jdk/src/java.base/share/classes/sun/misc/FDBigInteger.java
changeset 34852 bd26599f2098
parent 34851 3359dd18cde0
parent 34848 a3eed4c1badb
child 34858 ec69df775846
--- a/jdk/src/java.base/share/classes/sun/misc/FDBigInteger.java	Thu Dec 24 10:33:21 2015 -0800
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1508 +0,0 @@
-/*
- * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-package sun.misc;
-
-import java.math.BigInteger;
-import java.util.Arrays;
-//@ model import org.jmlspecs.models.JMLMath;
-
-/**
- * A simple big integer package specifically for floating point base conversion.
- */
-public /*@ spec_bigint_math @*/ class FDBigInteger {
-
-    //
-    // This class contains many comments that start with "/*@" mark.
-    // They are behavourial specification in
-    // the Java Modelling Language (JML):
-    // http://www.eecs.ucf.edu/~leavens/JML//index.shtml
-    //
-
-    /*@
-    @ public pure model static \bigint UNSIGNED(int v) {
-    @     return v >= 0 ? v : v + (((\bigint)1) << 32);
-    @ }
-    @
-    @ public pure model static \bigint UNSIGNED(long v) {
-    @     return v >= 0 ? v : v + (((\bigint)1) << 64);
-    @ }
-    @
-    @ public pure model static \bigint AP(int[] data, int len) {
-    @     return (\sum int i; 0 <= 0 && i < len; UNSIGNED(data[i]) << (i*32));
-    @ }
-    @
-    @ public pure model static \bigint pow52(int p5, int p2) {
-    @     ghost \bigint v = 1;
-    @     for (int i = 0; i < p5; i++) v *= 5;
-    @     return v << p2;
-    @ }
-    @
-    @ public pure model static \bigint pow10(int p10) {
-    @     return pow52(p10, p10);
-    @ }
-    @*/
-
-    static final int[] SMALL_5_POW = {
-            1,
-            5,
-            5 * 5,
-            5 * 5 * 5,
-            5 * 5 * 5 * 5,
-            5 * 5 * 5 * 5 * 5,
-            5 * 5 * 5 * 5 * 5 * 5,
-            5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5
-    };
-
-    static final long[] LONG_5_POW = {
-            1L,
-            5L,
-            5L * 5,
-            5L * 5 * 5,
-            5L * 5 * 5 * 5,
-            5L * 5 * 5 * 5 * 5,
-            5L * 5 * 5 * 5 * 5 * 5,
-            5L * 5 * 5 * 5 * 5 * 5 * 5,
-            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
-    };
-
-    // Maximum size of cache of powers of 5 as FDBigIntegers.
-    private static final int MAX_FIVE_POW = 340;
-
-    // Cache of big powers of 5 as FDBigIntegers.
-    private static final FDBigInteger POW_5_CACHE[];
-
-    // Initialize FDBigInteger cache of powers of 5.
-    static {
-        POW_5_CACHE = new FDBigInteger[MAX_FIVE_POW];
-        int i = 0;
-        while (i < SMALL_5_POW.length) {
-            FDBigInteger pow5 = new FDBigInteger(new int[]{SMALL_5_POW[i]}, 0);
-            pow5.makeImmutable();
-            POW_5_CACHE[i] = pow5;
-            i++;
-        }
-        FDBigInteger prev = POW_5_CACHE[i - 1];
-        while (i < MAX_FIVE_POW) {
-            POW_5_CACHE[i] = prev = prev.mult(5);
-            prev.makeImmutable();
-            i++;
-        }
-    }
-
-    // Zero as an FDBigInteger.
-    public static final FDBigInteger ZERO = new FDBigInteger(new int[0], 0);
-
-    // Ensure ZERO is immutable.
-    static {
-        ZERO.makeImmutable();
-    }
-
-    // Constant for casting an int to a long via bitwise AND.
-    private static final long LONG_MASK = 0xffffffffL;
-
-    //@ spec_public non_null;
-    private int data[];  // value: data[0] is least significant
-    //@ spec_public;
-    private int offset;  // number of least significant zero padding ints
-    //@ spec_public;
-    private int nWords;  // data[nWords-1]!=0, all values above are zero
-                 // if nWords==0 -> this FDBigInteger is zero
-    //@ spec_public;
-    private boolean isImmutable = false;
-
-    /*@
-     @ public invariant 0 <= nWords && nWords <= data.length && offset >= 0;
-     @ public invariant nWords == 0 ==> offset == 0;
-     @ public invariant nWords > 0 ==> data[nWords - 1] != 0;
-     @ public invariant (\forall int i; nWords <= i && i < data.length; data[i] == 0);
-     @ public pure model \bigint value() {
-     @     return AP(data, nWords) << (offset*32);
-     @ }
-     @*/
-
-    /**
-     * Constructs an <code>FDBigInteger</code> from data and padding. The
-     * <code>data</code> parameter has the least significant <code>int</code> at
-     * the zeroth index. The <code>offset</code> parameter gives the number of
-     * zero <code>int</code>s to be inferred below the least significant element
-     * of <code>data</code>.
-     *
-     * @param data An array containing all non-zero <code>int</code>s of the value.
-     * @param offset An offset indicating the number of zero <code>int</code>s to pad
-     * below the least significant element of <code>data</code>.
-     */
-    /*@
-     @ requires data != null && offset >= 0;
-     @ ensures this.value() == \old(AP(data, data.length) << (offset*32));
-     @ ensures this.data == \old(data);
-     @*/
-    private FDBigInteger(int[] data, int offset) {
-        this.data = data;
-        this.offset = offset;
-        this.nWords = data.length;
-        trimLeadingZeros();
-    }
-
-    /**
-     * Constructs an <code>FDBigInteger</code> from a starting value and some
-     * decimal digits.
-     *
-     * @param lValue The starting value.
-     * @param digits The decimal digits.
-     * @param kDigits The initial index into <code>digits</code>.
-     * @param nDigits The final index into <code>digits</code>.
-     */
-    /*@
-     @ requires digits != null;
-     @ requires 0 <= kDigits && kDigits <= nDigits && nDigits <= digits.length;
-     @ requires (\forall int i; 0 <= i && i < nDigits; '0' <= digits[i] && digits[i] <= '9');
-     @ ensures this.value() == \old(lValue * pow10(nDigits - kDigits) + (\sum int i; kDigits <= i && i < nDigits; (digits[i] - '0') * pow10(nDigits - i - 1)));
-     @*/
-    public FDBigInteger(long lValue, char[] digits, int kDigits, int nDigits) {
-        int n = Math.max((nDigits + 8) / 9, 2);        // estimate size needed.
-        data = new int[n];      // allocate enough space
-        data[0] = (int) lValue;    // starting value
-        data[1] = (int) (lValue >>> 32);
-        offset = 0;
-        nWords = 2;
-        int i = kDigits;
-        int limit = nDigits - 5;       // slurp digits 5 at a time.
-        int v;
-        while (i < limit) {
-            int ilim = i + 5;
-            v = (int) digits[i++] - (int) '0';
-            while (i < ilim) {
-                v = 10 * v + (int) digits[i++] - (int) '0';
-            }
-            multAddMe(100000, v); // ... where 100000 is 10^5.
-        }
-        int factor = 1;
-        v = 0;
-        while (i < nDigits) {
-            v = 10 * v + (int) digits[i++] - (int) '0';
-            factor *= 10;
-        }
-        if (factor != 1) {
-            multAddMe(factor, v);
-        }
-        trimLeadingZeros();
-    }
-
-    /**
-     * Returns an <code>FDBigInteger</code> with the numerical value
-     * <code>5<sup>p5</sup> * 2<sup>p2</sup></code>.
-     *
-     * @param p5 The exponent of the power-of-five factor.
-     * @param p2 The exponent of the power-of-two factor.
-     * @return <code>5<sup>p5</sup> * 2<sup>p2</sup></code>
-     */
-    /*@
-     @ requires p5 >= 0 && p2 >= 0;
-     @ assignable \nothing;
-     @ ensures \result.value() == \old(pow52(p5, p2));
-     @*/
-    public static FDBigInteger valueOfPow52(int p5, int p2) {
-        if (p5 != 0) {
-            if (p2 == 0) {
-                return big5pow(p5);
-            } else if (p5 < SMALL_5_POW.length) {
-                int pow5 = SMALL_5_POW[p5];
-                int wordcount = p2 >> 5;
-                int bitcount = p2 & 0x1f;
-                if (bitcount == 0) {
-                    return new FDBigInteger(new int[]{pow5}, wordcount);
-                } else {
-                    return new FDBigInteger(new int[]{
-                            pow5 << bitcount,
-                            pow5 >>> (32 - bitcount)
-                    }, wordcount);
-                }
-            } else {
-                return big5pow(p5).leftShift(p2);
-            }
-        } else {
-            return valueOfPow2(p2);
-        }
-    }
-
-    /**
-     * Returns an <code>FDBigInteger</code> with the numerical value
-     * <code>value * 5<sup>p5</sup> * 2<sup>p2</sup></code>.
-     *
-     * @param value The constant factor.
-     * @param p5 The exponent of the power-of-five factor.
-     * @param p2 The exponent of the power-of-two factor.
-     * @return <code>value * 5<sup>p5</sup> * 2<sup>p2</sup></code>
-     */
-    /*@
-     @ requires p5 >= 0 && p2 >= 0;
-     @ assignable \nothing;
-     @ ensures \result.value() == \old(UNSIGNED(value) * pow52(p5, p2));
-     @*/
-    public static FDBigInteger valueOfMulPow52(long value, int p5, int p2) {
-        assert p5 >= 0 : p5;
-        assert p2 >= 0 : p2;
-        int v0 = (int) value;
-        int v1 = (int) (value >>> 32);
-        int wordcount = p2 >> 5;
-        int bitcount = p2 & 0x1f;
-        if (p5 != 0) {
-            if (p5 < SMALL_5_POW.length) {
-                long pow5 = SMALL_5_POW[p5] & LONG_MASK;
-                long carry = (v0 & LONG_MASK) * pow5;
-                v0 = (int) carry;
-                carry >>>= 32;
-                carry = (v1 & LONG_MASK) * pow5 + carry;
-                v1 = (int) carry;
-                int v2 = (int) (carry >>> 32);
-                if (bitcount == 0) {
-                    return new FDBigInteger(new int[]{v0, v1, v2}, wordcount);
-                } else {
-                    return new FDBigInteger(new int[]{
-                            v0 << bitcount,
-                            (v1 << bitcount) | (v0 >>> (32 - bitcount)),
-                            (v2 << bitcount) | (v1 >>> (32 - bitcount)),
-                            v2 >>> (32 - bitcount)
-                    }, wordcount);
-                }
-            } else {
-                FDBigInteger pow5 = big5pow(p5);
-                int[] r;
-                if (v1 == 0) {
-                    r = new int[pow5.nWords + 1 + ((p2 != 0) ? 1 : 0)];
-                    mult(pow5.data, pow5.nWords, v0, r);
-                } else {
-                    r = new int[pow5.nWords + 2 + ((p2 != 0) ? 1 : 0)];
-                    mult(pow5.data, pow5.nWords, v0, v1, r);
-                }
-                return (new FDBigInteger(r, pow5.offset)).leftShift(p2);
-            }
-        } else if (p2 != 0) {
-            if (bitcount == 0) {
-                return new FDBigInteger(new int[]{v0, v1}, wordcount);
-            } else {
-                return new FDBigInteger(new int[]{
-                         v0 << bitcount,
-                        (v1 << bitcount) | (v0 >>> (32 - bitcount)),
-                        v1 >>> (32 - bitcount)
-                }, wordcount);
-            }
-        }
-        return new FDBigInteger(new int[]{v0, v1}, 0);
-    }
-
-    /**
-     * Returns an <code>FDBigInteger</code> with the numerical value
-     * <code>2<sup>p2</sup></code>.
-     *
-     * @param p2 The exponent of 2.
-     * @return <code>2<sup>p2</sup></code>
-     */
-    /*@
-     @ requires p2 >= 0;
-     @ assignable \nothing;
-     @ ensures \result.value() == pow52(0, p2);
-     @*/
-    private static FDBigInteger valueOfPow2(int p2) {
-        int wordcount = p2 >> 5;
-        int bitcount = p2 & 0x1f;
-        return new FDBigInteger(new int[]{1 << bitcount}, wordcount);
-    }
-
-    /**
-     * Removes all leading zeros from this <code>FDBigInteger</code> adjusting
-     * the offset and number of non-zero leading words accordingly.
-     */
-    /*@
-     @ requires data != null;
-     @ requires 0 <= nWords && nWords <= data.length && offset >= 0;
-     @ requires nWords == 0 ==> offset == 0;
-     @ ensures nWords == 0 ==> offset == 0;
-     @ ensures nWords > 0 ==> data[nWords - 1] != 0;
-     @*/
-    private /*@ helper @*/ void trimLeadingZeros() {
-        int i = nWords;
-        if (i > 0 && (data[--i] == 0)) {
-            //for (; i > 0 && data[i - 1] == 0; i--) ;
-            while(i > 0 && data[i - 1] == 0) {
-                i--;
-            }
-            this.nWords = i;
-            if (i == 0) { // all words are zero
-                this.offset = 0;
-            }
-        }
-    }
-
-    /**
-     * Retrieves the normalization bias of the <code>FDBigIntger</code>. The
-     * normalization bias is a left shift such that after it the highest word
-     * of the value will have the 4 highest bits equal to zero:
-     * {@code (highestWord & 0xf0000000) == 0}, but the next bit should be 1
-     * {@code (highestWord & 0x08000000) != 0}.
-     *
-     * @return The normalization bias.
-     */
-    /*@
-     @ requires this.value() > 0;
-     @*/
-    public /*@ pure @*/ int getNormalizationBias() {
-        if (nWords == 0) {
-            throw new IllegalArgumentException("Zero value cannot be normalized");
-        }
-        int zeros = Integer.numberOfLeadingZeros(data[nWords - 1]);
-        return (zeros < 4) ? 28 + zeros : zeros - 4;
-    }
-
-    // TODO: Why is anticount param needed if it is always 32 - bitcount?
-    /**
-     * Left shifts the contents of one int array into another.
-     *
-     * @param src The source array.
-     * @param idx The initial index of the source array.
-     * @param result The destination array.
-     * @param bitcount The left shift.
-     * @param anticount The left anti-shift, e.g., <code>32-bitcount</code>.
-     * @param prev The prior source value.
-     */
-    /*@
-     @ requires 0 < bitcount && bitcount < 32 && anticount == 32 - bitcount;
-     @ requires src.length >= idx && result.length > idx;
-     @ assignable result[*];
-     @ ensures AP(result, \old(idx + 1)) == \old((AP(src, idx) + UNSIGNED(prev) << (idx*32)) << bitcount);
-     @*/
-    private static void leftShift(int[] src, int idx, int result[], int bitcount, int anticount, int prev){
-        for (; idx > 0; idx--) {
-            int v = (prev << bitcount);
-            prev = src[idx - 1];
-            v |= (prev >>> anticount);
-            result[idx] = v;
-        }
-        int v = prev << bitcount;
-        result[0] = v;
-    }
-
-    /**
-     * Shifts this <code>FDBigInteger</code> to the left. The shift is performed
-     * in-place unless the <code>FDBigInteger</code> is immutable in which case
-     * a new instance of <code>FDBigInteger</code> is returned.
-     *
-     * @param shift The number of bits to shift left.
-     * @return The shifted <code>FDBigInteger</code>.
-     */
-    /*@
-     @ requires this.value() == 0 || shift == 0;
-     @ assignable \nothing;
-     @ ensures \result == this;
-     @
-     @  also
-     @
-     @ requires this.value() > 0 && shift > 0 && this.isImmutable;
-     @ assignable \nothing;
-     @ ensures \result.value() == \old(this.value() << shift);
-     @
-     @  also
-     @
-     @ requires this.value() > 0 && shift > 0 && this.isImmutable;
-     @ assignable \nothing;
-     @ ensures \result == this;
-     @ ensures \result.value() == \old(this.value() << shift);
-     @*/
-    public FDBigInteger leftShift(int shift) {
-        if (shift == 0 || nWords == 0) {
-            return this;
-        }
-        int wordcount = shift >> 5;
-        int bitcount = shift & 0x1f;
-        if (this.isImmutable) {
-            if (bitcount == 0) {
-                return new FDBigInteger(Arrays.copyOf(data, nWords), offset + wordcount);
-            } else {
-                int anticount = 32 - bitcount;
-                int idx = nWords - 1;
-                int prev = data[idx];
-                int hi = prev >>> anticount;
-                int[] result;
-                if (hi != 0) {
-                    result = new int[nWords + 1];
-                    result[nWords] = hi;
-                } else {
-                    result = new int[nWords];
-                }
-                leftShift(data,idx,result,bitcount,anticount,prev);
-                return new FDBigInteger(result, offset + wordcount);
-            }
-        } else {
-            if (bitcount != 0) {
-                int anticount = 32 - bitcount;
-                if ((data[0] << bitcount) == 0) {
-                    int idx = 0;
-                    int prev = data[idx];
-                    for (; idx < nWords - 1; idx++) {
-                        int v = (prev >>> anticount);
-                        prev = data[idx + 1];
-                        v |= (prev << bitcount);
-                        data[idx] = v;
-                    }
-                    int v = prev >>> anticount;
-                    data[idx] = v;
-                    if(v==0) {
-                        nWords--;
-                    }
-                    offset++;
-                } else {
-                    int idx = nWords - 1;
-                    int prev = data[idx];
-                    int hi = prev >>> anticount;
-                    int[] result = data;
-                    int[] src = data;
-                    if (hi != 0) {
-                        if(nWords == data.length) {
-                            data = result = new int[nWords + 1];
-                        }
-                        result[nWords++] = hi;
-                    }
-                    leftShift(src,idx,result,bitcount,anticount,prev);
-                }
-            }
-            offset += wordcount;
-            return this;
-        }
-    }
-
-    /**
-     * Returns the number of <code>int</code>s this <code>FDBigInteger</code> represents.
-     *
-     * @return Number of <code>int</code>s required to represent this <code>FDBigInteger</code>.
-     */
-    /*@
-     @ requires this.value() == 0;
-     @ ensures \result == 0;
-     @
-     @  also
-     @
-     @ requires this.value() > 0;
-     @ ensures ((\bigint)1) << (\result - 1) <= this.value() && this.value() <= ((\bigint)1) << \result;
-     @*/
-    private /*@ pure @*/ int size() {
-        return nWords + offset;
-    }
-
-
-    /**
-     * Computes
-     * <pre>
-     * q = (int)( this / S )
-     * this = 10 * ( this mod S )
-     * Return q.
-     * </pre>
-     * This is the iteration step of digit development for output.
-     * We assume that S has been normalized, as above, and that
-     * "this" has been left-shifted accordingly.
-     * Also assumed, of course, is that the result, q, can be expressed
-     * as an integer, {@code 0 <= q < 10}.
-     *
-     * @param S The divisor of this <code>FDBigInteger</code>.
-     * @return <code>q = (int)(this / S)</code>.
-     */
-    /*@
-     @ requires !this.isImmutable;
-     @ requires this.size() <= S.size();
-     @ requires this.data.length + this.offset >= S.size();
-     @ requires S.value() >= ((\bigint)1) << (S.size()*32 - 4);
-     @ assignable this.nWords, this.offset, this.data, this.data[*];
-     @ ensures \result == \old(this.value() / S.value());
-     @ ensures this.value() == \old(10 * (this.value() % S.value()));
-     @*/
-    public int quoRemIteration(FDBigInteger S) throws IllegalArgumentException {
-        assert !this.isImmutable : "cannot modify immutable value";
-        // ensure that this and S have the same number of
-        // digits. If S is properly normalized and q < 10 then
-        // this must be so.
-        int thSize = this.size();
-        int sSize = S.size();
-        if (thSize < sSize) {
-            // this value is significantly less than S, result of division is zero.
-            // just mult this by 10.
-            int p = multAndCarryBy10(this.data, this.nWords, this.data);
-            if(p!=0) {
-                this.data[nWords++] = p;
-            } else {
-                trimLeadingZeros();
-            }
-            return 0;
-        } else if (thSize > sSize) {
-            throw new IllegalArgumentException("disparate values");
-        }
-        // estimate q the obvious way. We will usually be
-        // right. If not, then we're only off by a little and
-        // will re-add.
-        long q = (this.data[this.nWords - 1] & LONG_MASK) / (S.data[S.nWords - 1] & LONG_MASK);
-        long diff = multDiffMe(q, S);
-        if (diff != 0L) {
-            //@ assert q != 0;
-            //@ assert this.offset == \old(Math.min(this.offset, S.offset));
-            //@ assert this.offset <= S.offset;
-
-            // q is too big.
-            // add S back in until this turns +. This should
-            // not be very many times!
-            long sum = 0L;
-            int tStart = S.offset - this.offset;
-            //@ assert tStart >= 0;
-            int[] sd = S.data;
-            int[] td = this.data;
-            while (sum == 0L) {
-                for (int sIndex = 0, tIndex = tStart; tIndex < this.nWords; sIndex++, tIndex++) {
-                    sum += (td[tIndex] & LONG_MASK) + (sd[sIndex] & LONG_MASK);
-                    td[tIndex] = (int) sum;
-                    sum >>>= 32; // Signed or unsigned, answer is 0 or 1
-                }
-                //
-                // Originally the following line read
-                // "if ( sum !=0 && sum != -1 )"
-                // but that would be wrong, because of the
-                // treatment of the two values as entirely unsigned,
-                // it would be impossible for a carry-out to be interpreted
-                // as -1 -- it would have to be a single-bit carry-out, or +1.
-                //
-                assert sum == 0 || sum == 1 : sum; // carry out of division correction
-                q -= 1;
-            }
-        }
-        // finally, we can multiply this by 10.
-        // it cannot overflow, right, as the high-order word has
-        // at least 4 high-order zeros!
-        int p = multAndCarryBy10(this.data, this.nWords, this.data);
-        assert p == 0 : p; // Carry out of *10
-        trimLeadingZeros();
-        return (int) q;
-    }
-
-    /**
-     * Multiplies this <code>FDBigInteger</code> by 10. The operation will be
-     * performed in place unless the <code>FDBigInteger</code> is immutable in
-     * which case a new <code>FDBigInteger</code> will be returned.
-     *
-     * @return The <code>FDBigInteger</code> multiplied by 10.
-     */
-    /*@
-     @ requires this.value() == 0;
-     @ assignable \nothing;
-     @ ensures \result == this;
-     @
-     @  also
-     @
-     @ requires this.value() > 0 && this.isImmutable;
-     @ assignable \nothing;
-     @ ensures \result.value() == \old(this.value() * 10);
-     @
-     @  also
-     @
-     @ requires this.value() > 0 && !this.isImmutable;
-     @ assignable this.nWords, this.data, this.data[*];
-     @ ensures \result == this;
-     @ ensures \result.value() == \old(this.value() * 10);
-     @*/
-    public FDBigInteger multBy10() {
-        if (nWords == 0) {
-            return this;
-        }
-        if (isImmutable) {
-            int[] res = new int[nWords + 1];
-            res[nWords] = multAndCarryBy10(data, nWords, res);
-            return new FDBigInteger(res, offset);
-        } else {
-            int p = multAndCarryBy10(this.data, this.nWords, this.data);
-            if (p != 0) {
-                if (nWords == data.length) {
-                    if (data[0] == 0) {
-                        System.arraycopy(data, 1, data, 0, --nWords);
-                        offset++;
-                    } else {
-                        data = Arrays.copyOf(data, data.length + 1);
-                    }
-                }
-                data[nWords++] = p;
-            } else {
-                trimLeadingZeros();
-            }
-            return this;
-        }
-    }
-
-    /**
-     * Multiplies this <code>FDBigInteger</code> by
-     * <code>5<sup>p5</sup> * 2<sup>p2</sup></code>. The operation will be
-     * performed in place if possible, otherwise a new <code>FDBigInteger</code>
-     * will be returned.
-     *
-     * @param p5 The exponent of the power-of-five factor.
-     * @param p2 The exponent of the power-of-two factor.
-     * @return The multiplication result.
-     */
-    /*@
-     @ requires this.value() == 0 || p5 == 0 && p2 == 0;
-     @ assignable \nothing;
-     @ ensures \result == this;
-     @
-     @  also
-     @
-     @ requires this.value() > 0 && (p5 > 0 && p2 >= 0 || p5 == 0 && p2 > 0 && this.isImmutable);
-     @ assignable \nothing;
-     @ ensures \result.value() == \old(this.value() * pow52(p5, p2));
-     @
-     @  also
-     @
-     @ requires this.value() > 0 && p5 == 0 && p2 > 0 && !this.isImmutable;
-     @ assignable this.nWords, this.data, this.data[*];
-     @ ensures \result == this;
-     @ ensures \result.value() == \old(this.value() * pow52(p5, p2));
-     @*/
-    public FDBigInteger multByPow52(int p5, int p2) {
-        if (this.nWords == 0) {
-            return this;
-        }
-        FDBigInteger res = this;
-        if (p5 != 0) {
-            int[] r;
-            int extraSize = (p2 != 0) ? 1 : 0;
-            if (p5 < SMALL_5_POW.length) {
-                r = new int[this.nWords + 1 + extraSize];
-                mult(this.data, this.nWords, SMALL_5_POW[p5], r);
-                res = new FDBigInteger(r, this.offset);
-            } else {
-                FDBigInteger pow5 = big5pow(p5);
-                r = new int[this.nWords + pow5.size() + extraSize];
-                mult(this.data, this.nWords, pow5.data, pow5.nWords, r);
-                res = new FDBigInteger(r, this.offset + pow5.offset);
-            }
-        }
-        return res.leftShift(p2);
-    }
-
-    /**
-     * Multiplies two big integers represented as int arrays.
-     *
-     * @param s1 The first array factor.
-     * @param s1Len The number of elements of <code>s1</code> to use.
-     * @param s2 The second array factor.
-     * @param s2Len The number of elements of <code>s2</code> to use.
-     * @param dst The product array.
-     */
-    /*@
-     @ requires s1 != dst && s2 != dst;
-     @ requires s1.length >= s1Len && s2.length >= s2Len && dst.length >= s1Len + s2Len;
-     @ assignable dst[0 .. s1Len + s2Len - 1];
-     @ ensures AP(dst, s1Len + s2Len) == \old(AP(s1, s1Len) * AP(s2, s2Len));
-     @*/
-    private static void mult(int[] s1, int s1Len, int[] s2, int s2Len, int[] dst) {
-        for (int i = 0; i < s1Len; i++) {
-            long v = s1[i] & LONG_MASK;
-            long p = 0L;
-            for (int j = 0; j < s2Len; j++) {
-                p += (dst[i + j] & LONG_MASK) + v * (s2[j] & LONG_MASK);
-                dst[i + j] = (int) p;
-                p >>>= 32;
-            }
-            dst[i + s2Len] = (int) p;
-        }
-    }
-
-    /**
-     * Subtracts the supplied <code>FDBigInteger</code> subtrahend from this
-     * <code>FDBigInteger</code>. Assert that the result is positive.
-     * If the subtrahend is immutable, store the result in this(minuend).
-     * If this(minuend) is immutable a new <code>FDBigInteger</code> is created.
-     *
-     * @param subtrahend The <code>FDBigInteger</code> to be subtracted.
-     * @return This <code>FDBigInteger</code> less the subtrahend.
-     */
-    /*@
-     @ requires this.isImmutable;
-     @ requires this.value() >= subtrahend.value();
-     @ assignable \nothing;
-     @ ensures \result.value() == \old(this.value() - subtrahend.value());
-     @
-     @  also
-     @
-     @ requires !subtrahend.isImmutable;
-     @ requires this.value() >= subtrahend.value();
-     @ assignable this.nWords, this.offset, this.data, this.data[*];
-     @ ensures \result == this;
-     @ ensures \result.value() == \old(this.value() - subtrahend.value());
-     @*/
-    public FDBigInteger leftInplaceSub(FDBigInteger subtrahend) {
-        assert this.size() >= subtrahend.size() : "result should be positive";
-        FDBigInteger minuend;
-        if (this.isImmutable) {
-            minuend = new FDBigInteger(this.data.clone(), this.offset);
-        } else {
-            minuend = this;
-        }
-        int offsetDiff = subtrahend.offset - minuend.offset;
-        int[] sData = subtrahend.data;
-        int[] mData = minuend.data;
-        int subLen = subtrahend.nWords;
-        int minLen = minuend.nWords;
-        if (offsetDiff < 0) {
-            // need to expand minuend
-            int rLen = minLen - offsetDiff;
-            if (rLen < mData.length) {
-                System.arraycopy(mData, 0, mData, -offsetDiff, minLen);
-                Arrays.fill(mData, 0, -offsetDiff, 0);
-            } else {
-                int[] r = new int[rLen];
-                System.arraycopy(mData, 0, r, -offsetDiff, minLen);
-                minuend.data = mData = r;
-            }
-            minuend.offset = subtrahend.offset;
-            minuend.nWords = minLen = rLen;
-            offsetDiff = 0;
-        }
-        long borrow = 0L;
-        int mIndex = offsetDiff;
-        for (int sIndex = 0; sIndex < subLen && mIndex < minLen; sIndex++, mIndex++) {
-            long diff = (mData[mIndex] & LONG_MASK) - (sData[sIndex] & LONG_MASK) + borrow;
-            mData[mIndex] = (int) diff;
-            borrow = diff >> 32; // signed shift
-        }
-        for (; borrow != 0 && mIndex < minLen; mIndex++) {
-            long diff = (mData[mIndex] & LONG_MASK) + borrow;
-            mData[mIndex] = (int) diff;
-            borrow = diff >> 32; // signed shift
-        }
-        assert borrow == 0L : borrow; // borrow out of subtract,
-        // result should be positive
-        minuend.trimLeadingZeros();
-        return minuend;
-    }
-
-    /**
-     * Subtracts the supplied <code>FDBigInteger</code> subtrahend from this
-     * <code>FDBigInteger</code>. Assert that the result is positive.
-     * If the this(minuend) is immutable, store the result in subtrahend.
-     * If subtrahend is immutable a new <code>FDBigInteger</code> is created.
-     *
-     * @param subtrahend The <code>FDBigInteger</code> to be subtracted.
-     * @return This <code>FDBigInteger</code> less the subtrahend.
-     */
-    /*@
-     @ requires subtrahend.isImmutable;
-     @ requires this.value() >= subtrahend.value();
-     @ assignable \nothing;
-     @ ensures \result.value() == \old(this.value() - subtrahend.value());
-     @
-     @  also
-     @
-     @ requires !subtrahend.isImmutable;
-     @ requires this.value() >= subtrahend.value();
-     @ assignable subtrahend.nWords, subtrahend.offset, subtrahend.data, subtrahend.data[*];
-     @ ensures \result == subtrahend;
-     @ ensures \result.value() == \old(this.value() - subtrahend.value());
-     @*/
-    public FDBigInteger rightInplaceSub(FDBigInteger subtrahend) {
-        assert this.size() >= subtrahend.size() : "result should be positive";
-        FDBigInteger minuend = this;
-        if (subtrahend.isImmutable) {
-            subtrahend = new FDBigInteger(subtrahend.data.clone(), subtrahend.offset);
-        }
-        int offsetDiff = minuend.offset - subtrahend.offset;
-        int[] sData = subtrahend.data;
-        int[] mData = minuend.data;
-        int subLen = subtrahend.nWords;
-        int minLen = minuend.nWords;
-        if (offsetDiff < 0) {
-            int rLen = minLen;
-            if (rLen < sData.length) {
-                System.arraycopy(sData, 0, sData, -offsetDiff, subLen);
-                Arrays.fill(sData, 0, -offsetDiff, 0);
-            } else {
-                int[] r = new int[rLen];
-                System.arraycopy(sData, 0, r, -offsetDiff, subLen);
-                subtrahend.data = sData = r;
-            }
-            subtrahend.offset = minuend.offset;
-            subLen -= offsetDiff;
-            offsetDiff = 0;
-        } else {
-            int rLen = minLen + offsetDiff;
-            if (rLen >= sData.length) {
-                subtrahend.data = sData = Arrays.copyOf(sData, rLen);
-            }
-        }
-        //@ assert minuend == this && minuend.value() == \old(this.value());
-        //@ assert mData == minuend.data && minLen == minuend.nWords;
-        //@ assert subtrahend.offset + subtrahend.data.length >= minuend.size();
-        //@ assert sData == subtrahend.data;
-        //@ assert AP(subtrahend.data, subtrahend.data.length) << subtrahend.offset == \old(subtrahend.value());
-        //@ assert subtrahend.offset == Math.min(\old(this.offset), minuend.offset);
-        //@ assert offsetDiff == minuend.offset - subtrahend.offset;
-        //@ assert 0 <= offsetDiff && offsetDiff + minLen <= sData.length;
-        int sIndex = 0;
-        long borrow = 0L;
-        for (; sIndex < offsetDiff; sIndex++) {
-            long diff = 0L - (sData[sIndex] & LONG_MASK) + borrow;
-            sData[sIndex] = (int) diff;
-            borrow = diff >> 32; // signed shift
-        }
-        //@ assert sIndex == offsetDiff;
-        for (int mIndex = 0; mIndex < minLen; sIndex++, mIndex++) {
-            //@ assert sIndex == offsetDiff + mIndex;
-            long diff = (mData[mIndex] & LONG_MASK) - (sData[sIndex] & LONG_MASK) + borrow;
-            sData[sIndex] = (int) diff;
-            borrow = diff >> 32; // signed shift
-        }
-        assert borrow == 0L : borrow; // borrow out of subtract,
-        // result should be positive
-        subtrahend.nWords = sIndex;
-        subtrahend.trimLeadingZeros();
-        return subtrahend;
-
-    }
-
-    /**
-     * Determines whether all elements of an array are zero for all indices less
-     * than a given index.
-     *
-     * @param a The array to be examined.
-     * @param from The index strictly below which elements are to be examined.
-     * @return Zero if all elements in range are zero, 1 otherwise.
-     */
-    /*@
-     @ requires 0 <= from && from <= a.length;
-     @ ensures \result == (AP(a, from) == 0 ? 0 : 1);
-     @*/
-    private /*@ pure @*/ static int checkZeroTail(int[] a, int from) {
-        while (from > 0) {
-            if (a[--from] != 0) {
-                return 1;
-            }
-        }
-        return 0;
-    }
-
-    /**
-     * Compares the parameter with this <code>FDBigInteger</code>. Returns an
-     * integer accordingly as:
-     * <pre>{@code
-     * > 0: this > other
-     *   0: this == other
-     * < 0: this < other
-     * }</pre>
-     *
-     * @param other The <code>FDBigInteger</code> to compare.
-     * @return A negative value, zero, or a positive value according to the
-     * result of the comparison.
-     */
-    /*@
-     @ ensures \result == (this.value() < other.value() ? -1 : this.value() > other.value() ? +1 : 0);
-     @*/
-    public /*@ pure @*/ int cmp(FDBigInteger other) {
-        int aSize = nWords + offset;
-        int bSize = other.nWords + other.offset;
-        if (aSize > bSize) {
-            return 1;
-        } else if (aSize < bSize) {
-            return -1;
-        }
-        int aLen = nWords;
-        int bLen = other.nWords;
-        while (aLen > 0 && bLen > 0) {
-            int a = data[--aLen];
-            int b = other.data[--bLen];
-            if (a != b) {
-                return ((a & LONG_MASK) < (b & LONG_MASK)) ? -1 : 1;
-            }
-        }
-        if (aLen > 0) {
-            return checkZeroTail(data, aLen);
-        }
-        if (bLen > 0) {
-            return -checkZeroTail(other.data, bLen);
-        }
-        return 0;
-    }
-
-    /**
-     * Compares this <code>FDBigInteger</code> with
-     * <code>5<sup>p5</sup> * 2<sup>p2</sup></code>.
-     * Returns an integer accordingly as:
-     * <pre>{@code
-     * > 0: this > other
-     *   0: this == other
-     * < 0: this < other
-     * }</pre>
-     * @param p5 The exponent of the power-of-five factor.
-     * @param p2 The exponent of the power-of-two factor.
-     * @return A negative value, zero, or a positive value according to the
-     * result of the comparison.
-     */
-    /*@
-     @ requires p5 >= 0 && p2 >= 0;
-     @ ensures \result == (this.value() < pow52(p5, p2) ? -1 : this.value() >  pow52(p5, p2) ? +1 : 0);
-     @*/
-    public /*@ pure @*/ int cmpPow52(int p5, int p2) {
-        if (p5 == 0) {
-            int wordcount = p2 >> 5;
-            int bitcount = p2 & 0x1f;
-            int size = this.nWords + this.offset;
-            if (size > wordcount + 1) {
-                return 1;
-            } else if (size < wordcount + 1) {
-                return -1;
-            }
-            int a = this.data[this.nWords -1];
-            int b = 1 << bitcount;
-            if (a != b) {
-                return ( (a & LONG_MASK) < (b & LONG_MASK)) ? -1 : 1;
-            }
-            return checkZeroTail(this.data, this.nWords - 1);
-        }
-        return this.cmp(big5pow(p5).leftShift(p2));
-    }
-
-    /**
-     * Compares this <code>FDBigInteger</code> with <code>x + y</code>. Returns a
-     * value according to the comparison as:
-     * <pre>{@code
-     * -1: this <  x + y
-     *  0: this == x + y
-     *  1: this >  x + y
-     * }</pre>
-     * @param x The first addend of the sum to compare.
-     * @param y The second addend of the sum to compare.
-     * @return -1, 0, or 1 according to the result of the comparison.
-     */
-    /*@
-     @ ensures \result == (this.value() < x.value() + y.value() ? -1 : this.value() > x.value() + y.value() ? +1 : 0);
-     @*/
-    public /*@ pure @*/ int addAndCmp(FDBigInteger x, FDBigInteger y) {
-        FDBigInteger big;
-        FDBigInteger small;
-        int xSize = x.size();
-        int ySize = y.size();
-        int bSize;
-        int sSize;
-        if (xSize >= ySize) {
-            big = x;
-            small = y;
-            bSize = xSize;
-            sSize = ySize;
-        } else {
-            big = y;
-            small = x;
-            bSize = ySize;
-            sSize = xSize;
-        }
-        int thSize = this.size();
-        if (bSize == 0) {
-            return thSize == 0 ? 0 : 1;
-        }
-        if (sSize == 0) {
-            return this.cmp(big);
-        }
-        if (bSize > thSize) {
-            return -1;
-        }
-        if (bSize + 1 < thSize) {
-            return 1;
-        }
-        long top = (big.data[big.nWords - 1] & LONG_MASK);
-        if (sSize == bSize) {
-            top += (small.data[small.nWords - 1] & LONG_MASK);
-        }
-        if ((top >>> 32) == 0) {
-            if (((top + 1) >>> 32) == 0) {
-                // good case - no carry extension
-                if (bSize < thSize) {
-                    return 1;
-                }
-                // here sum.nWords == this.nWords
-                long v = (this.data[this.nWords - 1] & LONG_MASK);
-                if (v < top) {
-                    return -1;
-                }
-                if (v > top + 1) {
-                    return 1;
-                }
-            }
-        } else { // (top>>>32)!=0 guaranteed carry extension
-            if (bSize + 1 > thSize) {
-                return -1;
-            }
-            // here sum.nWords == this.nWords
-            top >>>= 32;
-            long v = (this.data[this.nWords - 1] & LONG_MASK);
-            if (v < top) {
-                return -1;
-            }
-            if (v > top + 1) {
-                return 1;
-            }
-        }
-        return this.cmp(big.add(small));
-    }
-
-    /**
-     * Makes this <code>FDBigInteger</code> immutable.
-     */
-    /*@
-     @ assignable this.isImmutable;
-     @ ensures this.isImmutable;
-     @*/
-    public void makeImmutable() {
-        this.isImmutable = true;
-    }
-
-    /**
-     * Multiplies this <code>FDBigInteger</code> by an integer.
-     *
-     * @param i The factor by which to multiply this <code>FDBigInteger</code>.
-     * @return This <code>FDBigInteger</code> multiplied by an integer.
-     */
-    /*@
-     @ requires this.value() == 0;
-     @ assignable \nothing;
-     @ ensures \result == this;
-     @
-     @  also
-     @
-     @ requires this.value() != 0;
-     @ assignable \nothing;
-     @ ensures \result.value() == \old(this.value() * UNSIGNED(i));
-     @*/
-    private FDBigInteger mult(int i) {
-        if (this.nWords == 0) {
-            return this;
-        }
-        int[] r = new int[nWords + 1];
-        mult(data, nWords, i, r);
-        return new FDBigInteger(r, offset);
-    }
-
-    /**
-     * Multiplies this <code>FDBigInteger</code> by another <code>FDBigInteger</code>.
-     *
-     * @param other The <code>FDBigInteger</code> factor by which to multiply.
-     * @return The product of this and the parameter <code>FDBigInteger</code>s.
-     */
-    /*@
-     @ requires this.value() == 0;
-     @ assignable \nothing;
-     @ ensures \result == this;
-     @
-     @  also
-     @
-     @ requires this.value() != 0 && other.value() == 0;
-     @ assignable \nothing;
-     @ ensures \result == other;
-     @
-     @  also
-     @
-     @ requires this.value() != 0 && other.value() != 0;
-     @ assignable \nothing;
-     @ ensures \result.value() == \old(this.value() * other.value());
-     @*/
-    private FDBigInteger mult(FDBigInteger other) {
-        if (this.nWords == 0) {
-            return this;
-        }
-        if (this.size() == 1) {
-            return other.mult(data[0]);
-        }
-        if (other.nWords == 0) {
-            return other;
-        }
-        if (other.size() == 1) {
-            return this.mult(other.data[0]);
-        }
-        int[] r = new int[nWords + other.nWords];
-        mult(this.data, this.nWords, other.data, other.nWords, r);
-        return new FDBigInteger(r, this.offset + other.offset);
-    }
-
-    /**
-     * Adds another <code>FDBigInteger</code> to this <code>FDBigInteger</code>.
-     *
-     * @param other The <code>FDBigInteger</code> to add.
-     * @return The sum of the <code>FDBigInteger</code>s.
-     */
-    /*@
-     @ assignable \nothing;
-     @ ensures \result.value() == \old(this.value() + other.value());
-     @*/
-    private FDBigInteger add(FDBigInteger other) {
-        FDBigInteger big, small;
-        int bigLen, smallLen;
-        int tSize = this.size();
-        int oSize = other.size();
-        if (tSize >= oSize) {
-            big = this;
-            bigLen = tSize;
-            small = other;
-            smallLen = oSize;
-        } else {
-            big = other;
-            bigLen = oSize;
-            small = this;
-            smallLen = tSize;
-        }
-        int[] r = new int[bigLen + 1];
-        int i = 0;
-        long carry = 0L;
-        for (; i < smallLen; i++) {
-            carry += (i < big.offset   ? 0L : (big.data[i - big.offset] & LONG_MASK) )
-                   + ((i < small.offset ? 0L : (small.data[i - small.offset] & LONG_MASK)));
-            r[i] = (int) carry;
-            carry >>= 32; // signed shift.
-        }
-        for (; i < bigLen; i++) {
-            carry += (i < big.offset ? 0L : (big.data[i - big.offset] & LONG_MASK) );
-            r[i] = (int) carry;
-            carry >>= 32; // signed shift.
-        }
-        r[bigLen] = (int) carry;
-        return new FDBigInteger(r, 0);
-    }
-
-
-    /**
-     * Multiplies a <code>FDBigInteger</code> by an int and adds another int. The
-     * result is computed in place. This method is intended only to be invoked
-     * from
-     * <code>
-     * FDBigInteger(long lValue, char[] digits, int kDigits, int nDigits)
-     * </code>.
-     *
-     * @param iv The factor by which to multiply this <code>FDBigInteger</code>.
-     * @param addend The value to add to the product of this
-     * <code>FDBigInteger</code> and <code>iv</code>.
-     */
-    /*@
-     @ requires this.value()*UNSIGNED(iv) + UNSIGNED(addend) < ((\bigint)1) << ((this.data.length + this.offset)*32);
-     @ assignable this.data[*];
-     @ ensures this.value() == \old(this.value()*UNSIGNED(iv) + UNSIGNED(addend));
-     @*/
-    private /*@ helper @*/ void multAddMe(int iv, int addend) {
-        long v = iv & LONG_MASK;
-        // unroll 0th iteration, doing addition.
-        long p = v * (data[0] & LONG_MASK) + (addend & LONG_MASK);
-        data[0] = (int) p;
-        p >>>= 32;
-        for (int i = 1; i < nWords; i++) {
-            p += v * (data[i] & LONG_MASK);
-            data[i] = (int) p;
-            p >>>= 32;
-        }
-        if (p != 0L) {
-            data[nWords++] = (int) p; // will fail noisily if illegal!
-        }
-    }
-
-    //
-    // original doc:
-    //
-    // do this -=q*S
-    // returns borrow
-    //
-    /**
-     * Multiplies the parameters and subtracts them from this
-     * <code>FDBigInteger</code>.
-     *
-     * @param q The integer parameter.
-     * @param S The <code>FDBigInteger</code> parameter.
-     * @return <code>this - q*S</code>.
-     */
-    /*@
-     @ ensures nWords == 0 ==> offset == 0;
-     @ ensures nWords > 0 ==> data[nWords - 1] != 0;
-     @*/
-    /*@
-     @ requires 0 < q && q <= (1L << 31);
-     @ requires data != null;
-     @ requires 0 <= nWords && nWords <= data.length && offset >= 0;
-     @ requires !this.isImmutable;
-     @ requires this.size() == S.size();
-     @ requires this != S;
-     @ assignable this.nWords, this.offset, this.data, this.data[*];
-     @ ensures -q <= \result && \result <= 0;
-     @ ensures this.size() == \old(this.size());
-     @ ensures this.value() + (\result << (this.size()*32)) == \old(this.value() - q*S.value());
-     @ ensures this.offset == \old(Math.min(this.offset, S.offset));
-     @ ensures \old(this.offset <= S.offset) ==> this.nWords == \old(this.nWords);
-     @ ensures \old(this.offset <= S.offset) ==> this.offset == \old(this.offset);
-     @ ensures \old(this.offset <= S.offset) ==> this.data == \old(this.data);
-     @
-     @  also
-     @
-     @ requires q == 0;
-     @ assignable \nothing;
-     @ ensures \result == 0;
-     @*/
-    private /*@ helper @*/ long multDiffMe(long q, FDBigInteger S) {
-        long diff = 0L;
-        if (q != 0) {
-            int deltaSize = S.offset - this.offset;
-            if (deltaSize >= 0) {
-                int[] sd = S.data;
-                int[] td = this.data;
-                for (int sIndex = 0, tIndex = deltaSize; sIndex < S.nWords; sIndex++, tIndex++) {
-                    diff += (td[tIndex] & LONG_MASK) - q * (sd[sIndex] & LONG_MASK);
-                    td[tIndex] = (int) diff;
-                    diff >>= 32; // N.B. SIGNED shift.
-                }
-            } else {
-                deltaSize = -deltaSize;
-                int[] rd = new int[nWords + deltaSize];
-                int sIndex = 0;
-                int rIndex = 0;
-                int[] sd = S.data;
-                for (; rIndex < deltaSize && sIndex < S.nWords; sIndex++, rIndex++) {
-                    diff -= q * (sd[sIndex] & LONG_MASK);
-                    rd[rIndex] = (int) diff;
-                    diff >>= 32; // N.B. SIGNED shift.
-                }
-                int tIndex = 0;
-                int[] td = this.data;
-                for (; sIndex < S.nWords; sIndex++, tIndex++, rIndex++) {
-                    diff += (td[tIndex] & LONG_MASK) - q * (sd[sIndex] & LONG_MASK);
-                    rd[rIndex] = (int) diff;
-                    diff >>= 32; // N.B. SIGNED shift.
-                }
-                this.nWords += deltaSize;
-                this.offset -= deltaSize;
-                this.data = rd;
-            }
-        }
-        return diff;
-    }
-
-
-    /**
-     * Multiplies by 10 a big integer represented as an array. The final carry
-     * is returned.
-     *
-     * @param src The array representation of the big integer.
-     * @param srcLen The number of elements of <code>src</code> to use.
-     * @param dst The product array.
-     * @return The final carry of the multiplication.
-     */
-    /*@
-     @ requires src.length >= srcLen && dst.length >= srcLen;
-     @ assignable dst[0 .. srcLen - 1];
-     @ ensures 0 <= \result && \result < 10;
-     @ ensures AP(dst, srcLen) + (\result << (srcLen*32)) == \old(AP(src, srcLen) * 10);
-     @*/
-    private static int multAndCarryBy10(int[] src, int srcLen, int[] dst) {
-        long carry = 0;
-        for (int i = 0; i < srcLen; i++) {
-            long product = (src[i] & LONG_MASK) * 10L + carry;
-            dst[i] = (int) product;
-            carry = product >>> 32;
-        }
-        return (int) carry;
-    }
-
-    /**
-     * Multiplies by a constant value a big integer represented as an array.
-     * The constant factor is an <code>int</code>.
-     *
-     * @param src The array representation of the big integer.
-     * @param srcLen The number of elements of <code>src</code> to use.
-     * @param value The constant factor by which to multiply.
-     * @param dst The product array.
-     */
-    /*@
-     @ requires src.length >= srcLen && dst.length >= srcLen + 1;
-     @ assignable dst[0 .. srcLen];
-     @ ensures AP(dst, srcLen + 1) == \old(AP(src, srcLen) * UNSIGNED(value));
-     @*/
-    private static void mult(int[] src, int srcLen, int value, int[] dst) {
-        long val = value & LONG_MASK;
-        long carry = 0;
-        for (int i = 0; i < srcLen; i++) {
-            long product = (src[i] & LONG_MASK) * val + carry;
-            dst[i] = (int) product;
-            carry = product >>> 32;
-        }
-        dst[srcLen] = (int) carry;
-    }
-
-    /**
-     * Multiplies by a constant value a big integer represented as an array.
-     * The constant factor is a long represent as two <code>int</code>s.
-     *
-     * @param src The array representation of the big integer.
-     * @param srcLen The number of elements of <code>src</code> to use.
-     * @param v0 The lower 32 bits of the long factor.
-     * @param v1 The upper 32 bits of the long factor.
-     * @param dst The product array.
-     */
-    /*@
-     @ requires src != dst;
-     @ requires src.length >= srcLen && dst.length >= srcLen + 2;
-     @ assignable dst[0 .. srcLen + 1];
-     @ ensures AP(dst, srcLen + 2) == \old(AP(src, srcLen) * (UNSIGNED(v0) + (UNSIGNED(v1) << 32)));
-     @*/
-    private static void mult(int[] src, int srcLen, int v0, int v1, int[] dst) {
-        long v = v0 & LONG_MASK;
-        long carry = 0;
-        for (int j = 0; j < srcLen; j++) {
-            long product = v * (src[j] & LONG_MASK) + carry;
-            dst[j] = (int) product;
-            carry = product >>> 32;
-        }
-        dst[srcLen] = (int) carry;
-        v = v1 & LONG_MASK;
-        carry = 0;
-        for (int j = 0; j < srcLen; j++) {
-            long product = (dst[j + 1] & LONG_MASK) + v * (src[j] & LONG_MASK) + carry;
-            dst[j + 1] = (int) product;
-            carry = product >>> 32;
-        }
-        dst[srcLen + 1] = (int) carry;
-    }
-
-    // Fails assertion for negative exponent.
-    /**
-     * Computes <code>5</code> raised to a given power.
-     *
-     * @param p The exponent of 5.
-     * @return <code>5<sup>p</sup></code>.
-     */
-    private static FDBigInteger big5pow(int p) {
-        assert p >= 0 : p; // negative power of 5
-        if (p < MAX_FIVE_POW) {
-            return POW_5_CACHE[p];
-        }
-        return big5powRec(p);
-    }
-
-    // slow path
-    /**
-     * Computes <code>5</code> raised to a given power.
-     *
-     * @param p The exponent of 5.
-     * @return <code>5<sup>p</sup></code>.
-     */
-    private static FDBigInteger big5powRec(int p) {
-        if (p < MAX_FIVE_POW) {
-            return POW_5_CACHE[p];
-        }
-        // construct the value.
-        // recursively.
-        int q, r;
-        // in order to compute 5^p,
-        // compute its square root, 5^(p/2) and square.
-        // or, let q = p / 2, r = p -q, then
-        // 5^p = 5^(q+r) = 5^q * 5^r
-        q = p >> 1;
-        r = p - q;
-        FDBigInteger bigq = big5powRec(q);
-        if (r < SMALL_5_POW.length) {
-            return bigq.mult(SMALL_5_POW[r]);
-        } else {
-            return bigq.mult(big5powRec(r));
-        }
-    }
-
-    // for debugging ...
-    /**
-     * Converts this <code>FDBigInteger</code> to a hexadecimal string.
-     *
-     * @return The hexadecimal string representation.
-     */
-    public String toHexString(){
-        if(nWords ==0) {
-            return "0";
-        }
-        StringBuilder sb = new StringBuilder((nWords +offset)*8);
-        for(int i= nWords -1; i>=0; i--) {
-            String subStr = Integer.toHexString(data[i]);
-            for(int j = subStr.length(); j<8; j++) {
-                sb.append('0');
-            }
-            sb.append(subStr);
-        }
-        for(int i=offset; i>0; i--) {
-            sb.append("00000000");
-        }
-        return sb.toString();
-    }
-
-    // for debugging ...
-    /**
-     * Converts this <code>FDBigInteger</code> to a <code>BigInteger</code>.
-     *
-     * @return The <code>BigInteger</code> representation.
-     */
-    public BigInteger toBigInteger() {
-        byte[] magnitude = new byte[nWords * 4 + 1];
-        for (int i = 0; i < nWords; i++) {
-            int w = data[i];
-            magnitude[magnitude.length - 4 * i - 1] = (byte) w;
-            magnitude[magnitude.length - 4 * i - 2] = (byte) (w >> 8);
-            magnitude[magnitude.length - 4 * i - 3] = (byte) (w >> 16);
-            magnitude[magnitude.length - 4 * i - 4] = (byte) (w >> 24);
-        }
-        return new BigInteger(magnitude).shiftLeft(offset * 32);
-    }
-
-    // for debugging ...
-    /**
-     * Converts this <code>FDBigInteger</code> to a string.
-     *
-     * @return The string representation.
-     */
-    @Override
-    public String toString(){
-        return toBigInteger().toString();
-    }
-}