src/hotspot/share/gc/parallel/psCardTable.cpp
changeset 49194 ece10494786c
parent 48961 120b61d50f85
parent 49164 7e958a8ebcd3
child 49488 1f9dd2360b17
child 49595 e3e2fb5cc799
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/gc/parallel/psCardTable.cpp	Fri Mar 02 21:00:12 2018 +0100
@@ -0,0 +1,673 @@
+/*
+ * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "gc/parallel/gcTaskManager.hpp"
+#include "gc/parallel/objectStartArray.inline.hpp"
+#include "gc/parallel/parallelScavengeHeap.inline.hpp"
+#include "gc/parallel/psCardTable.hpp"
+#include "gc/parallel/psPromotionManager.inline.hpp"
+#include "gc/parallel/psScavenge.hpp"
+#include "gc/parallel/psTasks.hpp"
+#include "gc/parallel/psYoungGen.hpp"
+#include "oops/oop.inline.hpp"
+#include "runtime/prefetch.inline.hpp"
+#include "utilities/align.hpp"
+
+// Checks an individual oop for missing precise marks. Mark
+// may be either dirty or newgen.
+class CheckForUnmarkedOops : public OopClosure {
+ private:
+  PSYoungGen*  _young_gen;
+  PSCardTable* _card_table;
+  HeapWord*    _unmarked_addr;
+
+ protected:
+  template <class T> void do_oop_work(T* p) {
+    oop obj = oopDesc::load_decode_heap_oop(p);
+    if (_young_gen->is_in_reserved(obj) &&
+        !_card_table->addr_is_marked_imprecise(p)) {
+      // Don't overwrite the first missing card mark
+      if (_unmarked_addr == NULL) {
+        _unmarked_addr = (HeapWord*)p;
+      }
+    }
+  }
+
+ public:
+  CheckForUnmarkedOops(PSYoungGen* young_gen, PSCardTable* card_table) :
+    _young_gen(young_gen), _card_table(card_table), _unmarked_addr(NULL) { }
+
+  virtual void do_oop(oop* p)       { CheckForUnmarkedOops::do_oop_work(p); }
+  virtual void do_oop(narrowOop* p) { CheckForUnmarkedOops::do_oop_work(p); }
+
+  bool has_unmarked_oop() {
+    return _unmarked_addr != NULL;
+  }
+};
+
+// Checks all objects for the existence of some type of mark,
+// precise or imprecise, dirty or newgen.
+class CheckForUnmarkedObjects : public ObjectClosure {
+ private:
+  PSYoungGen*  _young_gen;
+  PSCardTable* _card_table;
+
+ public:
+  CheckForUnmarkedObjects() {
+    ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
+    _young_gen = heap->young_gen();
+    _card_table = heap->card_table();
+  }
+
+  // Card marks are not precise. The current system can leave us with
+  // a mismatch of precise marks and beginning of object marks. This means
+  // we test for missing precise marks first. If any are found, we don't
+  // fail unless the object head is also unmarked.
+  virtual void do_object(oop obj) {
+    CheckForUnmarkedOops object_check(_young_gen, _card_table);
+    obj->oop_iterate_no_header(&object_check);
+    if (object_check.has_unmarked_oop()) {
+      guarantee(_card_table->addr_is_marked_imprecise(obj), "Found unmarked young_gen object");
+    }
+  }
+};
+
+// Checks for precise marking of oops as newgen.
+class CheckForPreciseMarks : public OopClosure {
+ private:
+  PSYoungGen*  _young_gen;
+  PSCardTable* _card_table;
+
+ protected:
+  template <class T> void do_oop_work(T* p) {
+    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
+    if (_young_gen->is_in_reserved(obj)) {
+      assert(_card_table->addr_is_marked_precise(p), "Found unmarked precise oop");
+      _card_table->set_card_newgen(p);
+    }
+  }
+
+ public:
+  CheckForPreciseMarks(PSYoungGen* young_gen, PSCardTable* card_table) :
+    _young_gen(young_gen), _card_table(card_table) { }
+
+  virtual void do_oop(oop* p)       { CheckForPreciseMarks::do_oop_work(p); }
+  virtual void do_oop(narrowOop* p) { CheckForPreciseMarks::do_oop_work(p); }
+};
+
+// We get passed the space_top value to prevent us from traversing into
+// the old_gen promotion labs, which cannot be safely parsed.
+
+// Do not call this method if the space is empty.
+// It is a waste to start tasks and get here only to
+// do no work.  If this method needs to be called
+// when the space is empty, fix the calculation of
+// end_card to allow sp_top == sp->bottom().
+
+void PSCardTable::scavenge_contents_parallel(ObjectStartArray* start_array,
+                                             MutableSpace* sp,
+                                             HeapWord* space_top,
+                                             PSPromotionManager* pm,
+                                             uint stripe_number,
+                                             uint stripe_total) {
+  int ssize = 128; // Naked constant!  Work unit = 64k.
+  int dirty_card_count = 0;
+
+  // It is a waste to get here if empty.
+  assert(sp->bottom() < sp->top(), "Should not be called if empty");
+  oop* sp_top = (oop*)space_top;
+  jbyte* start_card = byte_for(sp->bottom());
+  jbyte* end_card   = byte_for(sp_top - 1) + 1;
+  oop* last_scanned = NULL; // Prevent scanning objects more than once
+  // The width of the stripe ssize*stripe_total must be
+  // consistent with the number of stripes so that the complete slice
+  // is covered.
+  size_t slice_width = ssize * stripe_total;
+  for (jbyte* slice = start_card; slice < end_card; slice += slice_width) {
+    jbyte* worker_start_card = slice + stripe_number * ssize;
+    if (worker_start_card >= end_card)
+      return; // We're done.
+
+    jbyte* worker_end_card = worker_start_card + ssize;
+    if (worker_end_card > end_card)
+      worker_end_card = end_card;
+
+    // We do not want to scan objects more than once. In order to accomplish
+    // this, we assert that any object with an object head inside our 'slice'
+    // belongs to us. We may need to extend the range of scanned cards if the
+    // last object continues into the next 'slice'.
+    //
+    // Note! ending cards are exclusive!
+    HeapWord* slice_start = addr_for(worker_start_card);
+    HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card));
+
+#ifdef ASSERT
+    if (GCWorkerDelayMillis > 0) {
+      // Delay 1 worker so that it proceeds after all the work
+      // has been completed.
+      if (stripe_number < 2) {
+        os::sleep(Thread::current(), GCWorkerDelayMillis, false);
+      }
+    }
+#endif
+
+    // If there are not objects starting within the chunk, skip it.
+    if (!start_array->object_starts_in_range(slice_start, slice_end)) {
+      continue;
+    }
+    // Update our beginning addr
+    HeapWord* first_object = start_array->object_start(slice_start);
+    debug_only(oop* first_object_within_slice = (oop*) first_object;)
+    if (first_object < slice_start) {
+      last_scanned = (oop*)(first_object + oop(first_object)->size());
+      debug_only(first_object_within_slice = last_scanned;)
+      worker_start_card = byte_for(last_scanned);
+    }
+
+    // Update the ending addr
+    if (slice_end < (HeapWord*)sp_top) {
+      // The subtraction is important! An object may start precisely at slice_end.
+      HeapWord* last_object = start_array->object_start(slice_end - 1);
+      slice_end = last_object + oop(last_object)->size();
+      // worker_end_card is exclusive, so bump it one past the end of last_object's
+      // covered span.
+      worker_end_card = byte_for(slice_end) + 1;
+
+      if (worker_end_card > end_card)
+        worker_end_card = end_card;
+    }
+
+    assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary");
+    assert(is_valid_card_address(worker_start_card), "Invalid worker start card");
+    assert(is_valid_card_address(worker_end_card), "Invalid worker end card");
+    // Note that worker_start_card >= worker_end_card is legal, and happens when
+    // an object spans an entire slice.
+    assert(worker_start_card <= end_card, "worker start card beyond end card");
+    assert(worker_end_card <= end_card, "worker end card beyond end card");
+
+    jbyte* current_card = worker_start_card;
+    while (current_card < worker_end_card) {
+      // Find an unclean card.
+      while (current_card < worker_end_card && card_is_clean(*current_card)) {
+        current_card++;
+      }
+      jbyte* first_unclean_card = current_card;
+
+      // Find the end of a run of contiguous unclean cards
+      while (current_card < worker_end_card && !card_is_clean(*current_card)) {
+        while (current_card < worker_end_card && !card_is_clean(*current_card)) {
+          current_card++;
+        }
+
+        if (current_card < worker_end_card) {
+          // Some objects may be large enough to span several cards. If such
+          // an object has more than one dirty card, separated by a clean card,
+          // we will attempt to scan it twice. The test against "last_scanned"
+          // prevents the redundant object scan, but it does not prevent newly
+          // marked cards from being cleaned.
+          HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1);
+          size_t size_of_last_object = oop(last_object_in_dirty_region)->size();
+          HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object;
+          jbyte* ending_card_of_last_object = byte_for(end_of_last_object);
+          assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card");
+          if (ending_card_of_last_object > current_card) {
+            // This means the object spans the next complete card.
+            // We need to bump the current_card to ending_card_of_last_object
+            current_card = ending_card_of_last_object;
+          }
+        }
+      }
+      jbyte* following_clean_card = current_card;
+
+      if (first_unclean_card < worker_end_card) {
+        oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card));
+        assert((HeapWord*)p <= addr_for(first_unclean_card), "checking");
+        // "p" should always be >= "last_scanned" because newly GC dirtied
+        // cards are no longer scanned again (see comment at end
+        // of loop on the increment of "current_card").  Test that
+        // hypothesis before removing this code.
+        // If this code is removed, deal with the first time through
+        // the loop when the last_scanned is the object starting in
+        // the previous slice.
+        assert((p >= last_scanned) ||
+               (last_scanned == first_object_within_slice),
+               "Should no longer be possible");
+        if (p < last_scanned) {
+          // Avoid scanning more than once; this can happen because
+          // newgen cards set by GC may a different set than the
+          // originally dirty set
+          p = last_scanned;
+        }
+        oop* to = (oop*)addr_for(following_clean_card);
+
+        // Test slice_end first!
+        if ((HeapWord*)to > slice_end) {
+          to = (oop*)slice_end;
+        } else if (to > sp_top) {
+          to = sp_top;
+        }
+
+        // we know which cards to scan, now clear them
+        if (first_unclean_card <= worker_start_card+1)
+          first_unclean_card = worker_start_card+1;
+        if (following_clean_card >= worker_end_card-1)
+          following_clean_card = worker_end_card-1;
+
+        while (first_unclean_card < following_clean_card) {
+          *first_unclean_card++ = clean_card;
+        }
+
+        const int interval = PrefetchScanIntervalInBytes;
+        // scan all objects in the range
+        if (interval != 0) {
+          while (p < to) {
+            Prefetch::write(p, interval);
+            oop m = oop(p);
+            assert(oopDesc::is_oop_or_null(m), "Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m));
+            pm->push_contents(m);
+            p += m->size();
+          }
+          pm->drain_stacks_cond_depth();
+        } else {
+          while (p < to) {
+            oop m = oop(p);
+            assert(oopDesc::is_oop_or_null(m), "Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m));
+            pm->push_contents(m);
+            p += m->size();
+          }
+          pm->drain_stacks_cond_depth();
+        }
+        last_scanned = p;
+      }
+      // "current_card" is still the "following_clean_card" or
+      // the current_card is >= the worker_end_card so the
+      // loop will not execute again.
+      assert((current_card == following_clean_card) ||
+             (current_card >= worker_end_card),
+        "current_card should only be incremented if it still equals "
+        "following_clean_card");
+      // Increment current_card so that it is not processed again.
+      // It may now be dirty because a old-to-young pointer was
+      // found on it an updated.  If it is now dirty, it cannot be
+      // be safely cleaned in the next iteration.
+      current_card++;
+    }
+  }
+}
+
+// This should be called before a scavenge.
+void PSCardTable::verify_all_young_refs_imprecise() {
+  CheckForUnmarkedObjects check;
+
+  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
+  PSOldGen* old_gen = heap->old_gen();
+
+  old_gen->object_iterate(&check);
+}
+
+// This should be called immediately after a scavenge, before mutators resume.
+void PSCardTable::verify_all_young_refs_precise() {
+  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
+  PSOldGen* old_gen = heap->old_gen();
+
+  CheckForPreciseMarks check(heap->young_gen(), this);
+
+  old_gen->oop_iterate_no_header(&check);
+
+  verify_all_young_refs_precise_helper(old_gen->object_space()->used_region());
+}
+
+void PSCardTable::verify_all_young_refs_precise_helper(MemRegion mr) {
+  jbyte* bot = byte_for(mr.start());
+  jbyte* top = byte_for(mr.end());
+  while (bot <= top) {
+    assert(*bot == clean_card || *bot == verify_card, "Found unwanted or unknown card mark");
+    if (*bot == verify_card)
+      *bot = youngergen_card;
+    bot++;
+  }
+}
+
+bool PSCardTable::addr_is_marked_imprecise(void *addr) {
+  jbyte* p = byte_for(addr);
+  jbyte val = *p;
+
+  if (card_is_dirty(val))
+    return true;
+
+  if (card_is_newgen(val))
+    return true;
+
+  if (card_is_clean(val))
+    return false;
+
+  assert(false, "Found unhandled card mark type");
+
+  return false;
+}
+
+// Also includes verify_card
+bool PSCardTable::addr_is_marked_precise(void *addr) {
+  jbyte* p = byte_for(addr);
+  jbyte val = *p;
+
+  if (card_is_newgen(val))
+    return true;
+
+  if (card_is_verify(val))
+    return true;
+
+  if (card_is_clean(val))
+    return false;
+
+  if (card_is_dirty(val))
+    return false;
+
+  assert(false, "Found unhandled card mark type");
+
+  return false;
+}
+
+// Assumes that only the base or the end changes.  This allows indentification
+// of the region that is being resized.  The
+// CardTableModRefBS::resize_covered_region() is used for the normal case
+// where the covered regions are growing or shrinking at the high end.
+// The method resize_covered_region_by_end() is analogous to
+// CardTableModRefBS::resize_covered_region() but
+// for regions that grow or shrink at the low end.
+void PSCardTable::resize_covered_region(MemRegion new_region) {
+  for (int i = 0; i < _cur_covered_regions; i++) {
+    if (_covered[i].start() == new_region.start()) {
+      // Found a covered region with the same start as the
+      // new region.  The region is growing or shrinking
+      // from the start of the region.
+      resize_covered_region_by_start(new_region);
+      return;
+    }
+    if (_covered[i].start() > new_region.start()) {
+      break;
+    }
+  }
+
+  int changed_region = -1;
+  for (int j = 0; j < _cur_covered_regions; j++) {
+    if (_covered[j].end() == new_region.end()) {
+      changed_region = j;
+      // This is a case where the covered region is growing or shrinking
+      // at the start of the region.
+      assert(changed_region != -1, "Don't expect to add a covered region");
+      assert(_covered[changed_region].byte_size() != new_region.byte_size(),
+        "The sizes should be different here");
+      resize_covered_region_by_end(changed_region, new_region);
+      return;
+    }
+  }
+  // This should only be a new covered region (where no existing
+  // covered region matches at the start or the end).
+  assert(_cur_covered_regions < _max_covered_regions,
+    "An existing region should have been found");
+  resize_covered_region_by_start(new_region);
+}
+
+void PSCardTable::resize_covered_region_by_start(MemRegion new_region) {
+  CardTable::resize_covered_region(new_region);
+  debug_only(verify_guard();)
+}
+
+void PSCardTable::resize_covered_region_by_end(int changed_region,
+                                               MemRegion new_region) {
+  assert(SafepointSynchronize::is_at_safepoint(),
+    "Only expect an expansion at the low end at a GC");
+  debug_only(verify_guard();)
+#ifdef ASSERT
+  for (int k = 0; k < _cur_covered_regions; k++) {
+    if (_covered[k].end() == new_region.end()) {
+      assert(changed_region == k, "Changed region is incorrect");
+      break;
+    }
+  }
+#endif
+
+  // Commit new or uncommit old pages, if necessary.
+  if (resize_commit_uncommit(changed_region, new_region)) {
+    // Set the new start of the committed region
+    resize_update_committed_table(changed_region, new_region);
+  }
+
+  // Update card table entries
+  resize_update_card_table_entries(changed_region, new_region);
+
+  // Update the covered region
+  resize_update_covered_table(changed_region, new_region);
+
+  int ind = changed_region;
+  log_trace(gc, barrier)("CardTableModRefBS::resize_covered_region: ");
+  log_trace(gc, barrier)("    _covered[%d].start(): " INTPTR_FORMAT "  _covered[%d].last(): " INTPTR_FORMAT,
+                ind, p2i(_covered[ind].start()), ind, p2i(_covered[ind].last()));
+  log_trace(gc, barrier)("    _committed[%d].start(): " INTPTR_FORMAT "  _committed[%d].last(): " INTPTR_FORMAT,
+                ind, p2i(_committed[ind].start()), ind, p2i(_committed[ind].last()));
+  log_trace(gc, barrier)("    byte_for(start): " INTPTR_FORMAT "  byte_for(last): " INTPTR_FORMAT,
+                p2i(byte_for(_covered[ind].start())),  p2i(byte_for(_covered[ind].last())));
+  log_trace(gc, barrier)("    addr_for(start): " INTPTR_FORMAT "  addr_for(last): " INTPTR_FORMAT,
+                p2i(addr_for((jbyte*) _committed[ind].start())), p2i(addr_for((jbyte*) _committed[ind].last())));
+
+  debug_only(verify_guard();)
+}
+
+bool PSCardTable::resize_commit_uncommit(int changed_region,
+                                         MemRegion new_region) {
+  bool result = false;
+  // Commit new or uncommit old pages, if necessary.
+  MemRegion cur_committed = _committed[changed_region];
+  assert(_covered[changed_region].end() == new_region.end(),
+    "The ends of the regions are expected to match");
+  // Extend the start of this _committed region to
+  // to cover the start of any previous _committed region.
+  // This forms overlapping regions, but never interior regions.
+  HeapWord* min_prev_start = lowest_prev_committed_start(changed_region);
+  if (min_prev_start < cur_committed.start()) {
+    // Only really need to set start of "cur_committed" to
+    // the new start (min_prev_start) but assertion checking code
+    // below use cur_committed.end() so make it correct.
+    MemRegion new_committed =
+        MemRegion(min_prev_start, cur_committed.end());
+    cur_committed = new_committed;
+  }
+#ifdef ASSERT
+  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
+  assert(cur_committed.start() == align_up(cur_committed.start(), os::vm_page_size()),
+         "Starts should have proper alignment");
+#endif
+
+  jbyte* new_start = byte_for(new_region.start());
+  // Round down because this is for the start address
+  HeapWord* new_start_aligned = align_down((HeapWord*)new_start, os::vm_page_size());
+  // The guard page is always committed and should not be committed over.
+  // This method is used in cases where the generation is growing toward
+  // lower addresses but the guard region is still at the end of the
+  // card table.  That still makes sense when looking for writes
+  // off the end of the card table.
+  if (new_start_aligned < cur_committed.start()) {
+    // Expand the committed region
+    //
+    // Case A
+    //                                          |+ guard +|
+    //                          |+ cur committed +++++++++|
+    //                  |+ new committed +++++++++++++++++|
+    //
+    // Case B
+    //                                          |+ guard +|
+    //                        |+ cur committed +|
+    //                  |+ new committed +++++++|
+    //
+    // These are not expected because the calculation of the
+    // cur committed region and the new committed region
+    // share the same end for the covered region.
+    // Case C
+    //                                          |+ guard +|
+    //                        |+ cur committed +|
+    //                  |+ new committed +++++++++++++++++|
+    // Case D
+    //                                          |+ guard +|
+    //                        |+ cur committed +++++++++++|
+    //                  |+ new committed +++++++|
+
+    HeapWord* new_end_for_commit =
+      MIN2(cur_committed.end(), _guard_region.start());
+    if(new_start_aligned < new_end_for_commit) {
+      MemRegion new_committed =
+        MemRegion(new_start_aligned, new_end_for_commit);
+      os::commit_memory_or_exit((char*)new_committed.start(),
+                                new_committed.byte_size(), !ExecMem,
+                                "card table expansion");
+    }
+    result = true;
+  } else if (new_start_aligned > cur_committed.start()) {
+    // Shrink the committed region
+#if 0 // uncommitting space is currently unsafe because of the interactions
+      // of growing and shrinking regions.  One region A can uncommit space
+      // that it owns but which is being used by another region B (maybe).
+      // Region B has not committed the space because it was already
+      // committed by region A.
+    MemRegion uncommit_region = committed_unique_to_self(changed_region,
+      MemRegion(cur_committed.start(), new_start_aligned));
+    if (!uncommit_region.is_empty()) {
+      if (!os::uncommit_memory((char*)uncommit_region.start(),
+                               uncommit_region.byte_size())) {
+        // If the uncommit fails, ignore it.  Let the
+        // committed table resizing go even though the committed
+        // table will over state the committed space.
+      }
+    }
+#else
+    assert(!result, "Should be false with current workaround");
+#endif
+  }
+  assert(_committed[changed_region].end() == cur_committed.end(),
+    "end should not change");
+  return result;
+}
+
+void PSCardTable::resize_update_committed_table(int changed_region,
+                                                MemRegion new_region) {
+
+  jbyte* new_start = byte_for(new_region.start());
+  // Set the new start of the committed region
+  HeapWord* new_start_aligned = align_down((HeapWord*)new_start, os::vm_page_size());
+  MemRegion new_committed = MemRegion(new_start_aligned,
+                                      _committed[changed_region].end());
+  _committed[changed_region] = new_committed;
+  _committed[changed_region].set_start(new_start_aligned);
+}
+
+void PSCardTable::resize_update_card_table_entries(int changed_region,
+                                                   MemRegion new_region) {
+  debug_only(verify_guard();)
+  MemRegion original_covered = _covered[changed_region];
+  // Initialize the card entries.  Only consider the
+  // region covered by the card table (_whole_heap)
+  jbyte* entry;
+  if (new_region.start() < _whole_heap.start()) {
+    entry = byte_for(_whole_heap.start());
+  } else {
+    entry = byte_for(new_region.start());
+  }
+  jbyte* end = byte_for(original_covered.start());
+  // If _whole_heap starts at the original covered regions start,
+  // this loop will not execute.
+  while (entry < end) { *entry++ = clean_card; }
+}
+
+void PSCardTable::resize_update_covered_table(int changed_region,
+                                              MemRegion new_region) {
+  // Update the covered region
+  _covered[changed_region].set_start(new_region.start());
+  _covered[changed_region].set_word_size(new_region.word_size());
+
+  // reorder regions.  There should only be at most 1 out
+  // of order.
+  for (int i = _cur_covered_regions-1 ; i > 0; i--) {
+    if (_covered[i].start() < _covered[i-1].start()) {
+        MemRegion covered_mr = _covered[i-1];
+        _covered[i-1] = _covered[i];
+        _covered[i] = covered_mr;
+        MemRegion committed_mr = _committed[i-1];
+      _committed[i-1] = _committed[i];
+      _committed[i] = committed_mr;
+      break;
+    }
+  }
+#ifdef ASSERT
+  for (int m = 0; m < _cur_covered_regions-1; m++) {
+    assert(_covered[m].start() <= _covered[m+1].start(),
+      "Covered regions out of order");
+    assert(_committed[m].start() <= _committed[m+1].start(),
+      "Committed regions out of order");
+  }
+#endif
+}
+
+// Returns the start of any committed region that is lower than
+// the target committed region (index ind) and that intersects the
+// target region.  If none, return start of target region.
+//
+//      -------------
+//      |           |
+//      -------------
+//              ------------
+//              | target   |
+//              ------------
+//                               -------------
+//                               |           |
+//                               -------------
+//      ^ returns this
+//
+//      -------------
+//      |           |
+//      -------------
+//                      ------------
+//                      | target   |
+//                      ------------
+//                               -------------
+//                               |           |
+//                               -------------
+//                      ^ returns this
+
+HeapWord* PSCardTable::lowest_prev_committed_start(int ind) const {
+  assert(_cur_covered_regions >= 0, "Expecting at least on region");
+  HeapWord* min_start = _committed[ind].start();
+  for (int j = 0; j < ind; j++) {
+    HeapWord* this_start = _committed[j].start();
+    if ((this_start < min_start) &&
+        !(_committed[j].intersection(_committed[ind])).is_empty()) {
+       min_start = this_start;
+    }
+  }
+  return min_start;
+}
+
+bool PSCardTable::is_in_young(oop obj) const {
+  return ParallelScavengeHeap::heap()->is_in_young(obj);
+}