--- a/src/hotspot/cpu/s390/macroAssembler_s390.cpp Wed Nov 22 16:57:34 2017 +0100
+++ b/src/hotspot/cpu/s390/macroAssembler_s390.cpp Wed Nov 22 17:10:38 2017 +0100
@@ -936,7 +936,7 @@
// Some extra safety net.
if (!RelAddr::is_in_range_of_RelAddr32(total_distance)) {
- guarantee(RelAddr::is_in_range_of_RelAddr32(total_distance), "too far away");
+ guarantee(RelAddr::is_in_range_of_RelAddr32(total_distance), "load_long_pcrelative can't handle distance " INTPTR_FORMAT, total_distance);
}
(this)->relocate(rspec, relocInfo::pcrel_addr_format);
@@ -956,7 +956,7 @@
// Some extra safety net.
if (!RelAddr::is_in_range_of_RelAddr32(total_distance)) {
- guarantee(RelAddr::is_in_range_of_RelAddr32(total_distance), "too far away");
+ guarantee(RelAddr::is_in_range_of_RelAddr32(total_distance), "load_long_pcrelative can't handle distance " INTPTR_FORMAT, total_distance);
}
(this)->relocate(rspec, relocInfo::pcrel_addr_format);
@@ -1025,6 +1025,13 @@
}
}
+void MacroAssembler::prefetch_read(Address a) {
+ z_pfd(1, a.disp20(), a.indexOrR0(), a.base());
+}
+void MacroAssembler::prefetch_update(Address a) {
+ z_pfd(2, a.disp20(), a.indexOrR0(), a.base());
+}
+
// Clear a register, i.e. load const zero into reg.
// Return len (in bytes) of generated instruction(s).
// whole_reg: Clear 64 bits if true, 32 bits otherwise.
@@ -4896,77 +4903,295 @@
// Intrinsics for CompactStrings
-// Compress char[] to byte[]. odd_reg contains cnt. Kills dst. Early clobber: result
+// Compress char[] to byte[].
+// Restores: src, dst
+// Uses: cnt
+// Kills: tmp, Z_R0, Z_R1.
+// Early clobber: result.
+// Note:
+// cnt is signed int. Do not rely on high word!
+// counts # characters, not bytes.
// The result is the number of characters copied before the first incompatible character was found.
-// If tmp2 is provided and the compression fails, the compression stops exactly at this point and the result is precise.
+// If precise is true, the processing stops exactly at this point. Otherwise, the result may be off
+// by a few bytes. The result always indicates the number of copied characters.
//
// Note: Does not behave exactly like package private StringUTF16 compress java implementation in case of failure:
-// - Different number of characters may have been written to dead array (if tmp2 not provided).
+// - Different number of characters may have been written to dead array (if precise is false).
// - Returns a number <cnt instead of 0. (Result gets compared with cnt.)
-unsigned int MacroAssembler::string_compress(Register result, Register src, Register dst, Register odd_reg,
- Register even_reg, Register tmp, Register tmp2) {
- int block_start = offset();
- Label Lloop1, Lloop2, Lslow, Ldone;
- const Register addr2 = dst, ind1 = result, mask = tmp;
- const bool precise = (tmp2 != noreg);
-
- BLOCK_COMMENT("string_compress {");
-
- z_sll(odd_reg, 1); // Number of bytes to read. (Must be a positive simm32.)
- clear_reg(ind1); // Index to read.
- z_llilf(mask, 0xFF00FF00);
- z_ahi(odd_reg, -16); // Last possible index for fast loop.
- z_brl(Lslow);
-
- // ind1: index, even_reg: index increment, odd_reg: index limit
- z_iihf(mask, 0xFF00FF00);
- z_lhi(even_reg, 16);
-
- bind(Lloop1); // 8 Characters per iteration.
- z_lg(Z_R0, Address(src, ind1));
- z_lg(Z_R1, Address(src, ind1, 8));
+unsigned int MacroAssembler::string_compress(Register result, Register src, Register dst, Register cnt,
+ Register tmp, bool precise) {
+ assert_different_registers(Z_R0, Z_R1, src, dst, cnt, tmp);
+
if (precise) {
+ BLOCK_COMMENT("encode_iso_array {");
+ } else {
+ BLOCK_COMMENT("string_compress {");
+ }
+ int block_start = offset();
+
+ Register Rsrc = src;
+ Register Rdst = dst;
+ Register Rix = tmp;
+ Register Rcnt = cnt;
+ Register Rmask = result; // holds incompatibility check mask until result value is stored.
+ Label ScalarShortcut, AllDone;
+
+ z_iilf(Rmask, 0xFF00FF00);
+ z_iihf(Rmask, 0xFF00FF00);
+
+#if 0 // Sacrifice shortcuts for code compactness
+ {
+ //---< shortcuts for short strings (very frequent) >---
+ // Strings with 4 and 8 characters were fond to occur very frequently.
+ // Therefore, we handle them right away with minimal overhead.
+ Label skipShortcut, skip4Shortcut, skip8Shortcut;
+ Register Rout = Z_R0;
+ z_chi(Rcnt, 4);
+ z_brne(skip4Shortcut); // 4 characters are very frequent
+ z_lg(Z_R0, 0, Rsrc); // Treat exactly 4 characters specially.
+ if (VM_Version::has_DistinctOpnds()) {
+ Rout = Z_R0;
+ z_ngrk(Rix, Z_R0, Rmask);
+ } else {
+ Rout = Rix;
+ z_lgr(Rix, Z_R0);
+ z_ngr(Z_R0, Rmask);
+ }
+ z_brnz(skipShortcut);
+ z_stcmh(Rout, 5, 0, Rdst);
+ z_stcm(Rout, 5, 2, Rdst);
+ z_lgfr(result, Rcnt);
+ z_bru(AllDone);
+ bind(skip4Shortcut);
+
+ z_chi(Rcnt, 8);
+ z_brne(skip8Shortcut); // There's more to do...
+ z_lmg(Z_R0, Z_R1, 0, Rsrc); // Treat exactly 8 characters specially.
+ if (VM_Version::has_DistinctOpnds()) {
+ Rout = Z_R0;
+ z_ogrk(Rix, Z_R0, Z_R1);
+ z_ngr(Rix, Rmask);
+ } else {
+ Rout = Rix;
+ z_lgr(Rix, Z_R0);
+ z_ogr(Z_R0, Z_R1);
+ z_ngr(Z_R0, Rmask);
+ }
+ z_brnz(skipShortcut);
+ z_stcmh(Rout, 5, 0, Rdst);
+ z_stcm(Rout, 5, 2, Rdst);
+ z_stcmh(Z_R1, 5, 4, Rdst);
+ z_stcm(Z_R1, 5, 6, Rdst);
+ z_lgfr(result, Rcnt);
+ z_bru(AllDone);
+
+ bind(skip8Shortcut);
+ clear_reg(Z_R0, true, false); // #characters already processed (none). Precond for scalar loop.
+ z_brl(ScalarShortcut); // Just a few characters
+
+ bind(skipShortcut);
+ }
+#endif
+ clear_reg(Z_R0); // make sure register is properly initialized.
+
+ if (VM_Version::has_VectorFacility()) {
+ const int min_vcnt = 32; // Minimum #characters required to use vector instructions.
+ // Otherwise just do nothing in vector mode.
+ // Must be multiple of 2*(vector register length in chars (8 HW = 128 bits)).
+ const int log_min_vcnt = exact_log2(min_vcnt);
+ Label VectorLoop, VectorDone, VectorBreak;
+
+ VectorRegister Vtmp1 = Z_V16;
+ VectorRegister Vtmp2 = Z_V17;
+ VectorRegister Vmask = Z_V18;
+ VectorRegister Vzero = Z_V19;
+ VectorRegister Vsrc_first = Z_V20;
+ VectorRegister Vsrc_last = Z_V23;
+
+ assert((Vsrc_last->encoding() - Vsrc_first->encoding() + 1) == min_vcnt/8, "logic error");
+ assert(VM_Version::has_DistinctOpnds(), "Assumption when has_VectorFacility()");
+ z_srak(Rix, Rcnt, log_min_vcnt); // # vector loop iterations
+ z_brz(VectorDone); // not enough data for vector loop
+
+ z_vzero(Vzero); // all zeroes
+ z_vgmh(Vmask, 0, 7); // generate 0xff00 mask for all 2-byte elements
+ z_sllg(Z_R0, Rix, log_min_vcnt); // remember #chars that will be processed by vector loop
+
+ bind(VectorLoop);
+ z_vlm(Vsrc_first, Vsrc_last, 0, Rsrc);
+ add2reg(Rsrc, min_vcnt*2);
+
+ //---< check for incompatible character >---
+ z_vo(Vtmp1, Z_V20, Z_V21);
+ z_vo(Vtmp2, Z_V22, Z_V23);
+ z_vo(Vtmp1, Vtmp1, Vtmp2);
+ z_vn(Vtmp1, Vtmp1, Vmask);
+ z_vceqhs(Vtmp1, Vtmp1, Vzero); // high half of all chars must be zero for successful compress.
+ z_brne(VectorBreak); // break vector loop, incompatible character found.
+ // re-process data from current iteration in break handler.
+
+ //---< pack & store characters >---
+ z_vpkh(Vtmp1, Z_V20, Z_V21); // pack (src1, src2) -> tmp1
+ z_vpkh(Vtmp2, Z_V22, Z_V23); // pack (src3, src4) -> tmp2
+ z_vstm(Vtmp1, Vtmp2, 0, Rdst); // store packed string
+ add2reg(Rdst, min_vcnt);
+
+ z_brct(Rix, VectorLoop);
+
+ z_bru(VectorDone);
+
+ bind(VectorBreak);
+ z_sll(Rix, log_min_vcnt); // # chars processed so far in VectorLoop, excl. current iteration.
+ z_sr(Z_R0, Rix); // correct # chars processed in total.
+
+ bind(VectorDone);
+ }
+
+ {
+ const int min_cnt = 8; // Minimum #characters required to use unrolled loop.
+ // Otherwise just do nothing in unrolled loop.
+ // Must be multiple of 8.
+ const int log_min_cnt = exact_log2(min_cnt);
+ Label UnrolledLoop, UnrolledDone, UnrolledBreak;
+
if (VM_Version::has_DistinctOpnds()) {
- z_ogrk(tmp2, Z_R0, Z_R1);
+ z_srk(Rix, Rcnt, Z_R0); // remaining # chars to compress in unrolled loop
} else {
- z_lgr(tmp2, Z_R0);
- z_ogr(tmp2, Z_R1);
+ z_lr(Rix, Rcnt);
+ z_sr(Rix, Z_R0);
}
- z_ngr(tmp2, mask);
- z_brne(Lslow); // Failed fast case, retry slowly.
- }
- z_stcmh(Z_R0, 5, 0, addr2);
- z_stcm(Z_R0, 5, 2, addr2);
- if (!precise) { z_ogr(Z_R0, Z_R1); }
- z_stcmh(Z_R1, 5, 4, addr2);
- z_stcm(Z_R1, 5, 6, addr2);
- if (!precise) {
- z_ngr(Z_R0, mask);
- z_brne(Ldone); // Failed (more than needed was written).
- }
- z_aghi(addr2, 8);
- z_brxle(ind1, even_reg, Lloop1);
-
- bind(Lslow);
- // Compute index limit and skip if negative.
- z_ahi(odd_reg, 16-2); // Last possible index for slow loop.
- z_lhi(even_reg, 2);
- z_cr(ind1, odd_reg);
- z_brh(Ldone);
-
- bind(Lloop2); // 1 Character per iteration.
- z_llh(Z_R0, Address(src, ind1));
- z_tmll(Z_R0, 0xFF00);
- z_brnaz(Ldone); // Failed slow case: Return number of written characters.
- z_stc(Z_R0, Address(addr2));
- z_aghi(addr2, 1);
- z_brxle(ind1, even_reg, Lloop2);
-
- bind(Ldone); // result = ind1 = 2*cnt
- z_srl(ind1, 1);
-
- BLOCK_COMMENT("} string_compress");
-
+ z_sra(Rix, log_min_cnt); // unrolled loop count
+ z_brz(UnrolledDone);
+
+ bind(UnrolledLoop);
+ z_lmg(Z_R0, Z_R1, 0, Rsrc);
+ if (precise) {
+ z_ogr(Z_R1, Z_R0); // check all 8 chars for incompatibility
+ z_ngr(Z_R1, Rmask);
+ z_brnz(UnrolledBreak);
+
+ z_lg(Z_R1, 8, Rsrc); // reload destroyed register
+ z_stcmh(Z_R0, 5, 0, Rdst);
+ z_stcm(Z_R0, 5, 2, Rdst);
+ } else {
+ z_stcmh(Z_R0, 5, 0, Rdst);
+ z_stcm(Z_R0, 5, 2, Rdst);
+
+ z_ogr(Z_R0, Z_R1);
+ z_ngr(Z_R0, Rmask);
+ z_brnz(UnrolledBreak);
+ }
+ z_stcmh(Z_R1, 5, 4, Rdst);
+ z_stcm(Z_R1, 5, 6, Rdst);
+
+ add2reg(Rsrc, min_cnt*2);
+ add2reg(Rdst, min_cnt);
+ z_brct(Rix, UnrolledLoop);
+
+ z_lgfr(Z_R0, Rcnt); // # chars processed in total after unrolled loop.
+ z_nilf(Z_R0, ~(min_cnt-1));
+ z_tmll(Rcnt, min_cnt-1);
+ z_brnaz(ScalarShortcut); // if all bits zero, there is nothing left to do for scalar loop.
+ // Rix == 0 in all cases.
+ z_lgfr(result, Rcnt); // all characters processed.
+ z_sgfr(Rdst, Rcnt); // restore ptr
+ z_sgfr(Rsrc, Rcnt); // restore ptr, double the element count for Rsrc restore
+ z_sgfr(Rsrc, Rcnt);
+ z_bru(AllDone);
+
+ bind(UnrolledBreak);
+ z_lgfr(Z_R0, Rcnt); // # chars processed in total after unrolled loop
+ z_nilf(Z_R0, ~(min_cnt-1));
+ z_sll(Rix, log_min_cnt); // # chars processed so far in UnrolledLoop, excl. current iteration.
+ z_sr(Z_R0, Rix); // correct # chars processed in total.
+ if (!precise) {
+ z_lgfr(result, Z_R0);
+ z_aghi(result, min_cnt/2); // min_cnt/2 characters have already been written
+ // but ptrs were not updated yet.
+ z_sgfr(Rdst, Z_R0); // restore ptr
+ z_sgfr(Rsrc, Z_R0); // restore ptr, double the element count for Rsrc restore
+ z_sgfr(Rsrc, Z_R0);
+ z_bru(AllDone);
+ }
+ bind(UnrolledDone);
+ }
+
+ {
+ Label ScalarLoop, ScalarDone, ScalarBreak;
+
+ bind(ScalarShortcut);
+ z_ltgfr(result, Rcnt);
+ z_brz(AllDone);
+
+#if 0 // Sacrifice shortcuts for code compactness
+ {
+ //---< Special treatment for very short strings (one or two characters) >---
+ // For these strings, we are sure that the above code was skipped.
+ // Thus, no registers were modified, register restore is not required.
+ Label ScalarDoit, Scalar2Char;
+ z_chi(Rcnt, 2);
+ z_brh(ScalarDoit);
+ z_llh(Z_R1, 0, Z_R0, Rsrc);
+ z_bre(Scalar2Char);
+ z_tmll(Z_R1, 0xff00);
+ z_lghi(result, 0); // cnt == 1, first char invalid, no chars successfully processed
+ z_brnaz(AllDone);
+ z_stc(Z_R1, 0, Z_R0, Rdst);
+ z_lghi(result, 1);
+ z_bru(AllDone);
+
+ bind(Scalar2Char);
+ z_llh(Z_R0, 2, Z_R0, Rsrc);
+ z_tmll(Z_R1, 0xff00);
+ z_lghi(result, 0); // cnt == 2, first char invalid, no chars successfully processed
+ z_brnaz(AllDone);
+ z_stc(Z_R1, 0, Z_R0, Rdst);
+ z_tmll(Z_R0, 0xff00);
+ z_lghi(result, 1); // cnt == 2, second char invalid, one char successfully processed
+ z_brnaz(AllDone);
+ z_stc(Z_R0, 1, Z_R0, Rdst);
+ z_lghi(result, 2);
+ z_bru(AllDone);
+
+ bind(ScalarDoit);
+ }
+#endif
+
+ if (VM_Version::has_DistinctOpnds()) {
+ z_srk(Rix, Rcnt, Z_R0); // remaining # chars to compress in unrolled loop
+ } else {
+ z_lr(Rix, Rcnt);
+ z_sr(Rix, Z_R0);
+ }
+ z_lgfr(result, Rcnt); // # processed characters (if all runs ok).
+ z_brz(ScalarDone);
+
+ bind(ScalarLoop);
+ z_llh(Z_R1, 0, Z_R0, Rsrc);
+ z_tmll(Z_R1, 0xff00);
+ z_brnaz(ScalarBreak);
+ z_stc(Z_R1, 0, Z_R0, Rdst);
+ add2reg(Rsrc, 2);
+ add2reg(Rdst, 1);
+ z_brct(Rix, ScalarLoop);
+
+ z_bru(ScalarDone);
+
+ bind(ScalarBreak);
+ z_sr(result, Rix);
+
+ bind(ScalarDone);
+ z_sgfr(Rdst, result); // restore ptr
+ z_sgfr(Rsrc, result); // restore ptr, double the element count for Rsrc restore
+ z_sgfr(Rsrc, result);
+ }
+ bind(AllDone);
+
+ if (precise) {
+ BLOCK_COMMENT("} encode_iso_array");
+ } else {
+ BLOCK_COMMENT("} string_compress");
+ }
return offset() - block_start;
}
@@ -4997,53 +5222,432 @@
return offset() - block_start;
}
-// Inflate byte[] to char[]. odd_reg contains cnt. Kills src.
-unsigned int MacroAssembler::string_inflate(Register src, Register dst, Register odd_reg,
- Register even_reg, Register tmp) {
- int block_start = offset();
+// Inflate byte[] to char[].
+// Restores: src, dst
+// Uses: cnt
+// Kills: tmp, Z_R0, Z_R1.
+// Note:
+// cnt is signed int. Do not rely on high word!
+// counts # characters, not bytes.
+unsigned int MacroAssembler::string_inflate(Register src, Register dst, Register cnt, Register tmp) {
+ assert_different_registers(Z_R0, Z_R1, src, dst, cnt, tmp);
BLOCK_COMMENT("string_inflate {");
-
- Label Lloop1, Lloop2, Lslow, Ldone;
- const Register addr1 = src, ind2 = tmp;
-
- z_sll(odd_reg, 1); // Number of bytes to write. (Must be a positive simm32.)
- clear_reg(ind2); // Index to write.
- z_ahi(odd_reg, -16); // Last possible index for fast loop.
- z_brl(Lslow);
-
- // ind2: index, even_reg: index increment, odd_reg: index limit
- clear_reg(Z_R0);
- clear_reg(Z_R1);
- z_lhi(even_reg, 16);
-
- bind(Lloop1); // 8 Characters per iteration.
- z_icmh(Z_R0, 5, 0, addr1);
- z_icmh(Z_R1, 5, 4, addr1);
- z_icm(Z_R0, 5, 2, addr1);
- z_icm(Z_R1, 5, 6, addr1);
- z_aghi(addr1, 8);
- z_stg(Z_R0, Address(dst, ind2));
- z_stg(Z_R1, Address(dst, ind2, 8));
- z_brxle(ind2, even_reg, Lloop1);
-
- bind(Lslow);
- // Compute index limit and skip if negative.
- z_ahi(odd_reg, 16-2); // Last possible index for slow loop.
- z_lhi(even_reg, 2);
- z_cr(ind2, odd_reg);
- z_brh(Ldone);
-
- bind(Lloop2); // 1 Character per iteration.
- z_llc(Z_R0, Address(addr1));
- z_sth(Z_R0, Address(dst, ind2));
- z_aghi(addr1, 1);
- z_brxle(ind2, even_reg, Lloop2);
-
- bind(Ldone);
+ int block_start = offset();
+
+ Register Rcnt = cnt; // # characters (src: bytes, dst: char (2-byte)), remaining after current loop.
+ Register Rix = tmp; // loop index
+ Register Rsrc = src; // addr(src array)
+ Register Rdst = dst; // addr(dst array)
+ Label ScalarShortcut, AllDone;
+
+#if 0 // Sacrifice shortcuts for code compactness
+ {
+ //---< shortcuts for short strings (very frequent) >---
+ Label skipShortcut, skip4Shortcut;
+ z_ltr(Rcnt, Rcnt); // absolutely nothing to do for strings of len == 0.
+ z_brz(AllDone);
+ clear_reg(Z_R0); // make sure registers are properly initialized.
+ clear_reg(Z_R1);
+ z_chi(Rcnt, 4);
+ z_brne(skip4Shortcut); // 4 characters are very frequent
+ z_icm(Z_R0, 5, 0, Rsrc); // Treat exactly 4 characters specially.
+ z_icm(Z_R1, 5, 2, Rsrc);
+ z_stm(Z_R0, Z_R1, 0, Rdst);
+ z_bru(AllDone);
+ bind(skip4Shortcut);
+
+ z_chi(Rcnt, 8);
+ z_brh(skipShortcut); // There's a lot to do...
+ z_lgfr(Z_R0, Rcnt); // remaining #characters (<= 8). Precond for scalar loop.
+ // This does not destroy the "register cleared" state of Z_R0.
+ z_brl(ScalarShortcut); // Just a few characters
+ z_icmh(Z_R0, 5, 0, Rsrc); // Treat exactly 8 characters specially.
+ z_icmh(Z_R1, 5, 4, Rsrc);
+ z_icm(Z_R0, 5, 2, Rsrc);
+ z_icm(Z_R1, 5, 6, Rsrc);
+ z_stmg(Z_R0, Z_R1, 0, Rdst);
+ z_bru(AllDone);
+ bind(skipShortcut);
+ }
+#endif
+ clear_reg(Z_R0); // make sure register is properly initialized.
+
+ if (VM_Version::has_VectorFacility()) {
+ const int min_vcnt = 32; // Minimum #characters required to use vector instructions.
+ // Otherwise just do nothing in vector mode.
+ // Must be multiple of vector register length (16 bytes = 128 bits).
+ const int log_min_vcnt = exact_log2(min_vcnt);
+ Label VectorLoop, VectorDone;
+
+ assert(VM_Version::has_DistinctOpnds(), "Assumption when has_VectorFacility()");
+ z_srak(Rix, Rcnt, log_min_vcnt); // calculate # vector loop iterations
+ z_brz(VectorDone); // skip if none
+
+ z_sllg(Z_R0, Rix, log_min_vcnt); // remember #chars that will be processed by vector loop
+
+ bind(VectorLoop);
+ z_vlm(Z_V20, Z_V21, 0, Rsrc); // get next 32 characters (single-byte)
+ add2reg(Rsrc, min_vcnt);
+
+ z_vuplhb(Z_V22, Z_V20); // V2 <- (expand) V0(high)
+ z_vupllb(Z_V23, Z_V20); // V3 <- (expand) V0(low)
+ z_vuplhb(Z_V24, Z_V21); // V4 <- (expand) V1(high)
+ z_vupllb(Z_V25, Z_V21); // V5 <- (expand) V1(low)
+ z_vstm(Z_V22, Z_V25, 0, Rdst); // store next 32 bytes
+ add2reg(Rdst, min_vcnt*2);
+
+ z_brct(Rix, VectorLoop);
+
+ bind(VectorDone);
+ }
+
+ const int min_cnt = 8; // Minimum #characters required to use unrolled scalar loop.
+ // Otherwise just do nothing in unrolled scalar mode.
+ // Must be multiple of 8.
+ {
+ const int log_min_cnt = exact_log2(min_cnt);
+ Label UnrolledLoop, UnrolledDone;
+
+
+ if (VM_Version::has_DistinctOpnds()) {
+ z_srk(Rix, Rcnt, Z_R0); // remaining # chars to process in unrolled loop
+ } else {
+ z_lr(Rix, Rcnt);
+ z_sr(Rix, Z_R0);
+ }
+ z_sra(Rix, log_min_cnt); // unrolled loop count
+ z_brz(UnrolledDone);
+
+ clear_reg(Z_R0);
+ clear_reg(Z_R1);
+
+ bind(UnrolledLoop);
+ z_icmh(Z_R0, 5, 0, Rsrc);
+ z_icmh(Z_R1, 5, 4, Rsrc);
+ z_icm(Z_R0, 5, 2, Rsrc);
+ z_icm(Z_R1, 5, 6, Rsrc);
+ add2reg(Rsrc, min_cnt);
+
+ z_stmg(Z_R0, Z_R1, 0, Rdst);
+
+ add2reg(Rdst, min_cnt*2);
+ z_brct(Rix, UnrolledLoop);
+
+ bind(UnrolledDone);
+ z_lgfr(Z_R0, Rcnt); // # chars left over after unrolled loop.
+ z_nilf(Z_R0, min_cnt-1);
+ z_brnz(ScalarShortcut); // if zero, there is nothing left to do for scalar loop.
+ // Rix == 0 in all cases.
+ z_sgfr(Z_R0, Rcnt); // negative # characters the ptrs have been advanced previously.
+ z_agr(Rdst, Z_R0); // restore ptr, double the element count for Rdst restore.
+ z_agr(Rdst, Z_R0);
+ z_agr(Rsrc, Z_R0); // restore ptr.
+ z_bru(AllDone);
+ }
+
+ {
+ bind(ScalarShortcut);
+ // Z_R0 must contain remaining # characters as 64-bit signed int here.
+ // register contents is preserved over scalar processing (for register fixup).
+
+#if 0 // Sacrifice shortcuts for code compactness
+ {
+ Label ScalarDefault;
+ z_chi(Rcnt, 2);
+ z_brh(ScalarDefault);
+ z_llc(Z_R0, 0, Z_R0, Rsrc); // 6 bytes
+ z_sth(Z_R0, 0, Z_R0, Rdst); // 4 bytes
+ z_brl(AllDone);
+ z_llc(Z_R0, 1, Z_R0, Rsrc); // 6 bytes
+ z_sth(Z_R0, 2, Z_R0, Rdst); // 4 bytes
+ z_bru(AllDone);
+ bind(ScalarDefault);
+ }
+#endif
+
+ Label CodeTable;
+ // Some comments on Rix calculation:
+ // - Rcnt is small, therefore no bits shifted out of low word (sll(g) instructions).
+ // - high word of both Rix and Rcnt may contain garbage
+ // - the final lngfr takes care of that garbage, extending the sign to high word
+ z_sllg(Rix, Z_R0, 2); // calculate 10*Rix = (4*Rix + Rix)*2
+ z_ar(Rix, Z_R0);
+ z_larl(Z_R1, CodeTable);
+ z_sll(Rix, 1);
+ z_lngfr(Rix, Rix); // ix range: [0..7], after inversion & mult: [-(7*12)..(0*12)].
+ z_bc(Assembler::bcondAlways, 0, Rix, Z_R1);
+
+ z_llc(Z_R1, 6, Z_R0, Rsrc); // 6 bytes
+ z_sth(Z_R1, 12, Z_R0, Rdst); // 4 bytes
+
+ z_llc(Z_R1, 5, Z_R0, Rsrc);
+ z_sth(Z_R1, 10, Z_R0, Rdst);
+
+ z_llc(Z_R1, 4, Z_R0, Rsrc);
+ z_sth(Z_R1, 8, Z_R0, Rdst);
+
+ z_llc(Z_R1, 3, Z_R0, Rsrc);
+ z_sth(Z_R1, 6, Z_R0, Rdst);
+
+ z_llc(Z_R1, 2, Z_R0, Rsrc);
+ z_sth(Z_R1, 4, Z_R0, Rdst);
+
+ z_llc(Z_R1, 1, Z_R0, Rsrc);
+ z_sth(Z_R1, 2, Z_R0, Rdst);
+
+ z_llc(Z_R1, 0, Z_R0, Rsrc);
+ z_sth(Z_R1, 0, Z_R0, Rdst);
+ bind(CodeTable);
+
+ z_chi(Rcnt, 8); // no fixup for small strings. Rdst, Rsrc were not modified.
+ z_brl(AllDone);
+
+ z_sgfr(Z_R0, Rcnt); // # characters the ptrs have been advanced previously.
+ z_agr(Rdst, Z_R0); // restore ptr, double the element count for Rdst restore.
+ z_agr(Rdst, Z_R0);
+ z_agr(Rsrc, Z_R0); // restore ptr.
+ }
+ bind(AllDone);
BLOCK_COMMENT("} string_inflate");
-
+ return offset() - block_start;
+}
+
+// Inflate byte[] to char[], length known at compile time.
+// Restores: src, dst
+// Kills: tmp, Z_R0, Z_R1.
+// Note:
+// len is signed int. Counts # characters, not bytes.
+unsigned int MacroAssembler::string_inflate_const(Register src, Register dst, Register tmp, int len) {
+ assert_different_registers(Z_R0, Z_R1, src, dst, tmp);
+
+ BLOCK_COMMENT("string_inflate_const {");
+ int block_start = offset();
+
+ Register Rix = tmp; // loop index
+ Register Rsrc = src; // addr(src array)
+ Register Rdst = dst; // addr(dst array)
+ Label ScalarShortcut, AllDone;
+ int nprocessed = 0;
+ int src_off = 0; // compensate for saved (optimized away) ptr advancement.
+ int dst_off = 0; // compensate for saved (optimized away) ptr advancement.
+ bool restore_inputs = false;
+ bool workreg_clear = false;
+
+ if ((len >= 32) && VM_Version::has_VectorFacility()) {
+ const int min_vcnt = 32; // Minimum #characters required to use vector instructions.
+ // Otherwise just do nothing in vector mode.
+ // Must be multiple of vector register length (16 bytes = 128 bits).
+ const int log_min_vcnt = exact_log2(min_vcnt);
+ const int iterations = (len - nprocessed) >> log_min_vcnt;
+ nprocessed += iterations << log_min_vcnt;
+ Label VectorLoop;
+
+ if (iterations == 1) {
+ z_vlm(Z_V20, Z_V21, 0+src_off, Rsrc); // get next 32 characters (single-byte)
+ z_vuplhb(Z_V22, Z_V20); // V2 <- (expand) V0(high)
+ z_vupllb(Z_V23, Z_V20); // V3 <- (expand) V0(low)
+ z_vuplhb(Z_V24, Z_V21); // V4 <- (expand) V1(high)
+ z_vupllb(Z_V25, Z_V21); // V5 <- (expand) V1(low)
+ z_vstm(Z_V22, Z_V25, 0+dst_off, Rdst); // store next 32 bytes
+
+ src_off += min_vcnt;
+ dst_off += min_vcnt*2;
+ } else {
+ restore_inputs = true;
+
+ z_lgfi(Rix, len>>log_min_vcnt);
+ bind(VectorLoop);
+ z_vlm(Z_V20, Z_V21, 0, Rsrc); // get next 32 characters (single-byte)
+ add2reg(Rsrc, min_vcnt);
+
+ z_vuplhb(Z_V22, Z_V20); // V2 <- (expand) V0(high)
+ z_vupllb(Z_V23, Z_V20); // V3 <- (expand) V0(low)
+ z_vuplhb(Z_V24, Z_V21); // V4 <- (expand) V1(high)
+ z_vupllb(Z_V25, Z_V21); // V5 <- (expand) V1(low)
+ z_vstm(Z_V22, Z_V25, 0, Rdst); // store next 32 bytes
+ add2reg(Rdst, min_vcnt*2);
+
+ z_brct(Rix, VectorLoop);
+ }
+ }
+
+ if (((len-nprocessed) >= 16) && VM_Version::has_VectorFacility()) {
+ const int min_vcnt = 16; // Minimum #characters required to use vector instructions.
+ // Otherwise just do nothing in vector mode.
+ // Must be multiple of vector register length (16 bytes = 128 bits).
+ const int log_min_vcnt = exact_log2(min_vcnt);
+ const int iterations = (len - nprocessed) >> log_min_vcnt;
+ nprocessed += iterations << log_min_vcnt;
+ assert(iterations == 1, "must be!");
+
+ z_vl(Z_V20, 0+src_off, Z_R0, Rsrc); // get next 16 characters (single-byte)
+ z_vuplhb(Z_V22, Z_V20); // V2 <- (expand) V0(high)
+ z_vupllb(Z_V23, Z_V20); // V3 <- (expand) V0(low)
+ z_vstm(Z_V22, Z_V23, 0+dst_off, Rdst); // store next 32 bytes
+
+ src_off += min_vcnt;
+ dst_off += min_vcnt*2;
+ }
+
+ if ((len-nprocessed) > 8) {
+ const int min_cnt = 8; // Minimum #characters required to use unrolled scalar loop.
+ // Otherwise just do nothing in unrolled scalar mode.
+ // Must be multiple of 8.
+ const int log_min_cnt = exact_log2(min_cnt);
+ const int iterations = (len - nprocessed) >> log_min_cnt;
+ nprocessed += iterations << log_min_cnt;
+
+ //---< avoid loop overhead/ptr increment for small # iterations >---
+ if (iterations <= 2) {
+ clear_reg(Z_R0);
+ clear_reg(Z_R1);
+ workreg_clear = true;
+
+ z_icmh(Z_R0, 5, 0+src_off, Rsrc);
+ z_icmh(Z_R1, 5, 4+src_off, Rsrc);
+ z_icm(Z_R0, 5, 2+src_off, Rsrc);
+ z_icm(Z_R1, 5, 6+src_off, Rsrc);
+ z_stmg(Z_R0, Z_R1, 0+dst_off, Rdst);
+
+ src_off += min_cnt;
+ dst_off += min_cnt*2;
+ }
+
+ if (iterations == 2) {
+ z_icmh(Z_R0, 5, 0+src_off, Rsrc);
+ z_icmh(Z_R1, 5, 4+src_off, Rsrc);
+ z_icm(Z_R0, 5, 2+src_off, Rsrc);
+ z_icm(Z_R1, 5, 6+src_off, Rsrc);
+ z_stmg(Z_R0, Z_R1, 0+dst_off, Rdst);
+
+ src_off += min_cnt;
+ dst_off += min_cnt*2;
+ }
+
+ if (iterations > 2) {
+ Label UnrolledLoop;
+ restore_inputs = true;
+
+ clear_reg(Z_R0);
+ clear_reg(Z_R1);
+ workreg_clear = true;
+
+ z_lgfi(Rix, iterations);
+ bind(UnrolledLoop);
+ z_icmh(Z_R0, 5, 0, Rsrc);
+ z_icmh(Z_R1, 5, 4, Rsrc);
+ z_icm(Z_R0, 5, 2, Rsrc);
+ z_icm(Z_R1, 5, 6, Rsrc);
+ add2reg(Rsrc, min_cnt);
+
+ z_stmg(Z_R0, Z_R1, 0, Rdst);
+ add2reg(Rdst, min_cnt*2);
+
+ z_brct(Rix, UnrolledLoop);
+ }
+ }
+
+ if ((len-nprocessed) > 0) {
+ switch (len-nprocessed) {
+ case 8:
+ if (!workreg_clear) {
+ clear_reg(Z_R0);
+ clear_reg(Z_R1);
+ }
+ z_icmh(Z_R0, 5, 0+src_off, Rsrc);
+ z_icmh(Z_R1, 5, 4+src_off, Rsrc);
+ z_icm(Z_R0, 5, 2+src_off, Rsrc);
+ z_icm(Z_R1, 5, 6+src_off, Rsrc);
+ z_stmg(Z_R0, Z_R1, 0+dst_off, Rdst);
+ break;
+ case 7:
+ if (!workreg_clear) {
+ clear_reg(Z_R0);
+ clear_reg(Z_R1);
+ }
+ clear_reg(Rix);
+ z_icm(Z_R0, 5, 0+src_off, Rsrc);
+ z_icm(Z_R1, 5, 2+src_off, Rsrc);
+ z_icm(Rix, 5, 4+src_off, Rsrc);
+ z_stm(Z_R0, Z_R1, 0+dst_off, Rdst);
+ z_llc(Z_R0, 6+src_off, Z_R0, Rsrc);
+ z_st(Rix, 8+dst_off, Z_R0, Rdst);
+ z_sth(Z_R0, 12+dst_off, Z_R0, Rdst);
+ break;
+ case 6:
+ if (!workreg_clear) {
+ clear_reg(Z_R0);
+ clear_reg(Z_R1);
+ }
+ clear_reg(Rix);
+ z_icm(Z_R0, 5, 0+src_off, Rsrc);
+ z_icm(Z_R1, 5, 2+src_off, Rsrc);
+ z_icm(Rix, 5, 4+src_off, Rsrc);
+ z_stm(Z_R0, Z_R1, 0+dst_off, Rdst);
+ z_st(Rix, 8+dst_off, Z_R0, Rdst);
+ break;
+ case 5:
+ if (!workreg_clear) {
+ clear_reg(Z_R0);
+ clear_reg(Z_R1);
+ }
+ z_icm(Z_R0, 5, 0+src_off, Rsrc);
+ z_icm(Z_R1, 5, 2+src_off, Rsrc);
+ z_llc(Rix, 4+src_off, Z_R0, Rsrc);
+ z_stm(Z_R0, Z_R1, 0+dst_off, Rdst);
+ z_sth(Rix, 8+dst_off, Z_R0, Rdst);
+ break;
+ case 4:
+ if (!workreg_clear) {
+ clear_reg(Z_R0);
+ clear_reg(Z_R1);
+ }
+ z_icm(Z_R0, 5, 0+src_off, Rsrc);
+ z_icm(Z_R1, 5, 2+src_off, Rsrc);
+ z_stm(Z_R0, Z_R1, 0+dst_off, Rdst);
+ break;
+ case 3:
+ if (!workreg_clear) {
+ clear_reg(Z_R0);
+ }
+ z_llc(Z_R1, 2+src_off, Z_R0, Rsrc);
+ z_icm(Z_R0, 5, 0+src_off, Rsrc);
+ z_sth(Z_R1, 4+dst_off, Z_R0, Rdst);
+ z_st(Z_R0, 0+dst_off, Rdst);
+ break;
+ case 2:
+ z_llc(Z_R0, 0+src_off, Z_R0, Rsrc);
+ z_llc(Z_R1, 1+src_off, Z_R0, Rsrc);
+ z_sth(Z_R0, 0+dst_off, Z_R0, Rdst);
+ z_sth(Z_R1, 2+dst_off, Z_R0, Rdst);
+ break;
+ case 1:
+ z_llc(Z_R0, 0+src_off, Z_R0, Rsrc);
+ z_sth(Z_R0, 0+dst_off, Z_R0, Rdst);
+ break;
+ default:
+ guarantee(false, "Impossible");
+ break;
+ }
+ src_off += len-nprocessed;
+ dst_off += (len-nprocessed)*2;
+ nprocessed = len;
+ }
+
+ //---< restore modified input registers >---
+ if ((nprocessed > 0) && restore_inputs) {
+ z_agfi(Rsrc, -(nprocessed-src_off));
+ if (nprocessed < 1000000000) { // avoid int overflow
+ z_agfi(Rdst, -(nprocessed*2-dst_off));
+ } else {
+ z_agfi(Rdst, -(nprocessed-dst_off));
+ z_agfi(Rdst, -nprocessed);
+ }
+ }
+
+ BLOCK_COMMENT("} string_inflate_const");
return offset() - block_start;
}