jdk/src/share/classes/java/util/stream/ReferencePipeline.java
changeset 17182 b786c0de868c
child 18155 889970e5b728
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/java/util/stream/ReferencePipeline.java	Wed Apr 24 16:15:47 2013 -0700
@@ -0,0 +1,632 @@
+/*
+ * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+package java.util.stream;
+
+import java.util.Comparator;
+import java.util.Comparators;
+import java.util.Iterator;
+import java.util.Objects;
+import java.util.Optional;
+import java.util.Spliterator;
+import java.util.Spliterators;
+import java.util.function.BiConsumer;
+import java.util.function.BiFunction;
+import java.util.function.BinaryOperator;
+import java.util.function.Consumer;
+import java.util.function.DoubleConsumer;
+import java.util.function.Function;
+import java.util.function.IntConsumer;
+import java.util.function.IntFunction;
+import java.util.function.LongConsumer;
+import java.util.function.Predicate;
+import java.util.function.Supplier;
+import java.util.function.ToDoubleFunction;
+import java.util.function.ToIntFunction;
+import java.util.function.ToLongFunction;
+
+/**
+ * Abstract base class for an intermediate pipeline stage or pipeline source
+ * stage implementing whose elements are of type {@code U}.
+ *
+ * @param <P_IN> type of elements in the upstream source
+ * @param <P_OUT> type of elements in produced by this stage
+ *
+ * @since 1.8
+ */
+abstract class ReferencePipeline<P_IN, P_OUT>
+        extends AbstractPipeline<P_IN, P_OUT, Stream<P_OUT>>
+        implements Stream<P_OUT>  {
+
+    /**
+     * Constructor for the head of a stream pipeline.
+     *
+     * @param source {@code Supplier<Spliterator>} describing the stream source
+     * @param sourceFlags the source flags for the stream source, described in
+     *        {@link StreamOpFlag}
+     * @param parallel {@code true} if the pipeline is parallel
+     */
+    ReferencePipeline(Supplier<? extends Spliterator<?>> source,
+                      int sourceFlags, boolean parallel) {
+        super(source, sourceFlags, parallel);
+    }
+
+    /**
+     * Constructor for the head of a stream pipeline.
+     *
+     * @param source {@code Spliterator} describing the stream source
+     * @param sourceFlags The source flags for the stream source, described in
+     *        {@link StreamOpFlag}
+     * @param parallel {@code true} if the pipeline is parallel
+     */
+    ReferencePipeline(Spliterator<?> source,
+                      int sourceFlags, boolean parallel) {
+        super(source, sourceFlags, parallel);
+    }
+
+    /**
+     * Constructor for appending an intermediate operation onto an existing
+     * pipeline.
+     *
+     * @param upstream the upstream element source.
+     */
+    ReferencePipeline(AbstractPipeline<?, P_IN, ?> upstream, int opFlags) {
+        super(upstream, opFlags);
+    }
+
+    // Shape-specific methods
+
+    @Override
+    final StreamShape getOutputShape() {
+        return StreamShape.REFERENCE;
+    }
+
+    @Override
+    final <P_IN> Node<P_OUT> evaluateToNode(PipelineHelper<P_OUT> helper,
+                                        Spliterator<P_IN> spliterator,
+                                        boolean flattenTree,
+                                        IntFunction<P_OUT[]> generator) {
+        return Nodes.collect(helper, spliterator, flattenTree, generator);
+    }
+
+    @Override
+    final <P_IN> Spliterator<P_OUT> wrap(PipelineHelper<P_OUT> ph,
+                                     Supplier<Spliterator<P_IN>> supplier,
+                                     boolean isParallel) {
+        return new StreamSpliterators.WrappingSpliterator<>(ph, supplier, isParallel);
+    }
+
+    @Override
+    final Spliterator<P_OUT> lazySpliterator(Supplier<? extends Spliterator<P_OUT>> supplier) {
+        return new StreamSpliterators.DelegatingSpliterator<>(supplier);
+    }
+
+    @Override
+    final void forEachWithCancel(Spliterator<P_OUT> spliterator, Sink<P_OUT> sink) {
+        do { } while (!sink.cancellationRequested() && spliterator.tryAdvance(sink));
+    }
+
+    @Override
+    final Node.Builder<P_OUT> makeNodeBuilder(long exactSizeIfKnown, IntFunction<P_OUT[]> generator) {
+        return Nodes.builder(exactSizeIfKnown, generator);
+    }
+
+
+    // BaseStream
+
+    @Override
+    public final Iterator<P_OUT> iterator() {
+        return Spliterators.iteratorFromSpliterator(spliterator());
+    }
+
+
+    // Stream
+
+    // Stateless intermediate operations from Stream
+
+    @Override
+    public Stream<P_OUT> unordered() {
+        if (!isOrdered())
+            return this;
+        return new StatelessOp<P_OUT, P_OUT>(this, StreamShape.REFERENCE, StreamOpFlag.NOT_ORDERED) {
+            @Override
+            Sink<P_OUT> opWrapSink(int flags, Sink<P_OUT> sink) {
+                return sink;
+            }
+        };
+    }
+
+    @Override
+    public final Stream<P_OUT> filter(Predicate<? super P_OUT> predicate) {
+        Objects.requireNonNull(predicate);
+        return new StatelessOp<P_OUT, P_OUT>(this, StreamShape.REFERENCE,
+                                     StreamOpFlag.NOT_SIZED) {
+            @Override
+            Sink<P_OUT> opWrapSink(int flags, Sink<P_OUT> sink) {
+                return new Sink.ChainedReference<P_OUT>(sink) {
+                    @Override
+                    public void accept(P_OUT u) {
+                        if (predicate.test(u))
+                            downstream.accept(u);
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final <R> Stream<R> map(Function<? super P_OUT, ? extends R> mapper) {
+        Objects.requireNonNull(mapper);
+        return new StatelessOp<P_OUT, R>(this, StreamShape.REFERENCE,
+                                     StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<P_OUT> opWrapSink(int flags, Sink<R> sink) {
+                return new Sink.ChainedReference<P_OUT>(sink) {
+                    @Override
+                    public void accept(P_OUT u) {
+                        downstream.accept(mapper.apply(u));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final IntStream mapToInt(ToIntFunction<? super P_OUT> mapper) {
+        Objects.requireNonNull(mapper);
+        return new IntPipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
+                                              StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<P_OUT> opWrapSink(int flags, Sink<Integer> sink) {
+                return new Sink.ChainedReference<P_OUT>(sink) {
+                    @Override
+                    public void accept(P_OUT u) {
+                        downstream.accept(mapper.applyAsInt(u));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final LongStream mapToLong(ToLongFunction<? super P_OUT> mapper) {
+        Objects.requireNonNull(mapper);
+        return new LongPipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
+                                      StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<P_OUT> opWrapSink(int flags, Sink<Long> sink) {
+                return new Sink.ChainedReference<P_OUT>(sink) {
+                    @Override
+                    public void accept(P_OUT u) {
+                        downstream.accept(mapper.applyAsLong(u));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final DoubleStream mapToDouble(ToDoubleFunction<? super P_OUT> mapper) {
+        Objects.requireNonNull(mapper);
+        return new DoublePipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
+                                        StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<P_OUT> opWrapSink(int flags, Sink<Double> sink) {
+                return new Sink.ChainedReference<P_OUT>(sink) {
+                    @Override
+                    public void accept(P_OUT u) {
+                        downstream.accept(mapper.applyAsDouble(u));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final <R> Stream<R> flatMap(Function<? super P_OUT, ? extends Stream<? extends R>> mapper) {
+        Objects.requireNonNull(mapper);
+        // We can do better than this, by polling cancellationRequested when stream is infinite
+        return new StatelessOp<P_OUT, R>(this, StreamShape.REFERENCE,
+                                     StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
+            @Override
+            Sink<P_OUT> opWrapSink(int flags, Sink<R> sink) {
+                return new Sink.ChainedReference<P_OUT>(sink) {
+                    public void accept(P_OUT u) {
+                        // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
+                        Stream<? extends R> result = mapper.apply(u);
+                        if (result != null)
+                            result.sequential().forEach(downstream);
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final IntStream flatMapToInt(Function<? super P_OUT, ? extends IntStream> mapper) {
+        Objects.requireNonNull(mapper);
+        // We can do better than this, by polling cancellationRequested when stream is infinite
+        return new IntPipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
+                                              StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
+            @Override
+            Sink<P_OUT> opWrapSink(int flags, Sink<Integer> sink) {
+                return new Sink.ChainedReference<P_OUT>(sink) {
+                    IntConsumer downstreamAsInt = downstream::accept;
+                    public void accept(P_OUT u) {
+                        // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
+                        IntStream result = mapper.apply(u);
+                        if (result != null)
+                            result.sequential().forEach(downstreamAsInt);
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final DoubleStream flatMapToDouble(Function<? super P_OUT, ? extends DoubleStream> mapper) {
+        Objects.requireNonNull(mapper);
+        // We can do better than this, by polling cancellationRequested when stream is infinite
+        return new DoublePipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
+                                                     StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
+            @Override
+            Sink<P_OUT> opWrapSink(int flags, Sink<Double> sink) {
+                return new Sink.ChainedReference<P_OUT>(sink) {
+                    DoubleConsumer downstreamAsDouble = downstream::accept;
+                    public void accept(P_OUT u) {
+                        // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
+                        DoubleStream result = mapper.apply(u);
+                        if (result != null)
+                            result.sequential().forEach(downstreamAsDouble);
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final LongStream flatMapToLong(Function<? super P_OUT, ? extends LongStream> mapper) {
+        Objects.requireNonNull(mapper);
+        // We can do better than this, by polling cancellationRequested when stream is infinite
+        return new LongPipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
+                                                   StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
+            @Override
+            Sink<P_OUT> opWrapSink(int flags, Sink<Long> sink) {
+                return new Sink.ChainedReference<P_OUT>(sink) {
+                    LongConsumer downstreamAsLong = downstream::accept;
+                    public void accept(P_OUT u) {
+                        // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
+                        LongStream result = mapper.apply(u);
+                        if (result != null)
+                            result.sequential().forEach(downstreamAsLong);
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final Stream<P_OUT> peek(Consumer<? super P_OUT> tee) {
+        Objects.requireNonNull(tee);
+        return new StatelessOp<P_OUT, P_OUT>(this, StreamShape.REFERENCE,
+                                     0) {
+            @Override
+            Sink<P_OUT> opWrapSink(int flags, Sink<P_OUT> sink) {
+                return new Sink.ChainedReference<P_OUT>(sink) {
+                    @Override
+                    public void accept(P_OUT u) {
+                        tee.accept(u);
+                        downstream.accept(u);
+                    }
+                };
+            }
+        };
+    }
+
+    // Stateful intermediate operations from Stream
+
+    @Override
+    public final Stream<P_OUT> distinct() {
+        return DistinctOps.makeRef(this);
+    }
+
+    @Override
+    public final Stream<P_OUT> sorted() {
+        return SortedOps.makeRef(this);
+    }
+
+    @Override
+    public final Stream<P_OUT> sorted(Comparator<? super P_OUT> comparator) {
+        return SortedOps.makeRef(this, comparator);
+    }
+
+    private Stream<P_OUT> slice(long skip, long limit) {
+        return SliceOps.makeRef(this, skip, limit);
+    }
+
+    @Override
+    public final Stream<P_OUT> limit(long maxSize) {
+        if (maxSize < 0)
+            throw new IllegalArgumentException(Long.toString(maxSize));
+        return slice(0, maxSize);
+    }
+
+    @Override
+    public final Stream<P_OUT> substream(long startingOffset) {
+        if (startingOffset < 0)
+            throw new IllegalArgumentException(Long.toString(startingOffset));
+        if (startingOffset == 0)
+            return this;
+        else
+            return slice(startingOffset, -1);
+    }
+
+    @Override
+    public final Stream<P_OUT> substream(long startingOffset, long endingOffset) {
+        if (startingOffset < 0 || endingOffset < startingOffset)
+            throw new IllegalArgumentException(String.format("substream(%d, %d)", startingOffset, endingOffset));
+        return slice(startingOffset, endingOffset - startingOffset);
+    }
+
+    // Terminal operations from Stream
+
+    @Override
+    public void forEach(Consumer<? super P_OUT> action) {
+        evaluate(ForEachOps.makeRef(action, false));
+    }
+
+    @Override
+    public void forEachOrdered(Consumer<? super P_OUT> action) {
+        evaluate(ForEachOps.makeRef(action, true));
+    }
+
+    @Override
+    @SuppressWarnings("unchecked")
+    public final <A> A[] toArray(IntFunction<A[]> generator) {
+        // Since A has no relation to U (not possible to declare that A is an upper bound of U)
+        // there will be no static type checking.
+        // Therefore use a raw type and assume A == U rather than propagating the separation of A and U
+        // throughout the code-base.
+        // The runtime type of U is never checked for equality with the component type of the runtime type of A[].
+        // Runtime checking will be performed when an element is stored in A[], thus if A is not a
+        // super type of U an ArrayStoreException will be thrown.
+        IntFunction rawGenerator = (IntFunction) generator;
+        return (A[]) Nodes.flatten(evaluateToArrayNode(rawGenerator), rawGenerator)
+                              .asArray(rawGenerator);
+    }
+
+    @Override
+    public final Object[] toArray() {
+        return toArray(Object[]::new);
+    }
+
+    @Override
+    public final boolean anyMatch(Predicate<? super P_OUT> predicate) {
+        return evaluate(MatchOps.makeRef(predicate, MatchOps.MatchKind.ANY));
+    }
+
+    @Override
+    public final boolean allMatch(Predicate<? super P_OUT> predicate) {
+        return evaluate(MatchOps.makeRef(predicate, MatchOps.MatchKind.ALL));
+    }
+
+    @Override
+    public final boolean noneMatch(Predicate<? super P_OUT> predicate) {
+        return evaluate(MatchOps.makeRef(predicate, MatchOps.MatchKind.NONE));
+    }
+
+    @Override
+    public final Optional<P_OUT> findFirst() {
+        return evaluate(FindOps.makeRef(true));
+    }
+
+    @Override
+    public final Optional<P_OUT> findAny() {
+        return evaluate(FindOps.makeRef(false));
+    }
+
+    @Override
+    public final P_OUT reduce(final P_OUT identity, final BinaryOperator<P_OUT> accumulator) {
+        return evaluate(ReduceOps.makeRef(identity, accumulator, accumulator));
+    }
+
+    @Override
+    public final Optional<P_OUT> reduce(BinaryOperator<P_OUT> accumulator) {
+        return evaluate(ReduceOps.makeRef(accumulator));
+    }
+
+    @Override
+    public final <R> R reduce(R identity, BiFunction<R, ? super P_OUT, R> accumulator, BinaryOperator<R> combiner) {
+        return evaluate(ReduceOps.makeRef(identity, accumulator, combiner));
+    }
+
+    @Override
+    public final <R> R collect(Collector<? super P_OUT, R> collector) {
+        if (isParallel()
+                && (collector.characteristics().contains(Collector.Characteristics.CONCURRENT))
+                && (!isOrdered() || collector.characteristics().contains(Collector.Characteristics.UNORDERED))) {
+            R container = collector.resultSupplier().get();
+            BiFunction<R, ? super P_OUT, R> accumulator = collector.accumulator();
+            forEach(u -> accumulator.apply(container, u));
+            return container;
+        }
+        return evaluate(ReduceOps.makeRef(collector));
+    }
+
+    @Override
+    public final <R> R collect(Supplier<R> resultFactory,
+                               BiConsumer<R, ? super P_OUT> accumulator,
+                               BiConsumer<R, R> combiner) {
+        return evaluate(ReduceOps.makeRef(resultFactory, accumulator, combiner));
+    }
+
+    @Override
+    public final Optional<P_OUT> max(Comparator<? super P_OUT> comparator) {
+        return reduce(Comparators.greaterOf(comparator));
+    }
+
+    @Override
+    public final Optional<P_OUT> min(Comparator<? super P_OUT> comparator) {
+        return reduce(Comparators.lesserOf(comparator));
+
+    }
+
+    @Override
+    public final long count() {
+        return mapToLong(e -> 1L).sum();
+    }
+
+
+    //
+
+    /**
+     * Source stage of a ReferencePipeline.
+     *
+     * @param <E_IN> type of elements in the upstream source
+     * @param <E_OUT> type of elements in produced by this stage
+     * @since 1.8
+     */
+    static class Head<E_IN, E_OUT> extends ReferencePipeline<E_IN, E_OUT> {
+        /**
+         * Constructor for the source stage of a Stream.
+         *
+         * @param source {@code Supplier<Spliterator>} describing the stream
+         *               source
+         * @param sourceFlags the source flags for the stream source, described
+         *                    in {@link StreamOpFlag}
+         */
+        Head(Supplier<? extends Spliterator<?>> source,
+             int sourceFlags, boolean parallel) {
+            super(source, sourceFlags, parallel);
+        }
+
+        /**
+         * Constructor for the source stage of a Stream.
+         *
+         * @param source {@code Spliterator} describing the stream source
+         * @param sourceFlags the source flags for the stream source, described
+         *                    in {@link StreamOpFlag}
+         */
+        Head(Spliterator<?> source,
+             int sourceFlags, boolean parallel) {
+            super(source, sourceFlags, parallel);
+        }
+
+        @Override
+        final boolean opIsStateful() {
+            throw new UnsupportedOperationException();
+        }
+
+        @Override
+        final Sink<E_IN> opWrapSink(int flags, Sink<E_OUT> sink) {
+            throw new UnsupportedOperationException();
+        }
+
+        // Optimized sequential terminal operations for the head of the pipeline
+
+        @Override
+        public void forEach(Consumer<? super E_OUT> action) {
+            if (!isParallel()) {
+                sourceStageSpliterator().forEachRemaining(action);
+            }
+            else {
+                super.forEach(action);
+            }
+        }
+
+        @Override
+        public void forEachOrdered(Consumer<? super E_OUT> action) {
+            if (!isParallel()) {
+                sourceStageSpliterator().forEachRemaining(action);
+            }
+            else {
+                super.forEachOrdered(action);
+            }
+        }
+    }
+
+    /**
+     * Base class for a stateless intermediate stage of a Stream.
+     *
+     * @param <E_IN> type of elements in the upstream source
+     * @param <E_OUT> type of elements in produced by this stage
+     * @since 1.8
+     */
+    abstract static class StatelessOp<E_IN, E_OUT>
+            extends ReferencePipeline<E_IN, E_OUT> {
+        /**
+         * Construct a new Stream by appending a stateless intermediate
+         * operation to an existing stream.
+         *
+         * @param upstream The upstream pipeline stage
+         * @param inputShape The stream shape for the upstream pipeline stage
+         * @param opFlags Operation flags for the new stage
+         */
+        StatelessOp(AbstractPipeline<?, E_IN, ?> upstream,
+                    StreamShape inputShape,
+                    int opFlags) {
+            super(upstream, opFlags);
+            assert upstream.getOutputShape() == inputShape;
+        }
+
+        @Override
+        final boolean opIsStateful() {
+            return false;
+        }
+    }
+
+    /**
+     * Base class for a stateful intermediate stage of a Stream.
+     *
+     * @param <E_IN> type of elements in the upstream source
+     * @param <E_OUT> type of elements in produced by this stage
+     * @since 1.8
+     */
+    abstract static class StatefulOp<E_IN, E_OUT>
+            extends ReferencePipeline<E_IN, E_OUT> {
+        /**
+         * Construct a new Stream by appending a stateful intermediate operation
+         * to an existing stream.
+         * @param upstream The upstream pipeline stage
+         * @param inputShape The stream shape for the upstream pipeline stage
+         * @param opFlags Operation flags for the new stage
+         */
+        StatefulOp(AbstractPipeline<?, E_IN, ?> upstream,
+                   StreamShape inputShape,
+                   int opFlags) {
+            super(upstream, opFlags);
+            assert upstream.getOutputShape() == inputShape;
+        }
+
+        @Override
+        final boolean opIsStateful() {
+            return true;
+        }
+
+        @Override
+        abstract <P_IN> Node<E_OUT> opEvaluateParallel(PipelineHelper<E_OUT> helper,
+                                                       Spliterator<P_IN> spliterator,
+                                                       IntFunction<E_OUT[]> generator);
+    }
+}