src/hotspot/share/utilities/concurrentHashTable.inline.hpp
changeset 50158 8e4fcfb4cfe4
child 50429 83aec1d357d4
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/utilities/concurrentHashTable.inline.hpp	Thu May 17 10:32:26 2018 +0200
@@ -0,0 +1,1216 @@
+/*
+ * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifndef SHARE_UTILITIES_CONCURRENT_HASH_TABLE_INLINE_HPP
+#define SHARE_UTILITIES_CONCURRENT_HASH_TABLE_INLINE_HPP
+
+#include "memory/allocation.inline.hpp"
+#include "runtime/atomic.hpp"
+#include "runtime/orderAccess.inline.hpp"
+#include "runtime/prefetch.inline.hpp"
+#include "utilities/concurrentHashTable.hpp"
+#include "utilities/globalCounter.inline.hpp"
+#include "utilities/numberSeq.hpp"
+#include "utilities/spinYield.hpp"
+
+// 2^30 = 1G buckets
+#define SIZE_BIG_LOG2 30
+// 2^5  = 32 buckets
+#define SIZE_SMALL_LOG2 5
+
+// Number from spinYield.hpp. In some loops SpinYield would be unfair.
+#define SPINPAUSES_PER_YIELD 8192
+
+#ifdef ASSERT
+#ifdef _LP64
+// Two low bits are not usable.
+static const void* POISON_PTR = (void*)UCONST64(0xfbadbadbadbadbac);
+#else
+// Two low bits are not usable.
+static const void* POISON_PTR = (void*)0xffbadbac;
+#endif
+#endif
+
+// Node
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline typename ConcurrentHashTable<VALUE, CONFIG, F>::Node*
+ConcurrentHashTable<VALUE, CONFIG, F>::
+  Node::next() const
+{
+  return OrderAccess::load_acquire(&_next);
+}
+
+// Bucket
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline typename ConcurrentHashTable<VALUE, CONFIG, F>::Node*
+ConcurrentHashTable<VALUE, CONFIG, F>::
+  Bucket::first_raw() const
+{
+  return OrderAccess::load_acquire(&_first);
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline void ConcurrentHashTable<VALUE, CONFIG, F>::
+  Bucket::release_assign_node_ptr(
+    typename ConcurrentHashTable<VALUE, CONFIG, F>::Node* const volatile * dst,
+    typename ConcurrentHashTable<VALUE, CONFIG, F>::Node* node) const
+{
+  // Due to this assert this methods is not static.
+  assert(is_locked(), "Must be locked.");
+  Node** tmp = (Node**)dst;
+  OrderAccess::release_store(tmp, clear_set_state(node, *dst));
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline typename ConcurrentHashTable<VALUE, CONFIG, F>::Node*
+ConcurrentHashTable<VALUE, CONFIG, F>::
+  Bucket::first() const
+{
+  // We strip the states bit before returning the ptr.
+  return clear_state(OrderAccess::load_acquire(&_first));
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
+  Bucket::have_redirect() const
+{
+  return is_state(first_raw(), STATE_REDIRECT_BIT);
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
+  Bucket::is_locked() const
+{
+  return is_state(first_raw(), STATE_LOCK_BIT);
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline void ConcurrentHashTable<VALUE, CONFIG, F>::
+  Bucket::lock()
+{
+  int i = 0;
+  // SpinYield would be unfair here
+  while (!this->trylock()) {
+    if ((++i) == SPINPAUSES_PER_YIELD) {
+      // On contemporary OS yielding will give CPU to another runnable thread if
+      // there is no CPU available.
+      os::naked_yield();
+      i = 0;
+    } else {
+      SpinPause();
+    }
+  }
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline void ConcurrentHashTable<VALUE, CONFIG, F>::
+  Bucket::release_assign_last_node_next(
+     typename ConcurrentHashTable<VALUE, CONFIG, F>::Node* node)
+{
+  assert(is_locked(), "Must be locked.");
+  Node* const volatile * ret = first_ptr();
+  while (clear_state(*ret) != NULL) {
+    ret = clear_state(*ret)->next_ptr();
+  }
+  release_assign_node_ptr(ret, node);
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
+  Bucket::cas_first(typename ConcurrentHashTable<VALUE, CONFIG, F>::Node* node,
+                    typename ConcurrentHashTable<VALUE, CONFIG, F>::Node* expect
+                    )
+{
+  if (is_locked()) {
+    return false;
+  }
+  if (Atomic::cmpxchg(node, &_first, expect) == expect) {
+    return true;
+  }
+  return false;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
+  Bucket::trylock()
+{
+  if (is_locked()) {
+    return false;
+  }
+  // We will expect a clean first pointer.
+  Node* tmp = first();
+  if (Atomic::cmpxchg(set_state(tmp, STATE_LOCK_BIT), &_first, tmp) == tmp) {
+    return true;
+  }
+  return false;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline void ConcurrentHashTable<VALUE, CONFIG, F>::
+  Bucket::unlock()
+{
+  assert(is_locked(), "Must be locked.");
+  assert(!have_redirect(),
+         "Unlocking a bucket after it has reached terminal state.");
+  OrderAccess::release_store(&_first, clear_state(first()));
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline void ConcurrentHashTable<VALUE, CONFIG, F>::
+  Bucket::redirect()
+{
+  assert(is_locked(), "Must be locked.");
+  OrderAccess::release_store(&_first, set_state(_first, STATE_REDIRECT_BIT));
+}
+
+// InternalTable
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline ConcurrentHashTable<VALUE, CONFIG, F>::
+  InternalTable::InternalTable(size_t log2_size)
+    : _log2_size(log2_size), _size(((size_t)1ul) << _log2_size),
+      _hash_mask(~(~((size_t)0) << _log2_size))
+{
+  assert(_log2_size >= SIZE_SMALL_LOG2 && _log2_size <= SIZE_BIG_LOG2,
+         "Bad size");
+  void* memory = NEW_C_HEAP_ARRAY(Bucket, _size, F);
+  _buckets = new (memory) Bucket[_size];
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline ConcurrentHashTable<VALUE, CONFIG, F>::
+  InternalTable::~InternalTable()
+{
+  FREE_C_HEAP_ARRAY(Bucket, _buckets);
+}
+
+// ScopedCS
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline ConcurrentHashTable<VALUE, CONFIG, F>::
+  ScopedCS::ScopedCS(Thread* thread, ConcurrentHashTable<VALUE, CONFIG, F>* cht)
+    : _thread(thread), _cht(cht)
+{
+  GlobalCounter::critical_section_begin(_thread);
+  // This version is published now.
+  if (OrderAccess::load_acquire(&_cht->_invisible_epoch) != NULL) {
+    OrderAccess::release_store_fence(&_cht->_invisible_epoch, (Thread*)NULL);
+  }
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline ConcurrentHashTable<VALUE, CONFIG, F>::
+  ScopedCS::~ScopedCS()
+{
+  GlobalCounter::critical_section_end(_thread);
+}
+
+// BaseConfig
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline void* ConcurrentHashTable<VALUE, CONFIG, F>::
+  BaseConfig::allocate_node(size_t size, const VALUE& value)
+{
+  return AllocateHeap(size, F);
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline void ConcurrentHashTable<VALUE, CONFIG, F>::
+  BaseConfig::free_node(void* memory, const VALUE& value)
+{
+  FreeHeap(memory);
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+template <typename LOOKUP_FUNC>
+inline VALUE* ConcurrentHashTable<VALUE, CONFIG, F>::
+  MultiGetHandle::get(LOOKUP_FUNC& lookup_f, bool* grow_hint)
+{
+  return ScopedCS::_cht->internal_get(ScopedCS::_thread, lookup_f, grow_hint);
+}
+
+// HaveDeletables
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+template <typename EVALUATE_FUNC>
+inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
+  HaveDeletables<true, EVALUATE_FUNC>::have_deletable(Bucket* bucket,
+                                                      EVALUATE_FUNC& eval_f,
+                                                      Bucket* prefetch_bucket)
+{
+  // Instantiated for pointer type (true), so we can use prefetch.
+  // When visiting all Nodes doing this prefetch give around 30%.
+  Node* pref = prefetch_bucket != NULL ? prefetch_bucket->first() : NULL;
+  for (Node* next = bucket->first(); next != NULL ; next = next->next()) {
+    if (pref != NULL) {
+      Prefetch::read(*pref->value(), 0);
+      pref = pref->next();
+    }
+    if (next->next() != NULL) {
+      Prefetch::read(*next->next()->value(), 0);
+    }
+    if (eval_f(next->value())) {
+      return true;
+    }
+  }
+  return false;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+template <bool b, typename EVALUATE_FUNC>
+inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
+  HaveDeletables<b, EVALUATE_FUNC>::have_deletable(Bucket* bucket,
+                                                   EVALUATE_FUNC& eval_f,
+                                                   Bucket* preb)
+{
+  for (Node* next = bucket->first(); next != NULL ; next = next->next()) {
+    if (eval_f(next->value())) {
+      return true;
+    }
+  }
+  return false;
+}
+
+// ConcurrentHashTable
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline void ConcurrentHashTable<VALUE, CONFIG, F>::
+  write_synchonize_on_visible_epoch(Thread* thread)
+{
+  assert(_resize_lock->owned_by_self(), "Re-size lock not held");
+  OrderAccess::fence(); // Prevent below load from floating up.
+  // If no reader saw this version we can skip write_synchronize.
+  if (OrderAccess::load_acquire(&_invisible_epoch) == thread) {
+    return;
+  }
+  assert(_invisible_epoch == NULL, "Two thread doing bulk operations");
+  // We set this/next version that we are synchronizing for to not published.
+  // A reader will zero this flag if it reads this/next version.
+  OrderAccess::release_store(&_invisible_epoch, thread);
+  GlobalCounter::write_synchronize();
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
+  try_resize_lock(Thread* locker)
+{
+  if (_resize_lock->try_lock()) {
+    if (_resize_lock_owner != NULL) {
+      assert(locker != _resize_lock_owner, "Already own lock");
+      // We got mutex but internal state is locked.
+      _resize_lock->unlock();
+      return false;
+    }
+  } else {
+    return false;
+  }
+  _invisible_epoch = 0;
+  _resize_lock_owner = locker;
+  return true;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline void ConcurrentHashTable<VALUE, CONFIG, F>::
+  lock_resize_lock(Thread* locker)
+{
+  size_t i = 0;
+  // If lock is hold by some other thread, the chances that it is return quick
+  // is low. So we will prefer yielding.
+  SpinYield yield(1, 512);
+  do {
+    _resize_lock->lock_without_safepoint_check();
+    // If holder of lock dropped mutex for safepoint mutex might be unlocked,
+    // and _resize_lock_owner will contain the owner.
+    if (_resize_lock_owner != NULL) {
+      assert(locker != _resize_lock_owner, "Already own lock");
+      // We got mutex but internal state is locked.
+      _resize_lock->unlock();
+      yield.wait();
+    } else {
+      break;
+    }
+  } while(true);
+  _resize_lock_owner = locker;
+  _invisible_epoch = 0;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline void ConcurrentHashTable<VALUE, CONFIG, F>::
+  unlock_resize_lock(Thread* locker)
+{
+  _invisible_epoch = 0;
+  assert(locker == _resize_lock_owner, "Not unlocked by locker.");
+  _resize_lock_owner = NULL;
+  _resize_lock->unlock();
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline void ConcurrentHashTable<VALUE, CONFIG, F>::
+  free_nodes()
+{
+  // We assume we are not MT during freeing.
+  for (size_t node_it = 0; node_it < _table->_size; node_it++) {
+    Bucket* bucket = _table->get_buckets() + node_it;
+    Node* node = bucket->first();
+    while (node != NULL) {
+      Node* free_node = node;
+      node = node->next();
+      Node::destroy_node(free_node);
+    }
+  }
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline typename ConcurrentHashTable<VALUE, CONFIG, F>::InternalTable*
+ConcurrentHashTable<VALUE, CONFIG, F>::
+  get_table() const
+{
+  return OrderAccess::load_acquire(&_table);
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline typename ConcurrentHashTable<VALUE, CONFIG, F>::InternalTable*
+ConcurrentHashTable<VALUE, CONFIG, F>::
+  get_new_table() const
+{
+  return OrderAccess::load_acquire(&_new_table);
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline typename ConcurrentHashTable<VALUE, CONFIG, F>::InternalTable*
+ConcurrentHashTable<VALUE, CONFIG, F>::
+  set_table_from_new()
+{
+  InternalTable* old_table = _table;
+  // Publish the new table.
+  OrderAccess::release_store(&_table, _new_table);
+  // All must see this.
+  GlobalCounter::write_synchronize();
+  // _new_table not read any more.
+  _new_table = NULL;
+  DEBUG_ONLY(_new_table = (InternalTable*)POISON_PTR;)
+  return old_table;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline void ConcurrentHashTable<VALUE, CONFIG, F>::
+  internal_grow_range(Thread* thread, size_t start, size_t stop)
+{
+  assert(stop <= _table->_size, "Outside backing array");
+  assert(_new_table != NULL, "Grow not proper setup before start");
+  // The state is also copied here. Hence all buckets in new table will be
+  // locked. I call the siblings odd/even, where even have high bit 0 and odd
+  // have high bit 1.
+  for (size_t even_index = start; even_index < stop; even_index++) {
+    Bucket* bucket = _table->get_bucket(even_index);
+
+    bucket->lock();
+
+    size_t odd_index = even_index + _table->_size;
+    _new_table->get_buckets()[even_index] = *bucket;
+    _new_table->get_buckets()[odd_index] = *bucket;
+
+    // Moves lockers go to new table, where they will wait until unlock() below.
+    bucket->redirect(); /* Must release stores above */
+
+    // When this is done we have separated the nodes into corresponding buckets
+    // in new table.
+    if (!unzip_bucket(thread, _table, _new_table, even_index, odd_index)) {
+      // If bucket is empty, unzip does nothing.
+      // We must make sure readers go to new table before we poison the bucket.
+      DEBUG_ONLY(GlobalCounter::write_synchronize();)
+    }
+
+    // Unlock for writes into the new table buckets.
+    _new_table->get_bucket(even_index)->unlock();
+    _new_table->get_bucket(odd_index)->unlock();
+
+    DEBUG_ONLY(
+       bucket->release_assign_node_ptr(
+          _table->get_bucket(even_index)->first_ptr(), (Node*)POISON_PTR);
+    )
+  }
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+template <typename LOOKUP_FUNC, typename DELETE_FUNC>
+inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
+  internal_remove(Thread* thread, LOOKUP_FUNC& lookup_f, DELETE_FUNC& delete_f)
+{
+  Bucket* bucket = get_bucket_locked(thread, lookup_f.get_hash());
+  assert(bucket->is_locked(), "Must be locked.");
+  Node* const volatile * rem_n_prev = bucket->first_ptr();
+  Node* rem_n = bucket->first();
+  bool have_dead = false;
+  while (rem_n != NULL) {
+    if (lookup_f.equals(rem_n->value(), &have_dead)) {
+      bucket->release_assign_node_ptr(rem_n_prev, rem_n->next());
+      break;
+    } else {
+      rem_n_prev = rem_n->next_ptr();
+      rem_n = rem_n->next();
+    }
+  }
+
+  bucket->unlock();
+
+  if (rem_n == NULL) {
+    return false;
+  }
+  // Publish the deletion.
+  GlobalCounter::write_synchronize();
+  delete_f(rem_n->value());
+  Node::destroy_node(rem_n);
+  return true;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+template <typename EVALUATE_FUNC, typename DELETE_FUNC>
+inline void ConcurrentHashTable<VALUE, CONFIG, F>::
+  do_bulk_delete_locked_for(Thread* thread, size_t start_idx, size_t stop_idx,
+                            EVALUATE_FUNC& eval_f, DELETE_FUNC& del_f)
+{
+  // Here we have resize lock so table is SMR safe, and there is no new
+  // table. Can do this in parallel if we want.
+  assert(_resize_lock->owned_by_self(), "Re-size lock not held");
+  Node* ndel[BULK_DELETE_LIMIT];
+  InternalTable* table = get_table();
+  assert(start_idx < stop_idx, "Must be");
+  assert(stop_idx <= _table->_size, "Must be");
+  // Here manual do critical section since we don't want to take the cost of
+  // locking the bucket if there is nothing to delete. But we can have
+  // concurrent single deletes. The _invisible_epoch can only be used by the
+  // owner of _resize_lock, us here. There we should not changed it in our
+  // own read-side.
+  GlobalCounter::critical_section_begin(thread);
+  for (size_t bucket_it = start_idx; bucket_it < stop_idx; bucket_it++) {
+    Bucket* bucket  = _table->get_bucket(bucket_it);
+    Bucket* prefetch_bucket = (bucket_it+1) < stop_idx ?
+                              _table->get_bucket(bucket_it+1) : NULL;
+
+    if (!HaveDeletables<IsPointer<VALUE>::value, EVALUATE_FUNC>::
+        have_deletable(bucket, eval_f, prefetch_bucket)) {
+        // Nothing to remove in this bucket.
+        continue;
+    }
+
+    GlobalCounter::critical_section_end(thread);
+    // We left critical section but the bucket cannot be removed while we hold
+    // the _resize_lock.
+    bucket->lock();
+    size_t nd = delete_check_nodes(bucket, eval_f, BULK_DELETE_LIMIT, ndel);
+    bucket->unlock();
+    write_synchonize_on_visible_epoch(thread);
+    for (size_t node_it = 0; node_it < nd; node_it++) {
+      del_f(ndel[node_it]->value());
+      Node::destroy_node(ndel[node_it]);
+      DEBUG_ONLY(ndel[node_it] = (Node*)POISON_PTR;)
+    }
+    GlobalCounter::critical_section_begin(thread);
+  }
+  GlobalCounter::critical_section_end(thread);
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+template <typename LOOKUP_FUNC>
+inline void ConcurrentHashTable<VALUE, CONFIG, F>::
+  delete_in_bucket(Thread* thread, Bucket* bucket, LOOKUP_FUNC& lookup_f)
+{
+  size_t dels = 0;
+  Node* ndel[BULK_DELETE_LIMIT];
+  Node* const volatile * rem_n_prev = bucket->first_ptr();
+  Node* rem_n = bucket->first();
+  while (rem_n != NULL) {
+    bool is_dead = false;
+    lookup_f.equals(rem_n->value(), &is_dead);
+    if (is_dead) {
+      ndel[dels++] = rem_n;
+      bucket->release_assign_node_ptr(rem_n_prev, rem_n->next());
+      rem_n = rem_n->next();
+      if (dels == BULK_DELETE_LIMIT) {
+        break;
+      }
+    } else {
+      rem_n_prev = rem_n->next_ptr();
+      rem_n = rem_n->next();
+    }
+  }
+  if (dels > 0) {
+    GlobalCounter::write_synchronize();
+    for (size_t node_it = 0; node_it < dels; node_it++) {
+      Node::destroy_node(ndel[node_it]);
+      DEBUG_ONLY(ndel[node_it] = (Node*)POISON_PTR;)
+    }
+  }
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline typename ConcurrentHashTable<VALUE, CONFIG, F>::Bucket*
+ConcurrentHashTable<VALUE, CONFIG, F>::
+  get_bucket(uintx hash) const
+{
+  InternalTable* table = get_table();
+  Bucket* bucket = get_bucket_in(table, hash);
+  if (bucket->have_redirect()) {
+    table = get_new_table();
+    bucket = get_bucket_in(table, hash);
+  }
+  return bucket;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline typename ConcurrentHashTable<VALUE, CONFIG, F>::Bucket*
+ConcurrentHashTable<VALUE, CONFIG, F>::
+  get_bucket_locked(Thread* thread, const uintx hash)
+{
+  Bucket* bucket;
+  int i = 0;
+  // SpinYield would be unfair here
+  while(true) {
+    {
+      // We need a critical section to protect the table itself. But if we fail
+      // we must leave critical section otherwise we would deadlock.
+      ScopedCS cs(thread, this);
+      bucket = get_bucket(hash);
+      if (bucket->trylock()) {
+        break; /* ends critical section */
+      }
+    } /* ends critical section */
+    if ((++i) == SPINPAUSES_PER_YIELD) {
+      // On contemporary OS yielding will give CPU to another runnable thread if
+      // there is no CPU available.
+      os::naked_yield();
+      i = 0;
+    } else {
+      SpinPause();
+    }
+  }
+  return bucket;
+}
+
+// Always called within critical section
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+template <typename LOOKUP_FUNC>
+typename ConcurrentHashTable<VALUE, CONFIG, F>::Node*
+ConcurrentHashTable<VALUE, CONFIG, F>::
+  get_node(const Bucket* const bucket, LOOKUP_FUNC& lookup_f,
+           bool* have_dead, size_t* loops) const
+{
+  size_t loop_count = 0;
+  Node* node = bucket->first();
+  while (node != NULL) {
+    bool is_dead = false;
+    ++loop_count;
+    if (lookup_f.equals(node->value(), &is_dead)) {
+      break;
+    }
+    if (is_dead && !(*have_dead)) {
+      *have_dead = true;
+    }
+    node = node->next();
+  }
+  if (loops != NULL) {
+    *loops = loop_count;
+  }
+  return node;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
+  unzip_bucket(Thread* thread, InternalTable* old_table,
+               InternalTable* new_table, size_t even_index, size_t odd_index)
+{
+  Node* aux = old_table->get_bucket(even_index)->first();
+  if (aux == NULL) {
+    // This is an empty bucket and in debug we poison first ptr in bucket.
+    // Therefore we must make sure no readers are looking at this bucket.
+    // If we don't do a write_synch here, caller must do it.
+    return false;
+  }
+  Node* delete_me = NULL;
+  Node* const volatile * even = new_table->get_bucket(even_index)->first_ptr();
+  Node* const volatile * odd = new_table->get_bucket(odd_index)->first_ptr();
+  while (aux != NULL) {
+    bool dead_hash = false;
+    size_t aux_hash = CONFIG::get_hash(*aux->value(), &dead_hash);
+    if (dead_hash) {
+      delete_me = aux;
+      // This item is dead, move both list to next
+      new_table->get_bucket(odd_index)->release_assign_node_ptr(odd,
+                                                                aux->next());
+      new_table->get_bucket(even_index)->release_assign_node_ptr(even,
+                                                                 aux->next());
+    } else {
+      size_t aux_index = bucket_idx_hash(new_table, aux_hash);
+      if (aux_index == even_index) {
+        // This is a even, so move odd to aux/even next
+        new_table->get_bucket(odd_index)->release_assign_node_ptr(odd,
+                                                                  aux->next());
+        // Keep in even list
+        even = aux->next_ptr();
+      } else if (aux_index == odd_index) {
+        // This is a odd, so move odd to aux/odd next
+        new_table->get_bucket(even_index)->release_assign_node_ptr(even,
+                                                                   aux->next());
+        // Keep in odd list
+        odd = aux->next_ptr();
+      } else {
+        fatal("aux_index does not match even or odd indices");
+      }
+    }
+    aux = aux->next();
+
+    // We can only move 1 pointer otherwise a reader might be moved to the wrong
+    // chain. E.g. looking for even hash value but got moved to the odd bucket
+    // chain.
+    write_synchonize_on_visible_epoch(thread);
+    if (delete_me != NULL) {
+      Node::destroy_node(delete_me);
+      delete_me = NULL;
+    }
+  }
+  return true;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
+  internal_shrink_prolog(Thread* thread, size_t log2_size)
+{
+  if (!try_resize_lock(thread)) {
+    return false;
+  }
+
+  assert(_resize_lock->owned_by_self(), "Re-size lock not held");
+
+  if (_table->_log2_size == _log2_start_size ||
+      _table->_log2_size <= log2_size) {
+    unlock_resize_lock(thread);
+    return false;
+  }
+
+  _new_table = new InternalTable(_table->_log2_size - 1);
+
+  return true;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline void ConcurrentHashTable<VALUE, CONFIG, F>::
+  internal_shrink_epilog(Thread* thread)
+{
+  assert(_resize_lock->owned_by_self(), "Re-size lock not held");
+  assert(_resize_lock_owner, "Should be locked");
+
+  InternalTable* old_table = set_table_from_new();
+  _size_limit_reached = false;
+  unlock_resize_lock(thread);
+#ifdef ASSERT
+  for (size_t i = 0; i < old_table->_size; i++) {
+    assert(old_table->get_bucket(i++)->first() == POISON_PTR,
+           "No poison found");
+  }
+#endif
+  // ABA safe, old_table not visible to any other threads.
+  delete old_table;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline void ConcurrentHashTable<VALUE, CONFIG, F>::
+  internal_shrink_range(Thread* thread, size_t start, size_t stop)
+{
+  // The state is also copied here.
+  // Hence all buckets in new table will be locked.
+  for (size_t bucket_it = start; bucket_it < stop; bucket_it++) {
+    size_t even_hash_index = bucket_it; // High bit 0
+    size_t odd_hash_index = bucket_it + _new_table->_size; // High bit 1
+
+    Bucket* b_old_even = _table->get_bucket(even_hash_index);
+    Bucket* b_old_odd  = _table->get_bucket(odd_hash_index);
+
+    b_old_even->lock();
+    b_old_odd->lock();
+
+    _new_table->get_buckets()[bucket_it] = *b_old_even;
+
+    // Put chains together.
+    _new_table->get_bucket(bucket_it)->
+      release_assign_last_node_next(*(b_old_odd->first_ptr()));
+
+    b_old_even->redirect();
+    b_old_odd->redirect();
+
+    write_synchonize_on_visible_epoch(thread);
+
+    // Unlock for writes into new smaller table.
+    _new_table->get_bucket(bucket_it)->unlock();
+
+    DEBUG_ONLY(b_old_even->release_assign_node_ptr(b_old_even->first_ptr(),
+                                                   (Node*)POISON_PTR);)
+    DEBUG_ONLY(b_old_odd->release_assign_node_ptr(b_old_odd->first_ptr(),
+                                                  (Node*)POISON_PTR);)
+  }
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
+  internal_shrink(Thread* thread, size_t log2_size)
+{
+  if (!internal_shrink_prolog(thread, log2_size)) {
+    assert(!_resize_lock->owned_by_self(), "Re-size lock held");
+    return false;
+  }
+  assert(_resize_lock->owned_by_self(), "Re-size lock not held");
+  assert(_resize_lock_owner == thread, "Should be locked by me");
+  internal_shrink_range(thread, 0, _new_table->_size);
+  internal_shrink_epilog(thread);
+  assert(!_resize_lock->owned_by_self(), "Re-size lock not held");
+  return true;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
+  internal_grow_prolog(Thread* thread, size_t log2_size)
+{
+  // This double checking of _size_limit_reached/is_max_size_reached()
+  //  we only do in grow path, since grow means high load on table
+  // while shrink means low load.
+  if (is_max_size_reached()) {
+    return false;
+  }
+  if (!try_resize_lock(thread)) {
+    // Either we have an ongoing resize or an operation which doesn't want us
+    // to resize now.
+    return false;
+  }
+  if (is_max_size_reached() || _table->_log2_size >= log2_size) {
+    unlock_resize_lock(thread);
+    return false;
+  }
+
+  _new_table = new InternalTable(_table->_log2_size + 1);
+
+  if (_new_table->_log2_size == _log2_size_limit) {
+    _size_limit_reached = true;
+  }
+
+  return true;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline void ConcurrentHashTable<VALUE, CONFIG, F>::
+  internal_grow_epilog(Thread* thread)
+{
+  assert(_resize_lock->owned_by_self(), "Re-size lock not held");
+  assert(_resize_lock_owner, "Should be locked");
+
+  InternalTable* old_table = set_table_from_new();
+  unlock_resize_lock(thread);
+#ifdef ASSERT
+  for (size_t i = 0; i < old_table->_size; i++) {
+    assert(old_table->get_bucket(i++)->first() == POISON_PTR,
+           "No poison found");
+  }
+#endif
+  // ABA safe, old_table not visible to any other threads.
+  delete old_table;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
+  internal_grow(Thread* thread, size_t log2_size)
+{
+  if (!internal_grow_prolog(thread, log2_size)) {
+    assert(!_resize_lock->owned_by_self(), "Re-size lock held");
+    return false;
+  }
+  assert(_resize_lock->owned_by_self(), "Re-size lock not held");
+  assert(_resize_lock_owner == thread, "Should be locked by me");
+  internal_grow_range(thread, 0, _table->_size);
+  internal_grow_epilog(thread);
+  assert(!_resize_lock->owned_by_self(), "Re-size lock not held");
+  return true;
+}
+
+// Always called within critical section
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+template <typename LOOKUP_FUNC>
+inline VALUE* ConcurrentHashTable<VALUE, CONFIG, F>::
+  internal_get(Thread* thread, LOOKUP_FUNC& lookup_f, bool* grow_hint)
+{
+  bool clean = false;
+  size_t loops = 0;
+  VALUE* ret = NULL;
+
+  const Bucket* bucket = get_bucket(lookup_f.get_hash());
+  Node* node = get_node(bucket, lookup_f, &clean, &loops);
+  if (node != NULL) {
+    ret = node->value();
+  }
+  if (grow_hint != NULL) {
+    *grow_hint = loops > _grow_hint;
+  }
+
+  return ret;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+template <typename LOOKUP_FUNC, typename VALUE_FUNC, typename CALLBACK_FUNC>
+inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
+  internal_insert(Thread* thread, LOOKUP_FUNC& lookup_f, VALUE_FUNC& value_f,
+                  CALLBACK_FUNC& callback, bool* grow_hint)
+{
+  bool ret = false;
+  bool clean = false;
+  bool locked;
+  size_t loops = 0;
+  size_t i = 0;
+  Node* new_node = NULL;
+  uintx hash = lookup_f.get_hash();
+  while (true) {
+    {
+      ScopedCS cs(thread, this); /* protected the table/bucket */
+      Bucket* bucket = get_bucket(hash);
+
+      Node* first_at_start = bucket->first();
+      Node* old = get_node(bucket, lookup_f, &clean, &loops);
+      if (old == NULL) {
+        // No duplicate found.
+        if (new_node == NULL) {
+          new_node = Node::create_node(value_f(), first_at_start);
+        } else {
+          new_node->set_next(first_at_start);
+        }
+        if (bucket->cas_first(new_node, first_at_start)) {
+          callback(true, new_node->value());
+          new_node = NULL;
+          ret = true;
+          break; /* leave critical section */
+        }
+        // CAS failed we must leave critical section and retry.
+        locked = bucket->is_locked();
+      } else {
+        // There is a duplicate.
+        callback(false, old->value());
+        break; /* leave critical section */
+      }
+    } /* leave critical section */
+    i++;
+    if (locked) {
+      os::naked_yield();
+    } else {
+      SpinPause();
+    }
+  }
+
+  if (new_node != NULL) {
+    // CAS failed and a duplicate was inserted, we must free this node.
+    Node::destroy_node(new_node);
+  } else if (i == 0 && clean) {
+    // We only do cleaning on fast inserts.
+    Bucket* bucket = get_bucket_locked(thread, lookup_f.get_hash());
+    assert(bucket->is_locked(), "Must be locked.");
+    delete_in_bucket(thread, bucket, lookup_f);
+    bucket->unlock();
+  }
+
+  if (grow_hint != NULL) {
+    *grow_hint = loops > _grow_hint;
+  }
+
+  return ret;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+template <typename FUNC>
+inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
+  visit_nodes(Bucket* bucket, FUNC& visitor_f)
+{
+  Node* current_node = bucket->first();
+  while (current_node != NULL) {
+    if (!visitor_f(current_node->value())) {
+      return false;
+    }
+    current_node = current_node->next();
+  }
+  return true;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+template <typename FUNC>
+inline void ConcurrentHashTable<VALUE, CONFIG, F>::
+  do_scan_locked(Thread* thread, FUNC& scan_f)
+{
+  assert(_resize_lock->owned_by_self() ||
+         (thread->is_VM_thread() && SafepointSynchronize::is_at_safepoint()),
+         "Re-size lock not held or not VMThread at safepoint");
+  // We can do a critical section over the entire loop but that would block
+  // updates for a long time. Instead we choose to block resizes.
+  InternalTable* table = get_table();
+  for (size_t bucket_it = 0; bucket_it < _table->_size; bucket_it++) {
+    ScopedCS cs(thread, this);
+    if (!visit_nodes(_table->get_bucket(bucket_it), scan_f)) {
+      break; /* ends critical section */
+    }
+  } /* ends critical section */
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+template <typename EVALUATE_FUNC>
+inline size_t ConcurrentHashTable<VALUE, CONFIG, F>::
+  delete_check_nodes(Bucket* bucket, EVALUATE_FUNC& eval_f,
+                     size_t num_del, Node** ndel)
+{
+  size_t dels = 0;
+  Node* const volatile * rem_n_prev = bucket->first_ptr();
+  Node* rem_n = bucket->first();
+  while (rem_n != NULL) {
+    if (eval_f(rem_n->value())) {
+      ndel[dels++] = rem_n;
+      bucket->release_assign_node_ptr(rem_n_prev, rem_n->next());
+      rem_n = rem_n->next();
+      if (dels == num_del) {
+        break;
+      }
+    } else {
+      rem_n_prev = rem_n->next_ptr();
+      rem_n = rem_n->next();
+    }
+  }
+  return dels;
+}
+
+// Constructor
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline ConcurrentHashTable<VALUE, CONFIG, F>::
+  ConcurrentHashTable(size_t log2size, size_t log2size_limit, size_t grow_hint)
+    : _new_table(NULL), _log2_start_size(log2size),
+       _log2_size_limit(log2size_limit), _grow_hint(grow_hint),
+       _size_limit_reached(false), _resize_lock_owner(NULL),
+       _invisible_epoch(0)
+{
+  _resize_lock =
+    new Mutex(Mutex::leaf, "ConcurrentHashTable", false,
+              Monitor::_safepoint_check_never);
+  _table = new InternalTable(log2size);
+  assert(log2size_limit >= log2size, "bad ergo");
+  _size_limit_reached = _table->_log2_size == _log2_size_limit;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline ConcurrentHashTable<VALUE, CONFIG, F>::
+  ~ConcurrentHashTable()
+{
+  delete _resize_lock;
+  free_nodes();
+  delete _table;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline size_t ConcurrentHashTable<VALUE, CONFIG, F>::
+  get_size_log2(Thread* thread)
+{
+  ScopedCS cs(thread, this);
+  return _table->_log2_size;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
+  shrink(Thread* thread, size_t size_limit_log2)
+{
+  size_t tmp = size_limit_log2 == 0 ? _log2_start_size : size_limit_log2;
+  bool ret = internal_shrink(thread, tmp);
+  return ret;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
+  grow(Thread* thread, size_t size_limit_log2)
+{
+  size_t tmp = size_limit_log2 == 0 ? _log2_size_limit : size_limit_log2;
+  return internal_grow(thread, tmp);
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+template <typename LOOKUP_FUNC, typename FOUND_FUNC>
+inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
+  get(Thread* thread, LOOKUP_FUNC& lookup_f, FOUND_FUNC& found_f, bool* grow_hint)
+{
+  bool ret = false;
+  ScopedCS cs(thread, this);
+  VALUE* val = internal_get(thread, lookup_f, grow_hint);
+  if (val != NULL) {
+    found_f(val);
+    ret = true;
+  }
+  return ret;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+template <typename LOOKUP_FUNC>
+inline VALUE ConcurrentHashTable<VALUE, CONFIG, F>::
+  get_copy(Thread* thread, LOOKUP_FUNC& lookup_f, bool* grow_hint)
+{
+  ScopedCS cs(thread, this);
+  VALUE* val = internal_get(thread, lookup_f, grow_hint);
+  return val != NULL ? *val : CONFIG::notfound();
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
+  unsafe_insert(const VALUE& value) {
+  bool dead_hash = false;
+  size_t hash = CONFIG::get_hash(value, &dead_hash);
+  if (dead_hash) {
+    return false;
+  }
+  // This is an unsafe operation.
+  InternalTable* table = get_table();
+  Bucket* bucket = get_bucket_in(table, hash);
+  assert(!bucket->have_redirect() && !bucket->is_locked(), "bad");
+  Node* new_node = Node::create_node(value, bucket->first());
+  if (!bucket->cas_first(new_node, bucket->first())) {
+    assert(false, "bad");
+  }
+  return true;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+template <typename SCAN_FUNC>
+inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
+  try_scan(Thread* thread, SCAN_FUNC& scan_f)
+{
+  assert(!_resize_lock->owned_by_self(), "Re-size lock not held");
+  bool vm_and_safepoint = thread->is_VM_thread() &&
+                          SafepointSynchronize::is_at_safepoint();
+  if (!vm_and_safepoint && !try_resize_lock(thread)) {
+    return false;
+  }
+  do_scan_locked(thread, scan_f);
+  if (!vm_and_safepoint) {
+    unlock_resize_lock(thread);
+  }
+  assert(!_resize_lock->owned_by_self(), "Re-size lock not held");
+  return true;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+template <typename SCAN_FUNC>
+inline void ConcurrentHashTable<VALUE, CONFIG, F>::
+  do_scan(Thread* thread, SCAN_FUNC& scan_f)
+{
+  assert(!_resize_lock->owned_by_self(), "Re-size lock not held");
+  lock_resize_lock(thread);
+  do_scan_locked(thread, scan_f);
+  unlock_resize_lock(thread);
+  assert(!_resize_lock->owned_by_self(), "Re-size lock not held");
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+template <typename EVALUATE_FUNC, typename DELETE_FUNC>
+inline bool ConcurrentHashTable<VALUE, CONFIG, F>::
+  try_bulk_delete(Thread* thread, EVALUATE_FUNC& eval_f, DELETE_FUNC& del_f)
+{
+  if (!try_resize_lock(thread)) {
+    assert(!_resize_lock->owned_by_self(), "Re-size lock not held");
+    return false;
+  }
+  do_bulk_delete_locked(thread, eval_f, del_f);
+  unlock_resize_lock(thread);
+  assert(!_resize_lock->owned_by_self(), "Re-size lock not held");
+  return true;
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+template <typename EVALUATE_FUNC, typename DELETE_FUNC>
+inline void ConcurrentHashTable<VALUE, CONFIG, F>::
+  bulk_delete(Thread* thread, EVALUATE_FUNC& eval_f, DELETE_FUNC& del_f)
+{
+  assert(!_resize_lock->owned_by_self(), "Re-size lock not held");
+  lock_resize_lock(thread);
+  do_bulk_delete_locked(thread, eval_f, del_f);
+  unlock_resize_lock(thread);
+  assert(!_resize_lock->owned_by_self(), "Re-size lock not held");
+}
+
+template <typename VALUE, typename CONFIG, MEMFLAGS F>
+template <typename VALUE_SIZE_FUNC>
+inline void ConcurrentHashTable<VALUE, CONFIG, F>::
+  statistics_to(Thread* thread, VALUE_SIZE_FUNC& vs_f,
+                outputStream* st, const char* table_name)
+{
+  NumberSeq summary;
+  size_t literal_bytes = 0;
+  if ((thread->is_VM_thread() && !SafepointSynchronize::is_at_safepoint()) ||
+      (!thread->is_VM_thread() && !try_resize_lock(thread))) {
+    st->print_cr("statistics unavailable at this moment");
+    return;
+  }
+
+  InternalTable* table = get_table();
+  for (size_t bucket_it = 0; bucket_it < _table->_size; bucket_it++) {
+    ScopedCS cs(thread, this);
+    size_t count = 0;
+    Bucket* bucket = _table->get_bucket(bucket_it);
+    if (bucket->have_redirect() || bucket->is_locked()) {
+        continue;
+    }
+    Node* current_node = bucket->first();
+    while (current_node != NULL) {
+      ++count;
+      literal_bytes += vs_f(current_node->value());
+      current_node = current_node->next();
+    }
+    summary.add((double)count);
+  }
+
+  double num_buckets = summary.num();
+  double num_entries = summary.sum();
+
+  size_t bucket_bytes = num_buckets * sizeof(Bucket);
+  size_t entry_bytes  = num_entries * sizeof(Node);
+  size_t total_bytes = literal_bytes +  bucket_bytes + entry_bytes;
+
+  size_t bucket_size  = (num_buckets <= 0) ? 0 : (bucket_bytes  / num_buckets);
+  size_t entry_size   = (num_entries <= 0) ? 0 : (entry_bytes   / num_entries);
+
+  st->print_cr("%s statistics:", table_name);
+  st->print_cr("Number of buckets       : %9" PRIuPTR " = %9" PRIuPTR
+               " bytes, each " SIZE_FORMAT,
+               (size_t)num_buckets, bucket_bytes,  bucket_size);
+  st->print_cr("Number of entries       : %9" PRIuPTR " = %9" PRIuPTR
+               " bytes, each " SIZE_FORMAT,
+               (size_t)num_entries, entry_bytes,   entry_size);
+  if (literal_bytes != 0) {
+    double literal_avg = (num_entries <= 0) ? 0 : (literal_bytes / num_entries);
+    st->print_cr("Number of literals      : %9" PRIuPTR " = %9" PRIuPTR
+                 " bytes, avg %7.3f",
+                 (size_t)num_entries, literal_bytes, literal_avg);
+  }
+  st->print_cr("Total footprsize_t         : %9s = %9" PRIuPTR " bytes", ""
+               , total_bytes);
+  st->print_cr("Average bucket size     : %9.3f", summary.avg());
+  st->print_cr("Variance of bucket size : %9.3f", summary.variance());
+  st->print_cr("Std. dev. of bucket size: %9.3f", summary.sd());
+  st->print_cr("Maximum bucket size     : %9" PRIuPTR,
+               (size_t)summary.maximum());
+  if (!thread->is_VM_thread()) {
+    unlock_resize_lock(thread);
+  }
+}
+
+#endif // include guard