src/hotspot/share/gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.cpp
changeset 52925 9c18c9d839d3
child 54423 6c0ab8bd8da5
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.cpp	Mon Dec 10 15:47:44 2018 +0100
@@ -0,0 +1,214 @@
+/*
+ * Copyright (c) 2018, Red Hat, Inc. All rights reserved.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+
+#include "gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.hpp"
+#include "gc/shenandoah/shenandoahCollectionSet.hpp"
+#include "gc/shenandoah/shenandoahFreeSet.hpp"
+#include "gc/shenandoah/shenandoahHeapRegion.hpp"
+#include "logging/log.hpp"
+#include "logging/logTag.hpp"
+#include "utilities/quickSort.hpp"
+
+ShenandoahAdaptiveHeuristics::ShenandoahAdaptiveHeuristics() :
+  ShenandoahHeuristics(),
+  _cycle_gap_history(new TruncatedSeq(5)),
+  _conc_mark_duration_history(new TruncatedSeq(5)),
+  _conc_uprefs_duration_history(new TruncatedSeq(5)) {
+
+  SHENANDOAH_ERGO_ENABLE_FLAG(ExplicitGCInvokesConcurrent);
+  SHENANDOAH_ERGO_ENABLE_FLAG(ShenandoahImplicitGCInvokesConcurrent);
+
+  // Final configuration checks
+  SHENANDOAH_CHECK_FLAG_SET(ShenandoahSATBBarrier);
+  SHENANDOAH_CHECK_FLAG_SET(ShenandoahReadBarrier);
+  SHENANDOAH_CHECK_FLAG_SET(ShenandoahWriteBarrier);
+  SHENANDOAH_CHECK_FLAG_SET(ShenandoahStoreValReadBarrier);
+  SHENANDOAH_CHECK_FLAG_SET(ShenandoahKeepAliveBarrier);
+  SHENANDOAH_CHECK_FLAG_SET(ShenandoahCASBarrier);
+  SHENANDOAH_CHECK_FLAG_SET(ShenandoahAcmpBarrier);
+  SHENANDOAH_CHECK_FLAG_SET(ShenandoahCloneBarrier);
+}
+
+ShenandoahAdaptiveHeuristics::~ShenandoahAdaptiveHeuristics() {}
+
+void ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
+                                                                         RegionData* data, size_t size,
+                                                                         size_t actual_free) {
+  size_t garbage_threshold = ShenandoahHeapRegion::region_size_bytes() * ShenandoahGarbageThreshold / 100;
+
+  // The logic for cset selection in adaptive is as follows:
+  //
+  //   1. We cannot get cset larger than available free space. Otherwise we guarantee OOME
+  //      during evacuation, and thus guarantee full GC. In practice, we also want to let
+  //      application to allocate something. This is why we limit CSet to some fraction of
+  //      available space. In non-overloaded heap, max_cset would contain all plausible candidates
+  //      over garbage threshold.
+  //
+  //   2. We should not get cset too low so that free threshold would not be met right
+  //      after the cycle. Otherwise we get back-to-back cycles for no reason if heap is
+  //      too fragmented. In non-overloaded non-fragmented heap min_garbage would be around zero.
+  //
+  // Therefore, we start by sorting the regions by garbage. Then we unconditionally add the best candidates
+  // before we meet min_garbage. Then we add all candidates that fit with a garbage threshold before
+  // we hit max_cset. When max_cset is hit, we terminate the cset selection. Note that in this scheme,
+  // ShenandoahGarbageThreshold is the soft threshold which would be ignored until min_garbage is hit.
+
+  size_t capacity    = ShenandoahHeap::heap()->capacity();
+  size_t free_target = ShenandoahMinFreeThreshold * capacity / 100;
+  size_t min_garbage = free_target > actual_free ? (free_target - actual_free) : 0;
+  size_t max_cset    = (size_t)(1.0 * ShenandoahEvacReserve * capacity / 100 / ShenandoahEvacWaste);
+
+  log_info(gc, ergo)("Adaptive CSet Selection. Target Free: " SIZE_FORMAT "M, Actual Free: "
+                     SIZE_FORMAT "M, Max CSet: " SIZE_FORMAT "M, Min Garbage: " SIZE_FORMAT "M",
+                     free_target / M, actual_free / M, max_cset / M, min_garbage / M);
+
+  // Better select garbage-first regions
+  QuickSort::sort<RegionData>(data, (int)size, compare_by_garbage, false);
+
+  size_t cur_cset = 0;
+  size_t cur_garbage = 0;
+  _bytes_in_cset = 0;
+
+  for (size_t idx = 0; idx < size; idx++) {
+    ShenandoahHeapRegion* r = data[idx]._region;
+
+    size_t new_cset    = cur_cset + r->get_live_data_bytes();
+    size_t new_garbage = cur_garbage + r->garbage();
+
+    if (new_cset > max_cset) {
+      break;
+    }
+
+    if ((new_garbage < min_garbage) || (r->garbage() > garbage_threshold)) {
+      cset->add_region(r);
+      _bytes_in_cset += r->used();
+      cur_cset = new_cset;
+      cur_garbage = new_garbage;
+    }
+  }
+}
+
+void ShenandoahAdaptiveHeuristics::record_cycle_start() {
+  ShenandoahHeuristics::record_cycle_start();
+  double last_cycle_gap = (_cycle_start - _last_cycle_end);
+  _cycle_gap_history->add(last_cycle_gap);
+}
+
+void ShenandoahAdaptiveHeuristics::record_phase_time(ShenandoahPhaseTimings::Phase phase, double secs) {
+  if (phase == ShenandoahPhaseTimings::conc_mark) {
+    _conc_mark_duration_history->add(secs);
+  } else if (phase == ShenandoahPhaseTimings::conc_update_refs) {
+    _conc_uprefs_duration_history->add(secs);
+  } // Else ignore
+}
+
+bool ShenandoahAdaptiveHeuristics::should_start_normal_gc() const {
+  ShenandoahHeap* heap = ShenandoahHeap::heap();
+  size_t capacity = heap->capacity();
+  size_t available = heap->free_set()->available();
+
+  // Check if we are falling below the worst limit, time to trigger the GC, regardless of
+  // anything else.
+  size_t min_threshold = ShenandoahMinFreeThreshold * heap->capacity() / 100;
+  if (available < min_threshold) {
+    log_info(gc)("Trigger: Free (" SIZE_FORMAT "M) is below minimum threshold (" SIZE_FORMAT "M)",
+                 available / M, min_threshold / M);
+    return true;
+  }
+
+  // Check if are need to learn a bit about the application
+  const size_t max_learn = ShenandoahLearningSteps;
+  if (_gc_times_learned < max_learn) {
+    size_t init_threshold = ShenandoahInitFreeThreshold * heap->capacity() / 100;
+    if (available < init_threshold) {
+      log_info(gc)("Trigger: Learning " SIZE_FORMAT " of " SIZE_FORMAT ". Free (" SIZE_FORMAT "M) is below initial threshold (" SIZE_FORMAT "M)",
+                   _gc_times_learned + 1, max_learn, available / M, init_threshold / M);
+      return true;
+    }
+  }
+
+  // Check if allocation headroom is still okay. This also factors in:
+  //   1. Some space to absorb allocation spikes
+  //   2. Accumulated penalties from Degenerated and Full GC
+
+  size_t allocation_headroom = available;
+
+  size_t spike_headroom = ShenandoahAllocSpikeFactor * capacity / 100;
+  size_t penalties      = _gc_time_penalties         * capacity / 100;
+
+  allocation_headroom -= MIN2(allocation_headroom, spike_headroom);
+  allocation_headroom -= MIN2(allocation_headroom, penalties);
+
+  // TODO: Allocation rate is way too averaged to be useful during state changes
+
+  double average_gc = _gc_time_history->avg();
+  double time_since_last = time_since_last_gc();
+  double allocation_rate = heap->bytes_allocated_since_gc_start() / time_since_last;
+
+  if (average_gc > allocation_headroom / allocation_rate) {
+    log_info(gc)("Trigger: Average GC time (%.2f ms) is above the time for allocation rate (%.2f MB/s) to deplete free headroom (" SIZE_FORMAT "M)",
+                 average_gc * 1000, allocation_rate / M, allocation_headroom / M);
+    log_info(gc, ergo)("Free headroom: " SIZE_FORMAT "M (free) - " SIZE_FORMAT "M (spike) - " SIZE_FORMAT "M (penalties) = " SIZE_FORMAT "M",
+                       available / M, spike_headroom / M, penalties / M, allocation_headroom / M);
+    return true;
+  }
+
+  return ShenandoahHeuristics::should_start_normal_gc();
+}
+
+bool ShenandoahAdaptiveHeuristics::should_start_update_refs() {
+  if (! _update_refs_adaptive) {
+    return _update_refs_early;
+  }
+
+  double cycle_gap_avg = _cycle_gap_history->avg();
+  double conc_mark_avg = _conc_mark_duration_history->avg();
+  double conc_uprefs_avg = _conc_uprefs_duration_history->avg();
+
+  if (_update_refs_early) {
+    double threshold = ShenandoahMergeUpdateRefsMinGap / 100.0;
+    if (conc_mark_avg + conc_uprefs_avg > cycle_gap_avg * threshold) {
+      _update_refs_early = false;
+    }
+  } else {
+    double threshold = ShenandoahMergeUpdateRefsMaxGap / 100.0;
+    if (conc_mark_avg + conc_uprefs_avg < cycle_gap_avg * threshold) {
+      _update_refs_early = true;
+    }
+  }
+  return _update_refs_early;
+}
+
+const char* ShenandoahAdaptiveHeuristics::name() {
+  return "adaptive";
+}
+
+bool ShenandoahAdaptiveHeuristics::is_diagnostic() {
+  return false;
+}
+
+bool ShenandoahAdaptiveHeuristics::is_experimental() {
+  return false;
+}