jdk/src/java.base/share/classes/sun/misc/FloatingDecimal.java
changeset 34852 bd26599f2098
parent 34851 3359dd18cde0
parent 34848 a3eed4c1badb
child 34858 ec69df775846
--- a/jdk/src/java.base/share/classes/sun/misc/FloatingDecimal.java	Thu Dec 24 10:33:21 2015 -0800
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2552 +0,0 @@
-/*
- * Copyright (c) 1996, 2013, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-package sun.misc;
-
-import java.util.Arrays;
-import java.util.regex.*;
-
-/**
- * A class for converting between ASCII and decimal representations of a single
- * or double precision floating point number. Most conversions are provided via
- * static convenience methods, although a <code>BinaryToASCIIConverter</code>
- * instance may be obtained and reused.
- */
-public class FloatingDecimal{
-    //
-    // Constants of the implementation;
-    // most are IEEE-754 related.
-    // (There are more really boring constants at the end.)
-    //
-    static final int    EXP_SHIFT = DoubleConsts.SIGNIFICAND_WIDTH - 1;
-    static final long   FRACT_HOB = ( 1L<<EXP_SHIFT ); // assumed High-Order bit
-    static final long   EXP_ONE   = ((long)DoubleConsts.EXP_BIAS)<<EXP_SHIFT; // exponent of 1.0
-    static final int    MAX_SMALL_BIN_EXP = 62;
-    static final int    MIN_SMALL_BIN_EXP = -( 63 / 3 );
-    static final int    MAX_DECIMAL_DIGITS = 15;
-    static final int    MAX_DECIMAL_EXPONENT = 308;
-    static final int    MIN_DECIMAL_EXPONENT = -324;
-    static final int    BIG_DECIMAL_EXPONENT = 324; // i.e. abs(MIN_DECIMAL_EXPONENT)
-    static final int    MAX_NDIGITS = 1100;
-
-    static final int    SINGLE_EXP_SHIFT  =   FloatConsts.SIGNIFICAND_WIDTH - 1;
-    static final int    SINGLE_FRACT_HOB  =   1<<SINGLE_EXP_SHIFT;
-    static final int    SINGLE_MAX_DECIMAL_DIGITS = 7;
-    static final int    SINGLE_MAX_DECIMAL_EXPONENT = 38;
-    static final int    SINGLE_MIN_DECIMAL_EXPONENT = -45;
-    static final int    SINGLE_MAX_NDIGITS = 200;
-
-    static final int    INT_DECIMAL_DIGITS = 9;
-
-    /**
-     * Converts a double precision floating point value to a <code>String</code>.
-     *
-     * @param d The double precision value.
-     * @return The value converted to a <code>String</code>.
-     */
-    public static String toJavaFormatString(double d) {
-        return getBinaryToASCIIConverter(d).toJavaFormatString();
-    }
-
-    /**
-     * Converts a single precision floating point value to a <code>String</code>.
-     *
-     * @param f The single precision value.
-     * @return The value converted to a <code>String</code>.
-     */
-    public static String toJavaFormatString(float f) {
-        return getBinaryToASCIIConverter(f).toJavaFormatString();
-    }
-
-    /**
-     * Appends a double precision floating point value to an <code>Appendable</code>.
-     * @param d The double precision value.
-     * @param buf The <code>Appendable</code> with the value appended.
-     */
-    public static void appendTo(double d, Appendable buf) {
-        getBinaryToASCIIConverter(d).appendTo(buf);
-    }
-
-    /**
-     * Appends a single precision floating point value to an <code>Appendable</code>.
-     * @param f The single precision value.
-     * @param buf The <code>Appendable</code> with the value appended.
-     */
-    public static void appendTo(float f, Appendable buf) {
-        getBinaryToASCIIConverter(f).appendTo(buf);
-    }
-
-    /**
-     * Converts a <code>String</code> to a double precision floating point value.
-     *
-     * @param s The <code>String</code> to convert.
-     * @return The double precision value.
-     * @throws NumberFormatException If the <code>String</code> does not
-     * represent a properly formatted double precision value.
-     */
-    public static double parseDouble(String s) throws NumberFormatException {
-        return readJavaFormatString(s).doubleValue();
-    }
-
-    /**
-     * Converts a <code>String</code> to a single precision floating point value.
-     *
-     * @param s The <code>String</code> to convert.
-     * @return The single precision value.
-     * @throws NumberFormatException If the <code>String</code> does not
-     * represent a properly formatted single precision value.
-     */
-    public static float parseFloat(String s) throws NumberFormatException {
-        return readJavaFormatString(s).floatValue();
-    }
-
-    /**
-     * A converter which can process single or double precision floating point
-     * values into an ASCII <code>String</code> representation.
-     */
-    public interface BinaryToASCIIConverter {
-        /**
-         * Converts a floating point value into an ASCII <code>String</code>.
-         * @return The value converted to a <code>String</code>.
-         */
-        public String toJavaFormatString();
-
-        /**
-         * Appends a floating point value to an <code>Appendable</code>.
-         * @param buf The <code>Appendable</code> to receive the value.
-         */
-        public void appendTo(Appendable buf);
-
-        /**
-         * Retrieves the decimal exponent most closely corresponding to this value.
-         * @return The decimal exponent.
-         */
-        public int getDecimalExponent();
-
-        /**
-         * Retrieves the value as an array of digits.
-         * @param digits The digit array.
-         * @return The number of valid digits copied into the array.
-         */
-        public int getDigits(char[] digits);
-
-        /**
-         * Indicates the sign of the value.
-         * @return {@code value < 0.0}.
-         */
-        public boolean isNegative();
-
-        /**
-         * Indicates whether the value is either infinite or not a number.
-         *
-         * @return <code>true</code> if and only if the value is <code>NaN</code>
-         * or infinite.
-         */
-        public boolean isExceptional();
-
-        /**
-         * Indicates whether the value was rounded up during the binary to ASCII
-         * conversion.
-         *
-         * @return <code>true</code> if and only if the value was rounded up.
-         */
-        public boolean digitsRoundedUp();
-
-        /**
-         * Indicates whether the binary to ASCII conversion was exact.
-         *
-         * @return <code>true</code> if any only if the conversion was exact.
-         */
-        public boolean decimalDigitsExact();
-    }
-
-    /**
-     * A <code>BinaryToASCIIConverter</code> which represents <code>NaN</code>
-     * and infinite values.
-     */
-    private static class ExceptionalBinaryToASCIIBuffer implements BinaryToASCIIConverter {
-        private final String image;
-        private boolean isNegative;
-
-        public ExceptionalBinaryToASCIIBuffer(String image, boolean isNegative) {
-            this.image = image;
-            this.isNegative = isNegative;
-        }
-
-        @Override
-        public String toJavaFormatString() {
-            return image;
-        }
-
-        @Override
-        public void appendTo(Appendable buf) {
-            if (buf instanceof StringBuilder) {
-                ((StringBuilder) buf).append(image);
-            } else if (buf instanceof StringBuffer) {
-                ((StringBuffer) buf).append(image);
-            } else {
-                assert false;
-            }
-        }
-
-        @Override
-        public int getDecimalExponent() {
-            throw new IllegalArgumentException("Exceptional value does not have an exponent");
-        }
-
-        @Override
-        public int getDigits(char[] digits) {
-            throw new IllegalArgumentException("Exceptional value does not have digits");
-        }
-
-        @Override
-        public boolean isNegative() {
-            return isNegative;
-        }
-
-        @Override
-        public boolean isExceptional() {
-            return true;
-        }
-
-        @Override
-        public boolean digitsRoundedUp() {
-            throw new IllegalArgumentException("Exceptional value is not rounded");
-        }
-
-        @Override
-        public boolean decimalDigitsExact() {
-            throw new IllegalArgumentException("Exceptional value is not exact");
-        }
-    }
-
-    private static final String INFINITY_REP = "Infinity";
-    private static final int INFINITY_LENGTH = INFINITY_REP.length();
-    private static final String NAN_REP = "NaN";
-    private static final int NAN_LENGTH = NAN_REP.length();
-
-    private static final BinaryToASCIIConverter B2AC_POSITIVE_INFINITY = new ExceptionalBinaryToASCIIBuffer(INFINITY_REP, false);
-    private static final BinaryToASCIIConverter B2AC_NEGATIVE_INFINITY = new ExceptionalBinaryToASCIIBuffer("-" + INFINITY_REP, true);
-    private static final BinaryToASCIIConverter B2AC_NOT_A_NUMBER = new ExceptionalBinaryToASCIIBuffer(NAN_REP, false);
-    private static final BinaryToASCIIConverter B2AC_POSITIVE_ZERO = new BinaryToASCIIBuffer(false, new char[]{'0'});
-    private static final BinaryToASCIIConverter B2AC_NEGATIVE_ZERO = new BinaryToASCIIBuffer(true,  new char[]{'0'});
-
-    /**
-     * A buffered implementation of <code>BinaryToASCIIConverter</code>.
-     */
-    static class BinaryToASCIIBuffer implements BinaryToASCIIConverter {
-        private boolean isNegative;
-        private int decExponent;
-        private int firstDigitIndex;
-        private int nDigits;
-        private final char[] digits;
-        private final char[] buffer = new char[26];
-
-        //
-        // The fields below provide additional information about the result of
-        // the binary to decimal digits conversion done in dtoa() and roundup()
-        // methods. They are changed if needed by those two methods.
-        //
-
-        // True if the dtoa() binary to decimal conversion was exact.
-        private boolean exactDecimalConversion = false;
-
-        // True if the result of the binary to decimal conversion was rounded-up
-        // at the end of the conversion process, i.e. roundUp() method was called.
-        private boolean decimalDigitsRoundedUp = false;
-
-        /**
-         * Default constructor; used for non-zero values,
-         * <code>BinaryToASCIIBuffer</code> may be thread-local and reused
-         */
-        BinaryToASCIIBuffer(){
-            this.digits = new char[20];
-        }
-
-        /**
-         * Creates a specialized value (positive and negative zeros).
-         */
-        BinaryToASCIIBuffer(boolean isNegative, char[] digits){
-            this.isNegative = isNegative;
-            this.decExponent  = 0;
-            this.digits = digits;
-            this.firstDigitIndex = 0;
-            this.nDigits = digits.length;
-        }
-
-        @Override
-        public String toJavaFormatString() {
-            int len = getChars(buffer);
-            return new String(buffer, 0, len);
-        }
-
-        @Override
-        public void appendTo(Appendable buf) {
-            int len = getChars(buffer);
-            if (buf instanceof StringBuilder) {
-                ((StringBuilder) buf).append(buffer, 0, len);
-            } else if (buf instanceof StringBuffer) {
-                ((StringBuffer) buf).append(buffer, 0, len);
-            } else {
-                assert false;
-            }
-        }
-
-        @Override
-        public int getDecimalExponent() {
-            return decExponent;
-        }
-
-        @Override
-        public int getDigits(char[] digits) {
-            System.arraycopy(this.digits,firstDigitIndex,digits,0,this.nDigits);
-            return this.nDigits;
-        }
-
-        @Override
-        public boolean isNegative() {
-            return isNegative;
-        }
-
-        @Override
-        public boolean isExceptional() {
-            return false;
-        }
-
-        @Override
-        public boolean digitsRoundedUp() {
-            return decimalDigitsRoundedUp;
-        }
-
-        @Override
-        public boolean decimalDigitsExact() {
-            return exactDecimalConversion;
-        }
-
-        private void setSign(boolean isNegative) {
-            this.isNegative = isNegative;
-        }
-
-        /**
-         * This is the easy subcase --
-         * all the significant bits, after scaling, are held in lvalue.
-         * negSign and decExponent tell us what processing and scaling
-         * has already been done. Exceptional cases have already been
-         * stripped out.
-         * In particular:
-         * lvalue is a finite number (not Inf, nor NaN)
-         * lvalue > 0L (not zero, nor negative).
-         *
-         * The only reason that we develop the digits here, rather than
-         * calling on Long.toString() is that we can do it a little faster,
-         * and besides want to treat trailing 0s specially. If Long.toString
-         * changes, we should re-evaluate this strategy!
-         */
-        private void developLongDigits( int decExponent, long lvalue, int insignificantDigits ){
-            if ( insignificantDigits != 0 ){
-                // Discard non-significant low-order bits, while rounding,
-                // up to insignificant value.
-                long pow10 = FDBigInteger.LONG_5_POW[insignificantDigits] << insignificantDigits; // 10^i == 5^i * 2^i;
-                long residue = lvalue % pow10;
-                lvalue /= pow10;
-                decExponent += insignificantDigits;
-                if ( residue >= (pow10>>1) ){
-                    // round up based on the low-order bits we're discarding
-                    lvalue++;
-                }
-            }
-            int  digitno = digits.length -1;
-            int  c;
-            if ( lvalue <= Integer.MAX_VALUE ){
-                assert lvalue > 0L : lvalue; // lvalue <= 0
-                // even easier subcase!
-                // can do int arithmetic rather than long!
-                int  ivalue = (int)lvalue;
-                c = ivalue%10;
-                ivalue /= 10;
-                while ( c == 0 ){
-                    decExponent++;
-                    c = ivalue%10;
-                    ivalue /= 10;
-                }
-                while ( ivalue != 0){
-                    digits[digitno--] = (char)(c+'0');
-                    decExponent++;
-                    c = ivalue%10;
-                    ivalue /= 10;
-                }
-                digits[digitno] = (char)(c+'0');
-            } else {
-                // same algorithm as above (same bugs, too )
-                // but using long arithmetic.
-                c = (int)(lvalue%10L);
-                lvalue /= 10L;
-                while ( c == 0 ){
-                    decExponent++;
-                    c = (int)(lvalue%10L);
-                    lvalue /= 10L;
-                }
-                while ( lvalue != 0L ){
-                    digits[digitno--] = (char)(c+'0');
-                    decExponent++;
-                    c = (int)(lvalue%10L);
-                    lvalue /= 10;
-                }
-                digits[digitno] = (char)(c+'0');
-            }
-            this.decExponent = decExponent+1;
-            this.firstDigitIndex = digitno;
-            this.nDigits = this.digits.length - digitno;
-        }
-
-        private void dtoa( int binExp, long fractBits, int nSignificantBits, boolean isCompatibleFormat)
-        {
-            assert fractBits > 0 ; // fractBits here can't be zero or negative
-            assert (fractBits & FRACT_HOB)!=0  ; // Hi-order bit should be set
-            // Examine number. Determine if it is an easy case,
-            // which we can do pretty trivially using float/long conversion,
-            // or whether we must do real work.
-            final int tailZeros = Long.numberOfTrailingZeros(fractBits);
-
-            // number of significant bits of fractBits;
-            final int nFractBits = EXP_SHIFT+1-tailZeros;
-
-            // reset flags to default values as dtoa() does not always set these
-            // flags and a prior call to dtoa() might have set them to incorrect
-            // values with respect to the current state.
-            decimalDigitsRoundedUp = false;
-            exactDecimalConversion = false;
-
-            // number of significant bits to the right of the point.
-            int nTinyBits = Math.max( 0, nFractBits - binExp - 1 );
-            if ( binExp <= MAX_SMALL_BIN_EXP && binExp >= MIN_SMALL_BIN_EXP ){
-                // Look more closely at the number to decide if,
-                // with scaling by 10^nTinyBits, the result will fit in
-                // a long.
-                if ( (nTinyBits < FDBigInteger.LONG_5_POW.length) && ((nFractBits + N_5_BITS[nTinyBits]) < 64 ) ){
-                    //
-                    // We can do this:
-                    // take the fraction bits, which are normalized.
-                    // (a) nTinyBits == 0: Shift left or right appropriately
-                    //     to align the binary point at the extreme right, i.e.
-                    //     where a long int point is expected to be. The integer
-                    //     result is easily converted to a string.
-                    // (b) nTinyBits > 0: Shift right by EXP_SHIFT-nFractBits,
-                    //     which effectively converts to long and scales by
-                    //     2^nTinyBits. Then multiply by 5^nTinyBits to
-                    //     complete the scaling. We know this won't overflow
-                    //     because we just counted the number of bits necessary
-                    //     in the result. The integer you get from this can
-                    //     then be converted to a string pretty easily.
-                    //
-                    if ( nTinyBits == 0 ) {
-                        int insignificant;
-                        if ( binExp > nSignificantBits ){
-                            insignificant = insignificantDigitsForPow2(binExp-nSignificantBits-1);
-                        } else {
-                            insignificant = 0;
-                        }
-                        if ( binExp >= EXP_SHIFT ){
-                            fractBits <<= (binExp-EXP_SHIFT);
-                        } else {
-                            fractBits >>>= (EXP_SHIFT-binExp) ;
-                        }
-                        developLongDigits( 0, fractBits, insignificant );
-                        return;
-                    }
-                    //
-                    // The following causes excess digits to be printed
-                    // out in the single-float case. Our manipulation of
-                    // halfULP here is apparently not correct. If we
-                    // better understand how this works, perhaps we can
-                    // use this special case again. But for the time being,
-                    // we do not.
-                    // else {
-                    //     fractBits >>>= EXP_SHIFT+1-nFractBits;
-                    //     fractBits//= long5pow[ nTinyBits ];
-                    //     halfULP = long5pow[ nTinyBits ] >> (1+nSignificantBits-nFractBits);
-                    //     developLongDigits( -nTinyBits, fractBits, insignificantDigits(halfULP) );
-                    //     return;
-                    // }
-                    //
-                }
-            }
-            //
-            // This is the hard case. We are going to compute large positive
-            // integers B and S and integer decExp, s.t.
-            //      d = ( B / S )// 10^decExp
-            //      1 <= B / S < 10
-            // Obvious choices are:
-            //      decExp = floor( log10(d) )
-            //      B      = d// 2^nTinyBits// 10^max( 0, -decExp )
-            //      S      = 10^max( 0, decExp)// 2^nTinyBits
-            // (noting that nTinyBits has already been forced to non-negative)
-            // I am also going to compute a large positive integer
-            //      M      = (1/2^nSignificantBits)// 2^nTinyBits// 10^max( 0, -decExp )
-            // i.e. M is (1/2) of the ULP of d, scaled like B.
-            // When we iterate through dividing B/S and picking off the
-            // quotient bits, we will know when to stop when the remainder
-            // is <= M.
-            //
-            // We keep track of powers of 2 and powers of 5.
-            //
-            int decExp = estimateDecExp(fractBits,binExp);
-            int B2, B5; // powers of 2 and powers of 5, respectively, in B
-            int S2, S5; // powers of 2 and powers of 5, respectively, in S
-            int M2, M5; // powers of 2 and powers of 5, respectively, in M
-
-            B5 = Math.max( 0, -decExp );
-            B2 = B5 + nTinyBits + binExp;
-
-            S5 = Math.max( 0, decExp );
-            S2 = S5 + nTinyBits;
-
-            M5 = B5;
-            M2 = B2 - nSignificantBits;
-
-            //
-            // the long integer fractBits contains the (nFractBits) interesting
-            // bits from the mantissa of d ( hidden 1 added if necessary) followed
-            // by (EXP_SHIFT+1-nFractBits) zeros. In the interest of compactness,
-            // I will shift out those zeros before turning fractBits into a
-            // FDBigInteger. The resulting whole number will be
-            //      d * 2^(nFractBits-1-binExp).
-            //
-            fractBits >>>= tailZeros;
-            B2 -= nFractBits-1;
-            int common2factor = Math.min( B2, S2 );
-            B2 -= common2factor;
-            S2 -= common2factor;
-            M2 -= common2factor;
-
-            //
-            // HACK!! For exact powers of two, the next smallest number
-            // is only half as far away as we think (because the meaning of
-            // ULP changes at power-of-two bounds) for this reason, we
-            // hack M2. Hope this works.
-            //
-            if ( nFractBits == 1 ) {
-                M2 -= 1;
-            }
-
-            if ( M2 < 0 ){
-                // oops.
-                // since we cannot scale M down far enough,
-                // we must scale the other values up.
-                B2 -= M2;
-                S2 -= M2;
-                M2 =  0;
-            }
-            //
-            // Construct, Scale, iterate.
-            // Some day, we'll write a stopping test that takes
-            // account of the asymmetry of the spacing of floating-point
-            // numbers below perfect powers of 2
-            // 26 Sept 96 is not that day.
-            // So we use a symmetric test.
-            //
-            int ndigit = 0;
-            boolean low, high;
-            long lowDigitDifference;
-            int  q;
-
-            //
-            // Detect the special cases where all the numbers we are about
-            // to compute will fit in int or long integers.
-            // In these cases, we will avoid doing FDBigInteger arithmetic.
-            // We use the same algorithms, except that we "normalize"
-            // our FDBigIntegers before iterating. This is to make division easier,
-            // as it makes our fist guess (quotient of high-order words)
-            // more accurate!
-            //
-            // Some day, we'll write a stopping test that takes
-            // account of the asymmetry of the spacing of floating-point
-            // numbers below perfect powers of 2
-            // 26 Sept 96 is not that day.
-            // So we use a symmetric test.
-            //
-            // binary digits needed to represent B, approx.
-            int Bbits = nFractBits + B2 + (( B5 < N_5_BITS.length )? N_5_BITS[B5] : ( B5*3 ));
-
-            // binary digits needed to represent 10*S, approx.
-            int tenSbits = S2+1 + (( (S5+1) < N_5_BITS.length )? N_5_BITS[(S5+1)] : ( (S5+1)*3 ));
-            if ( Bbits < 64 && tenSbits < 64){
-                if ( Bbits < 32 && tenSbits < 32){
-                    // wa-hoo! They're all ints!
-                    int b = ((int)fractBits * FDBigInteger.SMALL_5_POW[B5] ) << B2;
-                    int s = FDBigInteger.SMALL_5_POW[S5] << S2;
-                    int m = FDBigInteger.SMALL_5_POW[M5] << M2;
-                    int tens = s * 10;
-                    //
-                    // Unroll the first iteration. If our decExp estimate
-                    // was too high, our first quotient will be zero. In this
-                    // case, we discard it and decrement decExp.
-                    //
-                    ndigit = 0;
-                    q = b / s;
-                    b = 10 * ( b % s );
-                    m *= 10;
-                    low  = (b <  m );
-                    high = (b+m > tens );
-                    assert q < 10 : q; // excessively large digit
-                    if ( (q == 0) && ! high ){
-                        // oops. Usually ignore leading zero.
-                        decExp--;
-                    } else {
-                        digits[ndigit++] = (char)('0' + q);
-                    }
-                    //
-                    // HACK! Java spec sez that we always have at least
-                    // one digit after the . in either F- or E-form output.
-                    // Thus we will need more than one digit if we're using
-                    // E-form
-                    //
-                    if ( !isCompatibleFormat ||decExp < -3 || decExp >= 8 ){
-                        high = low = false;
-                    }
-                    while( ! low && ! high ){
-                        q = b / s;
-                        b = 10 * ( b % s );
-                        m *= 10;
-                        assert q < 10 : q; // excessively large digit
-                        if ( m > 0L ){
-                            low  = (b <  m );
-                            high = (b+m > tens );
-                        } else {
-                            // hack -- m might overflow!
-                            // in this case, it is certainly > b,
-                            // which won't
-                            // and b+m > tens, too, since that has overflowed
-                            // either!
-                            low = true;
-                            high = true;
-                        }
-                        digits[ndigit++] = (char)('0' + q);
-                    }
-                    lowDigitDifference = (b<<1) - tens;
-                    exactDecimalConversion  = (b == 0);
-                } else {
-                    // still good! they're all longs!
-                    long b = (fractBits * FDBigInteger.LONG_5_POW[B5] ) << B2;
-                    long s = FDBigInteger.LONG_5_POW[S5] << S2;
-                    long m = FDBigInteger.LONG_5_POW[M5] << M2;
-                    long tens = s * 10L;
-                    //
-                    // Unroll the first iteration. If our decExp estimate
-                    // was too high, our first quotient will be zero. In this
-                    // case, we discard it and decrement decExp.
-                    //
-                    ndigit = 0;
-                    q = (int) ( b / s );
-                    b = 10L * ( b % s );
-                    m *= 10L;
-                    low  = (b <  m );
-                    high = (b+m > tens );
-                    assert q < 10 : q; // excessively large digit
-                    if ( (q == 0) && ! high ){
-                        // oops. Usually ignore leading zero.
-                        decExp--;
-                    } else {
-                        digits[ndigit++] = (char)('0' + q);
-                    }
-                    //
-                    // HACK! Java spec sez that we always have at least
-                    // one digit after the . in either F- or E-form output.
-                    // Thus we will need more than one digit if we're using
-                    // E-form
-                    //
-                    if ( !isCompatibleFormat || decExp < -3 || decExp >= 8 ){
-                        high = low = false;
-                    }
-                    while( ! low && ! high ){
-                        q = (int) ( b / s );
-                        b = 10 * ( b % s );
-                        m *= 10;
-                        assert q < 10 : q;  // excessively large digit
-                        if ( m > 0L ){
-                            low  = (b <  m );
-                            high = (b+m > tens );
-                        } else {
-                            // hack -- m might overflow!
-                            // in this case, it is certainly > b,
-                            // which won't
-                            // and b+m > tens, too, since that has overflowed
-                            // either!
-                            low = true;
-                            high = true;
-                        }
-                        digits[ndigit++] = (char)('0' + q);
-                    }
-                    lowDigitDifference = (b<<1) - tens;
-                    exactDecimalConversion  = (b == 0);
-                }
-            } else {
-                //
-                // We really must do FDBigInteger arithmetic.
-                // Fist, construct our FDBigInteger initial values.
-                //
-                FDBigInteger Sval = FDBigInteger.valueOfPow52(S5, S2);
-                int shiftBias = Sval.getNormalizationBias();
-                Sval = Sval.leftShift(shiftBias); // normalize so that division works better
-
-                FDBigInteger Bval = FDBigInteger.valueOfMulPow52(fractBits, B5, B2 + shiftBias);
-                FDBigInteger Mval = FDBigInteger.valueOfPow52(M5 + 1, M2 + shiftBias + 1);
-
-                FDBigInteger tenSval = FDBigInteger.valueOfPow52(S5 + 1, S2 + shiftBias + 1); //Sval.mult( 10 );
-                //
-                // Unroll the first iteration. If our decExp estimate
-                // was too high, our first quotient will be zero. In this
-                // case, we discard it and decrement decExp.
-                //
-                ndigit = 0;
-                q = Bval.quoRemIteration( Sval );
-                low  = (Bval.cmp( Mval ) < 0);
-                high = tenSval.addAndCmp(Bval,Mval)<=0;
-
-                assert q < 10 : q; // excessively large digit
-                if ( (q == 0) && ! high ){
-                    // oops. Usually ignore leading zero.
-                    decExp--;
-                } else {
-                    digits[ndigit++] = (char)('0' + q);
-                }
-                //
-                // HACK! Java spec sez that we always have at least
-                // one digit after the . in either F- or E-form output.
-                // Thus we will need more than one digit if we're using
-                // E-form
-                //
-                if (!isCompatibleFormat || decExp < -3 || decExp >= 8 ){
-                    high = low = false;
-                }
-                while( ! low && ! high ){
-                    q = Bval.quoRemIteration( Sval );
-                    assert q < 10 : q;  // excessively large digit
-                    Mval = Mval.multBy10(); //Mval = Mval.mult( 10 );
-                    low  = (Bval.cmp( Mval ) < 0);
-                    high = tenSval.addAndCmp(Bval,Mval)<=0;
-                    digits[ndigit++] = (char)('0' + q);
-                }
-                if ( high && low ){
-                    Bval = Bval.leftShift(1);
-                    lowDigitDifference = Bval.cmp(tenSval);
-                } else {
-                    lowDigitDifference = 0L; // this here only for flow analysis!
-                }
-                exactDecimalConversion  = (Bval.cmp( FDBigInteger.ZERO ) == 0);
-            }
-            this.decExponent = decExp+1;
-            this.firstDigitIndex = 0;
-            this.nDigits = ndigit;
-            //
-            // Last digit gets rounded based on stopping condition.
-            //
-            if ( high ){
-                if ( low ){
-                    if ( lowDigitDifference == 0L ){
-                        // it's a tie!
-                        // choose based on which digits we like.
-                        if ( (digits[firstDigitIndex+nDigits-1]&1) != 0 ) {
-                            roundup();
-                        }
-                    } else if ( lowDigitDifference > 0 ){
-                        roundup();
-                    }
-                } else {
-                    roundup();
-                }
-            }
-        }
-
-        // add one to the least significant digit.
-        // in the unlikely event there is a carry out, deal with it.
-        // assert that this will only happen where there
-        // is only one digit, e.g. (float)1e-44 seems to do it.
-        //
-        private void roundup() {
-            int i = (firstDigitIndex + nDigits - 1);
-            int q = digits[i];
-            if (q == '9') {
-                while (q == '9' && i > firstDigitIndex) {
-                    digits[i] = '0';
-                    q = digits[--i];
-                }
-                if (q == '9') {
-                    // carryout! High-order 1, rest 0s, larger exp.
-                    decExponent += 1;
-                    digits[firstDigitIndex] = '1';
-                    return;
-                }
-                // else fall through.
-            }
-            digits[i] = (char) (q + 1);
-            decimalDigitsRoundedUp = true;
-        }
-
-        /**
-         * Estimate decimal exponent. (If it is small-ish,
-         * we could double-check.)
-         *
-         * First, scale the mantissa bits such that 1 <= d2 < 2.
-         * We are then going to estimate
-         *          log10(d2) ~=~  (d2-1.5)/1.5 + log(1.5)
-         * and so we can estimate
-         *      log10(d) ~=~ log10(d2) + binExp * log10(2)
-         * take the floor and call it decExp.
-         */
-        static int estimateDecExp(long fractBits, int binExp) {
-            double d2 = Double.longBitsToDouble( EXP_ONE | ( fractBits & DoubleConsts.SIGNIF_BIT_MASK ) );
-            double d = (d2-1.5D)*0.289529654D + 0.176091259 + (double)binExp * 0.301029995663981;
-            long dBits = Double.doubleToRawLongBits(d);  //can't be NaN here so use raw
-            int exponent = (int)((dBits & DoubleConsts.EXP_BIT_MASK) >> EXP_SHIFT) - DoubleConsts.EXP_BIAS;
-            boolean isNegative = (dBits & DoubleConsts.SIGN_BIT_MASK) != 0; // discover sign
-            if(exponent>=0 && exponent<52) { // hot path
-                long mask   = DoubleConsts.SIGNIF_BIT_MASK >> exponent;
-                int r = (int)(( (dBits&DoubleConsts.SIGNIF_BIT_MASK) | FRACT_HOB )>>(EXP_SHIFT-exponent));
-                return isNegative ? (((mask & dBits) == 0L ) ? -r : -r-1 ) : r;
-            } else if (exponent < 0) {
-                return (((dBits&~DoubleConsts.SIGN_BIT_MASK) == 0) ? 0 :
-                        ( (isNegative) ? -1 : 0) );
-            } else { //if (exponent >= 52)
-                return (int)d;
-            }
-        }
-
-        private static int insignificantDigits(int insignificant) {
-            int i;
-            for ( i = 0; insignificant >= 10L; i++ ) {
-                insignificant /= 10L;
-            }
-            return i;
-        }
-
-        /**
-         * Calculates
-         * <pre>
-         * insignificantDigitsForPow2(v) == insignificantDigits(1L<<v)
-         * </pre>
-         */
-        private static int insignificantDigitsForPow2(int p2) {
-            if(p2>1 && p2 < insignificantDigitsNumber.length) {
-                return insignificantDigitsNumber[p2];
-            }
-            return 0;
-        }
-
-        /**
-         *  If insignificant==(1L << ixd)
-         *  i = insignificantDigitsNumber[idx] is the same as:
-         *  int i;
-         *  for ( i = 0; insignificant >= 10L; i++ )
-         *         insignificant /= 10L;
-         */
-        private static int[] insignificantDigitsNumber = {
-            0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3,
-            4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7,
-            8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11,
-            12, 12, 12, 12, 13, 13, 13, 14, 14, 14,
-            15, 15, 15, 15, 16, 16, 16, 17, 17, 17,
-            18, 18, 18, 19
-        };
-
-        // approximately ceil( log2( long5pow[i] ) )
-        private static final int[] N_5_BITS = {
-                0,
-                3,
-                5,
-                7,
-                10,
-                12,
-                14,
-                17,
-                19,
-                21,
-                24,
-                26,
-                28,
-                31,
-                33,
-                35,
-                38,
-                40,
-                42,
-                45,
-                47,
-                49,
-                52,
-                54,
-                56,
-                59,
-                61,
-        };
-
-        private int getChars(char[] result) {
-            assert nDigits <= 19 : nDigits; // generous bound on size of nDigits
-            int i = 0;
-            if (isNegative) {
-                result[0] = '-';
-                i = 1;
-            }
-            if (decExponent > 0 && decExponent < 8) {
-                // print digits.digits.
-                int charLength = Math.min(nDigits, decExponent);
-                System.arraycopy(digits, firstDigitIndex, result, i, charLength);
-                i += charLength;
-                if (charLength < decExponent) {
-                    charLength = decExponent - charLength;
-                    Arrays.fill(result,i,i+charLength,'0');
-                    i += charLength;
-                    result[i++] = '.';
-                    result[i++] = '0';
-                } else {
-                    result[i++] = '.';
-                    if (charLength < nDigits) {
-                        int t = nDigits - charLength;
-                        System.arraycopy(digits, firstDigitIndex+charLength, result, i, t);
-                        i += t;
-                    } else {
-                        result[i++] = '0';
-                    }
-                }
-            } else if (decExponent <= 0 && decExponent > -3) {
-                result[i++] = '0';
-                result[i++] = '.';
-                if (decExponent != 0) {
-                    Arrays.fill(result, i, i-decExponent, '0');
-                    i -= decExponent;
-                }
-                System.arraycopy(digits, firstDigitIndex, result, i, nDigits);
-                i += nDigits;
-            } else {
-                result[i++] = digits[firstDigitIndex];
-                result[i++] = '.';
-                if (nDigits > 1) {
-                    System.arraycopy(digits, firstDigitIndex+1, result, i, nDigits - 1);
-                    i += nDigits - 1;
-                } else {
-                    result[i++] = '0';
-                }
-                result[i++] = 'E';
-                int e;
-                if (decExponent <= 0) {
-                    result[i++] = '-';
-                    e = -decExponent + 1;
-                } else {
-                    e = decExponent - 1;
-                }
-                // decExponent has 1, 2, or 3, digits
-                if (e <= 9) {
-                    result[i++] = (char) (e + '0');
-                } else if (e <= 99) {
-                    result[i++] = (char) (e / 10 + '0');
-                    result[i++] = (char) (e % 10 + '0');
-                } else {
-                    result[i++] = (char) (e / 100 + '0');
-                    e %= 100;
-                    result[i++] = (char) (e / 10 + '0');
-                    result[i++] = (char) (e % 10 + '0');
-                }
-            }
-            return i;
-        }
-
-    }
-
-    private static final ThreadLocal<BinaryToASCIIBuffer> threadLocalBinaryToASCIIBuffer =
-            new ThreadLocal<BinaryToASCIIBuffer>() {
-                @Override
-                protected BinaryToASCIIBuffer initialValue() {
-                    return new BinaryToASCIIBuffer();
-                }
-            };
-
-    private static BinaryToASCIIBuffer getBinaryToASCIIBuffer() {
-        return threadLocalBinaryToASCIIBuffer.get();
-    }
-
-    /**
-     * A converter which can process an ASCII <code>String</code> representation
-     * of a single or double precision floating point value into a
-     * <code>float</code> or a <code>double</code>.
-     */
-    interface ASCIIToBinaryConverter {
-
-        double doubleValue();
-
-        float floatValue();
-
-    }
-
-    /**
-     * A <code>ASCIIToBinaryConverter</code> container for a <code>double</code>.
-     */
-    static class PreparedASCIIToBinaryBuffer implements ASCIIToBinaryConverter {
-        private final double doubleVal;
-        private final float floatVal;
-
-        public PreparedASCIIToBinaryBuffer(double doubleVal, float floatVal) {
-            this.doubleVal = doubleVal;
-            this.floatVal = floatVal;
-        }
-
-        @Override
-        public double doubleValue() {
-            return doubleVal;
-        }
-
-        @Override
-        public float floatValue() {
-            return floatVal;
-        }
-    }
-
-    static final ASCIIToBinaryConverter A2BC_POSITIVE_INFINITY = new PreparedASCIIToBinaryBuffer(Double.POSITIVE_INFINITY, Float.POSITIVE_INFINITY);
-    static final ASCIIToBinaryConverter A2BC_NEGATIVE_INFINITY = new PreparedASCIIToBinaryBuffer(Double.NEGATIVE_INFINITY, Float.NEGATIVE_INFINITY);
-    static final ASCIIToBinaryConverter A2BC_NOT_A_NUMBER  = new PreparedASCIIToBinaryBuffer(Double.NaN, Float.NaN);
-    static final ASCIIToBinaryConverter A2BC_POSITIVE_ZERO = new PreparedASCIIToBinaryBuffer(0.0d, 0.0f);
-    static final ASCIIToBinaryConverter A2BC_NEGATIVE_ZERO = new PreparedASCIIToBinaryBuffer(-0.0d, -0.0f);
-
-    /**
-     * A buffered implementation of <code>ASCIIToBinaryConverter</code>.
-     */
-    static class ASCIIToBinaryBuffer implements ASCIIToBinaryConverter {
-        boolean     isNegative;
-        int         decExponent;
-        char        digits[];
-        int         nDigits;
-
-        ASCIIToBinaryBuffer( boolean negSign, int decExponent, char[] digits, int n)
-        {
-            this.isNegative = negSign;
-            this.decExponent = decExponent;
-            this.digits = digits;
-            this.nDigits = n;
-        }
-
-        /**
-         * Takes a FloatingDecimal, which we presumably just scanned in,
-         * and finds out what its value is, as a double.
-         *
-         * AS A SIDE EFFECT, SET roundDir TO INDICATE PREFERRED
-         * ROUNDING DIRECTION in case the result is really destined
-         * for a single-precision float.
-         */
-        @Override
-        public double doubleValue() {
-            int kDigits = Math.min(nDigits, MAX_DECIMAL_DIGITS + 1);
-            //
-            // convert the lead kDigits to a long integer.
-            //
-            // (special performance hack: start to do it using int)
-            int iValue = (int) digits[0] - (int) '0';
-            int iDigits = Math.min(kDigits, INT_DECIMAL_DIGITS);
-            for (int i = 1; i < iDigits; i++) {
-                iValue = iValue * 10 + (int) digits[i] - (int) '0';
-            }
-            long lValue = (long) iValue;
-            for (int i = iDigits; i < kDigits; i++) {
-                lValue = lValue * 10L + (long) ((int) digits[i] - (int) '0');
-            }
-            double dValue = (double) lValue;
-            int exp = decExponent - kDigits;
-            //
-            // lValue now contains a long integer with the value of
-            // the first kDigits digits of the number.
-            // dValue contains the (double) of the same.
-            //
-
-            if (nDigits <= MAX_DECIMAL_DIGITS) {
-                //
-                // possibly an easy case.
-                // We know that the digits can be represented
-                // exactly. And if the exponent isn't too outrageous,
-                // the whole thing can be done with one operation,
-                // thus one rounding error.
-                // Note that all our constructors trim all leading and
-                // trailing zeros, so simple values (including zero)
-                // will always end up here
-                //
-                if (exp == 0 || dValue == 0.0) {
-                    return (isNegative) ? -dValue : dValue; // small floating integer
-                }
-                else if (exp >= 0) {
-                    if (exp <= MAX_SMALL_TEN) {
-                        //
-                        // Can get the answer with one operation,
-                        // thus one roundoff.
-                        //
-                        double rValue = dValue * SMALL_10_POW[exp];
-                        return (isNegative) ? -rValue : rValue;
-                    }
-                    int slop = MAX_DECIMAL_DIGITS - kDigits;
-                    if (exp <= MAX_SMALL_TEN + slop) {
-                        //
-                        // We can multiply dValue by 10^(slop)
-                        // and it is still "small" and exact.
-                        // Then we can multiply by 10^(exp-slop)
-                        // with one rounding.
-                        //
-                        dValue *= SMALL_10_POW[slop];
-                        double rValue = dValue * SMALL_10_POW[exp - slop];
-                        return (isNegative) ? -rValue : rValue;
-                    }
-                    //
-                    // Else we have a hard case with a positive exp.
-                    //
-                } else {
-                    if (exp >= -MAX_SMALL_TEN) {
-                        //
-                        // Can get the answer in one division.
-                        //
-                        double rValue = dValue / SMALL_10_POW[-exp];
-                        return (isNegative) ? -rValue : rValue;
-                    }
-                    //
-                    // Else we have a hard case with a negative exp.
-                    //
-                }
-            }
-
-            //
-            // Harder cases:
-            // The sum of digits plus exponent is greater than
-            // what we think we can do with one error.
-            //
-            // Start by approximating the right answer by,
-            // naively, scaling by powers of 10.
-            //
-            if (exp > 0) {
-                if (decExponent > MAX_DECIMAL_EXPONENT + 1) {
-                    //
-                    // Lets face it. This is going to be
-                    // Infinity. Cut to the chase.
-                    //
-                    return (isNegative) ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY;
-                }
-                if ((exp & 15) != 0) {
-                    dValue *= SMALL_10_POW[exp & 15];
-                }
-                if ((exp >>= 4) != 0) {
-                    int j;
-                    for (j = 0; exp > 1; j++, exp >>= 1) {
-                        if ((exp & 1) != 0) {
-                            dValue *= BIG_10_POW[j];
-                        }
-                    }
-                    //
-                    // The reason for the weird exp > 1 condition
-                    // in the above loop was so that the last multiply
-                    // would get unrolled. We handle it here.
-                    // It could overflow.
-                    //
-                    double t = dValue * BIG_10_POW[j];
-                    if (Double.isInfinite(t)) {
-                        //
-                        // It did overflow.
-                        // Look more closely at the result.
-                        // If the exponent is just one too large,
-                        // then use the maximum finite as our estimate
-                        // value. Else call the result infinity
-                        // and punt it.
-                        // ( I presume this could happen because
-                        // rounding forces the result here to be
-                        // an ULP or two larger than
-                        // Double.MAX_VALUE ).
-                        //
-                        t = dValue / 2.0;
-                        t *= BIG_10_POW[j];
-                        if (Double.isInfinite(t)) {
-                            return (isNegative) ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY;
-                        }
-                        t = Double.MAX_VALUE;
-                    }
-                    dValue = t;
-                }
-            } else if (exp < 0) {
-                exp = -exp;
-                if (decExponent < MIN_DECIMAL_EXPONENT - 1) {
-                    //
-                    // Lets face it. This is going to be
-                    // zero. Cut to the chase.
-                    //
-                    return (isNegative) ? -0.0 : 0.0;
-                }
-                if ((exp & 15) != 0) {
-                    dValue /= SMALL_10_POW[exp & 15];
-                }
-                if ((exp >>= 4) != 0) {
-                    int j;
-                    for (j = 0; exp > 1; j++, exp >>= 1) {
-                        if ((exp & 1) != 0) {
-                            dValue *= TINY_10_POW[j];
-                        }
-                    }
-                    //
-                    // The reason for the weird exp > 1 condition
-                    // in the above loop was so that the last multiply
-                    // would get unrolled. We handle it here.
-                    // It could underflow.
-                    //
-                    double t = dValue * TINY_10_POW[j];
-                    if (t == 0.0) {
-                        //
-                        // It did underflow.
-                        // Look more closely at the result.
-                        // If the exponent is just one too small,
-                        // then use the minimum finite as our estimate
-                        // value. Else call the result 0.0
-                        // and punt it.
-                        // ( I presume this could happen because
-                        // rounding forces the result here to be
-                        // an ULP or two less than
-                        // Double.MIN_VALUE ).
-                        //
-                        t = dValue * 2.0;
-                        t *= TINY_10_POW[j];
-                        if (t == 0.0) {
-                            return (isNegative) ? -0.0 : 0.0;
-                        }
-                        t = Double.MIN_VALUE;
-                    }
-                    dValue = t;
-                }
-            }
-
-            //
-            // dValue is now approximately the result.
-            // The hard part is adjusting it, by comparison
-            // with FDBigInteger arithmetic.
-            // Formulate the EXACT big-number result as
-            // bigD0 * 10^exp
-            //
-            if (nDigits > MAX_NDIGITS) {
-                nDigits = MAX_NDIGITS + 1;
-                digits[MAX_NDIGITS] = '1';
-            }
-            FDBigInteger bigD0 = new FDBigInteger(lValue, digits, kDigits, nDigits);
-            exp = decExponent - nDigits;
-
-            long ieeeBits = Double.doubleToRawLongBits(dValue); // IEEE-754 bits of double candidate
-            final int B5 = Math.max(0, -exp); // powers of 5 in bigB, value is not modified inside correctionLoop
-            final int D5 = Math.max(0, exp); // powers of 5 in bigD, value is not modified inside correctionLoop
-            bigD0 = bigD0.multByPow52(D5, 0);
-            bigD0.makeImmutable();   // prevent bigD0 modification inside correctionLoop
-            FDBigInteger bigD = null;
-            int prevD2 = 0;
-
-            correctionLoop:
-            while (true) {
-                // here ieeeBits can't be NaN, Infinity or zero
-                int binexp = (int) (ieeeBits >>> EXP_SHIFT);
-                long bigBbits = ieeeBits & DoubleConsts.SIGNIF_BIT_MASK;
-                if (binexp > 0) {
-                    bigBbits |= FRACT_HOB;
-                } else { // Normalize denormalized numbers.
-                    assert bigBbits != 0L : bigBbits; // doubleToBigInt(0.0)
-                    int leadingZeros = Long.numberOfLeadingZeros(bigBbits);
-                    int shift = leadingZeros - (63 - EXP_SHIFT);
-                    bigBbits <<= shift;
-                    binexp = 1 - shift;
-                }
-                binexp -= DoubleConsts.EXP_BIAS;
-                int lowOrderZeros = Long.numberOfTrailingZeros(bigBbits);
-                bigBbits >>>= lowOrderZeros;
-                final int bigIntExp = binexp - EXP_SHIFT + lowOrderZeros;
-                final int bigIntNBits = EXP_SHIFT + 1 - lowOrderZeros;
-
-                //
-                // Scale bigD, bigB appropriately for
-                // big-integer operations.
-                // Naively, we multiply by powers of ten
-                // and powers of two. What we actually do
-                // is keep track of the powers of 5 and
-                // powers of 2 we would use, then factor out
-                // common divisors before doing the work.
-                //
-                int B2 = B5; // powers of 2 in bigB
-                int D2 = D5; // powers of 2 in bigD
-                int Ulp2;   // powers of 2 in halfUlp.
-                if (bigIntExp >= 0) {
-                    B2 += bigIntExp;
-                } else {
-                    D2 -= bigIntExp;
-                }
-                Ulp2 = B2;
-                // shift bigB and bigD left by a number s. t.
-                // halfUlp is still an integer.
-                int hulpbias;
-                if (binexp <= -DoubleConsts.EXP_BIAS) {
-                    // This is going to be a denormalized number
-                    // (if not actually zero).
-                    // half an ULP is at 2^-(DoubleConsts.EXP_BIAS+EXP_SHIFT+1)
-                    hulpbias = binexp + lowOrderZeros + DoubleConsts.EXP_BIAS;
-                } else {
-                    hulpbias = 1 + lowOrderZeros;
-                }
-                B2 += hulpbias;
-                D2 += hulpbias;
-                // if there are common factors of 2, we might just as well
-                // factor them out, as they add nothing useful.
-                int common2 = Math.min(B2, Math.min(D2, Ulp2));
-                B2 -= common2;
-                D2 -= common2;
-                Ulp2 -= common2;
-                // do multiplications by powers of 5 and 2
-                FDBigInteger bigB = FDBigInteger.valueOfMulPow52(bigBbits, B5, B2);
-                if (bigD == null || prevD2 != D2) {
-                    bigD = bigD0.leftShift(D2);
-                    prevD2 = D2;
-                }
-                //
-                // to recap:
-                // bigB is the scaled-big-int version of our floating-point
-                // candidate.
-                // bigD is the scaled-big-int version of the exact value
-                // as we understand it.
-                // halfUlp is 1/2 an ulp of bigB, except for special cases
-                // of exact powers of 2
-                //
-                // the plan is to compare bigB with bigD, and if the difference
-                // is less than halfUlp, then we're satisfied. Otherwise,
-                // use the ratio of difference to halfUlp to calculate a fudge
-                // factor to add to the floating value, then go 'round again.
-                //
-                FDBigInteger diff;
-                int cmpResult;
-                boolean overvalue;
-                if ((cmpResult = bigB.cmp(bigD)) > 0) {
-                    overvalue = true; // our candidate is too big.
-                    diff = bigB.leftInplaceSub(bigD); // bigB is not user further - reuse
-                    if ((bigIntNBits == 1) && (bigIntExp > -DoubleConsts.EXP_BIAS + 1)) {
-                        // candidate is a normalized exact power of 2 and
-                        // is too big (larger than Double.MIN_NORMAL). We will be subtracting.
-                        // For our purposes, ulp is the ulp of the
-                        // next smaller range.
-                        Ulp2 -= 1;
-                        if (Ulp2 < 0) {
-                            // rats. Cannot de-scale ulp this far.
-                            // must scale diff in other direction.
-                            Ulp2 = 0;
-                            diff = diff.leftShift(1);
-                        }
-                    }
-                } else if (cmpResult < 0) {
-                    overvalue = false; // our candidate is too small.
-                    diff = bigD.rightInplaceSub(bigB); // bigB is not user further - reuse
-                } else {
-                    // the candidate is exactly right!
-                    // this happens with surprising frequency
-                    break correctionLoop;
-                }
-                cmpResult = diff.cmpPow52(B5, Ulp2);
-                if ((cmpResult) < 0) {
-                    // difference is small.
-                    // this is close enough
-                    break correctionLoop;
-                } else if (cmpResult == 0) {
-                    // difference is exactly half an ULP
-                    // round to some other value maybe, then finish
-                    if ((ieeeBits & 1) != 0) { // half ties to even
-                        ieeeBits += overvalue ? -1 : 1; // nextDown or nextUp
-                    }
-                    break correctionLoop;
-                } else {
-                    // difference is non-trivial.
-                    // could scale addend by ratio of difference to
-                    // halfUlp here, if we bothered to compute that difference.
-                    // Most of the time ( I hope ) it is about 1 anyway.
-                    ieeeBits += overvalue ? -1 : 1; // nextDown or nextUp
-                    if (ieeeBits == 0 || ieeeBits == DoubleConsts.EXP_BIT_MASK) { // 0.0 or Double.POSITIVE_INFINITY
-                        break correctionLoop; // oops. Fell off end of range.
-                    }
-                    continue; // try again.
-                }
-
-            }
-            if (isNegative) {
-                ieeeBits |= DoubleConsts.SIGN_BIT_MASK;
-            }
-            return Double.longBitsToDouble(ieeeBits);
-        }
-
-        /**
-         * Takes a FloatingDecimal, which we presumably just scanned in,
-         * and finds out what its value is, as a float.
-         * This is distinct from doubleValue() to avoid the extremely
-         * unlikely case of a double rounding error, wherein the conversion
-         * to double has one rounding error, and the conversion of that double
-         * to a float has another rounding error, IN THE WRONG DIRECTION,
-         * ( because of the preference to a zero low-order bit ).
-         */
-        @Override
-        public float floatValue() {
-            int kDigits = Math.min(nDigits, SINGLE_MAX_DECIMAL_DIGITS + 1);
-            //
-            // convert the lead kDigits to an integer.
-            //
-            int iValue = (int) digits[0] - (int) '0';
-            for (int i = 1; i < kDigits; i++) {
-                iValue = iValue * 10 + (int) digits[i] - (int) '0';
-            }
-            float fValue = (float) iValue;
-            int exp = decExponent - kDigits;
-            //
-            // iValue now contains an integer with the value of
-            // the first kDigits digits of the number.
-            // fValue contains the (float) of the same.
-            //
-
-            if (nDigits <= SINGLE_MAX_DECIMAL_DIGITS) {
-                //
-                // possibly an easy case.
-                // We know that the digits can be represented
-                // exactly. And if the exponent isn't too outrageous,
-                // the whole thing can be done with one operation,
-                // thus one rounding error.
-                // Note that all our constructors trim all leading and
-                // trailing zeros, so simple values (including zero)
-                // will always end up here.
-                //
-                if (exp == 0 || fValue == 0.0f) {
-                    return (isNegative) ? -fValue : fValue; // small floating integer
-                } else if (exp >= 0) {
-                    if (exp <= SINGLE_MAX_SMALL_TEN) {
-                        //
-                        // Can get the answer with one operation,
-                        // thus one roundoff.
-                        //
-                        fValue *= SINGLE_SMALL_10_POW[exp];
-                        return (isNegative) ? -fValue : fValue;
-                    }
-                    int slop = SINGLE_MAX_DECIMAL_DIGITS - kDigits;
-                    if (exp <= SINGLE_MAX_SMALL_TEN + slop) {
-                        //
-                        // We can multiply fValue by 10^(slop)
-                        // and it is still "small" and exact.
-                        // Then we can multiply by 10^(exp-slop)
-                        // with one rounding.
-                        //
-                        fValue *= SINGLE_SMALL_10_POW[slop];
-                        fValue *= SINGLE_SMALL_10_POW[exp - slop];
-                        return (isNegative) ? -fValue : fValue;
-                    }
-                    //
-                    // Else we have a hard case with a positive exp.
-                    //
-                } else {
-                    if (exp >= -SINGLE_MAX_SMALL_TEN) {
-                        //
-                        // Can get the answer in one division.
-                        //
-                        fValue /= SINGLE_SMALL_10_POW[-exp];
-                        return (isNegative) ? -fValue : fValue;
-                    }
-                    //
-                    // Else we have a hard case with a negative exp.
-                    //
-                }
-            } else if ((decExponent >= nDigits) && (nDigits + decExponent <= MAX_DECIMAL_DIGITS)) {
-                //
-                // In double-precision, this is an exact floating integer.
-                // So we can compute to double, then shorten to float
-                // with one round, and get the right answer.
-                //
-                // First, finish accumulating digits.
-                // Then convert that integer to a double, multiply
-                // by the appropriate power of ten, and convert to float.
-                //
-                long lValue = (long) iValue;
-                for (int i = kDigits; i < nDigits; i++) {
-                    lValue = lValue * 10L + (long) ((int) digits[i] - (int) '0');
-                }
-                double dValue = (double) lValue;
-                exp = decExponent - nDigits;
-                dValue *= SMALL_10_POW[exp];
-                fValue = (float) dValue;
-                return (isNegative) ? -fValue : fValue;
-
-            }
-            //
-            // Harder cases:
-            // The sum of digits plus exponent is greater than
-            // what we think we can do with one error.
-            //
-            // Start by approximating the right answer by,
-            // naively, scaling by powers of 10.
-            // Scaling uses doubles to avoid overflow/underflow.
-            //
-            double dValue = fValue;
-            if (exp > 0) {
-                if (decExponent > SINGLE_MAX_DECIMAL_EXPONENT + 1) {
-                    //
-                    // Lets face it. This is going to be
-                    // Infinity. Cut to the chase.
-                    //
-                    return (isNegative) ? Float.NEGATIVE_INFINITY : Float.POSITIVE_INFINITY;
-                }
-                if ((exp & 15) != 0) {
-                    dValue *= SMALL_10_POW[exp & 15];
-                }
-                if ((exp >>= 4) != 0) {
-                    int j;
-                    for (j = 0; exp > 0; j++, exp >>= 1) {
-                        if ((exp & 1) != 0) {
-                            dValue *= BIG_10_POW[j];
-                        }
-                    }
-                }
-            } else if (exp < 0) {
-                exp = -exp;
-                if (decExponent < SINGLE_MIN_DECIMAL_EXPONENT - 1) {
-                    //
-                    // Lets face it. This is going to be
-                    // zero. Cut to the chase.
-                    //
-                    return (isNegative) ? -0.0f : 0.0f;
-                }
-                if ((exp & 15) != 0) {
-                    dValue /= SMALL_10_POW[exp & 15];
-                }
-                if ((exp >>= 4) != 0) {
-                    int j;
-                    for (j = 0; exp > 0; j++, exp >>= 1) {
-                        if ((exp & 1) != 0) {
-                            dValue *= TINY_10_POW[j];
-                        }
-                    }
-                }
-            }
-            fValue = Math.max(Float.MIN_VALUE, Math.min(Float.MAX_VALUE, (float) dValue));
-
-            //
-            // fValue is now approximately the result.
-            // The hard part is adjusting it, by comparison
-            // with FDBigInteger arithmetic.
-            // Formulate the EXACT big-number result as
-            // bigD0 * 10^exp
-            //
-            if (nDigits > SINGLE_MAX_NDIGITS) {
-                nDigits = SINGLE_MAX_NDIGITS + 1;
-                digits[SINGLE_MAX_NDIGITS] = '1';
-            }
-            FDBigInteger bigD0 = new FDBigInteger(iValue, digits, kDigits, nDigits);
-            exp = decExponent - nDigits;
-
-            int ieeeBits = Float.floatToRawIntBits(fValue); // IEEE-754 bits of float candidate
-            final int B5 = Math.max(0, -exp); // powers of 5 in bigB, value is not modified inside correctionLoop
-            final int D5 = Math.max(0, exp); // powers of 5 in bigD, value is not modified inside correctionLoop
-            bigD0 = bigD0.multByPow52(D5, 0);
-            bigD0.makeImmutable();   // prevent bigD0 modification inside correctionLoop
-            FDBigInteger bigD = null;
-            int prevD2 = 0;
-
-            correctionLoop:
-            while (true) {
-                // here ieeeBits can't be NaN, Infinity or zero
-                int binexp = ieeeBits >>> SINGLE_EXP_SHIFT;
-                int bigBbits = ieeeBits & FloatConsts.SIGNIF_BIT_MASK;
-                if (binexp > 0) {
-                    bigBbits |= SINGLE_FRACT_HOB;
-                } else { // Normalize denormalized numbers.
-                    assert bigBbits != 0 : bigBbits; // floatToBigInt(0.0)
-                    int leadingZeros = Integer.numberOfLeadingZeros(bigBbits);
-                    int shift = leadingZeros - (31 - SINGLE_EXP_SHIFT);
-                    bigBbits <<= shift;
-                    binexp = 1 - shift;
-                }
-                binexp -= FloatConsts.EXP_BIAS;
-                int lowOrderZeros = Integer.numberOfTrailingZeros(bigBbits);
-                bigBbits >>>= lowOrderZeros;
-                final int bigIntExp = binexp - SINGLE_EXP_SHIFT + lowOrderZeros;
-                final int bigIntNBits = SINGLE_EXP_SHIFT + 1 - lowOrderZeros;
-
-                //
-                // Scale bigD, bigB appropriately for
-                // big-integer operations.
-                // Naively, we multiply by powers of ten
-                // and powers of two. What we actually do
-                // is keep track of the powers of 5 and
-                // powers of 2 we would use, then factor out
-                // common divisors before doing the work.
-                //
-                int B2 = B5; // powers of 2 in bigB
-                int D2 = D5; // powers of 2 in bigD
-                int Ulp2;   // powers of 2 in halfUlp.
-                if (bigIntExp >= 0) {
-                    B2 += bigIntExp;
-                } else {
-                    D2 -= bigIntExp;
-                }
-                Ulp2 = B2;
-                // shift bigB and bigD left by a number s. t.
-                // halfUlp is still an integer.
-                int hulpbias;
-                if (binexp <= -FloatConsts.EXP_BIAS) {
-                    // This is going to be a denormalized number
-                    // (if not actually zero).
-                    // half an ULP is at 2^-(FloatConsts.EXP_BIAS+SINGLE_EXP_SHIFT+1)
-                    hulpbias = binexp + lowOrderZeros + FloatConsts.EXP_BIAS;
-                } else {
-                    hulpbias = 1 + lowOrderZeros;
-                }
-                B2 += hulpbias;
-                D2 += hulpbias;
-                // if there are common factors of 2, we might just as well
-                // factor them out, as they add nothing useful.
-                int common2 = Math.min(B2, Math.min(D2, Ulp2));
-                B2 -= common2;
-                D2 -= common2;
-                Ulp2 -= common2;
-                // do multiplications by powers of 5 and 2
-                FDBigInteger bigB = FDBigInteger.valueOfMulPow52(bigBbits, B5, B2);
-                if (bigD == null || prevD2 != D2) {
-                    bigD = bigD0.leftShift(D2);
-                    prevD2 = D2;
-                }
-                //
-                // to recap:
-                // bigB is the scaled-big-int version of our floating-point
-                // candidate.
-                // bigD is the scaled-big-int version of the exact value
-                // as we understand it.
-                // halfUlp is 1/2 an ulp of bigB, except for special cases
-                // of exact powers of 2
-                //
-                // the plan is to compare bigB with bigD, and if the difference
-                // is less than halfUlp, then we're satisfied. Otherwise,
-                // use the ratio of difference to halfUlp to calculate a fudge
-                // factor to add to the floating value, then go 'round again.
-                //
-                FDBigInteger diff;
-                int cmpResult;
-                boolean overvalue;
-                if ((cmpResult = bigB.cmp(bigD)) > 0) {
-                    overvalue = true; // our candidate is too big.
-                    diff = bigB.leftInplaceSub(bigD); // bigB is not user further - reuse
-                    if ((bigIntNBits == 1) && (bigIntExp > -FloatConsts.EXP_BIAS + 1)) {
-                        // candidate is a normalized exact power of 2 and
-                        // is too big (larger than Float.MIN_NORMAL). We will be subtracting.
-                        // For our purposes, ulp is the ulp of the
-                        // next smaller range.
-                        Ulp2 -= 1;
-                        if (Ulp2 < 0) {
-                            // rats. Cannot de-scale ulp this far.
-                            // must scale diff in other direction.
-                            Ulp2 = 0;
-                            diff = diff.leftShift(1);
-                        }
-                    }
-                } else if (cmpResult < 0) {
-                    overvalue = false; // our candidate is too small.
-                    diff = bigD.rightInplaceSub(bigB); // bigB is not user further - reuse
-                } else {
-                    // the candidate is exactly right!
-                    // this happens with surprising frequency
-                    break correctionLoop;
-                }
-                cmpResult = diff.cmpPow52(B5, Ulp2);
-                if ((cmpResult) < 0) {
-                    // difference is small.
-                    // this is close enough
-                    break correctionLoop;
-                } else if (cmpResult == 0) {
-                    // difference is exactly half an ULP
-                    // round to some other value maybe, then finish
-                    if ((ieeeBits & 1) != 0) { // half ties to even
-                        ieeeBits += overvalue ? -1 : 1; // nextDown or nextUp
-                    }
-                    break correctionLoop;
-                } else {
-                    // difference is non-trivial.
-                    // could scale addend by ratio of difference to
-                    // halfUlp here, if we bothered to compute that difference.
-                    // Most of the time ( I hope ) it is about 1 anyway.
-                    ieeeBits += overvalue ? -1 : 1; // nextDown or nextUp
-                    if (ieeeBits == 0 || ieeeBits == FloatConsts.EXP_BIT_MASK) { // 0.0 or Float.POSITIVE_INFINITY
-                        break correctionLoop; // oops. Fell off end of range.
-                    }
-                    continue; // try again.
-                }
-
-            }
-            if (isNegative) {
-                ieeeBits |= FloatConsts.SIGN_BIT_MASK;
-            }
-            return Float.intBitsToFloat(ieeeBits);
-        }
-
-
-        /**
-         * All the positive powers of 10 that can be
-         * represented exactly in double/float.
-         */
-        private static final double[] SMALL_10_POW = {
-            1.0e0,
-            1.0e1, 1.0e2, 1.0e3, 1.0e4, 1.0e5,
-            1.0e6, 1.0e7, 1.0e8, 1.0e9, 1.0e10,
-            1.0e11, 1.0e12, 1.0e13, 1.0e14, 1.0e15,
-            1.0e16, 1.0e17, 1.0e18, 1.0e19, 1.0e20,
-            1.0e21, 1.0e22
-        };
-
-        private static final float[] SINGLE_SMALL_10_POW = {
-            1.0e0f,
-            1.0e1f, 1.0e2f, 1.0e3f, 1.0e4f, 1.0e5f,
-            1.0e6f, 1.0e7f, 1.0e8f, 1.0e9f, 1.0e10f
-        };
-
-        private static final double[] BIG_10_POW = {
-            1e16, 1e32, 1e64, 1e128, 1e256 };
-        private static final double[] TINY_10_POW = {
-            1e-16, 1e-32, 1e-64, 1e-128, 1e-256 };
-
-        private static final int MAX_SMALL_TEN = SMALL_10_POW.length-1;
-        private static final int SINGLE_MAX_SMALL_TEN = SINGLE_SMALL_10_POW.length-1;
-
-    }
-
-    /**
-     * Returns a <code>BinaryToASCIIConverter</code> for a <code>double</code>.
-     * The returned object is a <code>ThreadLocal</code> variable of this class.
-     *
-     * @param d The double precision value to convert.
-     * @return The converter.
-     */
-    public static BinaryToASCIIConverter getBinaryToASCIIConverter(double d) {
-        return getBinaryToASCIIConverter(d, true);
-    }
-
-    /**
-     * Returns a <code>BinaryToASCIIConverter</code> for a <code>double</code>.
-     * The returned object is a <code>ThreadLocal</code> variable of this class.
-     *
-     * @param d The double precision value to convert.
-     * @param isCompatibleFormat
-     * @return The converter.
-     */
-    static BinaryToASCIIConverter getBinaryToASCIIConverter(double d, boolean isCompatibleFormat) {
-        long dBits = Double.doubleToRawLongBits(d);
-        boolean isNegative = (dBits&DoubleConsts.SIGN_BIT_MASK) != 0; // discover sign
-        long fractBits = dBits & DoubleConsts.SIGNIF_BIT_MASK;
-        int  binExp = (int)( (dBits&DoubleConsts.EXP_BIT_MASK) >> EXP_SHIFT );
-        // Discover obvious special cases of NaN and Infinity.
-        if ( binExp == (int)(DoubleConsts.EXP_BIT_MASK>>EXP_SHIFT) ) {
-            if ( fractBits == 0L ){
-                return isNegative ? B2AC_NEGATIVE_INFINITY : B2AC_POSITIVE_INFINITY;
-            } else {
-                return B2AC_NOT_A_NUMBER;
-            }
-        }
-        // Finish unpacking
-        // Normalize denormalized numbers.
-        // Insert assumed high-order bit for normalized numbers.
-        // Subtract exponent bias.
-        int  nSignificantBits;
-        if ( binExp == 0 ){
-            if ( fractBits == 0L ){
-                // not a denorm, just a 0!
-                return isNegative ? B2AC_NEGATIVE_ZERO : B2AC_POSITIVE_ZERO;
-            }
-            int leadingZeros = Long.numberOfLeadingZeros(fractBits);
-            int shift = leadingZeros-(63-EXP_SHIFT);
-            fractBits <<= shift;
-            binExp = 1 - shift;
-            nSignificantBits =  64-leadingZeros; // recall binExp is  - shift count.
-        } else {
-            fractBits |= FRACT_HOB;
-            nSignificantBits = EXP_SHIFT+1;
-        }
-        binExp -= DoubleConsts.EXP_BIAS;
-        BinaryToASCIIBuffer buf = getBinaryToASCIIBuffer();
-        buf.setSign(isNegative);
-        // call the routine that actually does all the hard work.
-        buf.dtoa(binExp, fractBits, nSignificantBits, isCompatibleFormat);
-        return buf;
-    }
-
-    private static BinaryToASCIIConverter getBinaryToASCIIConverter(float f) {
-        int fBits = Float.floatToRawIntBits( f );
-        boolean isNegative = (fBits&FloatConsts.SIGN_BIT_MASK) != 0;
-        int fractBits = fBits&FloatConsts.SIGNIF_BIT_MASK;
-        int binExp = (fBits&FloatConsts.EXP_BIT_MASK) >> SINGLE_EXP_SHIFT;
-        // Discover obvious special cases of NaN and Infinity.
-        if ( binExp == (FloatConsts.EXP_BIT_MASK>>SINGLE_EXP_SHIFT) ) {
-            if ( fractBits == 0L ){
-                return isNegative ? B2AC_NEGATIVE_INFINITY : B2AC_POSITIVE_INFINITY;
-            } else {
-                return B2AC_NOT_A_NUMBER;
-            }
-        }
-        // Finish unpacking
-        // Normalize denormalized numbers.
-        // Insert assumed high-order bit for normalized numbers.
-        // Subtract exponent bias.
-        int  nSignificantBits;
-        if ( binExp == 0 ){
-            if ( fractBits == 0 ){
-                // not a denorm, just a 0!
-                return isNegative ? B2AC_NEGATIVE_ZERO : B2AC_POSITIVE_ZERO;
-            }
-            int leadingZeros = Integer.numberOfLeadingZeros(fractBits);
-            int shift = leadingZeros-(31-SINGLE_EXP_SHIFT);
-            fractBits <<= shift;
-            binExp = 1 - shift;
-            nSignificantBits =  32 - leadingZeros; // recall binExp is  - shift count.
-        } else {
-            fractBits |= SINGLE_FRACT_HOB;
-            nSignificantBits = SINGLE_EXP_SHIFT+1;
-        }
-        binExp -= FloatConsts.EXP_BIAS;
-        BinaryToASCIIBuffer buf = getBinaryToASCIIBuffer();
-        buf.setSign(isNegative);
-        // call the routine that actually does all the hard work.
-        buf.dtoa(binExp, ((long)fractBits)<<(EXP_SHIFT-SINGLE_EXP_SHIFT), nSignificantBits, true);
-        return buf;
-    }
-
-    @SuppressWarnings("fallthrough")
-    static ASCIIToBinaryConverter readJavaFormatString( String in ) throws NumberFormatException {
-        boolean isNegative = false;
-        boolean signSeen   = false;
-        int     decExp;
-        char    c;
-
-    parseNumber:
-        try{
-            in = in.trim(); // don't fool around with white space.
-                            // throws NullPointerException if null
-            int len = in.length();
-            if ( len == 0 ) {
-                throw new NumberFormatException("empty String");
-            }
-            int i = 0;
-            switch (in.charAt(i)){
-            case '-':
-                isNegative = true;
-                //FALLTHROUGH
-            case '+':
-                i++;
-                signSeen = true;
-            }
-            c = in.charAt(i);
-            if(c == 'N') { // Check for NaN
-                if((len-i)==NAN_LENGTH && in.indexOf(NAN_REP,i)==i) {
-                    return A2BC_NOT_A_NUMBER;
-                }
-                // something went wrong, throw exception
-                break parseNumber;
-            } else if(c == 'I') { // Check for Infinity strings
-                if((len-i)==INFINITY_LENGTH && in.indexOf(INFINITY_REP,i)==i) {
-                    return isNegative? A2BC_NEGATIVE_INFINITY : A2BC_POSITIVE_INFINITY;
-                }
-                // something went wrong, throw exception
-                break parseNumber;
-            } else if (c == '0')  { // check for hexadecimal floating-point number
-                if (len > i+1 ) {
-                    char ch = in.charAt(i+1);
-                    if (ch == 'x' || ch == 'X' ) { // possible hex string
-                        return parseHexString(in);
-                    }
-                }
-            }  // look for and process decimal floating-point string
-
-            char[] digits = new char[ len ];
-            int    nDigits= 0;
-            boolean decSeen = false;
-            int decPt = 0;
-            int nLeadZero = 0;
-            int nTrailZero= 0;
-
-        skipLeadingZerosLoop:
-            while (i < len) {
-                c = in.charAt(i);
-                if (c == '0') {
-                    nLeadZero++;
-                } else if (c == '.') {
-                    if (decSeen) {
-                        // already saw one ., this is the 2nd.
-                        throw new NumberFormatException("multiple points");
-                    }
-                    decPt = i;
-                    if (signSeen) {
-                        decPt -= 1;
-                    }
-                    decSeen = true;
-                } else {
-                    break skipLeadingZerosLoop;
-                }
-                i++;
-            }
-        digitLoop:
-            while (i < len) {
-                c = in.charAt(i);
-                if (c >= '1' && c <= '9') {
-                    digits[nDigits++] = c;
-                    nTrailZero = 0;
-                } else if (c == '0') {
-                    digits[nDigits++] = c;
-                    nTrailZero++;
-                } else if (c == '.') {
-                    if (decSeen) {
-                        // already saw one ., this is the 2nd.
-                        throw new NumberFormatException("multiple points");
-                    }
-                    decPt = i;
-                    if (signSeen) {
-                        decPt -= 1;
-                    }
-                    decSeen = true;
-                } else {
-                    break digitLoop;
-                }
-                i++;
-            }
-            nDigits -=nTrailZero;
-            //
-            // At this point, we've scanned all the digits and decimal
-            // point we're going to see. Trim off leading and trailing
-            // zeros, which will just confuse us later, and adjust
-            // our initial decimal exponent accordingly.
-            // To review:
-            // we have seen i total characters.
-            // nLeadZero of them were zeros before any other digits.
-            // nTrailZero of them were zeros after any other digits.
-            // if ( decSeen ), then a . was seen after decPt characters
-            // ( including leading zeros which have been discarded )
-            // nDigits characters were neither lead nor trailing
-            // zeros, nor point
-            //
-            //
-            // special hack: if we saw no non-zero digits, then the
-            // answer is zero!
-            // Unfortunately, we feel honor-bound to keep parsing!
-            //
-            boolean isZero = (nDigits == 0);
-            if ( isZero &&  nLeadZero == 0 ){
-                // we saw NO DIGITS AT ALL,
-                // not even a crummy 0!
-                // this is not allowed.
-                break parseNumber; // go throw exception
-            }
-            //
-            // Our initial exponent is decPt, adjusted by the number of
-            // discarded zeros. Or, if there was no decPt,
-            // then its just nDigits adjusted by discarded trailing zeros.
-            //
-            if ( decSeen ){
-                decExp = decPt - nLeadZero;
-            } else {
-                decExp = nDigits + nTrailZero;
-            }
-
-            //
-            // Look for 'e' or 'E' and an optionally signed integer.
-            //
-            if ( (i < len) &&  (((c = in.charAt(i) )=='e') || (c == 'E') ) ){
-                int expSign = 1;
-                int expVal  = 0;
-                int reallyBig = Integer.MAX_VALUE / 10;
-                boolean expOverflow = false;
-                switch( in.charAt(++i) ){
-                case '-':
-                    expSign = -1;
-                    //FALLTHROUGH
-                case '+':
-                    i++;
-                }
-                int expAt = i;
-            expLoop:
-                while ( i < len  ){
-                    if ( expVal >= reallyBig ){
-                        // the next character will cause integer
-                        // overflow.
-                        expOverflow = true;
-                    }
-                    c = in.charAt(i++);
-                    if(c>='0' && c<='9') {
-                        expVal = expVal*10 + ( (int)c - (int)'0' );
-                    } else {
-                        i--;           // back up.
-                        break expLoop; // stop parsing exponent.
-                    }
-                }
-                int expLimit = BIG_DECIMAL_EXPONENT + nDigits + nTrailZero;
-                if (expOverflow || (expVal > expLimit)) {
-                    // There is still a chance that the exponent will be safe to
-                    // use: if it would eventually decrease due to a negative
-                    // decExp, and that number is below the limit.  We check for
-                    // that here.
-                    if (!expOverflow && (expSign == 1 && decExp < 0)
-                            && (expVal + decExp) < expLimit) {
-                        // Cannot overflow: adding a positive and negative number.
-                        decExp += expVal;
-                    } else {
-                        //
-                        // The intent here is to end up with
-                        // infinity or zero, as appropriate.
-                        // The reason for yielding such a small decExponent,
-                        // rather than something intuitive such as
-                        // expSign*Integer.MAX_VALUE, is that this value
-                        // is subject to further manipulation in
-                        // doubleValue() and floatValue(), and I don't want
-                        // it to be able to cause overflow there!
-                        // (The only way we can get into trouble here is for
-                        // really outrageous nDigits+nTrailZero, such as 2
-                        // billion.)
-                        //
-                        decExp = expSign * expLimit;
-                    }
-                } else {
-                    // this should not overflow, since we tested
-                    // for expVal > (MAX+N), where N >= abs(decExp)
-                    decExp = decExp + expSign*expVal;
-                }
-
-                // if we saw something not a digit ( or end of string )
-                // after the [Ee][+-], without seeing any digits at all
-                // this is certainly an error. If we saw some digits,
-                // but then some trailing garbage, that might be ok.
-                // so we just fall through in that case.
-                // HUMBUG
-                if ( i == expAt ) {
-                    break parseNumber; // certainly bad
-                }
-            }
-            //
-            // We parsed everything we could.
-            // If there are leftovers, then this is not good input!
-            //
-            if ( i < len &&
-                ((i != len - 1) ||
-                (in.charAt(i) != 'f' &&
-                 in.charAt(i) != 'F' &&
-                 in.charAt(i) != 'd' &&
-                 in.charAt(i) != 'D'))) {
-                break parseNumber; // go throw exception
-            }
-            if(isZero) {
-                return isNegative ? A2BC_NEGATIVE_ZERO : A2BC_POSITIVE_ZERO;
-            }
-            return new ASCIIToBinaryBuffer(isNegative, decExp, digits, nDigits);
-        } catch ( StringIndexOutOfBoundsException e ){ }
-        throw new NumberFormatException("For input string: \"" + in + "\"");
-    }
-
-    private static class HexFloatPattern {
-        /**
-         * Grammar is compatible with hexadecimal floating-point constants
-         * described in section 6.4.4.2 of the C99 specification.
-         */
-        private static final Pattern VALUE = Pattern.compile(
-                   //1           234                   56                7                   8      9
-                    "([-+])?0[xX](((\\p{XDigit}+)\\.?)|((\\p{XDigit}*)\\.(\\p{XDigit}+)))[pP]([-+])?(\\p{Digit}+)[fFdD]?"
-                    );
-    }
-
-    /**
-     * Converts string s to a suitable floating decimal; uses the
-     * double constructor and sets the roundDir variable appropriately
-     * in case the value is later converted to a float.
-     *
-     * @param s The <code>String</code> to parse.
-     */
-   static ASCIIToBinaryConverter parseHexString(String s) {
-            // Verify string is a member of the hexadecimal floating-point
-            // string language.
-            Matcher m = HexFloatPattern.VALUE.matcher(s);
-            boolean validInput = m.matches();
-            if (!validInput) {
-                // Input does not match pattern
-                throw new NumberFormatException("For input string: \"" + s + "\"");
-            } else { // validInput
-                //
-                // We must isolate the sign, significand, and exponent
-                // fields.  The sign value is straightforward.  Since
-                // floating-point numbers are stored with a normalized
-                // representation, the significand and exponent are
-                // interrelated.
-                //
-                // After extracting the sign, we normalized the
-                // significand as a hexadecimal value, calculating an
-                // exponent adjust for any shifts made during
-                // normalization.  If the significand is zero, the
-                // exponent doesn't need to be examined since the output
-                // will be zero.
-                //
-                // Next the exponent in the input string is extracted.
-                // Afterwards, the significand is normalized as a *binary*
-                // value and the input value's normalized exponent can be
-                // computed.  The significand bits are copied into a
-                // double significand; if the string has more logical bits
-                // than can fit in a double, the extra bits affect the
-                // round and sticky bits which are used to round the final
-                // value.
-                //
-                //  Extract significand sign
-                String group1 = m.group(1);
-                boolean isNegative = ((group1 != null) && group1.equals("-"));
-
-                //  Extract Significand magnitude
-                //
-                // Based on the form of the significand, calculate how the
-                // binary exponent needs to be adjusted to create a
-                // normalized//hexadecimal* floating-point number; that
-                // is, a number where there is one nonzero hex digit to
-                // the left of the (hexa)decimal point.  Since we are
-                // adjusting a binary, not hexadecimal exponent, the
-                // exponent is adjusted by a multiple of 4.
-                //
-                // There are a number of significand scenarios to consider;
-                // letters are used in indicate nonzero digits:
-                //
-                // 1. 000xxxx       =>      x.xxx   normalized
-                //    increase exponent by (number of x's - 1)*4
-                //
-                // 2. 000xxx.yyyy =>        x.xxyyyy        normalized
-                //    increase exponent by (number of x's - 1)*4
-                //
-                // 3. .000yyy  =>   y.yy    normalized
-                //    decrease exponent by (number of zeros + 1)*4
-                //
-                // 4. 000.00000yyy => y.yy normalized
-                //    decrease exponent by (number of zeros to right of point + 1)*4
-                //
-                // If the significand is exactly zero, return a properly
-                // signed zero.
-                //
-
-                String significandString = null;
-                int signifLength = 0;
-                int exponentAdjust = 0;
-                {
-                    int leftDigits = 0; // number of meaningful digits to
-                    // left of "decimal" point
-                    // (leading zeros stripped)
-                    int rightDigits = 0; // number of digits to right of
-                    // "decimal" point; leading zeros
-                    // must always be accounted for
-                    //
-                    // The significand is made up of either
-                    //
-                    // 1. group 4 entirely (integer portion only)
-                    //
-                    // OR
-                    //
-                    // 2. the fractional portion from group 7 plus any
-                    // (optional) integer portions from group 6.
-                    //
-                    String group4;
-                    if ((group4 = m.group(4)) != null) {  // Integer-only significand
-                        // Leading zeros never matter on the integer portion
-                        significandString = stripLeadingZeros(group4);
-                        leftDigits = significandString.length();
-                    } else {
-                        // Group 6 is the optional integer; leading zeros
-                        // never matter on the integer portion
-                        String group6 = stripLeadingZeros(m.group(6));
-                        leftDigits = group6.length();
-
-                        // fraction
-                        String group7 = m.group(7);
-                        rightDigits = group7.length();
-
-                        // Turn "integer.fraction" into "integer"+"fraction"
-                        significandString =
-                                ((group6 == null) ? "" : group6) + // is the null
-                                        // check necessary?
-                                        group7;
-                    }
-
-                    significandString = stripLeadingZeros(significandString);
-                    signifLength = significandString.length();
-
-                    //
-                    // Adjust exponent as described above
-                    //
-                    if (leftDigits >= 1) {  // Cases 1 and 2
-                        exponentAdjust = 4 * (leftDigits - 1);
-                    } else {                // Cases 3 and 4
-                        exponentAdjust = -4 * (rightDigits - signifLength + 1);
-                    }
-
-                    // If the significand is zero, the exponent doesn't
-                    // matter; return a properly signed zero.
-
-                    if (signifLength == 0) { // Only zeros in input
-                        return isNegative ? A2BC_NEGATIVE_ZERO : A2BC_POSITIVE_ZERO;
-                    }
-                }
-
-                //  Extract Exponent
-                //
-                // Use an int to read in the exponent value; this should
-                // provide more than sufficient range for non-contrived
-                // inputs.  If reading the exponent in as an int does
-                // overflow, examine the sign of the exponent and
-                // significand to determine what to do.
-                //
-                String group8 = m.group(8);
-                boolean positiveExponent = (group8 == null) || group8.equals("+");
-                long unsignedRawExponent;
-                try {
-                    unsignedRawExponent = Integer.parseInt(m.group(9));
-                }
-                catch (NumberFormatException e) {
-                    // At this point, we know the exponent is
-                    // syntactically well-formed as a sequence of
-                    // digits.  Therefore, if an NumberFormatException
-                    // is thrown, it must be due to overflowing int's
-                    // range.  Also, at this point, we have already
-                    // checked for a zero significand.  Thus the signs
-                    // of the exponent and significand determine the
-                    // final result:
-                    //
-                    //                      significand
-                    //                      +               -
-                    // exponent     +       +infinity       -infinity
-                    //              -       +0.0            -0.0
-                    return isNegative ?
-                              (positiveExponent ? A2BC_NEGATIVE_INFINITY : A2BC_NEGATIVE_ZERO)
-                            : (positiveExponent ? A2BC_POSITIVE_INFINITY : A2BC_POSITIVE_ZERO);
-
-                }
-
-                long rawExponent =
-                        (positiveExponent ? 1L : -1L) * // exponent sign
-                                unsignedRawExponent;            // exponent magnitude
-
-                // Calculate partially adjusted exponent
-                long exponent = rawExponent + exponentAdjust;
-
-                // Starting copying non-zero bits into proper position in
-                // a long; copy explicit bit too; this will be masked
-                // later for normal values.
-
-                boolean round = false;
-                boolean sticky = false;
-                int nextShift = 0;
-                long significand = 0L;
-                // First iteration is different, since we only copy
-                // from the leading significand bit; one more exponent
-                // adjust will be needed...
-
-                // IMPORTANT: make leadingDigit a long to avoid
-                // surprising shift semantics!
-                long leadingDigit = getHexDigit(significandString, 0);
-
-                //
-                // Left shift the leading digit (53 - (bit position of
-                // leading 1 in digit)); this sets the top bit of the
-                // significand to 1.  The nextShift value is adjusted
-                // to take into account the number of bit positions of
-                // the leadingDigit actually used.  Finally, the
-                // exponent is adjusted to normalize the significand
-                // as a binary value, not just a hex value.
-                //
-                if (leadingDigit == 1) {
-                    significand |= leadingDigit << 52;
-                    nextShift = 52 - 4;
-                    // exponent += 0
-                } else if (leadingDigit <= 3) { // [2, 3]
-                    significand |= leadingDigit << 51;
-                    nextShift = 52 - 5;
-                    exponent += 1;
-                } else if (leadingDigit <= 7) { // [4, 7]
-                    significand |= leadingDigit << 50;
-                    nextShift = 52 - 6;
-                    exponent += 2;
-                } else if (leadingDigit <= 15) { // [8, f]
-                    significand |= leadingDigit << 49;
-                    nextShift = 52 - 7;
-                    exponent += 3;
-                } else {
-                    throw new AssertionError("Result from digit conversion too large!");
-                }
-                // The preceding if-else could be replaced by a single
-                // code block based on the high-order bit set in
-                // leadingDigit.  Given leadingOnePosition,
-
-                // significand |= leadingDigit << (SIGNIFICAND_WIDTH - leadingOnePosition);
-                // nextShift = 52 - (3 + leadingOnePosition);
-                // exponent += (leadingOnePosition-1);
-
-                //
-                // Now the exponent variable is equal to the normalized
-                // binary exponent.  Code below will make representation
-                // adjustments if the exponent is incremented after
-                // rounding (includes overflows to infinity) or if the
-                // result is subnormal.
-                //
-
-                // Copy digit into significand until the significand can't
-                // hold another full hex digit or there are no more input
-                // hex digits.
-                int i = 0;
-                for (i = 1;
-                     i < signifLength && nextShift >= 0;
-                     i++) {
-                    long currentDigit = getHexDigit(significandString, i);
-                    significand |= (currentDigit << nextShift);
-                    nextShift -= 4;
-                }
-
-                // After the above loop, the bulk of the string is copied.
-                // Now, we must copy any partial hex digits into the
-                // significand AND compute the round bit and start computing
-                // sticky bit.
-
-                if (i < signifLength) { // at least one hex input digit exists
-                    long currentDigit = getHexDigit(significandString, i);
-
-                    // from nextShift, figure out how many bits need
-                    // to be copied, if any
-                    switch (nextShift) { // must be negative
-                        case -1:
-                            // three bits need to be copied in; can
-                            // set round bit
-                            significand |= ((currentDigit & 0xEL) >> 1);
-                            round = (currentDigit & 0x1L) != 0L;
-                            break;
-
-                        case -2:
-                            // two bits need to be copied in; can
-                            // set round and start sticky
-                            significand |= ((currentDigit & 0xCL) >> 2);
-                            round = (currentDigit & 0x2L) != 0L;
-                            sticky = (currentDigit & 0x1L) != 0;
-                            break;
-
-                        case -3:
-                            // one bit needs to be copied in
-                            significand |= ((currentDigit & 0x8L) >> 3);
-                            // Now set round and start sticky, if possible
-                            round = (currentDigit & 0x4L) != 0L;
-                            sticky = (currentDigit & 0x3L) != 0;
-                            break;
-
-                        case -4:
-                            // all bits copied into significand; set
-                            // round and start sticky
-                            round = ((currentDigit & 0x8L) != 0);  // is top bit set?
-                            // nonzeros in three low order bits?
-                            sticky = (currentDigit & 0x7L) != 0;
-                            break;
-
-                        default:
-                            throw new AssertionError("Unexpected shift distance remainder.");
-                            // break;
-                    }
-
-                    // Round is set; sticky might be set.
-
-                    // For the sticky bit, it suffices to check the
-                    // current digit and test for any nonzero digits in
-                    // the remaining unprocessed input.
-                    i++;
-                    while (i < signifLength && !sticky) {
-                        currentDigit = getHexDigit(significandString, i);
-                        sticky = sticky || (currentDigit != 0);
-                        i++;
-                    }
-
-                }
-                // else all of string was seen, round and sticky are
-                // correct as false.
-
-                // Float calculations
-                int floatBits = isNegative ? FloatConsts.SIGN_BIT_MASK : 0;
-                if (exponent >= FloatConsts.MIN_EXPONENT) {
-                    if (exponent > FloatConsts.MAX_EXPONENT) {
-                        // Float.POSITIVE_INFINITY
-                        floatBits |= FloatConsts.EXP_BIT_MASK;
-                    } else {
-                        int threshShift = DoubleConsts.SIGNIFICAND_WIDTH - FloatConsts.SIGNIFICAND_WIDTH - 1;
-                        boolean floatSticky = (significand & ((1L << threshShift) - 1)) != 0 || round || sticky;
-                        int iValue = (int) (significand >>> threshShift);
-                        if ((iValue & 3) != 1 || floatSticky) {
-                            iValue++;
-                        }
-                        floatBits |= (((((int) exponent) + (FloatConsts.EXP_BIAS - 1))) << SINGLE_EXP_SHIFT) + (iValue >> 1);
-                    }
-                } else {
-                    if (exponent < FloatConsts.MIN_SUB_EXPONENT - 1) {
-                        // 0
-                    } else {
-                        // exponent == -127 ==> threshShift = 53 - 2 + (-149) - (-127) = 53 - 24
-                        int threshShift = (int) ((DoubleConsts.SIGNIFICAND_WIDTH - 2 + FloatConsts.MIN_SUB_EXPONENT) - exponent);
-                        assert threshShift >= DoubleConsts.SIGNIFICAND_WIDTH - FloatConsts.SIGNIFICAND_WIDTH;
-                        assert threshShift < DoubleConsts.SIGNIFICAND_WIDTH;
-                        boolean floatSticky = (significand & ((1L << threshShift) - 1)) != 0 || round || sticky;
-                        int iValue = (int) (significand >>> threshShift);
-                        if ((iValue & 3) != 1 || floatSticky) {
-                            iValue++;
-                        }
-                        floatBits |= iValue >> 1;
-                    }
-                }
-                float fValue = Float.intBitsToFloat(floatBits);
-
-                // Check for overflow and update exponent accordingly.
-                if (exponent > DoubleConsts.MAX_EXPONENT) {         // Infinite result
-                    // overflow to properly signed infinity
-                    return isNegative ? A2BC_NEGATIVE_INFINITY : A2BC_POSITIVE_INFINITY;
-                } else {  // Finite return value
-                    if (exponent <= DoubleConsts.MAX_EXPONENT && // (Usually) normal result
-                            exponent >= DoubleConsts.MIN_EXPONENT) {
-
-                        // The result returned in this block cannot be a
-                        // zero or subnormal; however after the
-                        // significand is adjusted from rounding, we could
-                        // still overflow in infinity.
-
-                        // AND exponent bits into significand; if the
-                        // significand is incremented and overflows from
-                        // rounding, this combination will update the
-                        // exponent correctly, even in the case of
-                        // Double.MAX_VALUE overflowing to infinity.
-
-                        significand = ((( exponent +
-                                (long) DoubleConsts.EXP_BIAS) <<
-                                (DoubleConsts.SIGNIFICAND_WIDTH - 1))
-                                & DoubleConsts.EXP_BIT_MASK) |
-                                (DoubleConsts.SIGNIF_BIT_MASK & significand);
-
-                    } else {  // Subnormal or zero
-                        // (exponent < DoubleConsts.MIN_EXPONENT)
-
-                        if (exponent < (DoubleConsts.MIN_SUB_EXPONENT - 1)) {
-                            // No way to round back to nonzero value
-                            // regardless of significand if the exponent is
-                            // less than -1075.
-                            return isNegative ? A2BC_NEGATIVE_ZERO : A2BC_POSITIVE_ZERO;
-                        } else { //  -1075 <= exponent <= MIN_EXPONENT -1 = -1023
-                            //
-                            // Find bit position to round to; recompute
-                            // round and sticky bits, and shift
-                            // significand right appropriately.
-                            //
-
-                            sticky = sticky || round;
-                            round = false;
-
-                            // Number of bits of significand to preserve is
-                            // exponent - abs_min_exp +1
-                            // check:
-                            // -1075 +1074 + 1 = 0
-                            // -1023 +1074 + 1 = 52
-
-                            int bitsDiscarded = 53 -
-                                    ((int) exponent - DoubleConsts.MIN_SUB_EXPONENT + 1);
-                            assert bitsDiscarded >= 1 && bitsDiscarded <= 53;
-
-                            // What to do here:
-                            // First, isolate the new round bit
-                            round = (significand & (1L << (bitsDiscarded - 1))) != 0L;
-                            if (bitsDiscarded > 1) {
-                                // create mask to update sticky bits; low
-                                // order bitsDiscarded bits should be 1
-                                long mask = ~((~0L) << (bitsDiscarded - 1));
-                                sticky = sticky || ((significand & mask) != 0L);
-                            }
-
-                            // Now, discard the bits
-                            significand = significand >> bitsDiscarded;
-
-                            significand = ((((long) (DoubleConsts.MIN_EXPONENT - 1) + // subnorm exp.
-                                    (long) DoubleConsts.EXP_BIAS) <<
-                                    (DoubleConsts.SIGNIFICAND_WIDTH - 1))
-                                    & DoubleConsts.EXP_BIT_MASK) |
-                                    (DoubleConsts.SIGNIF_BIT_MASK & significand);
-                        }
-                    }
-
-                    // The significand variable now contains the currently
-                    // appropriate exponent bits too.
-
-                    //
-                    // Determine if significand should be incremented;
-                    // making this determination depends on the least
-                    // significant bit and the round and sticky bits.
-                    //
-                    // Round to nearest even rounding table, adapted from
-                    // table 4.7 in "Computer Arithmetic" by IsraelKoren.
-                    // The digit to the left of the "decimal" point is the
-                    // least significant bit, the digits to the right of
-                    // the point are the round and sticky bits
-                    //
-                    // Number       Round(x)
-                    // x0.00        x0.
-                    // x0.01        x0.
-                    // x0.10        x0.
-                    // x0.11        x1. = x0. +1
-                    // x1.00        x1.
-                    // x1.01        x1.
-                    // x1.10        x1. + 1
-                    // x1.11        x1. + 1
-                    //
-                    boolean leastZero = ((significand & 1L) == 0L);
-                    if ((leastZero && round && sticky) ||
-                            ((!leastZero) && round)) {
-                        significand++;
-                    }
-
-                    double value = isNegative ?
-                            Double.longBitsToDouble(significand | DoubleConsts.SIGN_BIT_MASK) :
-                            Double.longBitsToDouble(significand );
-
-                    return new PreparedASCIIToBinaryBuffer(value, fValue);
-                }
-            }
-    }
-
-    /**
-     * Returns <code>s</code> with any leading zeros removed.
-     */
-    static String stripLeadingZeros(String s) {
-//        return  s.replaceFirst("^0+", "");
-        if(!s.isEmpty() && s.charAt(0)=='0') {
-            for(int i=1; i<s.length(); i++) {
-                if(s.charAt(i)!='0') {
-                    return s.substring(i);
-                }
-            }
-            return "";
-        }
-        return s;
-    }
-
-    /**
-     * Extracts a hexadecimal digit from position <code>position</code>
-     * of string <code>s</code>.
-     */
-    static int getHexDigit(String s, int position) {
-        int value = Character.digit(s.charAt(position), 16);
-        if (value <= -1 || value >= 16) {
-            throw new AssertionError("Unexpected failure of digit conversion of " +
-                                     s.charAt(position));
-        }
-        return value;
-    }
-}