jdk/src/share/classes/java/util/concurrent/ForkJoinPool.java
changeset 4110 ac033ba6ede4
child 5506 202f599c92aa
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/java/util/concurrent/ForkJoinPool.java	Mon Nov 02 17:25:38 2009 -0800
@@ -0,0 +1,1988 @@
+/*
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Sun designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Sun in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ */
+
+/*
+ * This file is available under and governed by the GNU General Public
+ * License version 2 only, as published by the Free Software Foundation.
+ * However, the following notice accompanied the original version of this
+ * file:
+ *
+ * Written by Doug Lea with assistance from members of JCP JSR-166
+ * Expert Group and released to the public domain, as explained at
+ * http://creativecommons.org/licenses/publicdomain
+ */
+
+package java.util.concurrent;
+
+import java.util.ArrayList;
+import java.util.Arrays;
+import java.util.Collection;
+import java.util.Collections;
+import java.util.List;
+import java.util.concurrent.locks.Condition;
+import java.util.concurrent.locks.LockSupport;
+import java.util.concurrent.locks.ReentrantLock;
+import java.util.concurrent.atomic.AtomicInteger;
+import java.util.concurrent.atomic.AtomicLong;
+
+/**
+ * An {@link ExecutorService} for running {@link ForkJoinTask}s.
+ * A {@code ForkJoinPool} provides the entry point for submissions
+ * from non-{@code ForkJoinTask}s, as well as management and
+ * monitoring operations.
+ *
+ * <p>A {@code ForkJoinPool} differs from other kinds of {@link
+ * ExecutorService} mainly by virtue of employing
+ * <em>work-stealing</em>: all threads in the pool attempt to find and
+ * execute subtasks created by other active tasks (eventually blocking
+ * waiting for work if none exist). This enables efficient processing
+ * when most tasks spawn other subtasks (as do most {@code
+ * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
+ * execution of some plain {@code Runnable}- or {@code Callable}-
+ * based activities along with {@code ForkJoinTask}s. When setting
+ * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
+ * also be appropriate for use with fine-grained tasks of any form
+ * that are never joined. Otherwise, other {@code ExecutorService}
+ * implementations are typically more appropriate choices.
+ *
+ * <p>A {@code ForkJoinPool} is constructed with a given target
+ * parallelism level; by default, equal to the number of available
+ * processors. Unless configured otherwise via {@link
+ * #setMaintainsParallelism}, the pool attempts to maintain this
+ * number of active (or available) threads by dynamically adding,
+ * suspending, or resuming internal worker threads, even if some tasks
+ * are stalled waiting to join others. However, no such adjustments
+ * are performed in the face of blocked IO or other unmanaged
+ * synchronization. The nested {@link ManagedBlocker} interface
+ * enables extension of the kinds of synchronization accommodated.
+ * The target parallelism level may also be changed dynamically
+ * ({@link #setParallelism}). The total number of threads may be
+ * limited using method {@link #setMaximumPoolSize}, in which case it
+ * may become possible for the activities of a pool to stall due to
+ * the lack of available threads to process new tasks.
+ *
+ * <p>In addition to execution and lifecycle control methods, this
+ * class provides status check methods (for example
+ * {@link #getStealCount}) that are intended to aid in developing,
+ * tuning, and monitoring fork/join applications. Also, method
+ * {@link #toString} returns indications of pool state in a
+ * convenient form for informal monitoring.
+ *
+ * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
+ * used for all parallel task execution in a program or subsystem.
+ * Otherwise, use would not usually outweigh the construction and
+ * bookkeeping overhead of creating a large set of threads. For
+ * example, a common pool could be used for the {@code SortTasks}
+ * illustrated in {@link RecursiveAction}. Because {@code
+ * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
+ * daemon} mode, there is typically no need to explicitly {@link
+ * #shutdown} such a pool upon program exit.
+ *
+ * <pre>
+ * static final ForkJoinPool mainPool = new ForkJoinPool();
+ * ...
+ * public void sort(long[] array) {
+ *   mainPool.invoke(new SortTask(array, 0, array.length));
+ * }
+ * </pre>
+ *
+ * <p><b>Implementation notes</b>: This implementation restricts the
+ * maximum number of running threads to 32767. Attempts to create
+ * pools with greater than the maximum number result in
+ * {@code IllegalArgumentException}.
+ *
+ * <p>This implementation rejects submitted tasks (that is, by throwing
+ * {@link RejectedExecutionException}) only when the pool is shut down.
+ *
+ * @since 1.7
+ * @author Doug Lea
+ */
+public class ForkJoinPool extends AbstractExecutorService {
+
+    /*
+     * See the extended comments interspersed below for design,
+     * rationale, and walkthroughs.
+     */
+
+    /** Mask for packing and unpacking shorts */
+    private static final int  shortMask = 0xffff;
+
+    /** Max pool size -- must be a power of two minus 1 */
+    private static final int MAX_THREADS =  0x7FFF;
+
+    /**
+     * Factory for creating new {@link ForkJoinWorkerThread}s.
+     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
+     * for {@code ForkJoinWorkerThread} subclasses that extend base
+     * functionality or initialize threads with different contexts.
+     */
+    public static interface ForkJoinWorkerThreadFactory {
+        /**
+         * Returns a new worker thread operating in the given pool.
+         *
+         * @param pool the pool this thread works in
+         * @throws NullPointerException if the pool is null
+         */
+        public ForkJoinWorkerThread newThread(ForkJoinPool pool);
+    }
+
+    /**
+     * Default ForkJoinWorkerThreadFactory implementation; creates a
+     * new ForkJoinWorkerThread.
+     */
+    static class  DefaultForkJoinWorkerThreadFactory
+        implements ForkJoinWorkerThreadFactory {
+        public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
+            try {
+                return new ForkJoinWorkerThread(pool);
+            } catch (OutOfMemoryError oom)  {
+                return null;
+            }
+        }
+    }
+
+    /**
+     * Creates a new ForkJoinWorkerThread. This factory is used unless
+     * overridden in ForkJoinPool constructors.
+     */
+    public static final ForkJoinWorkerThreadFactory
+        defaultForkJoinWorkerThreadFactory =
+        new DefaultForkJoinWorkerThreadFactory();
+
+    /**
+     * Permission required for callers of methods that may start or
+     * kill threads.
+     */
+    private static final RuntimePermission modifyThreadPermission =
+        new RuntimePermission("modifyThread");
+
+    /**
+     * If there is a security manager, makes sure caller has
+     * permission to modify threads.
+     */
+    private static void checkPermission() {
+        SecurityManager security = System.getSecurityManager();
+        if (security != null)
+            security.checkPermission(modifyThreadPermission);
+    }
+
+    /**
+     * Generator for assigning sequence numbers as pool names.
+     */
+    private static final AtomicInteger poolNumberGenerator =
+        new AtomicInteger();
+
+    /**
+     * Array holding all worker threads in the pool. Initialized upon
+     * first use. Array size must be a power of two.  Updates and
+     * replacements are protected by workerLock, but it is always kept
+     * in a consistent enough state to be randomly accessed without
+     * locking by workers performing work-stealing.
+     */
+    volatile ForkJoinWorkerThread[] workers;
+
+    /**
+     * Lock protecting access to workers.
+     */
+    private final ReentrantLock workerLock;
+
+    /**
+     * Condition for awaitTermination.
+     */
+    private final Condition termination;
+
+    /**
+     * The uncaught exception handler used when any worker
+     * abruptly terminates
+     */
+    private Thread.UncaughtExceptionHandler ueh;
+
+    /**
+     * Creation factory for worker threads.
+     */
+    private final ForkJoinWorkerThreadFactory factory;
+
+    /**
+     * Head of stack of threads that were created to maintain
+     * parallelism when other threads blocked, but have since
+     * suspended when the parallelism level rose.
+     */
+    private volatile WaitQueueNode spareStack;
+
+    /**
+     * Sum of per-thread steal counts, updated only when threads are
+     * idle or terminating.
+     */
+    private final AtomicLong stealCount;
+
+    /**
+     * Queue for external submissions.
+     */
+    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
+
+    /**
+     * Head of Treiber stack for barrier sync. See below for explanation.
+     */
+    private volatile WaitQueueNode syncStack;
+
+    /**
+     * The count for event barrier
+     */
+    private volatile long eventCount;
+
+    /**
+     * Pool number, just for assigning useful names to worker threads
+     */
+    private final int poolNumber;
+
+    /**
+     * The maximum allowed pool size
+     */
+    private volatile int maxPoolSize;
+
+    /**
+     * The desired parallelism level, updated only under workerLock.
+     */
+    private volatile int parallelism;
+
+    /**
+     * True if use local fifo, not default lifo, for local polling
+     */
+    private volatile boolean locallyFifo;
+
+    /**
+     * Holds number of total (i.e., created and not yet terminated)
+     * and running (i.e., not blocked on joins or other managed sync)
+     * threads, packed into one int to ensure consistent snapshot when
+     * making decisions about creating and suspending spare
+     * threads. Updated only by CAS.  Note: CASes in
+     * updateRunningCount and preJoin assume that running active count
+     * is in low word, so need to be modified if this changes.
+     */
+    private volatile int workerCounts;
+
+    private static int totalCountOf(int s)           { return s >>> 16;  }
+    private static int runningCountOf(int s)         { return s & shortMask; }
+    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
+
+    /**
+     * Adds delta (which may be negative) to running count.  This must
+     * be called before (with negative arg) and after (with positive)
+     * any managed synchronization (i.e., mainly, joins).
+     *
+     * @param delta the number to add
+     */
+    final void updateRunningCount(int delta) {
+        int s;
+        do {} while (!casWorkerCounts(s = workerCounts, s + delta));
+    }
+
+    /**
+     * Adds delta (which may be negative) to both total and running
+     * count.  This must be called upon creation and termination of
+     * worker threads.
+     *
+     * @param delta the number to add
+     */
+    private void updateWorkerCount(int delta) {
+        int d = delta + (delta << 16); // add to both lo and hi parts
+        int s;
+        do {} while (!casWorkerCounts(s = workerCounts, s + d));
+    }
+
+    /**
+     * Lifecycle control. High word contains runState, low word
+     * contains the number of workers that are (probably) executing
+     * tasks. This value is atomically incremented before a worker
+     * gets a task to run, and decremented when worker has no tasks
+     * and cannot find any. These two fields are bundled together to
+     * support correct termination triggering.  Note: activeCount
+     * CAS'es cheat by assuming active count is in low word, so need
+     * to be modified if this changes
+     */
+    private volatile int runControl;
+
+    // RunState values. Order among values matters
+    private static final int RUNNING     = 0;
+    private static final int SHUTDOWN    = 1;
+    private static final int TERMINATING = 2;
+    private static final int TERMINATED  = 3;
+
+    private static int runStateOf(int c)             { return c >>> 16; }
+    private static int activeCountOf(int c)          { return c & shortMask; }
+    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
+
+    /**
+     * Tries incrementing active count; fails on contention.
+     * Called by workers before/during executing tasks.
+     *
+     * @return true on success
+     */
+    final boolean tryIncrementActiveCount() {
+        int c = runControl;
+        return casRunControl(c, c+1);
+    }
+
+    /**
+     * Tries decrementing active count; fails on contention.
+     * Possibly triggers termination on success.
+     * Called by workers when they can't find tasks.
+     *
+     * @return true on success
+     */
+    final boolean tryDecrementActiveCount() {
+        int c = runControl;
+        int nextc = c - 1;
+        if (!casRunControl(c, nextc))
+            return false;
+        if (canTerminateOnShutdown(nextc))
+            terminateOnShutdown();
+        return true;
+    }
+
+    /**
+     * Returns {@code true} if argument represents zero active count
+     * and nonzero runstate, which is the triggering condition for
+     * terminating on shutdown.
+     */
+    private static boolean canTerminateOnShutdown(int c) {
+        // i.e. least bit is nonzero runState bit
+        return ((c & -c) >>> 16) != 0;
+    }
+
+    /**
+     * Transition run state to at least the given state. Return true
+     * if not already at least given state.
+     */
+    private boolean transitionRunStateTo(int state) {
+        for (;;) {
+            int c = runControl;
+            if (runStateOf(c) >= state)
+                return false;
+            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
+                return true;
+        }
+    }
+
+    /**
+     * Controls whether to add spares to maintain parallelism
+     */
+    private volatile boolean maintainsParallelism;
+
+    // Constructors
+
+    /**
+     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
+     * java.lang.Runtime#availableProcessors}, and using the {@linkplain
+     * #defaultForkJoinWorkerThreadFactory default thread factory}.
+     *
+     * @throws SecurityException if a security manager exists and
+     *         the caller is not permitted to modify threads
+     *         because it does not hold {@link
+     *         java.lang.RuntimePermission}{@code ("modifyThread")}
+     */
+    public ForkJoinPool() {
+        this(Runtime.getRuntime().availableProcessors(),
+             defaultForkJoinWorkerThreadFactory);
+    }
+
+    /**
+     * Creates a {@code ForkJoinPool} with the indicated parallelism
+     * level and using the {@linkplain
+     * #defaultForkJoinWorkerThreadFactory default thread factory}.
+     *
+     * @param parallelism the parallelism level
+     * @throws IllegalArgumentException if parallelism less than or
+     *         equal to zero, or greater than implementation limit
+     * @throws SecurityException if a security manager exists and
+     *         the caller is not permitted to modify threads
+     *         because it does not hold {@link
+     *         java.lang.RuntimePermission}{@code ("modifyThread")}
+     */
+    public ForkJoinPool(int parallelism) {
+        this(parallelism, defaultForkJoinWorkerThreadFactory);
+    }
+
+    /**
+     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
+     * java.lang.Runtime#availableProcessors}, and using the given
+     * thread factory.
+     *
+     * @param factory the factory for creating new threads
+     * @throws NullPointerException if the factory is null
+     * @throws SecurityException if a security manager exists and
+     *         the caller is not permitted to modify threads
+     *         because it does not hold {@link
+     *         java.lang.RuntimePermission}{@code ("modifyThread")}
+     */
+    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
+        this(Runtime.getRuntime().availableProcessors(), factory);
+    }
+
+    /**
+     * Creates a {@code ForkJoinPool} with the given parallelism and
+     * thread factory.
+     *
+     * @param parallelism the parallelism level
+     * @param factory the factory for creating new threads
+     * @throws IllegalArgumentException if parallelism less than or
+     *         equal to zero, or greater than implementation limit
+     * @throws NullPointerException if the factory is null
+     * @throws SecurityException if a security manager exists and
+     *         the caller is not permitted to modify threads
+     *         because it does not hold {@link
+     *         java.lang.RuntimePermission}{@code ("modifyThread")}
+     */
+    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
+        if (parallelism <= 0 || parallelism > MAX_THREADS)
+            throw new IllegalArgumentException();
+        if (factory == null)
+            throw new NullPointerException();
+        checkPermission();
+        this.factory = factory;
+        this.parallelism = parallelism;
+        this.maxPoolSize = MAX_THREADS;
+        this.maintainsParallelism = true;
+        this.poolNumber = poolNumberGenerator.incrementAndGet();
+        this.workerLock = new ReentrantLock();
+        this.termination = workerLock.newCondition();
+        this.stealCount = new AtomicLong();
+        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
+        // worker array and workers are lazily constructed
+    }
+
+    /**
+     * Creates a new worker thread using factory.
+     *
+     * @param index the index to assign worker
+     * @return new worker, or null if factory failed
+     */
+    private ForkJoinWorkerThread createWorker(int index) {
+        Thread.UncaughtExceptionHandler h = ueh;
+        ForkJoinWorkerThread w = factory.newThread(this);
+        if (w != null) {
+            w.poolIndex = index;
+            w.setDaemon(true);
+            w.setAsyncMode(locallyFifo);
+            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
+            if (h != null)
+                w.setUncaughtExceptionHandler(h);
+        }
+        return w;
+    }
+
+    /**
+     * Returns a good size for worker array given pool size.
+     * Currently requires size to be a power of two.
+     */
+    private static int arraySizeFor(int poolSize) {
+        if (poolSize <= 1)
+            return 1;
+        // See Hackers Delight, sec 3.2
+        int c = poolSize >= MAX_THREADS ? MAX_THREADS : (poolSize - 1);
+        c |= c >>>  1;
+        c |= c >>>  2;
+        c |= c >>>  4;
+        c |= c >>>  8;
+        c |= c >>> 16;
+        return c + 1;
+    }
+
+    /**
+     * Creates or resizes array if necessary to hold newLength.
+     * Call only under exclusion.
+     *
+     * @return the array
+     */
+    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
+        ForkJoinWorkerThread[] ws = workers;
+        if (ws == null)
+            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
+        else if (newLength > ws.length)
+            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
+        else
+            return ws;
+    }
+
+    /**
+     * Tries to shrink workers into smaller array after one or more terminate.
+     */
+    private void tryShrinkWorkerArray() {
+        ForkJoinWorkerThread[] ws = workers;
+        if (ws != null) {
+            int len = ws.length;
+            int last = len - 1;
+            while (last >= 0 && ws[last] == null)
+                --last;
+            int newLength = arraySizeFor(last+1);
+            if (newLength < len)
+                workers = Arrays.copyOf(ws, newLength);
+        }
+    }
+
+    /**
+     * Initializes workers if necessary.
+     */
+    final void ensureWorkerInitialization() {
+        ForkJoinWorkerThread[] ws = workers;
+        if (ws == null) {
+            final ReentrantLock lock = this.workerLock;
+            lock.lock();
+            try {
+                ws = workers;
+                if (ws == null) {
+                    int ps = parallelism;
+                    ws = ensureWorkerArrayCapacity(ps);
+                    for (int i = 0; i < ps; ++i) {
+                        ForkJoinWorkerThread w = createWorker(i);
+                        if (w != null) {
+                            ws[i] = w;
+                            w.start();
+                            updateWorkerCount(1);
+                        }
+                    }
+                }
+            } finally {
+                lock.unlock();
+            }
+        }
+    }
+
+    /**
+     * Worker creation and startup for threads added via setParallelism.
+     */
+    private void createAndStartAddedWorkers() {
+        resumeAllSpares();  // Allow spares to convert to nonspare
+        int ps = parallelism;
+        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
+        int len = ws.length;
+        // Sweep through slots, to keep lowest indices most populated
+        int k = 0;
+        while (k < len) {
+            if (ws[k] != null) {
+                ++k;
+                continue;
+            }
+            int s = workerCounts;
+            int tc = totalCountOf(s);
+            int rc = runningCountOf(s);
+            if (rc >= ps || tc >= ps)
+                break;
+            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
+                ForkJoinWorkerThread w = createWorker(k);
+                if (w != null) {
+                    ws[k++] = w;
+                    w.start();
+                }
+                else {
+                    updateWorkerCount(-1); // back out on failed creation
+                    break;
+                }
+            }
+        }
+    }
+
+    // Execution methods
+
+    /**
+     * Common code for execute, invoke and submit
+     */
+    private <T> void doSubmit(ForkJoinTask<T> task) {
+        if (task == null)
+            throw new NullPointerException();
+        if (isShutdown())
+            throw new RejectedExecutionException();
+        if (workers == null)
+            ensureWorkerInitialization();
+        submissionQueue.offer(task);
+        signalIdleWorkers();
+    }
+
+    /**
+     * Performs the given task, returning its result upon completion.
+     *
+     * @param task the task
+     * @return the task's result
+     * @throws NullPointerException if the task is null
+     * @throws RejectedExecutionException if the task cannot be
+     *         scheduled for execution
+     */
+    public <T> T invoke(ForkJoinTask<T> task) {
+        doSubmit(task);
+        return task.join();
+    }
+
+    /**
+     * Arranges for (asynchronous) execution of the given task.
+     *
+     * @param task the task
+     * @throws NullPointerException if the task is null
+     * @throws RejectedExecutionException if the task cannot be
+     *         scheduled for execution
+     */
+    public void execute(ForkJoinTask<?> task) {
+        doSubmit(task);
+    }
+
+    // AbstractExecutorService methods
+
+    /**
+     * @throws NullPointerException if the task is null
+     * @throws RejectedExecutionException if the task cannot be
+     *         scheduled for execution
+     */
+    public void execute(Runnable task) {
+        ForkJoinTask<?> job;
+        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
+            job = (ForkJoinTask<?>) task;
+        else
+            job = ForkJoinTask.adapt(task, null);
+        doSubmit(job);
+    }
+
+    /**
+     * @throws NullPointerException if the task is null
+     * @throws RejectedExecutionException if the task cannot be
+     *         scheduled for execution
+     */
+    public <T> ForkJoinTask<T> submit(Callable<T> task) {
+        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
+        doSubmit(job);
+        return job;
+    }
+
+    /**
+     * @throws NullPointerException if the task is null
+     * @throws RejectedExecutionException if the task cannot be
+     *         scheduled for execution
+     */
+    public <T> ForkJoinTask<T> submit(Runnable task, T result) {
+        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
+        doSubmit(job);
+        return job;
+    }
+
+    /**
+     * @throws NullPointerException if the task is null
+     * @throws RejectedExecutionException if the task cannot be
+     *         scheduled for execution
+     */
+    public ForkJoinTask<?> submit(Runnable task) {
+        ForkJoinTask<?> job;
+        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
+            job = (ForkJoinTask<?>) task;
+        else
+            job = ForkJoinTask.adapt(task, null);
+        doSubmit(job);
+        return job;
+    }
+
+    /**
+     * Submits a ForkJoinTask for execution.
+     *
+     * @param task the task to submit
+     * @return the task
+     * @throws NullPointerException if the task is null
+     * @throws RejectedExecutionException if the task cannot be
+     *         scheduled for execution
+     */
+    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
+        doSubmit(task);
+        return task;
+    }
+
+
+    /**
+     * @throws NullPointerException       {@inheritDoc}
+     * @throws RejectedExecutionException {@inheritDoc}
+     */
+    public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
+        ArrayList<ForkJoinTask<T>> forkJoinTasks =
+            new ArrayList<ForkJoinTask<T>>(tasks.size());
+        for (Callable<T> task : tasks)
+            forkJoinTasks.add(ForkJoinTask.adapt(task));
+        invoke(new InvokeAll<T>(forkJoinTasks));
+
+        @SuppressWarnings({"unchecked", "rawtypes"})
+        List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
+        return futures;
+    }
+
+    static final class InvokeAll<T> extends RecursiveAction {
+        final ArrayList<ForkJoinTask<T>> tasks;
+        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
+        public void compute() {
+            try { invokeAll(tasks); }
+            catch (Exception ignore) {}
+        }
+        private static final long serialVersionUID = -7914297376763021607L;
+    }
+
+    // Configuration and status settings and queries
+
+    /**
+     * Returns the factory used for constructing new workers.
+     *
+     * @return the factory used for constructing new workers
+     */
+    public ForkJoinWorkerThreadFactory getFactory() {
+        return factory;
+    }
+
+    /**
+     * Returns the handler for internal worker threads that terminate
+     * due to unrecoverable errors encountered while executing tasks.
+     *
+     * @return the handler, or {@code null} if none
+     */
+    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
+        Thread.UncaughtExceptionHandler h;
+        final ReentrantLock lock = this.workerLock;
+        lock.lock();
+        try {
+            h = ueh;
+        } finally {
+            lock.unlock();
+        }
+        return h;
+    }
+
+    /**
+     * Sets the handler for internal worker threads that terminate due
+     * to unrecoverable errors encountered while executing tasks.
+     * Unless set, the current default or ThreadGroup handler is used
+     * as handler.
+     *
+     * @param h the new handler
+     * @return the old handler, or {@code null} if none
+     * @throws SecurityException if a security manager exists and
+     *         the caller is not permitted to modify threads
+     *         because it does not hold {@link
+     *         java.lang.RuntimePermission}{@code ("modifyThread")}
+     */
+    public Thread.UncaughtExceptionHandler
+        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
+        checkPermission();
+        Thread.UncaughtExceptionHandler old = null;
+        final ReentrantLock lock = this.workerLock;
+        lock.lock();
+        try {
+            old = ueh;
+            ueh = h;
+            ForkJoinWorkerThread[] ws = workers;
+            if (ws != null) {
+                for (int i = 0; i < ws.length; ++i) {
+                    ForkJoinWorkerThread w = ws[i];
+                    if (w != null)
+                        w.setUncaughtExceptionHandler(h);
+                }
+            }
+        } finally {
+            lock.unlock();
+        }
+        return old;
+    }
+
+
+    /**
+     * Sets the target parallelism level of this pool.
+     *
+     * @param parallelism the target parallelism
+     * @throws IllegalArgumentException if parallelism less than or
+     * equal to zero or greater than maximum size bounds
+     * @throws SecurityException if a security manager exists and
+     *         the caller is not permitted to modify threads
+     *         because it does not hold {@link
+     *         java.lang.RuntimePermission}{@code ("modifyThread")}
+     */
+    public void setParallelism(int parallelism) {
+        checkPermission();
+        if (parallelism <= 0 || parallelism > maxPoolSize)
+            throw new IllegalArgumentException();
+        final ReentrantLock lock = this.workerLock;
+        lock.lock();
+        try {
+            if (isProcessingTasks()) {
+                int p = this.parallelism;
+                this.parallelism = parallelism;
+                if (parallelism > p)
+                    createAndStartAddedWorkers();
+                else
+                    trimSpares();
+            }
+        } finally {
+            lock.unlock();
+        }
+        signalIdleWorkers();
+    }
+
+    /**
+     * Returns the targeted parallelism level of this pool.
+     *
+     * @return the targeted parallelism level of this pool
+     */
+    public int getParallelism() {
+        return parallelism;
+    }
+
+    /**
+     * Returns the number of worker threads that have started but not
+     * yet terminated.  This result returned by this method may differ
+     * from {@link #getParallelism} when threads are created to
+     * maintain parallelism when others are cooperatively blocked.
+     *
+     * @return the number of worker threads
+     */
+    public int getPoolSize() {
+        return totalCountOf(workerCounts);
+    }
+
+    /**
+     * Returns the maximum number of threads allowed to exist in the
+     * pool. Unless set using {@link #setMaximumPoolSize}, the
+     * maximum is an implementation-defined value designed only to
+     * prevent runaway growth.
+     *
+     * @return the maximum
+     */
+    public int getMaximumPoolSize() {
+        return maxPoolSize;
+    }
+
+    /**
+     * Sets the maximum number of threads allowed to exist in the
+     * pool. The given value should normally be greater than or equal
+     * to the {@link #getParallelism parallelism} level. Setting this
+     * value has no effect on current pool size. It controls
+     * construction of new threads.
+     *
+     * @throws IllegalArgumentException if negative or greater than
+     * internal implementation limit
+     */
+    public void setMaximumPoolSize(int newMax) {
+        if (newMax < 0 || newMax > MAX_THREADS)
+            throw new IllegalArgumentException();
+        maxPoolSize = newMax;
+    }
+
+
+    /**
+     * Returns {@code true} if this pool dynamically maintains its
+     * target parallelism level. If false, new threads are added only
+     * to avoid possible starvation.  This setting is by default true.
+     *
+     * @return {@code true} if maintains parallelism
+     */
+    public boolean getMaintainsParallelism() {
+        return maintainsParallelism;
+    }
+
+    /**
+     * Sets whether this pool dynamically maintains its target
+     * parallelism level. If false, new threads are added only to
+     * avoid possible starvation.
+     *
+     * @param enable {@code true} to maintain parallelism
+     */
+    public void setMaintainsParallelism(boolean enable) {
+        maintainsParallelism = enable;
+    }
+
+    /**
+     * Establishes local first-in-first-out scheduling mode for forked
+     * tasks that are never joined. This mode may be more appropriate
+     * than default locally stack-based mode in applications in which
+     * worker threads only process asynchronous tasks.  This method is
+     * designed to be invoked only when the pool is quiescent, and
+     * typically only before any tasks are submitted. The effects of
+     * invocations at other times may be unpredictable.
+     *
+     * @param async if {@code true}, use locally FIFO scheduling
+     * @return the previous mode
+     * @see #getAsyncMode
+     */
+    public boolean setAsyncMode(boolean async) {
+        boolean oldMode = locallyFifo;
+        locallyFifo = async;
+        ForkJoinWorkerThread[] ws = workers;
+        if (ws != null) {
+            for (int i = 0; i < ws.length; ++i) {
+                ForkJoinWorkerThread t = ws[i];
+                if (t != null)
+                    t.setAsyncMode(async);
+            }
+        }
+        return oldMode;
+    }
+
+    /**
+     * Returns {@code true} if this pool uses local first-in-first-out
+     * scheduling mode for forked tasks that are never joined.
+     *
+     * @return {@code true} if this pool uses async mode
+     * @see #setAsyncMode
+     */
+    public boolean getAsyncMode() {
+        return locallyFifo;
+    }
+
+    /**
+     * Returns an estimate of the number of worker threads that are
+     * not blocked waiting to join tasks or for other managed
+     * synchronization.
+     *
+     * @return the number of worker threads
+     */
+    public int getRunningThreadCount() {
+        return runningCountOf(workerCounts);
+    }
+
+    /**
+     * Returns an estimate of the number of threads that are currently
+     * stealing or executing tasks. This method may overestimate the
+     * number of active threads.
+     *
+     * @return the number of active threads
+     */
+    public int getActiveThreadCount() {
+        return activeCountOf(runControl);
+    }
+
+    /**
+     * Returns an estimate of the number of threads that are currently
+     * idle waiting for tasks. This method may underestimate the
+     * number of idle threads.
+     *
+     * @return the number of idle threads
+     */
+    final int getIdleThreadCount() {
+        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
+        return (c <= 0) ? 0 : c;
+    }
+
+    /**
+     * Returns {@code true} if all worker threads are currently idle.
+     * An idle worker is one that cannot obtain a task to execute
+     * because none are available to steal from other threads, and
+     * there are no pending submissions to the pool. This method is
+     * conservative; it might not return {@code true} immediately upon
+     * idleness of all threads, but will eventually become true if
+     * threads remain inactive.
+     *
+     * @return {@code true} if all threads are currently idle
+     */
+    public boolean isQuiescent() {
+        return activeCountOf(runControl) == 0;
+    }
+
+    /**
+     * Returns an estimate of the total number of tasks stolen from
+     * one thread's work queue by another. The reported value
+     * underestimates the actual total number of steals when the pool
+     * is not quiescent. This value may be useful for monitoring and
+     * tuning fork/join programs: in general, steal counts should be
+     * high enough to keep threads busy, but low enough to avoid
+     * overhead and contention across threads.
+     *
+     * @return the number of steals
+     */
+    public long getStealCount() {
+        return stealCount.get();
+    }
+
+    /**
+     * Accumulates steal count from a worker.
+     * Call only when worker known to be idle.
+     */
+    private void updateStealCount(ForkJoinWorkerThread w) {
+        int sc = w.getAndClearStealCount();
+        if (sc != 0)
+            stealCount.addAndGet(sc);
+    }
+
+    /**
+     * Returns an estimate of the total number of tasks currently held
+     * in queues by worker threads (but not including tasks submitted
+     * to the pool that have not begun executing). This value is only
+     * an approximation, obtained by iterating across all threads in
+     * the pool. This method may be useful for tuning task
+     * granularities.
+     *
+     * @return the number of queued tasks
+     */
+    public long getQueuedTaskCount() {
+        long count = 0;
+        ForkJoinWorkerThread[] ws = workers;
+        if (ws != null) {
+            for (int i = 0; i < ws.length; ++i) {
+                ForkJoinWorkerThread t = ws[i];
+                if (t != null)
+                    count += t.getQueueSize();
+            }
+        }
+        return count;
+    }
+
+    /**
+     * Returns an estimate of the number of tasks submitted to this
+     * pool that have not yet begun executing.  This method takes time
+     * proportional to the number of submissions.
+     *
+     * @return the number of queued submissions
+     */
+    public int getQueuedSubmissionCount() {
+        return submissionQueue.size();
+    }
+
+    /**
+     * Returns {@code true} if there are any tasks submitted to this
+     * pool that have not yet begun executing.
+     *
+     * @return {@code true} if there are any queued submissions
+     */
+    public boolean hasQueuedSubmissions() {
+        return !submissionQueue.isEmpty();
+    }
+
+    /**
+     * Removes and returns the next unexecuted submission if one is
+     * available.  This method may be useful in extensions to this
+     * class that re-assign work in systems with multiple pools.
+     *
+     * @return the next submission, or {@code null} if none
+     */
+    protected ForkJoinTask<?> pollSubmission() {
+        return submissionQueue.poll();
+    }
+
+    /**
+     * Removes all available unexecuted submitted and forked tasks
+     * from scheduling queues and adds them to the given collection,
+     * without altering their execution status. These may include
+     * artificially generated or wrapped tasks. This method is
+     * designed to be invoked only when the pool is known to be
+     * quiescent. Invocations at other times may not remove all
+     * tasks. A failure encountered while attempting to add elements
+     * to collection {@code c} may result in elements being in
+     * neither, either or both collections when the associated
+     * exception is thrown.  The behavior of this operation is
+     * undefined if the specified collection is modified while the
+     * operation is in progress.
+     *
+     * @param c the collection to transfer elements into
+     * @return the number of elements transferred
+     */
+    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
+        int n = submissionQueue.drainTo(c);
+        ForkJoinWorkerThread[] ws = workers;
+        if (ws != null) {
+            for (int i = 0; i < ws.length; ++i) {
+                ForkJoinWorkerThread w = ws[i];
+                if (w != null)
+                    n += w.drainTasksTo(c);
+            }
+        }
+        return n;
+    }
+
+    /**
+     * Returns a string identifying this pool, as well as its state,
+     * including indications of run state, parallelism level, and
+     * worker and task counts.
+     *
+     * @return a string identifying this pool, as well as its state
+     */
+    public String toString() {
+        int ps = parallelism;
+        int wc = workerCounts;
+        int rc = runControl;
+        long st = getStealCount();
+        long qt = getQueuedTaskCount();
+        long qs = getQueuedSubmissionCount();
+        return super.toString() +
+            "[" + runStateToString(runStateOf(rc)) +
+            ", parallelism = " + ps +
+            ", size = " + totalCountOf(wc) +
+            ", active = " + activeCountOf(rc) +
+            ", running = " + runningCountOf(wc) +
+            ", steals = " + st +
+            ", tasks = " + qt +
+            ", submissions = " + qs +
+            "]";
+    }
+
+    private static String runStateToString(int rs) {
+        switch(rs) {
+        case RUNNING: return "Running";
+        case SHUTDOWN: return "Shutting down";
+        case TERMINATING: return "Terminating";
+        case TERMINATED: return "Terminated";
+        default: throw new Error("Unknown run state");
+        }
+    }
+
+    // lifecycle control
+
+    /**
+     * Initiates an orderly shutdown in which previously submitted
+     * tasks are executed, but no new tasks will be accepted.
+     * Invocation has no additional effect if already shut down.
+     * Tasks that are in the process of being submitted concurrently
+     * during the course of this method may or may not be rejected.
+     *
+     * @throws SecurityException if a security manager exists and
+     *         the caller is not permitted to modify threads
+     *         because it does not hold {@link
+     *         java.lang.RuntimePermission}{@code ("modifyThread")}
+     */
+    public void shutdown() {
+        checkPermission();
+        transitionRunStateTo(SHUTDOWN);
+        if (canTerminateOnShutdown(runControl)) {
+            if (workers == null) { // shutting down before workers created
+                final ReentrantLock lock = this.workerLock;
+                lock.lock();
+                try {
+                    if (workers == null) {
+                        terminate();
+                        transitionRunStateTo(TERMINATED);
+                        termination.signalAll();
+                    }
+                } finally {
+                    lock.unlock();
+                }
+            }
+            terminateOnShutdown();
+        }
+    }
+
+    /**
+     * Attempts to cancel and/or stop all tasks, and reject all
+     * subsequently submitted tasks.  Tasks that are in the process of
+     * being submitted or executed concurrently during the course of
+     * this method may or may not be rejected. This method cancels
+     * both existing and unexecuted tasks, in order to permit
+     * termination in the presence of task dependencies. So the method
+     * always returns an empty list (unlike the case for some other
+     * Executors).
+     *
+     * @return an empty list
+     * @throws SecurityException if a security manager exists and
+     *         the caller is not permitted to modify threads
+     *         because it does not hold {@link
+     *         java.lang.RuntimePermission}{@code ("modifyThread")}
+     */
+    public List<Runnable> shutdownNow() {
+        checkPermission();
+        terminate();
+        return Collections.emptyList();
+    }
+
+    /**
+     * Returns {@code true} if all tasks have completed following shut down.
+     *
+     * @return {@code true} if all tasks have completed following shut down
+     */
+    public boolean isTerminated() {
+        return runStateOf(runControl) == TERMINATED;
+    }
+
+    /**
+     * Returns {@code true} if the process of termination has
+     * commenced but not yet completed.  This method may be useful for
+     * debugging. A return of {@code true} reported a sufficient
+     * period after shutdown may indicate that submitted tasks have
+     * ignored or suppressed interruption, causing this executor not
+     * to properly terminate.
+     *
+     * @return {@code true} if terminating but not yet terminated
+     */
+    public boolean isTerminating() {
+        return runStateOf(runControl) == TERMINATING;
+    }
+
+    /**
+     * Returns {@code true} if this pool has been shut down.
+     *
+     * @return {@code true} if this pool has been shut down
+     */
+    public boolean isShutdown() {
+        return runStateOf(runControl) >= SHUTDOWN;
+    }
+
+    /**
+     * Returns true if pool is not terminating or terminated.
+     * Used internally to suppress execution when terminating.
+     */
+    final boolean isProcessingTasks() {
+        return runStateOf(runControl) < TERMINATING;
+    }
+
+    /**
+     * Blocks until all tasks have completed execution after a shutdown
+     * request, or the timeout occurs, or the current thread is
+     * interrupted, whichever happens first.
+     *
+     * @param timeout the maximum time to wait
+     * @param unit the time unit of the timeout argument
+     * @return {@code true} if this executor terminated and
+     *         {@code false} if the timeout elapsed before termination
+     * @throws InterruptedException if interrupted while waiting
+     */
+    public boolean awaitTermination(long timeout, TimeUnit unit)
+        throws InterruptedException {
+        long nanos = unit.toNanos(timeout);
+        final ReentrantLock lock = this.workerLock;
+        lock.lock();
+        try {
+            for (;;) {
+                if (isTerminated())
+                    return true;
+                if (nanos <= 0)
+                    return false;
+                nanos = termination.awaitNanos(nanos);
+            }
+        } finally {
+            lock.unlock();
+        }
+    }
+
+    // Shutdown and termination support
+
+    /**
+     * Callback from terminating worker. Nulls out the corresponding
+     * workers slot, and if terminating, tries to terminate; else
+     * tries to shrink workers array.
+     *
+     * @param w the worker
+     */
+    final void workerTerminated(ForkJoinWorkerThread w) {
+        updateStealCount(w);
+        updateWorkerCount(-1);
+        final ReentrantLock lock = this.workerLock;
+        lock.lock();
+        try {
+            ForkJoinWorkerThread[] ws = workers;
+            if (ws != null) {
+                int idx = w.poolIndex;
+                if (idx >= 0 && idx < ws.length && ws[idx] == w)
+                    ws[idx] = null;
+                if (totalCountOf(workerCounts) == 0) {
+                    terminate(); // no-op if already terminating
+                    transitionRunStateTo(TERMINATED);
+                    termination.signalAll();
+                }
+                else if (isProcessingTasks()) {
+                    tryShrinkWorkerArray();
+                    tryResumeSpare(true); // allow replacement
+                }
+            }
+        } finally {
+            lock.unlock();
+        }
+        signalIdleWorkers();
+    }
+
+    /**
+     * Initiates termination.
+     */
+    private void terminate() {
+        if (transitionRunStateTo(TERMINATING)) {
+            stopAllWorkers();
+            resumeAllSpares();
+            signalIdleWorkers();
+            cancelQueuedSubmissions();
+            cancelQueuedWorkerTasks();
+            interruptUnterminatedWorkers();
+            signalIdleWorkers(); // resignal after interrupt
+        }
+    }
+
+    /**
+     * Possibly terminates when on shutdown state.
+     */
+    private void terminateOnShutdown() {
+        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
+            terminate();
+    }
+
+    /**
+     * Clears out and cancels submissions.
+     */
+    private void cancelQueuedSubmissions() {
+        ForkJoinTask<?> task;
+        while ((task = pollSubmission()) != null)
+            task.cancel(false);
+    }
+
+    /**
+     * Cleans out worker queues.
+     */
+    private void cancelQueuedWorkerTasks() {
+        final ReentrantLock lock = this.workerLock;
+        lock.lock();
+        try {
+            ForkJoinWorkerThread[] ws = workers;
+            if (ws != null) {
+                for (int i = 0; i < ws.length; ++i) {
+                    ForkJoinWorkerThread t = ws[i];
+                    if (t != null)
+                        t.cancelTasks();
+                }
+            }
+        } finally {
+            lock.unlock();
+        }
+    }
+
+    /**
+     * Sets each worker's status to terminating. Requires lock to avoid
+     * conflicts with add/remove.
+     */
+    private void stopAllWorkers() {
+        final ReentrantLock lock = this.workerLock;
+        lock.lock();
+        try {
+            ForkJoinWorkerThread[] ws = workers;
+            if (ws != null) {
+                for (int i = 0; i < ws.length; ++i) {
+                    ForkJoinWorkerThread t = ws[i];
+                    if (t != null)
+                        t.shutdownNow();
+                }
+            }
+        } finally {
+            lock.unlock();
+        }
+    }
+
+    /**
+     * Interrupts all unterminated workers.  This is not required for
+     * sake of internal control, but may help unstick user code during
+     * shutdown.
+     */
+    private void interruptUnterminatedWorkers() {
+        final ReentrantLock lock = this.workerLock;
+        lock.lock();
+        try {
+            ForkJoinWorkerThread[] ws = workers;
+            if (ws != null) {
+                for (int i = 0; i < ws.length; ++i) {
+                    ForkJoinWorkerThread t = ws[i];
+                    if (t != null && !t.isTerminated()) {
+                        try {
+                            t.interrupt();
+                        } catch (SecurityException ignore) {
+                        }
+                    }
+                }
+            }
+        } finally {
+            lock.unlock();
+        }
+    }
+
+
+    /*
+     * Nodes for event barrier to manage idle threads.  Queue nodes
+     * are basic Treiber stack nodes, also used for spare stack.
+     *
+     * The event barrier has an event count and a wait queue (actually
+     * a Treiber stack).  Workers are enabled to look for work when
+     * the eventCount is incremented. If they fail to find work, they
+     * may wait for next count. Upon release, threads help others wake
+     * up.
+     *
+     * Synchronization events occur only in enough contexts to
+     * maintain overall liveness:
+     *
+     *   - Submission of a new task to the pool
+     *   - Resizes or other changes to the workers array
+     *   - pool termination
+     *   - A worker pushing a task on an empty queue
+     *
+     * The case of pushing a task occurs often enough, and is heavy
+     * enough compared to simple stack pushes, to require special
+     * handling: Method signalWork returns without advancing count if
+     * the queue appears to be empty.  This would ordinarily result in
+     * races causing some queued waiters not to be woken up. To avoid
+     * this, the first worker enqueued in method sync (see
+     * syncIsReleasable) rescans for tasks after being enqueued, and
+     * helps signal if any are found. This works well because the
+     * worker has nothing better to do, and so might as well help
+     * alleviate the overhead and contention on the threads actually
+     * doing work.  Also, since event counts increments on task
+     * availability exist to maintain liveness (rather than to force
+     * refreshes etc), it is OK for callers to exit early if
+     * contending with another signaller.
+     */
+    static final class WaitQueueNode {
+        WaitQueueNode next; // only written before enqueued
+        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
+        final long count; // unused for spare stack
+
+        WaitQueueNode(long c, ForkJoinWorkerThread w) {
+            count = c;
+            thread = w;
+        }
+
+        /**
+         * Wakes up waiter, returning false if known to already
+         */
+        boolean signal() {
+            ForkJoinWorkerThread t = thread;
+            if (t == null)
+                return false;
+            thread = null;
+            LockSupport.unpark(t);
+            return true;
+        }
+
+        /**
+         * Awaits release on sync.
+         */
+        void awaitSyncRelease(ForkJoinPool p) {
+            while (thread != null && !p.syncIsReleasable(this))
+                LockSupport.park(this);
+        }
+
+        /**
+         * Awaits resumption as spare.
+         */
+        void awaitSpareRelease() {
+            while (thread != null) {
+                if (!Thread.interrupted())
+                    LockSupport.park(this);
+            }
+        }
+    }
+
+    /**
+     * Ensures that no thread is waiting for count to advance from the
+     * current value of eventCount read on entry to this method, by
+     * releasing waiting threads if necessary.
+     *
+     * @return the count
+     */
+    final long ensureSync() {
+        long c = eventCount;
+        WaitQueueNode q;
+        while ((q = syncStack) != null && q.count < c) {
+            if (casBarrierStack(q, null)) {
+                do {
+                    q.signal();
+                } while ((q = q.next) != null);
+                break;
+            }
+        }
+        return c;
+    }
+
+    /**
+     * Increments event count and releases waiting threads.
+     */
+    private void signalIdleWorkers() {
+        long c;
+        do {} while (!casEventCount(c = eventCount, c+1));
+        ensureSync();
+    }
+
+    /**
+     * Signals threads waiting to poll a task. Because method sync
+     * rechecks availability, it is OK to only proceed if queue
+     * appears to be non-empty, and OK to skip under contention to
+     * increment count (since some other thread succeeded).
+     */
+    final void signalWork() {
+        long c;
+        WaitQueueNode q;
+        if (syncStack != null &&
+            casEventCount(c = eventCount, c+1) &&
+            (((q = syncStack) != null && q.count <= c) &&
+             (!casBarrierStack(q, q.next) || !q.signal())))
+            ensureSync();
+    }
+
+    /**
+     * Waits until event count advances from last value held by
+     * caller, or if excess threads, caller is resumed as spare, or
+     * caller or pool is terminating. Updates caller's event on exit.
+     *
+     * @param w the calling worker thread
+     */
+    final void sync(ForkJoinWorkerThread w) {
+        updateStealCount(w); // Transfer w's count while it is idle
+
+        while (!w.isShutdown() && isProcessingTasks() && !suspendIfSpare(w)) {
+            long prev = w.lastEventCount;
+            WaitQueueNode node = null;
+            WaitQueueNode h;
+            while (eventCount == prev &&
+                   ((h = syncStack) == null || h.count == prev)) {
+                if (node == null)
+                    node = new WaitQueueNode(prev, w);
+                if (casBarrierStack(node.next = h, node)) {
+                    node.awaitSyncRelease(this);
+                    break;
+                }
+            }
+            long ec = ensureSync();
+            if (ec != prev) {
+                w.lastEventCount = ec;
+                break;
+            }
+        }
+    }
+
+    /**
+     * Returns {@code true} if worker waiting on sync can proceed:
+     *  - on signal (thread == null)
+     *  - on event count advance (winning race to notify vs signaller)
+     *  - on interrupt
+     *  - if the first queued node, we find work available
+     * If node was not signalled and event count not advanced on exit,
+     * then we also help advance event count.
+     *
+     * @return {@code true} if node can be released
+     */
+    final boolean syncIsReleasable(WaitQueueNode node) {
+        long prev = node.count;
+        if (!Thread.interrupted() && node.thread != null &&
+            (node.next != null ||
+             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
+            eventCount == prev)
+            return false;
+        if (node.thread != null) {
+            node.thread = null;
+            long ec = eventCount;
+            if (prev <= ec) // help signal
+                casEventCount(ec, ec+1);
+        }
+        return true;
+    }
+
+    /**
+     * Returns {@code true} if a new sync event occurred since last
+     * call to sync or this method, if so, updating caller's count.
+     */
+    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
+        long lc = w.lastEventCount;
+        long ec = ensureSync();
+        if (ec == lc)
+            return false;
+        w.lastEventCount = ec;
+        return true;
+    }
+
+    //  Parallelism maintenance
+
+    /**
+     * Decrements running count; if too low, adds spare.
+     *
+     * Conceptually, all we need to do here is add or resume a
+     * spare thread when one is about to block (and remove or
+     * suspend it later when unblocked -- see suspendIfSpare).
+     * However, implementing this idea requires coping with
+     * several problems: we have imperfect information about the
+     * states of threads. Some count updates can and usually do
+     * lag run state changes, despite arrangements to keep them
+     * accurate (for example, when possible, updating counts
+     * before signalling or resuming), especially when running on
+     * dynamic JVMs that don't optimize the infrequent paths that
+     * update counts. Generating too many threads can make these
+     * problems become worse, because excess threads are more
+     * likely to be context-switched with others, slowing them all
+     * down, especially if there is no work available, so all are
+     * busy scanning or idling.  Also, excess spare threads can
+     * only be suspended or removed when they are idle, not
+     * immediately when they aren't needed. So adding threads will
+     * raise parallelism level for longer than necessary.  Also,
+     * FJ applications often encounter highly transient peaks when
+     * many threads are blocked joining, but for less time than it
+     * takes to create or resume spares.
+     *
+     * @param joinMe if non-null, return early if done
+     * @param maintainParallelism if true, try to stay within
+     * target counts, else create only to avoid starvation
+     * @return true if joinMe known to be done
+     */
+    final boolean preJoin(ForkJoinTask<?> joinMe,
+                          boolean maintainParallelism) {
+        maintainParallelism &= maintainsParallelism; // overrride
+        boolean dec = false;  // true when running count decremented
+        while (spareStack == null || !tryResumeSpare(dec)) {
+            int counts = workerCounts;
+            if (dec || (dec = casWorkerCounts(counts, --counts))) {
+                if (!needSpare(counts, maintainParallelism))
+                    break;
+                if (joinMe.status < 0)
+                    return true;
+                if (tryAddSpare(counts))
+                    break;
+            }
+        }
+        return false;
+    }
+
+    /**
+     * Same idea as preJoin
+     */
+    final boolean preBlock(ManagedBlocker blocker,
+                           boolean maintainParallelism) {
+        maintainParallelism &= maintainsParallelism;
+        boolean dec = false;
+        while (spareStack == null || !tryResumeSpare(dec)) {
+            int counts = workerCounts;
+            if (dec || (dec = casWorkerCounts(counts, --counts))) {
+                if (!needSpare(counts, maintainParallelism))
+                    break;
+                if (blocker.isReleasable())
+                    return true;
+                if (tryAddSpare(counts))
+                    break;
+            }
+        }
+        return false;
+    }
+
+    /**
+     * Returns {@code true} if a spare thread appears to be needed.
+     * If maintaining parallelism, returns true when the deficit in
+     * running threads is more than the surplus of total threads, and
+     * there is apparently some work to do.  This self-limiting rule
+     * means that the more threads that have already been added, the
+     * less parallelism we will tolerate before adding another.
+     *
+     * @param counts current worker counts
+     * @param maintainParallelism try to maintain parallelism
+     */
+    private boolean needSpare(int counts, boolean maintainParallelism) {
+        int ps = parallelism;
+        int rc = runningCountOf(counts);
+        int tc = totalCountOf(counts);
+        int runningDeficit = ps - rc;
+        int totalSurplus = tc - ps;
+        return (tc < maxPoolSize &&
+                (rc == 0 || totalSurplus < 0 ||
+                 (maintainParallelism &&
+                  runningDeficit > totalSurplus &&
+                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
+    }
+
+    /**
+     * Adds a spare worker if lock available and no more than the
+     * expected numbers of threads exist.
+     *
+     * @return true if successful
+     */
+    private boolean tryAddSpare(int expectedCounts) {
+        final ReentrantLock lock = this.workerLock;
+        int expectedRunning = runningCountOf(expectedCounts);
+        int expectedTotal = totalCountOf(expectedCounts);
+        boolean success = false;
+        boolean locked = false;
+        // confirm counts while locking; CAS after obtaining lock
+        try {
+            for (;;) {
+                int s = workerCounts;
+                int tc = totalCountOf(s);
+                int rc = runningCountOf(s);
+                if (rc > expectedRunning || tc > expectedTotal)
+                    break;
+                if (!locked && !(locked = lock.tryLock()))
+                    break;
+                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
+                    createAndStartSpare(tc);
+                    success = true;
+                    break;
+                }
+            }
+        } finally {
+            if (locked)
+                lock.unlock();
+        }
+        return success;
+    }
+
+    /**
+     * Adds the kth spare worker. On entry, pool counts are already
+     * adjusted to reflect addition.
+     */
+    private void createAndStartSpare(int k) {
+        ForkJoinWorkerThread w = null;
+        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
+        int len = ws.length;
+        // Probably, we can place at slot k. If not, find empty slot
+        if (k < len && ws[k] != null) {
+            for (k = 0; k < len && ws[k] != null; ++k)
+                ;
+        }
+        if (k < len && isProcessingTasks() && (w = createWorker(k)) != null) {
+            ws[k] = w;
+            w.start();
+        }
+        else
+            updateWorkerCount(-1); // adjust on failure
+        signalIdleWorkers();
+    }
+
+    /**
+     * Suspends calling thread w if there are excess threads.  Called
+     * only from sync.  Spares are enqueued in a Treiber stack using
+     * the same WaitQueueNodes as barriers.  They are resumed mainly
+     * in preJoin, but are also woken on pool events that require all
+     * threads to check run state.
+     *
+     * @param w the caller
+     */
+    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
+        WaitQueueNode node = null;
+        int s;
+        while (parallelism < runningCountOf(s = workerCounts)) {
+            if (node == null)
+                node = new WaitQueueNode(0, w);
+            if (casWorkerCounts(s, s-1)) { // representation-dependent
+                // push onto stack
+                do {} while (!casSpareStack(node.next = spareStack, node));
+                // block until released by resumeSpare
+                node.awaitSpareRelease();
+                return true;
+            }
+        }
+        return false;
+    }
+
+    /**
+     * Tries to pop and resume a spare thread.
+     *
+     * @param updateCount if true, increment running count on success
+     * @return true if successful
+     */
+    private boolean tryResumeSpare(boolean updateCount) {
+        WaitQueueNode q;
+        while ((q = spareStack) != null) {
+            if (casSpareStack(q, q.next)) {
+                if (updateCount)
+                    updateRunningCount(1);
+                q.signal();
+                return true;
+            }
+        }
+        return false;
+    }
+
+    /**
+     * Pops and resumes all spare threads. Same idea as ensureSync.
+     *
+     * @return true if any spares released
+     */
+    private boolean resumeAllSpares() {
+        WaitQueueNode q;
+        while ( (q = spareStack) != null) {
+            if (casSpareStack(q, null)) {
+                do {
+                    updateRunningCount(1);
+                    q.signal();
+                } while ((q = q.next) != null);
+                return true;
+            }
+        }
+        return false;
+    }
+
+    /**
+     * Pops and shuts down excessive spare threads. Call only while
+     * holding lock. This is not guaranteed to eliminate all excess
+     * threads, only those suspended as spares, which are the ones
+     * unlikely to be needed in the future.
+     */
+    private void trimSpares() {
+        int surplus = totalCountOf(workerCounts) - parallelism;
+        WaitQueueNode q;
+        while (surplus > 0 && (q = spareStack) != null) {
+            if (casSpareStack(q, null)) {
+                do {
+                    updateRunningCount(1);
+                    ForkJoinWorkerThread w = q.thread;
+                    if (w != null && surplus > 0 &&
+                        runningCountOf(workerCounts) > 0 && w.shutdown())
+                        --surplus;
+                    q.signal();
+                } while ((q = q.next) != null);
+            }
+        }
+    }
+
+    /**
+     * Interface for extending managed parallelism for tasks running
+     * in {@link ForkJoinPool}s.
+     *
+     * <p>A {@code ManagedBlocker} provides two methods.
+     * Method {@code isReleasable} must return {@code true} if
+     * blocking is not necessary. Method {@code block} blocks the
+     * current thread if necessary (perhaps internally invoking
+     * {@code isReleasable} before actually blocking).
+     *
+     * <p>For example, here is a ManagedBlocker based on a
+     * ReentrantLock:
+     *  <pre> {@code
+     * class ManagedLocker implements ManagedBlocker {
+     *   final ReentrantLock lock;
+     *   boolean hasLock = false;
+     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
+     *   public boolean block() {
+     *     if (!hasLock)
+     *       lock.lock();
+     *     return true;
+     *   }
+     *   public boolean isReleasable() {
+     *     return hasLock || (hasLock = lock.tryLock());
+     *   }
+     * }}</pre>
+     */
+    public static interface ManagedBlocker {
+        /**
+         * Possibly blocks the current thread, for example waiting for
+         * a lock or condition.
+         *
+         * @return {@code true} if no additional blocking is necessary
+         * (i.e., if isReleasable would return true)
+         * @throws InterruptedException if interrupted while waiting
+         * (the method is not required to do so, but is allowed to)
+         */
+        boolean block() throws InterruptedException;
+
+        /**
+         * Returns {@code true} if blocking is unnecessary.
+         */
+        boolean isReleasable();
+    }
+
+    /**
+     * Blocks in accord with the given blocker.  If the current thread
+     * is a {@link ForkJoinWorkerThread}, this method possibly
+     * arranges for a spare thread to be activated if necessary to
+     * ensure parallelism while the current thread is blocked.
+     *
+     * <p>If {@code maintainParallelism} is {@code true} and the pool
+     * supports it ({@link #getMaintainsParallelism}), this method
+     * attempts to maintain the pool's nominal parallelism. Otherwise
+     * it activates a thread only if necessary to avoid complete
+     * starvation. This option may be preferable when blockages use
+     * timeouts, or are almost always brief.
+     *
+     * <p>If the caller is not a {@link ForkJoinTask}, this method is
+     * behaviorally equivalent to
+     *  <pre> {@code
+     * while (!blocker.isReleasable())
+     *   if (blocker.block())
+     *     return;
+     * }</pre>
+     *
+     * If the caller is a {@code ForkJoinTask}, then the pool may
+     * first be expanded to ensure parallelism, and later adjusted.
+     *
+     * @param blocker the blocker
+     * @param maintainParallelism if {@code true} and supported by
+     * this pool, attempt to maintain the pool's nominal parallelism;
+     * otherwise activate a thread only if necessary to avoid
+     * complete starvation.
+     * @throws InterruptedException if blocker.block did so
+     */
+    public static void managedBlock(ManagedBlocker blocker,
+                                    boolean maintainParallelism)
+        throws InterruptedException {
+        Thread t = Thread.currentThread();
+        ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
+                             ((ForkJoinWorkerThread) t).pool : null);
+        if (!blocker.isReleasable()) {
+            try {
+                if (pool == null ||
+                    !pool.preBlock(blocker, maintainParallelism))
+                    awaitBlocker(blocker);
+            } finally {
+                if (pool != null)
+                    pool.updateRunningCount(1);
+            }
+        }
+    }
+
+    private static void awaitBlocker(ManagedBlocker blocker)
+        throws InterruptedException {
+        do {} while (!blocker.isReleasable() && !blocker.block());
+    }
+
+    // AbstractExecutorService overrides.  These rely on undocumented
+    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
+    // implement RunnableFuture.
+
+    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
+        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
+    }
+
+    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
+        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
+    }
+
+    // Unsafe mechanics
+
+    private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
+    private static final long eventCountOffset =
+        objectFieldOffset("eventCount", ForkJoinPool.class);
+    private static final long workerCountsOffset =
+        objectFieldOffset("workerCounts", ForkJoinPool.class);
+    private static final long runControlOffset =
+        objectFieldOffset("runControl", ForkJoinPool.class);
+    private static final long syncStackOffset =
+        objectFieldOffset("syncStack",ForkJoinPool.class);
+    private static final long spareStackOffset =
+        objectFieldOffset("spareStack", ForkJoinPool.class);
+
+    private boolean casEventCount(long cmp, long val) {
+        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
+    }
+    private boolean casWorkerCounts(int cmp, int val) {
+        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
+    }
+    private boolean casRunControl(int cmp, int val) {
+        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
+    }
+    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
+        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
+    }
+    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
+        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
+    }
+
+    private static long objectFieldOffset(String field, Class<?> klazz) {
+        try {
+            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
+        } catch (NoSuchFieldException e) {
+            // Convert Exception to corresponding Error
+            NoSuchFieldError error = new NoSuchFieldError(field);
+            error.initCause(e);
+            throw error;
+        }
+    }
+}