hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/binaryTreeDictionary.cpp
changeset 12574 92a4a887300c
parent 12573 426adeeabf00
parent 12572 47138eba5e83
child 12576 92faacdd6db2
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/binaryTreeDictionary.cpp	Wed May 09 13:07:49 2012 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1257 +0,0 @@
-/*
- * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- *
- */
-
-#include "precompiled.hpp"
-#include "gc_implementation/concurrentMarkSweep/binaryTreeDictionary.hpp"
-#include "gc_implementation/shared/allocationStats.hpp"
-#include "gc_implementation/shared/spaceDecorator.hpp"
-#include "memory/space.inline.hpp"
-#include "runtime/globals.hpp"
-#include "utilities/ostream.hpp"
-
-////////////////////////////////////////////////////////////////////////////////
-// A binary tree based search structure for free blocks.
-// This is currently used in the Concurrent Mark&Sweep implementation.
-////////////////////////////////////////////////////////////////////////////////
-
-TreeChunk* TreeChunk::as_TreeChunk(FreeChunk* fc) {
-  // Do some assertion checking here.
-  return (TreeChunk*) fc;
-}
-
-void TreeChunk::verifyTreeChunkList() const {
-  TreeChunk* nextTC = (TreeChunk*)next();
-  if (prev() != NULL) { // interior list node shouldn'r have tree fields
-    guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
-              embedded_list()->right()  == NULL, "should be clear");
-  }
-  if (nextTC != NULL) {
-    guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
-    guarantee(nextTC->size() == size(), "wrong size");
-    nextTC->verifyTreeChunkList();
-  }
-}
-
-
-TreeList* TreeList::as_TreeList(TreeChunk* tc) {
-  // This first free chunk in the list will be the tree list.
-  assert(tc->size() >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
-  TreeList* tl = tc->embedded_list();
-  tc->set_list(tl);
-#ifdef ASSERT
-  tl->set_protecting_lock(NULL);
-#endif
-  tl->set_hint(0);
-  tl->set_size(tc->size());
-  tl->link_head(tc);
-  tl->link_tail(tc);
-  tl->set_count(1);
-  tl->init_statistics(true /* split_birth */);
-  tl->setParent(NULL);
-  tl->setLeft(NULL);
-  tl->setRight(NULL);
-  return tl;
-}
-
-TreeList* TreeList::as_TreeList(HeapWord* addr, size_t size) {
-  TreeChunk* tc = (TreeChunk*) addr;
-  assert(size >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
-  // The space in the heap will have been mangled initially but
-  // is not remangled when a free chunk is returned to the free list
-  // (since it is used to maintain the chunk on the free list).
-  assert((ZapUnusedHeapArea &&
-          SpaceMangler::is_mangled((HeapWord*) tc->size_addr()) &&
-          SpaceMangler::is_mangled((HeapWord*) tc->prev_addr()) &&
-          SpaceMangler::is_mangled((HeapWord*) tc->next_addr())) ||
-          (tc->size() == 0 && tc->prev() == NULL && tc->next() == NULL),
-    "Space should be clear or mangled");
-  tc->setSize(size);
-  tc->linkPrev(NULL);
-  tc->linkNext(NULL);
-  TreeList* tl = TreeList::as_TreeList(tc);
-  return tl;
-}
-
-TreeList* TreeList::removeChunkReplaceIfNeeded(TreeChunk* tc) {
-
-  TreeList* retTL = this;
-  FreeChunk* list = head();
-  assert(!list || list != list->next(), "Chunk on list twice");
-  assert(tc != NULL, "Chunk being removed is NULL");
-  assert(parent() == NULL || this == parent()->left() ||
-    this == parent()->right(), "list is inconsistent");
-  assert(tc->isFree(), "Header is not marked correctly");
-  assert(head() == NULL || head()->prev() == NULL, "list invariant");
-  assert(tail() == NULL || tail()->next() == NULL, "list invariant");
-
-  FreeChunk* prevFC = tc->prev();
-  TreeChunk* nextTC = TreeChunk::as_TreeChunk(tc->next());
-  assert(list != NULL, "should have at least the target chunk");
-
-  // Is this the first item on the list?
-  if (tc == list) {
-    // The "getChunk..." functions for a TreeList will not return the
-    // first chunk in the list unless it is the last chunk in the list
-    // because the first chunk is also acting as the tree node.
-    // When coalescing happens, however, the first chunk in the a tree
-    // list can be the start of a free range.  Free ranges are removed
-    // from the free lists so that they are not available to be
-    // allocated when the sweeper yields (giving up the free list lock)
-    // to allow mutator activity.  If this chunk is the first in the
-    // list and is not the last in the list, do the work to copy the
-    // TreeList from the first chunk to the next chunk and update all
-    // the TreeList pointers in the chunks in the list.
-    if (nextTC == NULL) {
-      assert(prevFC == NULL, "Not last chunk in the list");
-      set_tail(NULL);
-      set_head(NULL);
-    } else {
-      // copy embedded list.
-      nextTC->set_embedded_list(tc->embedded_list());
-      retTL = nextTC->embedded_list();
-      // Fix the pointer to the list in each chunk in the list.
-      // This can be slow for a long list.  Consider having
-      // an option that does not allow the first chunk on the
-      // list to be coalesced.
-      for (TreeChunk* curTC = nextTC; curTC != NULL;
-          curTC = TreeChunk::as_TreeChunk(curTC->next())) {
-        curTC->set_list(retTL);
-      }
-      // Fix the parent to point to the new TreeList.
-      if (retTL->parent() != NULL) {
-        if (this == retTL->parent()->left()) {
-          retTL->parent()->setLeft(retTL);
-        } else {
-          assert(this == retTL->parent()->right(), "Parent is incorrect");
-          retTL->parent()->setRight(retTL);
-        }
-      }
-      // Fix the children's parent pointers to point to the
-      // new list.
-      assert(right() == retTL->right(), "Should have been copied");
-      if (retTL->right() != NULL) {
-        retTL->right()->setParent(retTL);
-      }
-      assert(left() == retTL->left(), "Should have been copied");
-      if (retTL->left() != NULL) {
-        retTL->left()->setParent(retTL);
-      }
-      retTL->link_head(nextTC);
-      assert(nextTC->isFree(), "Should be a free chunk");
-    }
-  } else {
-    if (nextTC == NULL) {
-      // Removing chunk at tail of list
-      link_tail(prevFC);
-    }
-    // Chunk is interior to the list
-    prevFC->linkAfter(nextTC);
-  }
-
-  // Below this point the embeded TreeList being used for the
-  // tree node may have changed. Don't use "this"
-  // TreeList*.
-  // chunk should still be a free chunk (bit set in _prev)
-  assert(!retTL->head() || retTL->size() == retTL->head()->size(),
-    "Wrong sized chunk in list");
-  debug_only(
-    tc->linkPrev(NULL);
-    tc->linkNext(NULL);
-    tc->set_list(NULL);
-    bool prev_found = false;
-    bool next_found = false;
-    for (FreeChunk* curFC = retTL->head();
-         curFC != NULL; curFC = curFC->next()) {
-      assert(curFC != tc, "Chunk is still in list");
-      if (curFC == prevFC) {
-        prev_found = true;
-      }
-      if (curFC == nextTC) {
-        next_found = true;
-      }
-    }
-    assert(prevFC == NULL || prev_found, "Chunk was lost from list");
-    assert(nextTC == NULL || next_found, "Chunk was lost from list");
-    assert(retTL->parent() == NULL ||
-           retTL == retTL->parent()->left() ||
-           retTL == retTL->parent()->right(),
-           "list is inconsistent");
-  )
-  retTL->decrement_count();
-
-  assert(tc->isFree(), "Should still be a free chunk");
-  assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
-    "list invariant");
-  assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
-    "list invariant");
-  return retTL;
-}
-void TreeList::returnChunkAtTail(TreeChunk* chunk) {
-  assert(chunk != NULL, "returning NULL chunk");
-  assert(chunk->list() == this, "list should be set for chunk");
-  assert(tail() != NULL, "The tree list is embedded in the first chunk");
-  // which means that the list can never be empty.
-  assert(!verifyChunkInFreeLists(chunk), "Double entry");
-  assert(head() == NULL || head()->prev() == NULL, "list invariant");
-  assert(tail() == NULL || tail()->next() == NULL, "list invariant");
-
-  FreeChunk* fc = tail();
-  fc->linkAfter(chunk);
-  link_tail(chunk);
-
-  assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
-  increment_count();
-  debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
-  assert(head() == NULL || head()->prev() == NULL, "list invariant");
-  assert(tail() == NULL || tail()->next() == NULL, "list invariant");
-}
-
-// Add this chunk at the head of the list.  "At the head of the list"
-// is defined to be after the chunk pointer to by head().  This is
-// because the TreeList is embedded in the first TreeChunk in the
-// list.  See the definition of TreeChunk.
-void TreeList::returnChunkAtHead(TreeChunk* chunk) {
-  assert(chunk->list() == this, "list should be set for chunk");
-  assert(head() != NULL, "The tree list is embedded in the first chunk");
-  assert(chunk != NULL, "returning NULL chunk");
-  assert(!verifyChunkInFreeLists(chunk), "Double entry");
-  assert(head() == NULL || head()->prev() == NULL, "list invariant");
-  assert(tail() == NULL || tail()->next() == NULL, "list invariant");
-
-  FreeChunk* fc = head()->next();
-  if (fc != NULL) {
-    chunk->linkAfter(fc);
-  } else {
-    assert(tail() == NULL, "List is inconsistent");
-    link_tail(chunk);
-  }
-  head()->linkAfter(chunk);
-  assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
-  increment_count();
-  debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
-  assert(head() == NULL || head()->prev() == NULL, "list invariant");
-  assert(tail() == NULL || tail()->next() == NULL, "list invariant");
-}
-
-TreeChunk* TreeList::head_as_TreeChunk() {
-  assert(head() == NULL || TreeChunk::as_TreeChunk(head())->list() == this,
-    "Wrong type of chunk?");
-  return TreeChunk::as_TreeChunk(head());
-}
-
-TreeChunk* TreeList::first_available() {
-  assert(head() != NULL, "The head of the list cannot be NULL");
-  FreeChunk* fc = head()->next();
-  TreeChunk* retTC;
-  if (fc == NULL) {
-    retTC = head_as_TreeChunk();
-  } else {
-    retTC = TreeChunk::as_TreeChunk(fc);
-  }
-  assert(retTC->list() == this, "Wrong type of chunk.");
-  return retTC;
-}
-
-// Returns the block with the largest heap address amongst
-// those in the list for this size; potentially slow and expensive,
-// use with caution!
-TreeChunk* TreeList::largest_address() {
-  assert(head() != NULL, "The head of the list cannot be NULL");
-  FreeChunk* fc = head()->next();
-  TreeChunk* retTC;
-  if (fc == NULL) {
-    retTC = head_as_TreeChunk();
-  } else {
-    // walk down the list and return the one with the highest
-    // heap address among chunks of this size.
-    FreeChunk* last = fc;
-    while (fc->next() != NULL) {
-      if ((HeapWord*)last < (HeapWord*)fc) {
-        last = fc;
-      }
-      fc = fc->next();
-    }
-    retTC = TreeChunk::as_TreeChunk(last);
-  }
-  assert(retTC->list() == this, "Wrong type of chunk.");
-  return retTC;
-}
-
-BinaryTreeDictionary::BinaryTreeDictionary(MemRegion mr, bool splay):
-  _splay(splay)
-{
-  assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
-
-  reset(mr);
-  assert(root()->left() == NULL, "reset check failed");
-  assert(root()->right() == NULL, "reset check failed");
-  assert(root()->head()->next() == NULL, "reset check failed");
-  assert(root()->head()->prev() == NULL, "reset check failed");
-  assert(totalSize() == root()->size(), "reset check failed");
-  assert(totalFreeBlocks() == 1, "reset check failed");
-}
-
-void BinaryTreeDictionary::inc_totalSize(size_t inc) {
-  _totalSize = _totalSize + inc;
-}
-
-void BinaryTreeDictionary::dec_totalSize(size_t dec) {
-  _totalSize = _totalSize - dec;
-}
-
-void BinaryTreeDictionary::reset(MemRegion mr) {
-  assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
-  set_root(TreeList::as_TreeList(mr.start(), mr.word_size()));
-  set_totalSize(mr.word_size());
-  set_totalFreeBlocks(1);
-}
-
-void BinaryTreeDictionary::reset(HeapWord* addr, size_t byte_size) {
-  MemRegion mr(addr, heap_word_size(byte_size));
-  reset(mr);
-}
-
-void BinaryTreeDictionary::reset() {
-  set_root(NULL);
-  set_totalSize(0);
-  set_totalFreeBlocks(0);
-}
-
-// Get a free block of size at least size from tree, or NULL.
-// If a splay step is requested, the removal algorithm (only) incorporates
-// a splay step as follows:
-// . the search proceeds down the tree looking for a possible
-//   match. At the (closest) matching location, an appropriate splay step is applied
-//   (zig, zig-zig or zig-zag). A chunk of the appropriate size is then returned
-//   if available, and if it's the last chunk, the node is deleted. A deteleted
-//   node is replaced in place by its tree successor.
-TreeChunk*
-BinaryTreeDictionary::getChunkFromTree(size_t size, Dither dither, bool splay)
-{
-  TreeList *curTL, *prevTL;
-  TreeChunk* retTC = NULL;
-  assert(size >= MIN_TREE_CHUNK_SIZE, "minimum chunk size");
-  if (FLSVerifyDictionary) {
-    verifyTree();
-  }
-  // starting at the root, work downwards trying to find match.
-  // Remember the last node of size too great or too small.
-  for (prevTL = curTL = root(); curTL != NULL;) {
-    if (curTL->size() == size) {        // exact match
-      break;
-    }
-    prevTL = curTL;
-    if (curTL->size() < size) {        // proceed to right sub-tree
-      curTL = curTL->right();
-    } else {                           // proceed to left sub-tree
-      assert(curTL->size() > size, "size inconsistency");
-      curTL = curTL->left();
-    }
-  }
-  if (curTL == NULL) { // couldn't find exact match
-    // try and find the next larger size by walking back up the search path
-    for (curTL = prevTL; curTL != NULL;) {
-      if (curTL->size() >= size) break;
-      else curTL = curTL->parent();
-    }
-    assert(curTL == NULL || curTL->count() > 0,
-      "An empty list should not be in the tree");
-  }
-  if (curTL != NULL) {
-    assert(curTL->size() >= size, "size inconsistency");
-    if (UseCMSAdaptiveFreeLists) {
-
-      // A candidate chunk has been found.  If it is already under
-      // populated, get a chunk associated with the hint for this
-      // chunk.
-      if (curTL->surplus() <= 0) {
-        /* Use the hint to find a size with a surplus, and reset the hint. */
-        TreeList* hintTL = curTL;
-        while (hintTL->hint() != 0) {
-          assert(hintTL->hint() == 0 || hintTL->hint() > hintTL->size(),
-            "hint points in the wrong direction");
-          hintTL = findList(hintTL->hint());
-          assert(curTL != hintTL, "Infinite loop");
-          if (hintTL == NULL ||
-              hintTL == curTL /* Should not happen but protect against it */ ) {
-            // No useful hint.  Set the hint to NULL and go on.
-            curTL->set_hint(0);
-            break;
-          }
-          assert(hintTL->size() > size, "hint is inconsistent");
-          if (hintTL->surplus() > 0) {
-            // The hint led to a list that has a surplus.  Use it.
-            // Set the hint for the candidate to an overpopulated
-            // size.
-            curTL->set_hint(hintTL->size());
-            // Change the candidate.
-            curTL = hintTL;
-            break;
-          }
-          // The evm code reset the hint of the candidate as
-          // at an interim point.  Why?  Seems like this leaves
-          // the hint pointing to a list that didn't work.
-          // curTL->set_hint(hintTL->size());
-        }
-      }
-    }
-    // don't waste time splaying if chunk's singleton
-    if (splay && curTL->head()->next() != NULL) {
-      semiSplayStep(curTL);
-    }
-    retTC = curTL->first_available();
-    assert((retTC != NULL) && (curTL->count() > 0),
-      "A list in the binary tree should not be NULL");
-    assert(retTC->size() >= size,
-      "A chunk of the wrong size was found");
-    removeChunkFromTree(retTC);
-    assert(retTC->isFree(), "Header is not marked correctly");
-  }
-
-  if (FLSVerifyDictionary) {
-    verify();
-  }
-  return retTC;
-}
-
-TreeList* BinaryTreeDictionary::findList(size_t size) const {
-  TreeList* curTL;
-  for (curTL = root(); curTL != NULL;) {
-    if (curTL->size() == size) {        // exact match
-      break;
-    }
-
-    if (curTL->size() < size) {        // proceed to right sub-tree
-      curTL = curTL->right();
-    } else {                           // proceed to left sub-tree
-      assert(curTL->size() > size, "size inconsistency");
-      curTL = curTL->left();
-    }
-  }
-  return curTL;
-}
-
-
-bool BinaryTreeDictionary::verifyChunkInFreeLists(FreeChunk* tc) const {
-  size_t size = tc->size();
-  TreeList* tl = findList(size);
-  if (tl == NULL) {
-    return false;
-  } else {
-    return tl->verifyChunkInFreeLists(tc);
-  }
-}
-
-FreeChunk* BinaryTreeDictionary::findLargestDict() const {
-  TreeList *curTL = root();
-  if (curTL != NULL) {
-    while(curTL->right() != NULL) curTL = curTL->right();
-    return curTL->largest_address();
-  } else {
-    return NULL;
-  }
-}
-
-// Remove the current chunk from the tree.  If it is not the last
-// chunk in a list on a tree node, just unlink it.
-// If it is the last chunk in the list (the next link is NULL),
-// remove the node and repair the tree.
-TreeChunk*
-BinaryTreeDictionary::removeChunkFromTree(TreeChunk* tc) {
-  assert(tc != NULL, "Should not call with a NULL chunk");
-  assert(tc->isFree(), "Header is not marked correctly");
-
-  TreeList *newTL, *parentTL;
-  TreeChunk* retTC;
-  TreeList* tl = tc->list();
-  debug_only(
-    bool removing_only_chunk = false;
-    if (tl == _root) {
-      if ((_root->left() == NULL) && (_root->right() == NULL)) {
-        if (_root->count() == 1) {
-          assert(_root->head() == tc, "Should only be this one chunk");
-          removing_only_chunk = true;
-        }
-      }
-    }
-  )
-  assert(tl != NULL, "List should be set");
-  assert(tl->parent() == NULL || tl == tl->parent()->left() ||
-         tl == tl->parent()->right(), "list is inconsistent");
-
-  bool complicatedSplice = false;
-
-  retTC = tc;
-  // Removing this chunk can have the side effect of changing the node
-  // (TreeList*) in the tree.  If the node is the root, update it.
-  TreeList* replacementTL = tl->removeChunkReplaceIfNeeded(tc);
-  assert(tc->isFree(), "Chunk should still be free");
-  assert(replacementTL->parent() == NULL ||
-         replacementTL == replacementTL->parent()->left() ||
-         replacementTL == replacementTL->parent()->right(),
-         "list is inconsistent");
-  if (tl == root()) {
-    assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
-    set_root(replacementTL);
-  }
-  debug_only(
-    if (tl != replacementTL) {
-      assert(replacementTL->head() != NULL,
-        "If the tree list was replaced, it should not be a NULL list");
-      TreeList* rhl = replacementTL->head_as_TreeChunk()->list();
-      TreeList* rtl = TreeChunk::as_TreeChunk(replacementTL->tail())->list();
-      assert(rhl == replacementTL, "Broken head");
-      assert(rtl == replacementTL, "Broken tail");
-      assert(replacementTL->size() == tc->size(),  "Broken size");
-    }
-  )
-
-  // Does the tree need to be repaired?
-  if (replacementTL->count() == 0) {
-    assert(replacementTL->head() == NULL &&
-           replacementTL->tail() == NULL, "list count is incorrect");
-    // Find the replacement node for the (soon to be empty) node being removed.
-    // if we have a single (or no) child, splice child in our stead
-    if (replacementTL->left() == NULL) {
-      // left is NULL so pick right.  right may also be NULL.
-      newTL = replacementTL->right();
-      debug_only(replacementTL->clearRight();)
-    } else if (replacementTL->right() == NULL) {
-      // right is NULL
-      newTL = replacementTL->left();
-      debug_only(replacementTL->clearLeft();)
-    } else {  // we have both children, so, by patriarchal convention,
-              // my replacement is least node in right sub-tree
-      complicatedSplice = true;
-      newTL = removeTreeMinimum(replacementTL->right());
-      assert(newTL != NULL && newTL->left() == NULL &&
-             newTL->right() == NULL, "sub-tree minimum exists");
-    }
-    // newTL is the replacement for the (soon to be empty) node.
-    // newTL may be NULL.
-    // should verify; we just cleanly excised our replacement
-    if (FLSVerifyDictionary) {
-      verifyTree();
-    }
-    // first make newTL my parent's child
-    if ((parentTL = replacementTL->parent()) == NULL) {
-      // newTL should be root
-      assert(tl == root(), "Incorrectly replacing root");
-      set_root(newTL);
-      if (newTL != NULL) {
-        newTL->clearParent();
-      }
-    } else if (parentTL->right() == replacementTL) {
-      // replacementTL is a right child
-      parentTL->setRight(newTL);
-    } else {                                // replacementTL is a left child
-      assert(parentTL->left() == replacementTL, "should be left child");
-      parentTL->setLeft(newTL);
-    }
-    debug_only(replacementTL->clearParent();)
-    if (complicatedSplice) {  // we need newTL to get replacementTL's
-                              // two children
-      assert(newTL != NULL &&
-             newTL->left() == NULL && newTL->right() == NULL,
-            "newTL should not have encumbrances from the past");
-      // we'd like to assert as below:
-      // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
-      //       "else !complicatedSplice");
-      // ... however, the above assertion is too strong because we aren't
-      // guaranteed that replacementTL->right() is still NULL.
-      // Recall that we removed
-      // the right sub-tree minimum from replacementTL.
-      // That may well have been its right
-      // child! So we'll just assert half of the above:
-      assert(replacementTL->left() != NULL, "else !complicatedSplice");
-      newTL->setLeft(replacementTL->left());
-      newTL->setRight(replacementTL->right());
-      debug_only(
-        replacementTL->clearRight();
-        replacementTL->clearLeft();
-      )
-    }
-    assert(replacementTL->right() == NULL &&
-           replacementTL->left() == NULL &&
-           replacementTL->parent() == NULL,
-        "delete without encumbrances");
-  }
-
-  assert(totalSize() >= retTC->size(), "Incorrect total size");
-  dec_totalSize(retTC->size());     // size book-keeping
-  assert(totalFreeBlocks() > 0, "Incorrect total count");
-  set_totalFreeBlocks(totalFreeBlocks() - 1);
-
-  assert(retTC != NULL, "null chunk?");
-  assert(retTC->prev() == NULL && retTC->next() == NULL,
-         "should return without encumbrances");
-  if (FLSVerifyDictionary) {
-    verifyTree();
-  }
-  assert(!removing_only_chunk || _root == NULL, "root should be NULL");
-  return TreeChunk::as_TreeChunk(retTC);
-}
-
-// Remove the leftmost node (lm) in the tree and return it.
-// If lm has a right child, link it to the left node of
-// the parent of lm.
-TreeList* BinaryTreeDictionary::removeTreeMinimum(TreeList* tl) {
-  assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
-  // locate the subtree minimum by walking down left branches
-  TreeList* curTL = tl;
-  for (; curTL->left() != NULL; curTL = curTL->left());
-  // obviously curTL now has at most one child, a right child
-  if (curTL != root()) {  // Should this test just be removed?
-    TreeList* parentTL = curTL->parent();
-    if (parentTL->left() == curTL) { // curTL is a left child
-      parentTL->setLeft(curTL->right());
-    } else {
-      // If the list tl has no left child, then curTL may be
-      // the right child of parentTL.
-      assert(parentTL->right() == curTL, "should be a right child");
-      parentTL->setRight(curTL->right());
-    }
-  } else {
-    // The only use of this method would not pass the root of the
-    // tree (as indicated by the assertion above that the tree list
-    // has a parent) but the specification does not explicitly exclude the
-    // passing of the root so accomodate it.
-    set_root(NULL);
-  }
-  debug_only(
-    curTL->clearParent();  // Test if this needs to be cleared
-    curTL->clearRight();    // recall, above, left child is already null
-  )
-  // we just excised a (non-root) node, we should still verify all tree invariants
-  if (FLSVerifyDictionary) {
-    verifyTree();
-  }
-  return curTL;
-}
-
-// Based on a simplification of the algorithm by Sleator and Tarjan (JACM 1985).
-// The simplifications are the following:
-// . we splay only when we delete (not when we insert)
-// . we apply a single spay step per deletion/access
-// By doing such partial splaying, we reduce the amount of restructuring,
-// while getting a reasonably efficient search tree (we think).
-// [Measurements will be needed to (in)validate this expectation.]
-
-void BinaryTreeDictionary::semiSplayStep(TreeList* tc) {
-  // apply a semi-splay step at the given node:
-  // . if root, norting needs to be done
-  // . if child of root, splay once
-  // . else zig-zig or sig-zag depending on path from grandparent
-  if (root() == tc) return;
-  warning("*** Splaying not yet implemented; "
-          "tree operations may be inefficient ***");
-}
-
-void BinaryTreeDictionary::insertChunkInTree(FreeChunk* fc) {
-  TreeList *curTL, *prevTL;
-  size_t size = fc->size();
-
-  assert(size >= MIN_TREE_CHUNK_SIZE, "too small to be a TreeList");
-  if (FLSVerifyDictionary) {
-    verifyTree();
-  }
-  // XXX: do i need to clear the FreeChunk fields, let me do it just in case
-  // Revisit this later
-
-  fc->clearNext();
-  fc->linkPrev(NULL);
-
-  // work down from the _root, looking for insertion point
-  for (prevTL = curTL = root(); curTL != NULL;) {
-    if (curTL->size() == size)  // exact match
-      break;
-    prevTL = curTL;
-    if (curTL->size() > size) { // follow left branch
-      curTL = curTL->left();
-    } else {                    // follow right branch
-      assert(curTL->size() < size, "size inconsistency");
-      curTL = curTL->right();
-    }
-  }
-  TreeChunk* tc = TreeChunk::as_TreeChunk(fc);
-  // This chunk is being returned to the binary tree.  Its embedded
-  // TreeList should be unused at this point.
-  tc->initialize();
-  if (curTL != NULL) {          // exact match
-    tc->set_list(curTL);
-    curTL->returnChunkAtTail(tc);
-  } else {                     // need a new node in tree
-    tc->clearNext();
-    tc->linkPrev(NULL);
-    TreeList* newTL = TreeList::as_TreeList(tc);
-    assert(((TreeChunk*)tc)->list() == newTL,
-      "List was not initialized correctly");
-    if (prevTL == NULL) {      // we are the only tree node
-      assert(root() == NULL, "control point invariant");
-      set_root(newTL);
-    } else {                   // insert under prevTL ...
-      if (prevTL->size() < size) {   // am right child
-        assert(prevTL->right() == NULL, "control point invariant");
-        prevTL->setRight(newTL);
-      } else {                       // am left child
-        assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
-        prevTL->setLeft(newTL);
-      }
-    }
-  }
-  assert(tc->list() != NULL, "Tree list should be set");
-
-  inc_totalSize(size);
-  // Method 'totalSizeInTree' walks through the every block in the
-  // tree, so it can cause significant performance loss if there are
-  // many blocks in the tree
-  assert(!FLSVerifyDictionary || totalSizeInTree(root()) == totalSize(), "_totalSize inconsistency");
-  set_totalFreeBlocks(totalFreeBlocks() + 1);
-  if (FLSVerifyDictionary) {
-    verifyTree();
-  }
-}
-
-size_t BinaryTreeDictionary::maxChunkSize() const {
-  verify_par_locked();
-  TreeList* tc = root();
-  if (tc == NULL) return 0;
-  for (; tc->right() != NULL; tc = tc->right());
-  return tc->size();
-}
-
-size_t BinaryTreeDictionary::totalListLength(TreeList* tl) const {
-  size_t res;
-  res = tl->count();
-#ifdef ASSERT
-  size_t cnt;
-  FreeChunk* tc = tl->head();
-  for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
-  assert(res == cnt, "The count is not being maintained correctly");
-#endif
-  return res;
-}
-
-size_t BinaryTreeDictionary::totalSizeInTree(TreeList* tl) const {
-  if (tl == NULL)
-    return 0;
-  return (tl->size() * totalListLength(tl)) +
-         totalSizeInTree(tl->left())    +
-         totalSizeInTree(tl->right());
-}
-
-double BinaryTreeDictionary::sum_of_squared_block_sizes(TreeList* const tl) const {
-  if (tl == NULL) {
-    return 0.0;
-  }
-  double size = (double)(tl->size());
-  double curr = size * size * totalListLength(tl);
-  curr += sum_of_squared_block_sizes(tl->left());
-  curr += sum_of_squared_block_sizes(tl->right());
-  return curr;
-}
-
-size_t BinaryTreeDictionary::totalFreeBlocksInTree(TreeList* tl) const {
-  if (tl == NULL)
-    return 0;
-  return totalListLength(tl) +
-         totalFreeBlocksInTree(tl->left()) +
-         totalFreeBlocksInTree(tl->right());
-}
-
-size_t BinaryTreeDictionary::numFreeBlocks() const {
-  assert(totalFreeBlocksInTree(root()) == totalFreeBlocks(),
-         "_totalFreeBlocks inconsistency");
-  return totalFreeBlocks();
-}
-
-size_t BinaryTreeDictionary::treeHeightHelper(TreeList* tl) const {
-  if (tl == NULL)
-    return 0;
-  return 1 + MAX2(treeHeightHelper(tl->left()),
-                  treeHeightHelper(tl->right()));
-}
-
-size_t BinaryTreeDictionary::treeHeight() const {
-  return treeHeightHelper(root());
-}
-
-size_t BinaryTreeDictionary::totalNodesHelper(TreeList* tl) const {
-  if (tl == NULL) {
-    return 0;
-  }
-  return 1 + totalNodesHelper(tl->left()) +
-    totalNodesHelper(tl->right());
-}
-
-size_t BinaryTreeDictionary::totalNodesInTree(TreeList* tl) const {
-  return totalNodesHelper(root());
-}
-
-void BinaryTreeDictionary::dictCensusUpdate(size_t size, bool split, bool birth){
-  TreeList* nd = findList(size);
-  if (nd) {
-    if (split) {
-      if (birth) {
-        nd->increment_splitBirths();
-        nd->increment_surplus();
-      }  else {
-        nd->increment_splitDeaths();
-        nd->decrement_surplus();
-      }
-    } else {
-      if (birth) {
-        nd->increment_coalBirths();
-        nd->increment_surplus();
-      } else {
-        nd->increment_coalDeaths();
-        nd->decrement_surplus();
-      }
-    }
-  }
-  // A list for this size may not be found (nd == 0) if
-  //   This is a death where the appropriate list is now
-  //     empty and has been removed from the list.
-  //   This is a birth associated with a LinAB.  The chunk
-  //     for the LinAB is not in the dictionary.
-}
-
-bool BinaryTreeDictionary::coalDictOverPopulated(size_t size) {
-  if (FLSAlwaysCoalesceLarge) return true;
-
-  TreeList* list_of_size = findList(size);
-  // None of requested size implies overpopulated.
-  return list_of_size == NULL || list_of_size->coalDesired() <= 0 ||
-         list_of_size->count() > list_of_size->coalDesired();
-}
-
-// Closures for walking the binary tree.
-//   do_list() walks the free list in a node applying the closure
-//     to each free chunk in the list
-//   do_tree() walks the nodes in the binary tree applying do_list()
-//     to each list at each node.
-
-class TreeCensusClosure : public StackObj {
- protected:
-  virtual void do_list(FreeList* fl) = 0;
- public:
-  virtual void do_tree(TreeList* tl) = 0;
-};
-
-class AscendTreeCensusClosure : public TreeCensusClosure {
- public:
-  void do_tree(TreeList* tl) {
-    if (tl != NULL) {
-      do_tree(tl->left());
-      do_list(tl);
-      do_tree(tl->right());
-    }
-  }
-};
-
-class DescendTreeCensusClosure : public TreeCensusClosure {
- public:
-  void do_tree(TreeList* tl) {
-    if (tl != NULL) {
-      do_tree(tl->right());
-      do_list(tl);
-      do_tree(tl->left());
-    }
-  }
-};
-
-// For each list in the tree, calculate the desired, desired
-// coalesce, count before sweep, and surplus before sweep.
-class BeginSweepClosure : public AscendTreeCensusClosure {
-  double _percentage;
-  float _inter_sweep_current;
-  float _inter_sweep_estimate;
-  float _intra_sweep_estimate;
-
- public:
-  BeginSweepClosure(double p, float inter_sweep_current,
-                              float inter_sweep_estimate,
-                              float intra_sweep_estimate) :
-   _percentage(p),
-   _inter_sweep_current(inter_sweep_current),
-   _inter_sweep_estimate(inter_sweep_estimate),
-   _intra_sweep_estimate(intra_sweep_estimate) { }
-
-  void do_list(FreeList* fl) {
-    double coalSurplusPercent = _percentage;
-    fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
-    fl->set_coalDesired((ssize_t)((double)fl->desired() * coalSurplusPercent));
-    fl->set_beforeSweep(fl->count());
-    fl->set_bfrSurp(fl->surplus());
-  }
-};
-
-// Used to search the tree until a condition is met.
-// Similar to TreeCensusClosure but searches the
-// tree and returns promptly when found.
-
-class TreeSearchClosure : public StackObj {
- protected:
-  virtual bool do_list(FreeList* fl) = 0;
- public:
-  virtual bool do_tree(TreeList* tl) = 0;
-};
-
-#if 0 //  Don't need this yet but here for symmetry.
-class AscendTreeSearchClosure : public TreeSearchClosure {
- public:
-  bool do_tree(TreeList* tl) {
-    if (tl != NULL) {
-      if (do_tree(tl->left())) return true;
-      if (do_list(tl)) return true;
-      if (do_tree(tl->right())) return true;
-    }
-    return false;
-  }
-};
-#endif
-
-class DescendTreeSearchClosure : public TreeSearchClosure {
- public:
-  bool do_tree(TreeList* tl) {
-    if (tl != NULL) {
-      if (do_tree(tl->right())) return true;
-      if (do_list(tl)) return true;
-      if (do_tree(tl->left())) return true;
-    }
-    return false;
-  }
-};
-
-// Searches the tree for a chunk that ends at the
-// specified address.
-class EndTreeSearchClosure : public DescendTreeSearchClosure {
-  HeapWord* _target;
-  FreeChunk* _found;
-
- public:
-  EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
-  bool do_list(FreeList* fl) {
-    FreeChunk* item = fl->head();
-    while (item != NULL) {
-      if (item->end() == _target) {
-        _found = item;
-        return true;
-      }
-      item = item->next();
-    }
-    return false;
-  }
-  FreeChunk* found() { return _found; }
-};
-
-FreeChunk* BinaryTreeDictionary::find_chunk_ends_at(HeapWord* target) const {
-  EndTreeSearchClosure etsc(target);
-  bool found_target = etsc.do_tree(root());
-  assert(found_target || etsc.found() == NULL, "Consistency check");
-  assert(!found_target || etsc.found() != NULL, "Consistency check");
-  return etsc.found();
-}
-
-void BinaryTreeDictionary::beginSweepDictCensus(double coalSurplusPercent,
-  float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
-  BeginSweepClosure bsc(coalSurplusPercent, inter_sweep_current,
-                                            inter_sweep_estimate,
-                                            intra_sweep_estimate);
-  bsc.do_tree(root());
-}
-
-// Closures and methods for calculating total bytes returned to the
-// free lists in the tree.
-NOT_PRODUCT(
-  class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure {
-   public:
-    void do_list(FreeList* fl) {
-      fl->set_returnedBytes(0);
-    }
-  };
-
-  void BinaryTreeDictionary::initializeDictReturnedBytes() {
-    InitializeDictReturnedBytesClosure idrb;
-    idrb.do_tree(root());
-  }
-
-  class ReturnedBytesClosure : public AscendTreeCensusClosure {
-    size_t _dictReturnedBytes;
-   public:
-    ReturnedBytesClosure() { _dictReturnedBytes = 0; }
-    void do_list(FreeList* fl) {
-      _dictReturnedBytes += fl->returnedBytes();
-    }
-    size_t dictReturnedBytes() { return _dictReturnedBytes; }
-  };
-
-  size_t BinaryTreeDictionary::sumDictReturnedBytes() {
-    ReturnedBytesClosure rbc;
-    rbc.do_tree(root());
-
-    return rbc.dictReturnedBytes();
-  }
-
-  // Count the number of entries in the tree.
-  class treeCountClosure : public DescendTreeCensusClosure {
-   public:
-    uint count;
-    treeCountClosure(uint c) { count = c; }
-    void do_list(FreeList* fl) {
-      count++;
-    }
-  };
-
-  size_t BinaryTreeDictionary::totalCount() {
-    treeCountClosure ctc(0);
-    ctc.do_tree(root());
-    return ctc.count;
-  }
-)
-
-// Calculate surpluses for the lists in the tree.
-class setTreeSurplusClosure : public AscendTreeCensusClosure {
-  double percentage;
- public:
-  setTreeSurplusClosure(double v) { percentage = v; }
-  void do_list(FreeList* fl) {
-    double splitSurplusPercent = percentage;
-    fl->set_surplus(fl->count() -
-                   (ssize_t)((double)fl->desired() * splitSurplusPercent));
-  }
-};
-
-void BinaryTreeDictionary::setTreeSurplus(double splitSurplusPercent) {
-  setTreeSurplusClosure sts(splitSurplusPercent);
-  sts.do_tree(root());
-}
-
-// Set hints for the lists in the tree.
-class setTreeHintsClosure : public DescendTreeCensusClosure {
-  size_t hint;
- public:
-  setTreeHintsClosure(size_t v) { hint = v; }
-  void do_list(FreeList* fl) {
-    fl->set_hint(hint);
-    assert(fl->hint() == 0 || fl->hint() > fl->size(),
-      "Current hint is inconsistent");
-    if (fl->surplus() > 0) {
-      hint = fl->size();
-    }
-  }
-};
-
-void BinaryTreeDictionary::setTreeHints(void) {
-  setTreeHintsClosure sth(0);
-  sth.do_tree(root());
-}
-
-// Save count before previous sweep and splits and coalesces.
-class clearTreeCensusClosure : public AscendTreeCensusClosure {
-  void do_list(FreeList* fl) {
-    fl->set_prevSweep(fl->count());
-    fl->set_coalBirths(0);
-    fl->set_coalDeaths(0);
-    fl->set_splitBirths(0);
-    fl->set_splitDeaths(0);
-  }
-};
-
-void BinaryTreeDictionary::clearTreeCensus(void) {
-  clearTreeCensusClosure ctc;
-  ctc.do_tree(root());
-}
-
-// Do reporting and post sweep clean up.
-void BinaryTreeDictionary::endSweepDictCensus(double splitSurplusPercent) {
-  // Does walking the tree 3 times hurt?
-  setTreeSurplus(splitSurplusPercent);
-  setTreeHints();
-  if (PrintGC && Verbose) {
-    reportStatistics();
-  }
-  clearTreeCensus();
-}
-
-// Print summary statistics
-void BinaryTreeDictionary::reportStatistics() const {
-  verify_par_locked();
-  gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
-         "------------------------------------\n");
-  size_t totalSize = totalChunkSize(debug_only(NULL));
-  size_t    freeBlocks = numFreeBlocks();
-  gclog_or_tty->print("Total Free Space: %d\n", totalSize);
-  gclog_or_tty->print("Max   Chunk Size: %d\n", maxChunkSize());
-  gclog_or_tty->print("Number of Blocks: %d\n", freeBlocks);
-  if (freeBlocks > 0) {
-    gclog_or_tty->print("Av.  Block  Size: %d\n", totalSize/freeBlocks);
-  }
-  gclog_or_tty->print("Tree      Height: %d\n", treeHeight());
-}
-
-// Print census information - counts, births, deaths, etc.
-// for each list in the tree.  Also print some summary
-// information.
-class PrintTreeCensusClosure : public AscendTreeCensusClosure {
-  int _print_line;
-  size_t _totalFree;
-  FreeList _total;
-
- public:
-  PrintTreeCensusClosure() {
-    _print_line = 0;
-    _totalFree = 0;
-  }
-  FreeList* total() { return &_total; }
-  size_t totalFree() { return _totalFree; }
-  void do_list(FreeList* fl) {
-    if (++_print_line >= 40) {
-      FreeList::print_labels_on(gclog_or_tty, "size");
-      _print_line = 0;
-    }
-    fl->print_on(gclog_or_tty);
-    _totalFree +=            fl->count()            * fl->size()        ;
-    total()->set_count(      total()->count()       + fl->count()      );
-    total()->set_bfrSurp(    total()->bfrSurp()     + fl->bfrSurp()    );
-    total()->set_surplus(    total()->splitDeaths() + fl->surplus()    );
-    total()->set_desired(    total()->desired()     + fl->desired()    );
-    total()->set_prevSweep(  total()->prevSweep()   + fl->prevSweep()  );
-    total()->set_beforeSweep(total()->beforeSweep() + fl->beforeSweep());
-    total()->set_coalBirths( total()->coalBirths()  + fl->coalBirths() );
-    total()->set_coalDeaths( total()->coalDeaths()  + fl->coalDeaths() );
-    total()->set_splitBirths(total()->splitBirths() + fl->splitBirths());
-    total()->set_splitDeaths(total()->splitDeaths() + fl->splitDeaths());
-  }
-};
-
-void BinaryTreeDictionary::printDictCensus(void) const {
-
-  gclog_or_tty->print("\nBinaryTree\n");
-  FreeList::print_labels_on(gclog_or_tty, "size");
-  PrintTreeCensusClosure ptc;
-  ptc.do_tree(root());
-
-  FreeList* total = ptc.total();
-  FreeList::print_labels_on(gclog_or_tty, " ");
-  total->print_on(gclog_or_tty, "TOTAL\t");
-  gclog_or_tty->print(
-              "totalFree(words): " SIZE_FORMAT_W(16)
-              " growth: %8.5f  deficit: %8.5f\n",
-              ptc.totalFree(),
-              (double)(total->splitBirths() + total->coalBirths()
-                     - total->splitDeaths() - total->coalDeaths())
-              /(total->prevSweep() != 0 ? (double)total->prevSweep() : 1.0),
-             (double)(total->desired() - total->count())
-             /(total->desired() != 0 ? (double)total->desired() : 1.0));
-}
-
-class PrintFreeListsClosure : public AscendTreeCensusClosure {
-  outputStream* _st;
-  int _print_line;
-
- public:
-  PrintFreeListsClosure(outputStream* st) {
-    _st = st;
-    _print_line = 0;
-  }
-  void do_list(FreeList* fl) {
-    if (++_print_line >= 40) {
-      FreeList::print_labels_on(_st, "size");
-      _print_line = 0;
-    }
-    fl->print_on(gclog_or_tty);
-    size_t sz = fl->size();
-    for (FreeChunk* fc = fl->head(); fc != NULL;
-         fc = fc->next()) {
-      _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ")  %s",
-                    fc, (HeapWord*)fc + sz,
-                    fc->cantCoalesce() ? "\t CC" : "");
-    }
-  }
-};
-
-void BinaryTreeDictionary::print_free_lists(outputStream* st) const {
-
-  FreeList::print_labels_on(st, "size");
-  PrintFreeListsClosure pflc(st);
-  pflc.do_tree(root());
-}
-
-// Verify the following tree invariants:
-// . _root has no parent
-// . parent and child point to each other
-// . each node's key correctly related to that of its child(ren)
-void BinaryTreeDictionary::verifyTree() const {
-  guarantee(root() == NULL || totalFreeBlocks() == 0 ||
-    totalSize() != 0, "_totalSize should't be 0?");
-  guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
-  verifyTreeHelper(root());
-}
-
-size_t BinaryTreeDictionary::verifyPrevFreePtrs(TreeList* tl) {
-  size_t ct = 0;
-  for (FreeChunk* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
-    ct++;
-    assert(curFC->prev() == NULL || curFC->prev()->isFree(),
-      "Chunk should be free");
-  }
-  return ct;
-}
-
-// Note: this helper is recursive rather than iterative, so use with
-// caution on very deep trees; and watch out for stack overflow errors;
-// In general, to be used only for debugging.
-void BinaryTreeDictionary::verifyTreeHelper(TreeList* tl) const {
-  if (tl == NULL)
-    return;
-  guarantee(tl->size() != 0, "A list must has a size");
-  guarantee(tl->left()  == NULL || tl->left()->parent()  == tl,
-         "parent<-/->left");
-  guarantee(tl->right() == NULL || tl->right()->parent() == tl,
-         "parent<-/->right");;
-  guarantee(tl->left() == NULL  || tl->left()->size()    <  tl->size(),
-         "parent !> left");
-  guarantee(tl->right() == NULL || tl->right()->size()   >  tl->size(),
-         "parent !< left");
-  guarantee(tl->head() == NULL || tl->head()->isFree(), "!Free");
-  guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
-    "list inconsistency");
-  guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
-    "list count is inconsistent");
-  guarantee(tl->count() > 1 || tl->head() == tl->tail(),
-    "list is incorrectly constructed");
-  size_t count = verifyPrevFreePtrs(tl);
-  guarantee(count == (size_t)tl->count(), "Node count is incorrect");
-  if (tl->head() != NULL) {
-    tl->head_as_TreeChunk()->verifyTreeChunkList();
-  }
-  verifyTreeHelper(tl->left());
-  verifyTreeHelper(tl->right());
-}
-
-void BinaryTreeDictionary::verify() const {
-  verifyTree();
-  guarantee(totalSize() == totalSizeInTree(root()), "Total Size inconsistency");
-}