jdk/src/share/classes/java/dyn/MutableCallSite.java
changeset 8823 7cd28219a1e4
parent 8717 f75a1efb1412
parent 8822 8145ab9f5f86
child 8824 0762fa26f813
child 9033 a88f5656f05d
--- a/jdk/src/share/classes/java/dyn/MutableCallSite.java	Wed Jul 05 17:38:31 2017 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,282 +0,0 @@
-/*
- * Copyright (c) 2008, 2011, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-package java.dyn;
-
-import sun.dyn.*;
-import sun.dyn.empty.Empty;
-import java.util.concurrent.atomic.AtomicInteger;
-
-/**
- * A {@code MutableCallSite} is a {@link CallSite} whose target variable
- * behaves like an ordinary field.
- * An {@code invokedynamic} instruction linked to a {@code MutableCallSite} delegates
- * all calls to the site's current target.
- * The {@linkplain CallSite#dynamicInvoker dynamic invoker} of a mutable call site
- * also delegates each call to the site's current target.
- * <p>
- * Here is an example of a mutable call site which introduces a
- * state variable into a method handle chain.
- * <blockquote><pre>
-MutableCallSite name = new MutableCallSite(MethodType.methodType(String.class));
-MethodHandle MH_name = name.dynamicInvoker();
-MethodType MT_str2 = MethodType.methodType(String.class, String.class);
-MethodHandle MH_upcase = MethodHandles.lookup()
-    .findVirtual(String.class, "toUpperCase", MT_str2);
-MethodHandle worker1 = MethodHandles.filterReturnValue(MH_name, MH_upcase);
-name.setTarget(MethodHandles.constant(String.class, "Rocky"));
-assertEquals("ROCKY", (String) worker1.invokeExact());
-name.setTarget(MethodHandles.constant(String.class, "Fred"));
-assertEquals("FRED", (String) worker1.invokeExact());
-// (mutation can be continued indefinitely)
- * </pre></blockquote>
- * <p>
- * The same call site may be used in several places at once.
- * <blockquote><pre>
-MethodHandle MH_dear = MethodHandles.lookup()
-    .findVirtual(String.class, "concat", MT_str2).bindTo(", dear?");
-MethodHandle worker2 = MethodHandles.filterReturnValue(MH_name, MH_dear);
-assertEquals("Fred, dear?", (String) worker2.invokeExact());
-name.setTarget(MethodHandles.constant(String.class, "Wilma"));
-assertEquals("WILMA", (String) worker1.invokeExact());
-assertEquals("Wilma, dear?", (String) worker2.invokeExact());
- * </pre></blockquote>
- * <p>
- * <em>Non-synchronization of target values:</em>
- * A write to a mutable call site's target does not force other threads
- * to become aware of the updated value.  Threads which do not perform
- * suitable synchronization actions relative to the updated call site
- * may cache the old target value and delay their use of the new target
- * value indefinitely.
- * (This is a normal consequence of the Java Memory Model as applied
- * to object fields.)
- * <p>
- * The {@link #syncAll syncAll} operation provides a way to force threads
- * to accept a new target value, even if there is no other synchronization.
- * <p>
- * For target values which will be frequently updated, consider using
- * a {@linkplain VolatileCallSite volatile call site} instead.
- * @author John Rose, JSR 292 EG
- */
-public class MutableCallSite extends CallSite {
-    /**
-     * Creates a blank call site object with the given method type.
-     * The initial target is set to a method handle of the given type
-     * which will throw an {@link IllegalStateException} if called.
-     * <p>
-     * The type of the call site is permanently set to the given type.
-     * <p>
-     * Before this {@code CallSite} object is returned from a bootstrap method,
-     * or invoked in some other manner,
-     * it is usually provided with a more useful target method,
-     * via a call to {@link CallSite#setTarget(MethodHandle) setTarget}.
-     * @param type the method type that this call site will have
-     * @throws NullPointerException if the proposed type is null
-     */
-    public MutableCallSite(MethodType type) {
-        super(type);
-    }
-
-    /**
-     * Creates a call site object with an initial target method handle.
-     * The type of the call site is permanently set to the initial target's type.
-     * @param target the method handle that will be the initial target of the call site
-     * @throws NullPointerException if the proposed target is null
-     */
-    public MutableCallSite(MethodHandle target) {
-        super(target);
-    }
-
-    /**
-     * Returns the target method of the call site, which behaves
-     * like a normal field of the {@code MutableCallSite}.
-     * <p>
-     * The interactions of {@code getTarget} with memory are the same
-     * as of a read from an ordinary variable, such as an array element or a
-     * non-volatile, non-final field.
-     * <p>
-     * In particular, the current thread may choose to reuse the result
-     * of a previous read of the target from memory, and may fail to see
-     * a recent update to the target by another thread.
-     *
-     * @return the linkage state of this call site, a method handle which can change over time
-     * @see #setTarget
-     */
-    @Override public final MethodHandle getTarget() {
-        return target;
-    }
-
-    /**
-     * Updates the target method of this call site, as a normal variable.
-     * The type of the new target must agree with the type of the old target.
-     * <p>
-     * The interactions with memory are the same
-     * as of a write to an ordinary variable, such as an array element or a
-     * non-volatile, non-final field.
-     * <p>
-     * In particular, unrelated threads may fail to see the updated target
-     * until they perform a read from memory.
-     * Stronger guarantees can be created by putting appropriate operations
-     * into the bootstrap method and/or the target methods used
-     * at any given call site.
-     *
-     * @param newTarget the new target
-     * @throws NullPointerException if the proposed new target is null
-     * @throws WrongMethodTypeException if the proposed new target
-     *         has a method type that differs from the previous target
-     * @see #getTarget
-     */
-    @Override public void setTarget(MethodHandle newTarget) {
-        checkTargetChange(this.target, newTarget);
-        setTargetNormal(newTarget);
-    }
-
-    /**
-     * {@inheritDoc}
-     */
-    @Override
-    public final MethodHandle dynamicInvoker() {
-        return makeDynamicInvoker();
-    }
-
-    /**
-     * Performs a synchronization operation on each call site in the given array,
-     * forcing all other threads to throw away any cached values previously
-     * loaded from the target of any of the call sites.
-     * <p>
-     * This operation does not reverse any calls that have already started
-     * on an old target value.
-     * (Java supports {@linkplain java.lang.Object#wait() forward time travel} only.)
-     * <p>
-     * The overall effect is to force all future readers of each call site's target
-     * to accept the most recently stored value.
-     * ("Most recently" is reckoned relative to the {@code syncAll} itself.)
-     * Conversely, the {@code syncAll} call may block until all readers have
-     * (somehow) decached all previous versions of each call site's target.
-     * <p>
-     * To avoid race conditions, calls to {@code setTarget} and {@code syncAll}
-     * should generally be performed under some sort of mutual exclusion.
-     * Note that reader threads may observe an updated target as early
-     * as the {@code setTarget} call that install the value
-     * (and before the {@code syncAll} that confirms the value).
-     * On the other hand, reader threads may observe previous versions of
-     * the target until the {@code syncAll} call returns
-     * (and after the {@code setTarget} that attempts to convey the updated version).
-     * <p>
-     * This operation is likely to be expensive and should be used sparingly.
-     * If possible, it should be buffered for batch processing on sets of call sites.
-     * <p>
-     * If {@code sites} contains a null element,
-     * a {@code NullPointerException} will be raised.
-     * In this case, some non-null elements in the array may be
-     * processed before the method returns abnormally.
-     * Which elements these are (if any) is implementation-dependent.
-     *
-     * <h3>Java Memory Model details</h3>
-     * In terms of the Java Memory Model, this operation performs a synchronization
-     * action which is comparable in effect to the writing of a volatile variable
-     * by the current thread, and an eventual volatile read by every other thread
-     * that may access one of the affected call sites.
-     * <p>
-     * The following effects are apparent, for each individual call site {@code S}:
-     * <ul>
-     * <li>A new volatile variable {@code V} is created, and written by the current thread.
-     *     As defined by the JMM, this write is a global synchronization event.
-     * <li>As is normal with thread-local ordering of write events,
-     *     every action already performed by the current thread is
-     *     taken to happen before the volatile write to {@code V}.
-     *     (In some implementations, this means that the current thread
-     *     performs a global release operation.)
-     * <li>Specifically, the write to the current target of {@code S} is
-     *     taken to happen before the volatile write to {@code V}.
-     * <li>The volatile write to {@code V} is placed
-     *     (in an implementation specific manner)
-     *     in the global synchronization order.
-     * <li>Consider an arbitrary thread {@code T} (other than the current thread).
-     *     If {@code T} executes a synchronization action {@code A}
-     *     after the volatile write to {@code V} (in the global synchronization order),
-     *     it is therefore required to see either the current target
-     *     of {@code S}, or a later write to that target,
-     *     if it executes a read on the target of {@code S}.
-     *     (This constraint is called "synchronization-order consistency".)
-     * <li>The JMM specifically allows optimizing compilers to elide
-     *     reads or writes of variables that are known to be useless.
-     *     Such elided reads and writes have no effect on the happens-before
-     *     relation.  Regardless of this fact, the volatile {@code V}
-     *     will not be elided, even though its written value is
-     *     indeterminate and its read value is not used.
-     * </ul>
-     * Because of the last point, the implementation behaves as if a
-     * volatile read of {@code V} were performed by {@code T}
-     * immediately after its action {@code A}.  In the local ordering
-     * of actions in {@code T}, this read happens before any future
-     * read of the target of {@code S}.  It is as if the
-     * implementation arbitrarily picked a read of {@code S}'s target
-     * by {@code T}, and forced a read of {@code V} to precede it,
-     * thereby ensuring communication of the new target value.
-     * <p>
-     * As long as the constraints of the Java Memory Model are obeyed,
-     * implementations may delay the completion of a {@code syncAll}
-     * operation while other threads ({@code T} above) continue to
-     * use previous values of {@code S}'s target.
-     * However, implementations are (as always) encouraged to avoid
-     * livelock, and to eventually require all threads to take account
-     * of the updated target.
-     *
-     * <p style="font-size:smaller;">
-     * <em>Discussion:</em>
-     * For performance reasons, {@code syncAll} is not a virtual method
-     * on a single call site, but rather applies to a set of call sites.
-     * Some implementations may incur a large fixed overhead cost
-     * for processing one or more synchronization operations,
-     * but a small incremental cost for each additional call site.
-     * In any case, this operation is likely to be costly, since
-     * other threads may have to be somehow interrupted
-     * in order to make them notice the updated target value.
-     * However, it may be observed that a single call to synchronize
-     * several sites has the same formal effect as many calls,
-     * each on just one of the sites.
-     *
-     * <p style="font-size:smaller;">
-     * <em>Implementation Note:</em>
-     * Simple implementations of {@code MutableCallSite} may use
-     * a volatile variable for the target of a mutable call site.
-     * In such an implementation, the {@code syncAll} method can be a no-op,
-     * and yet it will conform to the JMM behavior documented above.
-     *
-     * @param sites an array of call sites to be synchronized
-     * @throws NullPointerException if the {@code sites} array reference is null
-     *                              or the array contains a null
-     */
-    public static void syncAll(MutableCallSite[] sites) {
-        if (sites.length == 0)  return;
-        STORE_BARRIER.lazySet(0);
-        for (int i = 0; i < sites.length; i++) {
-            sites[i].getClass();  // trigger NPE on first null
-        }
-        // FIXME: NYI
-    }
-    private static final AtomicInteger STORE_BARRIER = new AtomicInteger();
-}