t* marked_bytes_array,
+                                 BitMap* task_card_bm);
+
+  // Attempts to mark the given object and, if successful, counts
+  // the object in the task/worker counting structures for the
+  // given worker id.
+  inline bool par_mark_and_count(oop obj,
+                                 size_t word_size,
+                                 HeapRegion* hr,
+                                 uint worker_id);
+
+  // Returns true if initialization was successfully completed.
+  bool completed_initialization() const {
+    return _completed_initialization;
+  }
+
+protected:
+  // Clear all the per-task bitmaps and arrays used to store the
+  // counting data.
+  void clear_all_count_data();
+
+  // Aggregates the counting data for each worker/task
+  // that was constructed while marking. Also sets
+  // the amount of marked bytes for each region and
+  // the top at concurrent mark count.
+  void aggregate_count_data();
+
+  // Verification routine
+  void verify_count_data();
+};
+
+// A class representing a marking task.
+class CMTask : public TerminatorTerminator {
+private:
+  enum PrivateConstants {
+    // the regular clock call is called once the scanned words reaches
+    // this limit
+    words_scanned_period          = 12*1024,
+    // the regular clock call is called once the number of visited
+    // references reaches this limit
+    refs_reached_period           = 384,
+    // initial value for the hash seed, used in the work stealing code
+    init_hash_seed                = 17,
+    // how many entries will be transferred between global stack and
+    // local queues
+    global_stack_transfer_size    = 16
+  };
+
+  uint                        _worker_id;
+  G1CollectedHeap*            _g1h;
+  ConcurrentMark*             _cm;
+  CMBitMap*                   _nextMarkBitMap;
+  // the task queue of this task
+  CMTaskQueue*                _task_queue;
+private:
+  // the task queue set---needed for stealing
+  CMTaskQueueSet*             _task_queues;
+  // indicates whether the task has been claimed---this is only  for
+  // debugging purposes
+  bool                        _claimed;
+
+  // number of calls to this task
+  int                         _calls;
+
+  // when the virtual timer reaches this time, the marking step should
+  // exit
+  double                      _time_target_ms;
+  // the start time of the current marking step
+  double                      _start_time_ms;
+
+  // the oop closure used for iterations over oops
+  G1CMOopClosure*             _cm_oop_closure;
+
+  // the region this task is scanning, NULL if we're not scanning any
+  HeapRegion*                 _curr_region;
+  // the local finger of this task, NULL if we're not scanning a region
+  HeapWord*                   _finger;
+  // limit of the region this task is scanning, NULL if we're not scanning one
+  HeapWord*                   _region_limit;
+
+  // the number of words this task has scanned
+  size_t                      _words_scanned;
+  // When _words_scanned reaches this limit, the regular clock is
+  // called. Notice that this might be decreased under certain
+  // circumstances (i.e. when we believe that we did an expensive
+  // operation).
+  size_t                      _words_scanned_limit;
+  // the initial value of _words_scanned_limit (i.e. what it was
+  // before it was decreased).
+  size_t                      _real_words_scanned_limit;
+
+  // the number of references this task has visited
+  size_t                      _refs_reached;
+  // When _refs_reached reaches this limit, the regular clock is
+  // called. Notice this this might be decreased under certain
+  // circumstances (i.e. when we believe that we did an expensive
+  // operation).
+  size_t                      _refs_reached_limit;
+  // the initial value of _refs_reached_limit (i.e. what it was before
+  // it was decreased).
+  size_t                      _real_refs_reached_limit;
+
+  // used by the work stealing stuff
+  int                         _hash_seed;
+  // if this is true, then the task has aborted for some reason
+  bool                        _has_aborted;
+  // set when the task aborts because it has met its time quota
+  bool                        _has_timed_out;
+  // true when we're draining SATB buffers; this avoids the task
+  // aborting due to SATB buffers being available (as we're already
+  // dealing with them)
+  bool                        _draining_satb_buffers;
+
+  // number sequence of past step times
+  NumberSeq                   _step_times_ms;
+  // elapsed time of this task
+  double                      _elapsed_time_ms;
+  // termination time of this task
+  double                      _termination_time_ms;
+  // when this task got into the termination protocol
+  double                      _termination_start_time_ms;
+
+  // true when the task is during a concurrent phase, false when it is
+  // in the remark phase (so, in the latter case, we do not have to
+  // check all the things that we have to check during the concurrent
+  // phase, i.e. SATB buffer availability...)
+  bool                        _concurrent;
+
+  TruncatedSeq                _marking_step_diffs_ms;
+
+  // Counting data structures. Embedding the task's marked_bytes_array
+  // and card bitmap into the actual task saves having to go through
+  // the ConcurrentMark object.
+  size_t*                     _marked_bytes_array;
+  BitMap*                     _card_bm;
+
+  // LOTS of statistics related with this task
+#if _MARKING_STATS_
+  NumberSeq                   _all_clock_intervals_ms;
+  double                      _interval_start_time_ms;
+
+  size_t                      _aborted;
+  size_t                      _aborted_overflow;
+  size_t                      _aborted_cm_aborted;
+  size_t                      _aborted_yield;
+  size_t                      _aborted_timed_out;
+  size_t                      _aborted_satb;
+  size_t                      _aborted_termination;
+
+  size_t                      _steal_attempts;
+  size_t                      _steals;
+
+  size_t                      _clock_due_to_marking;
+  size_t                      _clock_due_to_scanning;
+
+  size_t                      _local_pushes;
+  size_t                      _local_pops;
+  size_t                      _local_max_size;
+  size_t                      _objs_scanned;
+
+  size_t                      _global_pushes;
+  size_t                      _global_pops;
+  size_t                      _global_max_size;
+
+  size_t                      _global_transfers_to;
+  size_t                      _global_transfers_from;
+
+  size_t                      _regions_claimed;
+  size_t                      _objs_found_on_bitmap;
+
+  size_t                      _satb_buffers_processed;
+#endif // _MARKING_STATS_
+
+  // it updates the local fields after this task has claimed
+  // a new region to scan
+  void setup_for_region(HeapRegion* hr);
+  // it brings up-to-date the limit of the region
+  void update_region_limit();
+
+  // called when either the words scanned or the refs visited limit
+  // has been reached
+  void reached_limit();
+  // recalculates the words scanned and refs visited limits
+  void recalculate_limits();
+  // decreases the words scanned and refs visited limits when we reach
+  // an expensive operation
+  void decrease_limits();
+  // it checks whether the words scanned or refs visited reached their
+  // respective limit and calls reached_limit() if they have
+  void check_limits() {
+    if (_words_scanned >= _words_scanned_limit ||
+        _refs_reached >= _refs_reached_limit) {
+      reached_limit();
+    }
+  }
+  // this is supposed to be called regularly during a marking step as
+  // it checks a bunch of conditions that might cause the marking step
+  // to abort
+  void regular_clock_call();
+  bool concurrent() { return _concurrent; }
+
+  // Test whether obj might have already been passed over by the
+  // mark bitmap scan, and so needs to be pushed onto the mark stack.
+  bool is_below_finger(oop obj, HeapWord* global_finger) const;
+
+  template<bool scan> void process_grey_object(oop obj);
+
+public:
+  // It resets the task; it should be called right at the beginning of
+  // a marking phase.
+  void reset(CMBitMap* _nextMarkBitMap);
+  // it clears all the fields that correspond to a claimed region.
+  void clear_region_fields();
+
+  void set_concurrent(bool concurrent) { _concurrent = concurrent; }
+
+  // The main method of this class which performs a marking step
+  // trying not to exceed the given duration. However, it might exit
+  // prematurely, according to some conditions (i.e. SATB buffers are
+  // available for processing).
+  void do_marking_step(double target_ms,
+                       bool do_termination,
+                       bool is_serial);
+
+  // These two calls start and stop the timer
+  void record_start_time() {
+    _elapsed_time_ms = os::elapsedTime() * 1000.0;
+  }
+  void record_end_time() {
+    _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
+  }
+
+  // returns the worker ID associated with this task.
+  uint worker_id() { return _worker_id; }
+
+  // From TerminatorTerminator. It determines whether this task should
+  // exit the termination protocol after it's entered it.
+  virtual bool should_exit_termination();
+
+  // Resets the local region fields after a task has finished scanning a
+  // region; or when they have become stale as a result of the region
+  // being evacuated.
+  void giveup_current_region();
+
+  HeapWord* finger()            { return _finger; }
+
+  bool has_aborted()            { return _has_aborted; }
+  void set_has_aborted()        { _has_aborted = true; }
+  void clear_has_aborted()      { _has_aborted = false; }
+  bool has_timed_out()          { return _has_timed_out; }
+  bool claimed()                { return _claimed; }
+
+  void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
+
+  // Increment the number of references this task has visited.
+  void increment_refs_reached() { ++_refs_reached; }
+
+  // Grey the object by marking it.  If not already marked, push it on
+  // the local queue if below the finger.
+  // Precondition: obj is in region.
+  // Precondition: obj is below region's NTAMS.
+  inline void make_reference_grey(oop obj, HeapRegion* region);
+
+  // Grey the object (by calling make_grey_reference) if required,
+  // e.g. obj is below its containing region's NTAMS.
+  // Precondition: obj is a valid heap object.
+  inline void deal_with_reference(oop obj);
+
+  // It scans an object and visits its children.
+  void scan_object(oop obj) { process_grey_object<true>(obj); }
+
+  // It pushes an object on the local queue.
+  inline void push(oop obj);
+
+  // These two move entries to/from the global stack.
+  void move_entries_to_global_stack();
+  void get_entries_from_global_stack();
+
+  // It pops and scans objects from the local queue. If partially is
+  // true, then it stops when the queue size is of a given limit. If
+  // partially is false, then it stops when the queue is empty.
+  void drain_local_queue(bool partially);
+  // It moves entries from the global stack to the local queue and
+  // drains the local queue. If partially is true, then it stops when
+  // both the global stack and the local queue reach a given size. If
+  // partially if false, it tries to empty them totally.
+  void drain_global_stack(bool partially);
+  // It keeps picking SATB buffers and processing them until no SATB
+  // buffers are available.
+  void drain_satb_buffers();
+
+  // moves the local finger to a new location
+  inline void move_finger_to(HeapWord* new_finger) {
+    assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
+    _finger = new_finger;
+  }
+
+  CMTask(uint worker_id,
+         ConcurrentMark *cm,
+         size_t* marked_bytes,
+         BitMap* card_bm,
+         CMTaskQueue* task_queue,
+         CMTaskQueueSet* task_queues);
+
+  // it prints statistics associated with this task
+  void print_stats();
+
+#if _MARKING_STATS_
+  void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
+#endif // _MARKING_STATS_
+};
+
+// Class that's used to to print out per-region liveness
+// information. It's currently used at the end of marking and also
+// after we sort the old regions at the end of the cleanup operation.
+class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
+private:
+  outputStream* _out;
+
+  // Accumulators for these values.
+  size_t _total_used_bytes;
+  size_t _total_capacity_bytes;
+  size_t _total_prev_live_bytes;
+  size_t _total_next_live_bytes;
+
+  // These are set up when we come across a "stars humongous" region
+  // (as this is where most of this information is stored, not in the
+  // subsequent "continues humongous" regions). After that, for every
+  // region in a given humongous region series we deduce the right
+  // values for it by simply subtracting the appropriate amount from
+  // these fields. All these values should reach 0 after we've visited
+  // the last region in the series.
+  size_t _hum_used_bytes;
+  size_t _hum_capacity_bytes;
+  size_t _hum_prev_live_bytes;
+  size_t _hum_next_live_bytes;
+
+  // Accumulator for the remembered set size
+  size_t _total_remset_bytes;
+
+  // Accumulator for strong code roots memory size
+  size_t _total_strong_code_roots_bytes;
+
+  static double perc(size_t val, size_t total) {
+    if (total == 0) {
+      return 0.0;
+    } else {
+      return 100.0 * ((double) val / (double) total);
+    }
+  }
+
+  static double bytes_to_mb(size_t val) {
+    return (double) val / (double) M;
+  }
+
+  // See the .cpp file.
+  size_t get_hum_bytes(size_t* hum_bytes);
+  void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
+                     size_t* prev_live_bytes, size_t* next_live_bytes);
+
+public:
+  // The header and footer are printed in the constructor and
+  // destructor respectively.
+  G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
+  virtual bool doHeapRegion(HeapRegion* r);
+  ~G1PrintRegionLivenessInfoClosure();
+};
+
+#endif // SHARE_VM_GC_G1_CONCURRENTMARK_HPP