--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/native/sun/security/ec/ec2_193.c Tue Aug 11 16:52:26 2009 +0100
@@ -0,0 +1,298 @@
+/* *********************************************************************
+ *
+ * Sun elects to have this file available under and governed by the
+ * Mozilla Public License Version 1.1 ("MPL") (see
+ * http://www.mozilla.org/MPL/ for full license text). For the avoidance
+ * of doubt and subject to the following, Sun also elects to allow
+ * licensees to use this file under the MPL, the GNU General Public
+ * License version 2 only or the Lesser General Public License version
+ * 2.1 only. Any references to the "GNU General Public License version 2
+ * or later" or "GPL" in the following shall be construed to mean the
+ * GNU General Public License version 2 only. Any references to the "GNU
+ * Lesser General Public License version 2.1 or later" or "LGPL" in the
+ * following shall be construed to mean the GNU Lesser General Public
+ * License version 2.1 only. However, the following notice accompanied
+ * the original version of this file:
+ *
+ * Version: MPL 1.1/GPL 2.0/LGPL 2.1
+ *
+ * The contents of this file are subject to the Mozilla Public License Version
+ * 1.1 (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * Software distributed under the License is distributed on an "AS IS" basis,
+ * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
+ * for the specific language governing rights and limitations under the
+ * License.
+ *
+ * The Original Code is the elliptic curve math library for binary polynomial field curves.
+ *
+ * The Initial Developer of the Original Code is
+ * Sun Microsystems, Inc.
+ * Portions created by the Initial Developer are Copyright (C) 2003
+ * the Initial Developer. All Rights Reserved.
+ *
+ * Contributor(s):
+ * Sheueling Chang-Shantz <sheueling.chang@sun.com>,
+ * Stephen Fung <fungstep@hotmail.com>, and
+ * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
+ *
+ * Alternatively, the contents of this file may be used under the terms of
+ * either the GNU General Public License Version 2 or later (the "GPL"), or
+ * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
+ * in which case the provisions of the GPL or the LGPL are applicable instead
+ * of those above. If you wish to allow use of your version of this file only
+ * under the terms of either the GPL or the LGPL, and not to allow others to
+ * use your version of this file under the terms of the MPL, indicate your
+ * decision by deleting the provisions above and replace them with the notice
+ * and other provisions required by the GPL or the LGPL. If you do not delete
+ * the provisions above, a recipient may use your version of this file under
+ * the terms of any one of the MPL, the GPL or the LGPL.
+ *
+ *********************************************************************** */
+/*
+ * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include "ec2.h"
+#include "mp_gf2m.h"
+#include "mp_gf2m-priv.h"
+#include "mpi.h"
+#include "mpi-priv.h"
+#ifndef _KERNEL
+#include <stdlib.h>
+#endif
+
+/* Fast reduction for polynomials over a 193-bit curve. Assumes reduction
+ * polynomial with terms {193, 15, 0}. */
+mp_err
+ec_GF2m_193_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+ mp_digit *u, z;
+
+ if (a != r) {
+ MP_CHECKOK(mp_copy(a, r));
+ }
+#ifdef ECL_SIXTY_FOUR_BIT
+ if (MP_USED(r) < 7) {
+ MP_CHECKOK(s_mp_pad(r, 7));
+ }
+ u = MP_DIGITS(r);
+ MP_USED(r) = 7;
+
+ /* u[6] only has 2 significant bits */
+ z = u[6];
+ u[3] ^= (z << 14) ^ (z >> 1);
+ u[2] ^= (z << 63);
+ z = u[5];
+ u[3] ^= (z >> 50);
+ u[2] ^= (z << 14) ^ (z >> 1);
+ u[1] ^= (z << 63);
+ z = u[4];
+ u[2] ^= (z >> 50);
+ u[1] ^= (z << 14) ^ (z >> 1);
+ u[0] ^= (z << 63);
+ z = u[3] >> 1; /* z only has 63 significant bits */
+ u[1] ^= (z >> 49);
+ u[0] ^= (z << 15) ^ z;
+ /* clear bits above 193 */
+ u[6] = u[5] = u[4] = 0;
+ u[3] ^= z << 1;
+#else
+ if (MP_USED(r) < 13) {
+ MP_CHECKOK(s_mp_pad(r, 13));
+ }
+ u = MP_DIGITS(r);
+ MP_USED(r) = 13;
+
+ /* u[12] only has 2 significant bits */
+ z = u[12];
+ u[6] ^= (z << 14) ^ (z >> 1);
+ u[5] ^= (z << 31);
+ z = u[11];
+ u[6] ^= (z >> 18);
+ u[5] ^= (z << 14) ^ (z >> 1);
+ u[4] ^= (z << 31);
+ z = u[10];
+ u[5] ^= (z >> 18);
+ u[4] ^= (z << 14) ^ (z >> 1);
+ u[3] ^= (z << 31);
+ z = u[9];
+ u[4] ^= (z >> 18);
+ u[3] ^= (z << 14) ^ (z >> 1);
+ u[2] ^= (z << 31);
+ z = u[8];
+ u[3] ^= (z >> 18);
+ u[2] ^= (z << 14) ^ (z >> 1);
+ u[1] ^= (z << 31);
+ z = u[7];
+ u[2] ^= (z >> 18);
+ u[1] ^= (z << 14) ^ (z >> 1);
+ u[0] ^= (z << 31);
+ z = u[6] >> 1; /* z only has 31 significant bits */
+ u[1] ^= (z >> 17);
+ u[0] ^= (z << 15) ^ z;
+ /* clear bits above 193 */
+ u[12] = u[11] = u[10] = u[9] = u[8] = u[7] = 0;
+ u[6] ^= z << 1;
+#endif
+ s_mp_clamp(r);
+
+ CLEANUP:
+ return res;
+}
+
+/* Fast squaring for polynomials over a 193-bit curve. Assumes reduction
+ * polynomial with terms {193, 15, 0}. */
+mp_err
+ec_GF2m_193_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+ mp_digit *u, *v;
+
+ v = MP_DIGITS(a);
+
+#ifdef ECL_SIXTY_FOUR_BIT
+ if (MP_USED(a) < 4) {
+ return mp_bsqrmod(a, meth->irr_arr, r);
+ }
+ if (MP_USED(r) < 7) {
+ MP_CHECKOK(s_mp_pad(r, 7));
+ }
+ MP_USED(r) = 7;
+#else
+ if (MP_USED(a) < 7) {
+ return mp_bsqrmod(a, meth->irr_arr, r);
+ }
+ if (MP_USED(r) < 13) {
+ MP_CHECKOK(s_mp_pad(r, 13));
+ }
+ MP_USED(r) = 13;
+#endif
+ u = MP_DIGITS(r);
+
+#ifdef ECL_THIRTY_TWO_BIT
+ u[12] = gf2m_SQR0(v[6]);
+ u[11] = gf2m_SQR1(v[5]);
+ u[10] = gf2m_SQR0(v[5]);
+ u[9] = gf2m_SQR1(v[4]);
+ u[8] = gf2m_SQR0(v[4]);
+ u[7] = gf2m_SQR1(v[3]);
+#endif
+ u[6] = gf2m_SQR0(v[3]);
+ u[5] = gf2m_SQR1(v[2]);
+ u[4] = gf2m_SQR0(v[2]);
+ u[3] = gf2m_SQR1(v[1]);
+ u[2] = gf2m_SQR0(v[1]);
+ u[1] = gf2m_SQR1(v[0]);
+ u[0] = gf2m_SQR0(v[0]);
+ return ec_GF2m_193_mod(r, r, meth);
+
+ CLEANUP:
+ return res;
+}
+
+/* Fast multiplication for polynomials over a 193-bit curve. Assumes
+ * reduction polynomial with terms {193, 15, 0}. */
+mp_err
+ec_GF2m_193_mul(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+ mp_digit a3 = 0, a2 = 0, a1 = 0, a0, b3 = 0, b2 = 0, b1 = 0, b0;
+
+#ifdef ECL_THIRTY_TWO_BIT
+ mp_digit a6 = 0, a5 = 0, a4 = 0, b6 = 0, b5 = 0, b4 = 0;
+ mp_digit rm[8];
+#endif
+
+ if (a == b) {
+ return ec_GF2m_193_sqr(a, r, meth);
+ } else {
+ switch (MP_USED(a)) {
+#ifdef ECL_THIRTY_TWO_BIT
+ case 7:
+ a6 = MP_DIGIT(a, 6);
+ case 6:
+ a5 = MP_DIGIT(a, 5);
+ case 5:
+ a4 = MP_DIGIT(a, 4);
+#endif
+ case 4:
+ a3 = MP_DIGIT(a, 3);
+ case 3:
+ a2 = MP_DIGIT(a, 2);
+ case 2:
+ a1 = MP_DIGIT(a, 1);
+ default:
+ a0 = MP_DIGIT(a, 0);
+ }
+ switch (MP_USED(b)) {
+#ifdef ECL_THIRTY_TWO_BIT
+ case 7:
+ b6 = MP_DIGIT(b, 6);
+ case 6:
+ b5 = MP_DIGIT(b, 5);
+ case 5:
+ b4 = MP_DIGIT(b, 4);
+#endif
+ case 4:
+ b3 = MP_DIGIT(b, 3);
+ case 3:
+ b2 = MP_DIGIT(b, 2);
+ case 2:
+ b1 = MP_DIGIT(b, 1);
+ default:
+ b0 = MP_DIGIT(b, 0);
+ }
+#ifdef ECL_SIXTY_FOUR_BIT
+ MP_CHECKOK(s_mp_pad(r, 8));
+ s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0);
+ MP_USED(r) = 8;
+ s_mp_clamp(r);
+#else
+ MP_CHECKOK(s_mp_pad(r, 14));
+ s_bmul_3x3(MP_DIGITS(r) + 8, a6, a5, a4, b6, b5, b4);
+ s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0);
+ s_bmul_4x4(rm, a3, a6 ^ a2, a5 ^ a1, a4 ^ a0, b3, b6 ^ b2, b5 ^ b1,
+ b4 ^ b0);
+ rm[7] ^= MP_DIGIT(r, 7);
+ rm[6] ^= MP_DIGIT(r, 6);
+ rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 13);
+ rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 12);
+ rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 11);
+ rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 10);
+ rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 9);
+ rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 8);
+ MP_DIGIT(r, 11) ^= rm[7];
+ MP_DIGIT(r, 10) ^= rm[6];
+ MP_DIGIT(r, 9) ^= rm[5];
+ MP_DIGIT(r, 8) ^= rm[4];
+ MP_DIGIT(r, 7) ^= rm[3];
+ MP_DIGIT(r, 6) ^= rm[2];
+ MP_DIGIT(r, 5) ^= rm[1];
+ MP_DIGIT(r, 4) ^= rm[0];
+ MP_USED(r) = 14;
+ s_mp_clamp(r);
+#endif
+ return ec_GF2m_193_mod(r, r, meth);
+ }
+
+ CLEANUP:
+ return res;
+}
+
+/* Wire in fast field arithmetic for 193-bit curves. */
+mp_err
+ec_group_set_gf2m193(ECGroup *group, ECCurveName name)
+{
+ group->meth->field_mod = &ec_GF2m_193_mod;
+ group->meth->field_mul = &ec_GF2m_193_mul;
+ group->meth->field_sqr = &ec_GF2m_193_sqr;
+ return MP_OKAY;
+}