src/hotspot/share/gc/shared/oopStorage.cpp
changeset 48787 7638bf98a312
child 48808 2b0b7f222800
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/gc/shared/oopStorage.cpp	Tue Nov 21 09:47:55 2017 -0500
@@ -0,0 +1,707 @@
+/*
+ * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "gc/shared/oopStorage.hpp"
+#include "logging/log.hpp"
+#include "memory/allocation.inline.hpp"
+#include "runtime/atomic.hpp"
+#include "runtime/handles.inline.hpp"
+#include "runtime/mutex.hpp"
+#include "runtime/mutexLocker.hpp"
+#include "runtime/orderAccess.inline.hpp"
+#include "runtime/safepoint.hpp"
+#include "runtime/stubRoutines.hpp"
+#include "utilities/align.hpp"
+#include "utilities/count_trailing_zeros.hpp"
+#include "utilities/debug.hpp"
+#include "utilities/globalDefinitions.hpp"
+#include "utilities/macros.hpp"
+#include "utilities/ostream.hpp"
+
+OopStorage::BlockEntry::BlockEntry() : _prev(NULL), _next(NULL) {}
+
+OopStorage::BlockEntry::~BlockEntry() {
+  assert(_prev == NULL, "deleting attached block");
+  assert(_next == NULL, "deleting attached block");
+}
+
+OopStorage::BlockList::BlockList(const BlockEntry& (*get_entry)(const Block& block)) :
+  _head(NULL), _tail(NULL), _get_entry(get_entry)
+{}
+
+OopStorage::BlockList::~BlockList() {
+  // ~OopStorage() empties its lists before destroying them.
+  assert(_head == NULL, "deleting non-empty block list");
+  assert(_tail == NULL, "deleting non-empty block list");
+}
+
+void OopStorage::BlockList::push_front(const Block& block) {
+  const Block* old = _head;
+  if (old == NULL) {
+    assert(_tail == NULL, "invariant");
+    _head = _tail = █
+  } else {
+    _get_entry(block)._next = old;
+    _get_entry(*old)._prev = █
+    _head = █
+  }
+}
+
+void OopStorage::BlockList::push_back(const Block& block) {
+  const Block* old = _tail;
+  if (old == NULL) {
+    assert(_head == NULL, "invariant");
+    _head = _tail = █
+  } else {
+    _get_entry(*old)._next = █
+    _get_entry(block)._prev = old;
+    _tail = █
+  }
+}
+
+void OopStorage::BlockList::unlink(const Block& block) {
+  const BlockEntry& block_entry = _get_entry(block);
+  const Block* prev_blk = block_entry._prev;
+  const Block* next_blk = block_entry._next;
+  block_entry._prev = NULL;
+  block_entry._next = NULL;
+  if ((prev_blk == NULL) && (next_blk == NULL)) {
+    assert(_head == &block, "invariant");
+    assert(_tail == &block, "invariant");
+    _head = _tail = NULL;
+  } else if (prev_blk == NULL) {
+    assert(_head == &block, "invariant");
+    _get_entry(*next_blk)._prev = NULL;
+    _head = next_blk;
+  } else if (next_blk == NULL) {
+    assert(_tail == &block, "invariant");
+    _get_entry(*prev_blk)._next = NULL;
+    _tail = prev_blk;
+  } else {
+    _get_entry(*next_blk)._prev = prev_blk;
+    _get_entry(*prev_blk)._next = next_blk;
+  }
+}
+
+// Blocks start with an array of BitsPerWord oop entries.  That array
+// is divided into conceptual BytesPerWord sections of BitsPerWord
+// entries.  Blocks are allocated aligned on section boundaries, for
+// the convenience of mapping from an entry to the containing block;
+// see block_for_ptr().  Aligning on section boundary rather than on
+// the full _data wastes a lot less space, but makes for a bit more
+// work in block_for_ptr().
+
+const unsigned section_size = BitsPerByte;
+const unsigned section_count = BytesPerWord;
+const unsigned block_alignment = sizeof(oop) * section_size;
+
+// VS2013 warns (C4351) that elements of _data will be *correctly* default
+// initialized, unlike earlier versions that *incorrectly* did not do so.
+#ifdef _WINDOWS
+#pragma warning(push)
+#pragma warning(disable: 4351)
+#endif // _WINDOWS
+OopStorage::Block::Block(const OopStorage* owner, void* memory) :
+  _data(),
+  _allocated_bitmask(0),
+  _owner(owner),
+  _memory(memory),
+  _active_entry(),
+  _allocate_entry()
+{
+  STATIC_ASSERT(_data_pos == 0);
+  STATIC_ASSERT(section_size * section_count == ARRAY_SIZE(_data));
+  assert(offset_of(Block, _data) == _data_pos, "invariant");
+  assert(owner != NULL, "NULL owner");
+  assert(is_aligned(this, block_alignment), "misaligned block");
+}
+#ifdef _WINDOWS
+#pragma warning(pop)
+#endif
+
+OopStorage::Block::~Block() {
+  // Clear fields used by block_for_ptr and entry validation, which
+  // might help catch bugs.  Volatile to prevent dead-store elimination.
+  const_cast<uintx volatile&>(_allocated_bitmask) = 0;
+  const_cast<OopStorage* volatile&>(_owner) = NULL;
+}
+
+const OopStorage::BlockEntry& OopStorage::Block::get_active_entry(const Block& block) {
+  return block._active_entry;
+}
+
+const OopStorage::BlockEntry& OopStorage::Block::get_allocate_entry(const Block& block) {
+  return block._allocate_entry;
+}
+
+size_t OopStorage::Block::allocation_size() {
+  // _data must be first member, so aligning Block aligns _data.
+  STATIC_ASSERT(_data_pos == 0);
+  return sizeof(Block) + block_alignment - sizeof(void*);
+}
+
+size_t OopStorage::Block::allocation_alignment_shift() {
+  return exact_log2(block_alignment);
+}
+
+inline bool is_full_bitmask(uintx bitmask) { return ~bitmask == 0; }
+inline bool is_empty_bitmask(uintx bitmask) { return bitmask == 0; }
+
+bool OopStorage::Block::is_full() const {
+  return is_full_bitmask(allocated_bitmask());
+}
+
+bool OopStorage::Block::is_empty() const {
+  return is_empty_bitmask(allocated_bitmask());
+}
+
+uintx OopStorage::Block::bitmask_for_entry(const oop* ptr) const {
+  return bitmask_for_index(get_index(ptr));
+}
+
+uintx OopStorage::Block::cmpxchg_allocated_bitmask(uintx new_value, uintx compare_value) {
+  return Atomic::cmpxchg(new_value, &_allocated_bitmask, compare_value);
+}
+
+bool OopStorage::Block::contains(const oop* ptr) const {
+  const oop* base = get_pointer(0);
+  return (base <= ptr) && (ptr < (base + ARRAY_SIZE(_data)));
+}
+
+unsigned OopStorage::Block::get_index(const oop* ptr) const {
+  assert(contains(ptr), PTR_FORMAT " not in block " PTR_FORMAT, p2i(ptr), p2i(this));
+  return static_cast<unsigned>(ptr - get_pointer(0));
+}
+
+oop* OopStorage::Block::allocate() {
+  // Use CAS loop because release may change bitmask outside of lock.
+  uintx allocated = allocated_bitmask();
+  while (true) {
+    assert(!is_full_bitmask(allocated), "attempt to allocate from full block");
+    unsigned index = count_trailing_zeros(~allocated);
+    uintx new_value = allocated | bitmask_for_index(index);
+    uintx fetched = cmpxchg_allocated_bitmask(new_value, allocated);
+    if (fetched == allocated) {
+      return get_pointer(index); // CAS succeeded; return entry for index.
+    }
+    allocated = fetched;       // CAS failed; retry with latest value.
+  }
+}
+
+OopStorage::Block* OopStorage::Block::new_block(const OopStorage* owner) {
+  // _data must be first member: aligning block => aligning _data.
+  STATIC_ASSERT(_data_pos == 0);
+  size_t size_needed = allocation_size();
+  void* memory = NEW_C_HEAP_ARRAY_RETURN_NULL(char, size_needed, mtGC);
+  if (memory == NULL) {
+    return NULL;
+  }
+  void* block_mem = align_up(memory, block_alignment);
+  assert(sizeof(Block) + pointer_delta(block_mem, memory, 1) <= size_needed,
+         "allocated insufficient space for aligned block");
+  return ::new (block_mem) Block(owner, memory);
+}
+
+void OopStorage::Block::delete_block(const Block& block) {
+  void* memory = block._memory;
+  block.Block::~Block();
+  FREE_C_HEAP_ARRAY(char, memory);
+}
+
+// This can return a false positive if ptr is not contained by some
+// block.  For some uses, it is a precondition that ptr is valid,
+// e.g. contained in some block in owner's _active_list.  Other uses
+// require additional validation of the result.
+OopStorage::Block*
+OopStorage::Block::block_for_ptr(const OopStorage* owner, const oop* ptr) {
+  assert(CanUseSafeFetchN(), "precondition");
+  STATIC_ASSERT(_data_pos == 0);
+  // Const-ness of ptr is not related to const-ness of containing block.
+  // Blocks are allocated section-aligned, so get the containing section.
+  oop* section_start = align_down(const_cast<oop*>(ptr), block_alignment);
+  // Start with a guess that the containing section is the last section,
+  // so the block starts section_count-1 sections earlier.
+  oop* section = section_start - (section_size * (section_count - 1));
+  // Walk up through the potential block start positions, looking for
+  // the owner in the expected location.  If we're below the actual block
+  // start position, the value at the owner position will be some oop
+  // (possibly NULL), which can never match the owner.
+  intptr_t owner_addr = reinterpret_cast<intptr_t>(owner);
+  for (unsigned i = 0; i < section_count; ++i, section += section_size) {
+    Block* candidate = reinterpret_cast<Block*>(section);
+    intptr_t* candidate_owner_addr
+      = reinterpret_cast<intptr_t*>(&candidate->_owner);
+    if (SafeFetchN(candidate_owner_addr, 0) == owner_addr) {
+      return candidate;
+    }
+  }
+  return NULL;
+}
+
+bool OopStorage::is_valid_block_locked_or_safepoint(const Block* check_block) const {
+  assert_locked_or_safepoint(_allocate_mutex);
+  // For now, simple linear search.  Do something more clever if this
+  // is a performance bottleneck, particularly for allocation_status.
+  for (const Block* block = _active_list.chead();
+       block != NULL;
+       block = _active_list.next(*block)) {
+    if (check_block == block) {
+      return true;
+    }
+  }
+  return false;
+}
+
+#ifdef ASSERT
+void OopStorage::assert_at_safepoint() {
+  assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
+}
+#endif // ASSERT
+
+//////////////////////////////////////////////////////////////////////////////
+// Allocation
+//
+// Allocation involves the _allocate_list, which contains a subset of the
+// blocks owned by a storage object.  This is a doubly-linked list, linked
+// through dedicated fields in the blocks.  Full blocks are removed from this
+// list, though they are still present in the _active_list.  Empty blocks are
+// kept at the end of the _allocate_list, to make it easy for empty block
+// deletion to find them.
+//
+// allocate(), release(), and delete_empty_blocks_concurrent() all lock the
+// _allocate_mutex while performing any list modifications.
+//
+// allocate() and release() update a block's _allocated_bitmask using CAS
+// loops.  This prevents loss of updates even though release() may perform
+// some updates without any locking.
+//
+// allocate() obtains the entry from the first block in the _allocate_list,
+// and updates that block's _allocated_bitmask to indicate the entry is in
+// use.  If this makes the block full (all entries in use), the block is
+// removed from the _allocate_list so it won't be considered by future
+// allocations until some entries in it are relased.
+//
+// release() looks up the block for the entry without locking.  Once the block
+// has been determined, its _allocated_bitmask needs to be updated, and its
+// position in the _allocate_list may need to be updated.  There are two
+// cases:
+//
+// (a) If the block is neither full nor would become empty with the release of
+// the entry, only its _allocated_bitmask needs to be updated.  But if the CAS
+// update fails, the applicable case may change for the retry.
+//
+// (b) Otherwise, the _allocate_list will also need to be modified.  This
+// requires locking the _allocate_mutex, and then attempting to CAS the
+// _allocated_bitmask.  If the CAS fails, the applicable case may change for
+// the retry.  If the CAS succeeds, then update the _allocate_list according
+// to the the state changes.  If the block changed from full to not full, then
+// it needs to be added to the _allocate_list, for use in future allocations.
+// If the block changed from not empty to empty, then it is moved to the end
+// of the _allocate_list, for ease of empty block deletion processing.
+
+oop* OopStorage::allocate() {
+  MutexLockerEx ml(_allocate_mutex, Mutex::_no_safepoint_check_flag);
+  Block* block = _allocate_list.head();
+  if (block == NULL) {
+    // No available blocks; make a new one, and add to storage.
+    {
+      MutexUnlockerEx mul(_allocate_mutex, Mutex::_no_safepoint_check_flag);
+      block = Block::new_block(this);
+    }
+    if (block != NULL) {
+      // Add new block to storage.
+      log_info(oopstorage, blocks)("%s: new block " PTR_FORMAT, name(), p2i(block));
+
+      // Add to end of _allocate_list.  The mutex release allowed
+      // other threads to add blocks to the _allocate_list.  We prefer
+      // to allocate from non-empty blocks, to allow empty blocks to
+      // be deleted.
+      _allocate_list.push_back(*block);
+      ++_empty_block_count;
+      // Add to front of _active_list, and then record as the head
+      // block, for concurrent iteration protocol.
+      _active_list.push_front(*block);
+      ++_block_count;
+      // Ensure all setup of block is complete before making it visible.
+      OrderAccess::release_store(&_active_head, block);
+    } else {
+      log_info(oopstorage, blocks)("%s: failed new block allocation", name());
+    }
+    block = _allocate_list.head();
+    if (block == NULL) {
+      // Failed to make new block, and no other thread made a block
+      // available while the mutex was released, so return failure.
+      return NULL;
+    }
+  }
+  // Allocate from first block.
+  assert(block != NULL, "invariant");
+  assert(!block->is_full(), "invariant");
+  if (block->is_empty()) {
+    // Transitioning from empty to not empty.
+    log_debug(oopstorage, blocks)("%s: block not empty " PTR_FORMAT, name(), p2i(block));
+    --_empty_block_count;
+  }
+  oop* result = block->allocate();
+  assert(result != NULL, "allocation failed");
+  assert(!block->is_empty(), "postcondition");
+  Atomic::inc(&_allocation_count); // release updates outside lock.
+  if (block->is_full()) {
+    // Transitioning from not full to full.
+    // Remove full blocks from consideration by future allocates.
+    log_debug(oopstorage, blocks)("%s: block full " PTR_FORMAT, name(), p2i(block));
+    _allocate_list.unlink(*block);
+  }
+  log_info(oopstorage, ref)("%s: allocated " PTR_FORMAT, name(), p2i(result));
+  return result;
+}
+
+OopStorage::Block* OopStorage::find_block_or_null(const oop* ptr) const {
+  assert(ptr != NULL, "precondition");
+  return Block::block_for_ptr(this, ptr);
+}
+
+void OopStorage::release_from_block(Block& block, uintx releasing) {
+  assert(releasing != 0, "invariant");
+  uintx allocated = block.allocated_bitmask();
+  while (true) {
+    assert(releasing == (allocated & releasing), "invariant");
+    uintx new_value = allocated ^ releasing;
+    // CAS new_value into block's allocated bitmask, retrying with
+    // updated allocated bitmask until the CAS succeeds.
+    uintx fetched;
+    if (!is_full_bitmask(allocated) && !is_empty_bitmask(new_value)) {
+      fetched = block.cmpxchg_allocated_bitmask(new_value, allocated);
+      if (fetched == allocated) return;
+    } else {
+      // Need special handling if transitioning from full to not full,
+      // or from not empty to empty.  For those cases, must hold the
+      // _allocation_mutex when updating the allocated bitmask, to
+      // ensure the associated list manipulations will be consistent
+      // with the allocation bitmask that is visible to other threads
+      // in allocate() or deleting empty blocks.
+      MutexLockerEx ml(_allocate_mutex, Mutex::_no_safepoint_check_flag);
+      fetched = block.cmpxchg_allocated_bitmask(new_value, allocated);
+      if (fetched == allocated) {
+        // CAS succeeded; handle special cases, which might no longer apply.
+        if (is_full_bitmask(allocated)) {
+          // Transitioning from full to not-full; add to _allocate_list.
+          log_debug(oopstorage, blocks)("%s: block not full " PTR_FORMAT, name(), p2i(&block));
+          _allocate_list.push_front(block);
+          assert(!block.is_full(), "invariant"); // Still not full.
+        }
+        if (is_empty_bitmask(new_value)) {
+          // Transitioning from not-empty to empty; move to end of
+          // _allocate_list, to make it a deletion candidate.
+          log_debug(oopstorage, blocks)("%s: block empty " PTR_FORMAT, name(), p2i(&block));
+          _allocate_list.unlink(block);
+          _allocate_list.push_back(block);
+          ++_empty_block_count;
+          assert(block.is_empty(), "invariant"); // Still empty.
+        }
+        return;                 // Successful CAS and transitions handled.
+      }
+    }
+    // CAS failed; retry with latest value.
+    allocated = fetched;
+  }
+}
+
+#ifdef ASSERT
+void OopStorage::check_release(const Block* block, const oop* ptr) const {
+  switch (allocation_status_validating_block(block, ptr)) {
+  case INVALID_ENTRY:
+    fatal("Releasing invalid entry: " PTR_FORMAT, p2i(ptr));
+    break;
+
+  case UNALLOCATED_ENTRY:
+    fatal("Releasing unallocated entry: " PTR_FORMAT, p2i(ptr));
+    break;
+
+  case ALLOCATED_ENTRY:
+    assert(block->contains(ptr), "invariant");
+    break;
+
+  default:
+    ShouldNotReachHere();
+  }
+}
+#endif // ASSERT
+
+inline void check_release_entry(const oop* entry) {
+  assert(entry != NULL, "Releasing NULL");
+  assert(*entry == NULL, "Releasing uncleared entry: " PTR_FORMAT, p2i(entry));
+}
+
+void OopStorage::release(const oop* ptr) {
+  check_release_entry(ptr);
+  Block* block = find_block_or_null(ptr);
+  check_release(block, ptr);
+  log_info(oopstorage, ref)("%s: released " PTR_FORMAT, name(), p2i(ptr));
+  release_from_block(*block, block->bitmask_for_entry(ptr));
+  Atomic::dec(&_allocation_count);
+}
+
+void OopStorage::release(const oop* const* ptrs, size_t size) {
+  size_t i = 0;
+  while (i < size) {
+    Block* block = find_block_or_null(ptrs[i]);
+    check_release(block, ptrs[i]);
+    log_info(oopstorage, ref)("%s: released " PTR_FORMAT, name(), p2i(ptrs[i]));
+    size_t count = 0;
+    uintx releasing = 0;
+    for ( ; i < size; ++i) {
+      const oop* entry = ptrs[i];
+      // If entry not in block, finish block and resume outer loop with entry.
+      if (!block->contains(entry)) break;
+      check_release_entry(entry);
+      // Add entry to releasing bitmap.
+      log_info(oopstorage, ref)("%s: released " PTR_FORMAT, name(), p2i(entry));
+      uintx entry_bitmask = block->bitmask_for_entry(entry);
+      assert((releasing & entry_bitmask) == 0,
+             "Duplicate entry: " PTR_FORMAT, p2i(entry));
+      releasing |= entry_bitmask;
+      ++count;
+    }
+    // Release the contiguous entries that are in block.
+    release_from_block(*block, releasing);
+    Atomic::sub(count, &_allocation_count);
+  }
+}
+
+const char* dup_name(const char* name) {
+  char* dup = NEW_C_HEAP_ARRAY(char, strlen(name) + 1, mtGC);
+  strcpy(dup, name);
+  return dup;
+}
+
+OopStorage::OopStorage(const char* name,
+                       Mutex* allocate_mutex,
+                       Mutex* active_mutex) :
+  _name(dup_name(name)),
+  _active_list(&Block::get_active_entry),
+  _allocate_list(&Block::get_allocate_entry),
+  _active_head(NULL),
+  _allocate_mutex(allocate_mutex),
+  _active_mutex(active_mutex),
+  _allocation_count(0),
+  _block_count(0),
+  _empty_block_count(0),
+  _concurrent_iteration_active(false)
+{
+  assert(_active_mutex->rank() < _allocate_mutex->rank(),
+         "%s: active_mutex must have lower rank than allocate_mutex", _name);
+  assert(_active_mutex->_safepoint_check_required != Mutex::_safepoint_check_always,
+         "%s: active mutex requires safepoint check", _name);
+  assert(_allocate_mutex->_safepoint_check_required != Mutex::_safepoint_check_always,
+         "%s: allocate mutex requires safepoint check", _name);
+}
+
+void OopStorage::delete_empty_block(const Block& block) {
+  assert(block.is_empty(), "discarding non-empty block");
+  log_info(oopstorage, blocks)("%s: delete empty block " PTR_FORMAT, name(), p2i(&block));
+  Block::delete_block(block);
+}
+
+OopStorage::~OopStorage() {
+  Block* block;
+  while ((block = _allocate_list.head()) != NULL) {
+    _allocate_list.unlink(*block);
+  }
+  while ((block = _active_list.head()) != NULL) {
+    _active_list.unlink(*block);
+    Block::delete_block(*block);
+  }
+  FREE_C_HEAP_ARRAY(char, _name);
+}
+
+void OopStorage::delete_empty_blocks_safepoint(size_t retain) {
+  assert_at_safepoint();
+  // Don't interfere with a concurrent iteration.
+  if (_concurrent_iteration_active) return;
+  // Compute the number of blocks to remove, to minimize volatile accesses.
+  size_t empty_blocks = _empty_block_count;
+  if (retain < empty_blocks) {
+    size_t remove_count = empty_blocks - retain;
+    // Update volatile counters once.
+    _block_count -= remove_count;
+    _empty_block_count -= remove_count;
+    do {
+      const Block* block = _allocate_list.ctail();
+      assert(block != NULL, "invariant");
+      assert(block->is_empty(), "invariant");
+      // Remove block from lists, and delete it.
+      _active_list.unlink(*block);
+      _allocate_list.unlink(*block);
+      delete_empty_block(*block);
+    } while (--remove_count > 0);
+    // Update _active_head, in case current value was in deleted set.
+    _active_head = _active_list.head();
+  }
+}
+
+void OopStorage::delete_empty_blocks_concurrent(size_t retain) {
+  MutexLockerEx ml(_allocate_mutex, Mutex::_no_safepoint_check_flag);
+  // Other threads could be adding to the empty block count while we
+  // release the mutex across the block deletions.  Set an upper bound
+  // on how many blocks we'll try to release, so other threads can't
+  // cause an unbounded stay in this function.
+  if (_empty_block_count <= retain) return;
+  size_t limit = _empty_block_count - retain;
+  for (size_t i = 0; (i < limit) && (retain < _empty_block_count); ++i) {
+    const Block* block = _allocate_list.ctail();
+    assert(block != NULL, "invariant");
+    assert(block->is_empty(), "invariant");
+    {
+      MutexLockerEx aml(_active_mutex, Mutex::_no_safepoint_check_flag);
+      // Don't interfere with a concurrent iteration.
+      if (_concurrent_iteration_active) return;
+      // Remove block from _active_list, updating head if needed.
+      _active_list.unlink(*block);
+      --_block_count;
+      if (block == _active_head) {
+        _active_head = _active_list.head();
+      }
+    }
+    // Remove block from _allocate_list and delete it.
+    _allocate_list.unlink(*block);
+    --_empty_block_count;
+    // Release mutex while deleting block.
+    MutexUnlockerEx ul(_allocate_mutex, Mutex::_no_safepoint_check_flag);
+    delete_empty_block(*block);
+  }
+}
+
+OopStorage::EntryStatus
+OopStorage::allocation_status_validating_block(const Block* block,
+                                               const oop* ptr) const {
+  MutexLockerEx ml(_allocate_mutex, Mutex::_no_safepoint_check_flag);
+  if ((block == NULL) || !is_valid_block_locked_or_safepoint(block)) {
+    return INVALID_ENTRY;
+  } else if ((block->allocated_bitmask() & block->bitmask_for_entry(ptr)) != 0) {
+    return ALLOCATED_ENTRY;
+  } else {
+    return UNALLOCATED_ENTRY;
+  }
+}
+
+OopStorage::EntryStatus OopStorage::allocation_status(const oop* ptr) const {
+  return allocation_status_validating_block(find_block_or_null(ptr), ptr);
+}
+
+size_t OopStorage::allocation_count() const {
+  return _allocation_count;
+}
+
+size_t OopStorage::block_count() const {
+  return _block_count;
+}
+
+size_t OopStorage::empty_block_count() const {
+  return _empty_block_count;
+}
+
+size_t OopStorage::total_memory_usage() const {
+  size_t total_size = sizeof(OopStorage);
+  total_size += strlen(name()) + 1;
+  total_size += block_count() * Block::allocation_size();
+  return total_size;
+}
+
+// Parallel iteration support
+#if INCLUDE_ALL_GCS
+
+static char* not_started_marker_dummy = NULL;
+static void* const not_started_marker = &not_started_marker_dummy;
+
+OopStorage::BasicParState::BasicParState(OopStorage* storage, bool concurrent) :
+  _storage(storage),
+  _next_block(not_started_marker),
+  _concurrent(concurrent)
+{
+  update_iteration_state(true);
+}
+
+OopStorage::BasicParState::~BasicParState() {
+  update_iteration_state(false);
+}
+
+void OopStorage::BasicParState::update_iteration_state(bool value) {
+  if (_concurrent) {
+    MutexLockerEx ml(_storage->_active_mutex, Mutex::_no_safepoint_check_flag);
+    assert(_storage->_concurrent_iteration_active != value, "precondition");
+    _storage->_concurrent_iteration_active = value;
+  }
+}
+
+void OopStorage::BasicParState::ensure_iteration_started() {
+  if (!_concurrent) assert_at_safepoint();
+  assert(!_concurrent || _storage->_concurrent_iteration_active, "invariant");
+  // Ensure _next_block is not the not_started_marker, setting it to
+  // the _active_head to start the iteration if necessary.
+  if (OrderAccess::load_acquire(&_next_block) == not_started_marker) {
+    Atomic::cmpxchg(_storage->_active_head, &_next_block, not_started_marker);
+  }
+  assert(_next_block != not_started_marker, "postcondition");
+}
+
+OopStorage::Block* OopStorage::BasicParState::claim_next_block() {
+  assert(_next_block != not_started_marker, "Iteration not started");
+  void* next = _next_block;
+  while (next != NULL) {
+    void* new_next = _storage->_active_list.next(*static_cast<Block*>(next));
+    void* fetched = Atomic::cmpxchg(new_next, &_next_block, next);
+    if (fetched == next) break; // Claimed.
+    next = fetched;
+  }
+  return static_cast<Block*>(next);
+}
+
+#endif // INCLUDE_ALL_GCS
+
+const char* OopStorage::name() const { return _name; }
+
+#ifndef PRODUCT
+
+void OopStorage::print_on(outputStream* st) const {
+  size_t allocations = _allocation_count;
+  size_t blocks = _block_count;
+  size_t empties = _empty_block_count;
+  // Comparison is being careful about racy accesses.
+  size_t used = (blocks < empties) ? 0 : (blocks - empties);
+
+  double data_size = section_size * section_count;
+  double alloc_percentage = percent_of((double)allocations, used * data_size);
+
+  st->print("%s: " SIZE_FORMAT " entries in " SIZE_FORMAT " blocks (%.F%%), "
+            SIZE_FORMAT " empties, " SIZE_FORMAT " bytes",
+            name(), allocations, used, alloc_percentage,
+            empties, total_memory_usage());
+  if (_concurrent_iteration_active) {
+    st->print(", concurrent iteration active");
+  }
+}
+
+#endif // !PRODUCT