jdk/src/share/classes/sun/security/ssl/DHCrypt.java
changeset 2 90ce3da70b43
child 51 6fe31bc95bbc
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/sun/security/ssl/DHCrypt.java	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,189 @@
+/*
+ * Copyright 1996-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Sun designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Sun in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ */
+
+
+package sun.security.ssl;
+
+import java.math.BigInteger;
+import java.security.*;
+
+import javax.crypto.SecretKey;
+import javax.crypto.KeyAgreement;
+import javax.crypto.interfaces.DHPublicKey;
+import javax.crypto.spec.*;
+
+/**
+ * This class implements the Diffie-Hellman key exchange algorithm.
+ * D-H means combining your private key with your partners public key to
+ * generate a number. The peer does the same with its private key and our
+ * public key. Through the magic of Diffie-Hellman we both come up with the
+ * same number. This number is secret (discounting MITM attacks) and hence
+ * called the shared secret. It has the same length as the modulus, e.g. 512
+ * or 1024 bit. Man-in-the-middle attacks are typically countered by an
+ * independent authentication step using certificates (RSA, DSA, etc.).
+ *
+ * The thing to note is that the shared secret is constant for two partners
+ * with constant private keys. This is often not what we want, which is why
+ * it is generally a good idea to create a new private key for each session.
+ * Generating a private key involves one modular exponentiation assuming
+ * suitable D-H parameters are available.
+ *
+ * General usage of this class (TLS DHE case):
+ *  . if we are server, call DHCrypt(keyLength,random). This generates
+ *    an ephemeral keypair of the request length.
+ *  . if we are client, call DHCrypt(modulus, base, random). This
+ *    generates an ephemeral keypair using the parameters specified by the server.
+ *  . send parameters and public value to remote peer
+ *  . receive peers ephemeral public key
+ *  . call getAgreedSecret() to calculate the shared secret
+ *
+ * In TLS the server chooses the parameter values itself, the client must use
+ * those sent to it by the server.
+ *
+ * The use of ephemeral keys as described above also achieves what is called
+ * "forward secrecy". This means that even if the authentication keys are
+ * broken at a later date, the shared secret remains secure. The session is
+ * compromised only if the authentication keys are already broken at the
+ * time the key exchange takes place and an active MITM attack is used.
+ * This is in contrast to straightforward encrypting RSA key exchanges.
+ *
+ * @author David Brownell
+ */
+final class DHCrypt {
+
+    // group parameters (prime modulus and generator)
+    private BigInteger modulus;                 // P (aka N)
+    private BigInteger base;                    // G (aka alpha)
+
+    // our private key (including private component x)
+    private PrivateKey privateKey;
+
+    // public component of our key, X = (g ^ x) mod p
+    private BigInteger publicValue;             // X (aka y)
+
+    /**
+     * Generate a Diffie-Hellman keypair of the specified size.
+     */
+    DHCrypt(int keyLength, SecureRandom random) {
+        try {
+            KeyPairGenerator kpg = JsseJce.getKeyPairGenerator("DiffieHellman");
+            kpg.initialize(keyLength, random);
+            KeyPair kp = kpg.generateKeyPair();
+            privateKey = kp.getPrivate();
+            DHPublicKeySpec spec = getDHPublicKeySpec(kp.getPublic());
+            publicValue = spec.getY();
+            modulus = spec.getP();
+            base = spec.getG();
+        } catch (GeneralSecurityException e) {
+            throw new RuntimeException("Could not generate DH keypair", e);
+        }
+    }
+
+
+    /**
+     * Generate a Diffie-Hellman keypair using the specified parameters.
+     *
+     * @param modulus the Diffie-Hellman modulus P
+     * @param base the Diffie-Hellman base G
+     */
+    DHCrypt(BigInteger modulus, BigInteger base, SecureRandom random) {
+        this.modulus = modulus;
+        this.base = base;
+        try {
+            KeyPairGenerator kpg = JsseJce.getKeyPairGenerator("DiffieHellman");
+            DHParameterSpec params = new DHParameterSpec(modulus, base);
+            kpg.initialize(params, random);
+            KeyPair kp = kpg.generateKeyPair();
+            privateKey = kp.getPrivate();
+            DHPublicKeySpec spec = getDHPublicKeySpec(kp.getPublic());
+            publicValue = spec.getY();
+        } catch (GeneralSecurityException e) {
+            throw new RuntimeException("Could not generate DH keypair", e);
+        }
+    }
+
+    static DHPublicKeySpec getDHPublicKeySpec(PublicKey key) {
+        if (key instanceof DHPublicKey) {
+            DHPublicKey dhKey = (DHPublicKey)key;
+            DHParameterSpec params = dhKey.getParams();
+            return new DHPublicKeySpec(dhKey.getY(), params.getP(), params.getG());
+        }
+        try {
+            KeyFactory factory = JsseJce.getKeyFactory("DH");
+            return (DHPublicKeySpec)factory.getKeySpec
+                                            (key, DHPublicKeySpec.class);
+        } catch (Exception e) {
+            throw new RuntimeException(e);
+        }
+    }
+
+
+    /** Returns the Diffie-Hellman modulus. */
+    BigInteger getModulus() {
+        return modulus;
+    }
+
+    /** Returns the Diffie-Hellman base (generator).  */
+    BigInteger getBase() {
+        return base;
+    }
+
+    /**
+     * Gets the public key of this end of the key exchange.
+     */
+    BigInteger getPublicKey() {
+        return publicValue;
+    }
+
+    /**
+     * Get the secret data that has been agreed on through Diffie-Hellman
+     * key agreement protocol.  Note that in the two party protocol, if
+     * the peer keys are already known, no other data needs to be sent in
+     * order to agree on a secret.  That is, a secured message may be
+     * sent without any mandatory round-trip overheads.
+     *
+     * <P>It is illegal to call this member function if the private key
+     * has not been set (or generated).
+     *
+     * @param peerPublicKey the peer's public key.
+     * @returns the secret, which is an unsigned big-endian integer
+     *  the same size as the Diffie-Hellman modulus.
+     */
+    SecretKey getAgreedSecret(BigInteger peerPublicValue) {
+        try {
+            KeyFactory kf = JsseJce.getKeyFactory("DiffieHellman");
+            DHPublicKeySpec spec =
+                        new DHPublicKeySpec(peerPublicValue, modulus, base);
+            PublicKey publicKey = kf.generatePublic(spec);
+            KeyAgreement ka = JsseJce.getKeyAgreement("DiffieHellman");
+            ka.init(privateKey);
+            ka.doPhase(publicKey, true);
+            return ka.generateSecret("TlsPremasterSecret");
+        } catch (GeneralSecurityException e) {
+            throw new RuntimeException("Could not generate secret", e);
+        }
+    }
+
+}