src/jdk.compiler/share/classes/com/sun/tools/javac/comp/Resolve.java
changeset 47216 71c04702a3d5
parent 45504 ea7475564d07
child 47268 48ec75306997
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/jdk.compiler/share/classes/com/sun/tools/javac/comp/Resolve.java	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,4714 @@
+/*
+ * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package com.sun.tools.javac.comp;
+
+import com.sun.tools.javac.api.Formattable.LocalizedString;
+import com.sun.tools.javac.code.*;
+import com.sun.tools.javac.code.Scope.WriteableScope;
+import com.sun.tools.javac.code.Symbol.*;
+import com.sun.tools.javac.code.Type.*;
+import com.sun.tools.javac.comp.Attr.ResultInfo;
+import com.sun.tools.javac.comp.Check.CheckContext;
+import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
+import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
+import com.sun.tools.javac.comp.DeferredAttr.DeferredType;
+import com.sun.tools.javac.comp.Infer.FreeTypeListener;
+import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
+import com.sun.tools.javac.comp.Resolve.MethodResolutionDiagHelper.Template;
+import com.sun.tools.javac.comp.Resolve.ReferenceLookupResult.StaticKind;
+import com.sun.tools.javac.jvm.*;
+import com.sun.tools.javac.main.Option;
+import com.sun.tools.javac.resources.CompilerProperties.Errors;
+import com.sun.tools.javac.resources.CompilerProperties.Fragments;
+import com.sun.tools.javac.tree.*;
+import com.sun.tools.javac.tree.JCTree.*;
+import com.sun.tools.javac.tree.JCTree.JCMemberReference.ReferenceKind;
+import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
+import com.sun.tools.javac.util.*;
+import com.sun.tools.javac.util.DefinedBy.Api;
+import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
+import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
+import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
+
+import java.util.Arrays;
+import java.util.Collection;
+import java.util.EnumSet;
+import java.util.HashSet;
+import java.util.Iterator;
+import java.util.LinkedHashMap;
+import java.util.Map;
+import java.util.Set;
+import java.util.function.BiFunction;
+import java.util.function.BiPredicate;
+import java.util.function.Function;
+import java.util.function.Predicate;
+import java.util.stream.Stream;
+
+import javax.lang.model.element.ElementVisitor;
+
+import static com.sun.tools.javac.code.Flags.*;
+import static com.sun.tools.javac.code.Flags.BLOCK;
+import static com.sun.tools.javac.code.Flags.STATIC;
+import static com.sun.tools.javac.code.Kinds.*;
+import static com.sun.tools.javac.code.Kinds.Kind.*;
+import static com.sun.tools.javac.code.TypeTag.*;
+import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*;
+import static com.sun.tools.javac.tree.JCTree.Tag.*;
+import static com.sun.tools.javac.util.Iterators.createCompoundIterator;
+
+/** Helper class for name resolution, used mostly by the attribution phase.
+ *
+ *  <p><b>This is NOT part of any supported API.
+ *  If you write code that depends on this, you do so at your own risk.
+ *  This code and its internal interfaces are subject to change or
+ *  deletion without notice.</b>
+ */
+public class Resolve {
+    protected static final Context.Key<Resolve> resolveKey = new Context.Key<>();
+
+    Names names;
+    Log log;
+    Symtab syms;
+    Attr attr;
+    DeferredAttr deferredAttr;
+    Check chk;
+    Infer infer;
+    ClassFinder finder;
+    ModuleFinder moduleFinder;
+    Types types;
+    JCDiagnostic.Factory diags;
+    public final boolean allowMethodHandles;
+    public final boolean allowFunctionalInterfaceMostSpecific;
+    public final boolean allowModules;
+    public final boolean checkVarargsAccessAfterResolution;
+    private final boolean compactMethodDiags;
+    final EnumSet<VerboseResolutionMode> verboseResolutionMode;
+
+    WriteableScope polymorphicSignatureScope;
+
+    protected Resolve(Context context) {
+        context.put(resolveKey, this);
+        syms = Symtab.instance(context);
+
+        varNotFound = new SymbolNotFoundError(ABSENT_VAR);
+        methodNotFound = new SymbolNotFoundError(ABSENT_MTH);
+        typeNotFound = new SymbolNotFoundError(ABSENT_TYP);
+        referenceNotFound = new ReferenceLookupResult(methodNotFound, null);
+
+        names = Names.instance(context);
+        log = Log.instance(context);
+        attr = Attr.instance(context);
+        deferredAttr = DeferredAttr.instance(context);
+        chk = Check.instance(context);
+        infer = Infer.instance(context);
+        finder = ClassFinder.instance(context);
+        moduleFinder = ModuleFinder.instance(context);
+        types = Types.instance(context);
+        diags = JCDiagnostic.Factory.instance(context);
+        Source source = Source.instance(context);
+        Options options = Options.instance(context);
+        compactMethodDiags = options.isSet(Option.XDIAGS, "compact") ||
+                options.isUnset(Option.XDIAGS) && options.isUnset("rawDiagnostics");
+        verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options);
+        Target target = Target.instance(context);
+        allowMethodHandles = target.hasMethodHandles();
+        allowFunctionalInterfaceMostSpecific = source.allowFunctionalInterfaceMostSpecific();
+        checkVarargsAccessAfterResolution =
+                source.allowPostApplicabilityVarargsAccessCheck();
+        polymorphicSignatureScope = WriteableScope.create(syms.noSymbol);
+
+        inapplicableMethodException = new InapplicableMethodException(diags);
+
+        allowModules = source.allowModules();
+    }
+
+    /** error symbols, which are returned when resolution fails
+     */
+    private final SymbolNotFoundError varNotFound;
+    private final SymbolNotFoundError methodNotFound;
+    private final SymbolNotFoundError typeNotFound;
+
+    /** empty reference lookup result */
+    private final ReferenceLookupResult referenceNotFound;
+
+    public static Resolve instance(Context context) {
+        Resolve instance = context.get(resolveKey);
+        if (instance == null)
+            instance = new Resolve(context);
+        return instance;
+    }
+
+    private static Symbol bestOf(Symbol s1,
+                                 Symbol s2) {
+        return s1.kind.betterThan(s2.kind) ? s1 : s2;
+    }
+
+    // <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support">
+    enum VerboseResolutionMode {
+        SUCCESS("success"),
+        FAILURE("failure"),
+        APPLICABLE("applicable"),
+        INAPPLICABLE("inapplicable"),
+        DEFERRED_INST("deferred-inference"),
+        PREDEF("predef"),
+        OBJECT_INIT("object-init"),
+        INTERNAL("internal");
+
+        final String opt;
+
+        private VerboseResolutionMode(String opt) {
+            this.opt = opt;
+        }
+
+        static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) {
+            String s = opts.get("debug.verboseResolution");
+            EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class);
+            if (s == null) return res;
+            if (s.contains("all")) {
+                res = EnumSet.allOf(VerboseResolutionMode.class);
+            }
+            Collection<String> args = Arrays.asList(s.split(","));
+            for (VerboseResolutionMode mode : values()) {
+                if (args.contains(mode.opt)) {
+                    res.add(mode);
+                } else if (args.contains("-" + mode.opt)) {
+                    res.remove(mode);
+                }
+            }
+            return res;
+        }
+    }
+
+    void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site,
+            List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) {
+        boolean success = !bestSoFar.kind.isResolutionError();
+
+        if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) {
+            return;
+        } else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) {
+            return;
+        }
+
+        if (bestSoFar.name == names.init &&
+                bestSoFar.owner == syms.objectType.tsym &&
+                !verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) {
+            return; //skip diags for Object constructor resolution
+        } else if (site == syms.predefClass.type &&
+                !verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) {
+            return; //skip spurious diags for predef symbols (i.e. operators)
+        } else if (currentResolutionContext.internalResolution &&
+                !verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) {
+            return;
+        }
+
+        int pos = 0;
+        int mostSpecificPos = -1;
+        ListBuffer<JCDiagnostic> subDiags = new ListBuffer<>();
+        for (Candidate c : currentResolutionContext.candidates) {
+            if (currentResolutionContext.step != c.step ||
+                    (c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) ||
+                    (!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) {
+                continue;
+            } else {
+                subDiags.append(c.isApplicable() ?
+                        getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) :
+                        getVerboseInapplicableCandidateDiag(pos, c.sym, c.details));
+                if (c.sym == bestSoFar)
+                    mostSpecificPos = pos;
+                pos++;
+            }
+        }
+        String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1";
+        List<Type> argtypes2 = argtypes.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, bestSoFar, currentResolutionContext.step));
+        JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name,
+                site.tsym, mostSpecificPos, currentResolutionContext.step,
+                methodArguments(argtypes2),
+                methodArguments(typeargtypes));
+        JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
+        log.report(d);
+    }
+
+    JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) {
+        JCDiagnostic subDiag = null;
+        if (sym.type.hasTag(FORALL)) {
+            subDiag = diags.fragment(Fragments.PartialInstSig(inst));
+        }
+
+        String key = subDiag == null ?
+                "applicable.method.found" :
+                "applicable.method.found.1";
+
+        return diags.fragment(key, pos, sym, subDiag);
+    }
+
+    JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) {
+        return diags.fragment(Fragments.NotApplicableMethodFound(pos, sym, subDiag));
+    }
+    // </editor-fold>
+
+/* ************************************************************************
+ * Identifier resolution
+ *************************************************************************/
+
+    /** An environment is "static" if its static level is greater than
+     *  the one of its outer environment
+     */
+    protected static boolean isStatic(Env<AttrContext> env) {
+        return env.outer != null && env.info.staticLevel > env.outer.info.staticLevel;
+    }
+
+    /** An environment is an "initializer" if it is a constructor or
+     *  an instance initializer.
+     */
+    static boolean isInitializer(Env<AttrContext> env) {
+        Symbol owner = env.info.scope.owner;
+        return owner.isConstructor() ||
+            owner.owner.kind == TYP &&
+            (owner.kind == VAR ||
+             owner.kind == MTH && (owner.flags() & BLOCK) != 0) &&
+            (owner.flags() & STATIC) == 0;
+    }
+
+    /** Is class accessible in given evironment?
+     *  @param env    The current environment.
+     *  @param c      The class whose accessibility is checked.
+     */
+    public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) {
+        return isAccessible(env, c, false);
+    }
+
+    public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) {
+
+        /* 15.9.5.1: Note that it is possible for the signature of the anonymous constructor
+           to refer to an inaccessible type
+        */
+        if (env.enclMethod != null && (env.enclMethod.mods.flags & ANONCONSTR) != 0)
+            return true;
+
+        if (env.info.visitingServiceImplementation &&
+            env.toplevel.modle == c.packge().modle) {
+            return true;
+        }
+
+        boolean isAccessible = false;
+        switch ((short)(c.flags() & AccessFlags)) {
+            case PRIVATE:
+                isAccessible =
+                    env.enclClass.sym.outermostClass() ==
+                    c.owner.outermostClass();
+                break;
+            case 0:
+                isAccessible =
+                    env.toplevel.packge == c.owner // fast special case
+                    ||
+                    env.toplevel.packge == c.packge();
+                break;
+            default: // error recovery
+                isAccessible = true;
+                break;
+            case PUBLIC:
+                if (allowModules) {
+                    ModuleSymbol currModule = env.toplevel.modle;
+                    currModule.complete();
+                    PackageSymbol p = c.packge();
+                    isAccessible =
+                        currModule == p.modle ||
+                        currModule.visiblePackages.get(p.fullname) == p ||
+                        p == syms.rootPackage ||
+                        (p.modle == syms.unnamedModule && currModule.readModules.contains(p.modle));
+                } else {
+                    isAccessible = true;
+                }
+                break;
+            case PROTECTED:
+                isAccessible =
+                    env.toplevel.packge == c.owner // fast special case
+                    ||
+                    env.toplevel.packge == c.packge()
+                    ||
+                    isInnerSubClass(env.enclClass.sym, c.owner);
+                break;
+        }
+        return (checkInner == false || c.type.getEnclosingType() == Type.noType) ?
+            isAccessible :
+            isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner);
+    }
+    //where
+        /** Is given class a subclass of given base class, or an inner class
+         *  of a subclass?
+         *  Return null if no such class exists.
+         *  @param c     The class which is the subclass or is contained in it.
+         *  @param base  The base class
+         */
+        private boolean isInnerSubClass(ClassSymbol c, Symbol base) {
+            while (c != null && !c.isSubClass(base, types)) {
+                c = c.owner.enclClass();
+            }
+            return c != null;
+        }
+
+    boolean isAccessible(Env<AttrContext> env, Type t) {
+        return isAccessible(env, t, false);
+    }
+
+    boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) {
+        return (t.hasTag(ARRAY))
+            ? isAccessible(env, types.cvarUpperBound(types.elemtype(t)))
+            : isAccessible(env, t.tsym, checkInner);
+    }
+
+    /** Is symbol accessible as a member of given type in given environment?
+     *  @param env    The current environment.
+     *  @param site   The type of which the tested symbol is regarded
+     *                as a member.
+     *  @param sym    The symbol.
+     */
+    public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) {
+        return isAccessible(env, site, sym, false);
+    }
+    public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) {
+        if (sym.name == names.init && sym.owner != site.tsym) return false;
+
+        /* 15.9.5.1: Note that it is possible for the signature of the anonymous constructor
+           to refer to an inaccessible type
+        */
+        if (env.enclMethod != null && (env.enclMethod.mods.flags & ANONCONSTR) != 0)
+            return true;
+
+        if (env.info.visitingServiceImplementation &&
+            env.toplevel.modle == sym.packge().modle) {
+            return true;
+        }
+
+        switch ((short)(sym.flags() & AccessFlags)) {
+        case PRIVATE:
+            return
+                (env.enclClass.sym == sym.owner // fast special case
+                 ||
+                 env.enclClass.sym.outermostClass() ==
+                 sym.owner.outermostClass())
+                &&
+                sym.isInheritedIn(site.tsym, types);
+        case 0:
+            return
+                (env.toplevel.packge == sym.owner.owner // fast special case
+                 ||
+                 env.toplevel.packge == sym.packge())
+                &&
+                isAccessible(env, site, checkInner)
+                &&
+                sym.isInheritedIn(site.tsym, types)
+                &&
+                notOverriddenIn(site, sym);
+        case PROTECTED:
+            return
+                (env.toplevel.packge == sym.owner.owner // fast special case
+                 ||
+                 env.toplevel.packge == sym.packge()
+                 ||
+                 isProtectedAccessible(sym, env.enclClass.sym, site)
+                 ||
+                 // OK to select instance method or field from 'super' or type name
+                 // (but type names should be disallowed elsewhere!)
+                 env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP)
+                &&
+                isAccessible(env, site, checkInner)
+                &&
+                notOverriddenIn(site, sym);
+        default: // this case includes erroneous combinations as well
+            return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym);
+        }
+    }
+    //where
+    /* `sym' is accessible only if not overridden by
+     * another symbol which is a member of `site'
+     * (because, if it is overridden, `sym' is not strictly
+     * speaking a member of `site'). A polymorphic signature method
+     * cannot be overridden (e.g. MH.invokeExact(Object[])).
+     */
+    private boolean notOverriddenIn(Type site, Symbol sym) {
+        if (sym.kind != MTH || sym.isConstructor() || sym.isStatic())
+            return true;
+        else {
+            Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true);
+            return (s2 == null || s2 == sym || sym.owner == s2.owner ||
+                    !types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym)));
+        }
+    }
+    //where
+        /** Is given protected symbol accessible if it is selected from given site
+         *  and the selection takes place in given class?
+         *  @param sym     The symbol with protected access
+         *  @param c       The class where the access takes place
+         *  @site          The type of the qualifier
+         */
+        private
+        boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) {
+            Type newSite = site.hasTag(TYPEVAR) ? site.getUpperBound() : site;
+            while (c != null &&
+                   !(c.isSubClass(sym.owner, types) &&
+                     (c.flags() & INTERFACE) == 0 &&
+                     // In JLS 2e 6.6.2.1, the subclass restriction applies
+                     // only to instance fields and methods -- types are excluded
+                     // regardless of whether they are declared 'static' or not.
+                     ((sym.flags() & STATIC) != 0 || sym.kind == TYP || newSite.tsym.isSubClass(c, types))))
+                c = c.owner.enclClass();
+            return c != null;
+        }
+
+    /**
+     * Performs a recursive scan of a type looking for accessibility problems
+     * from current attribution environment
+     */
+    void checkAccessibleType(Env<AttrContext> env, Type t) {
+        accessibilityChecker.visit(t, env);
+    }
+
+    /**
+     * Accessibility type-visitor
+     */
+    Types.SimpleVisitor<Void, Env<AttrContext>> accessibilityChecker =
+            new Types.SimpleVisitor<Void, Env<AttrContext>>() {
+
+        void visit(List<Type> ts, Env<AttrContext> env) {
+            for (Type t : ts) {
+                visit(t, env);
+            }
+        }
+
+        public Void visitType(Type t, Env<AttrContext> env) {
+            return null;
+        }
+
+        @Override
+        public Void visitArrayType(ArrayType t, Env<AttrContext> env) {
+            visit(t.elemtype, env);
+            return null;
+        }
+
+        @Override
+        public Void visitClassType(ClassType t, Env<AttrContext> env) {
+            visit(t.getTypeArguments(), env);
+            if (!isAccessible(env, t, true)) {
+                accessBase(new AccessError(env, null, t.tsym), env.tree.pos(), env.enclClass.sym, t, t.tsym.name, true);
+            }
+            return null;
+        }
+
+        @Override
+        public Void visitWildcardType(WildcardType t, Env<AttrContext> env) {
+            visit(t.type, env);
+            return null;
+        }
+
+        @Override
+        public Void visitMethodType(MethodType t, Env<AttrContext> env) {
+            visit(t.getParameterTypes(), env);
+            visit(t.getReturnType(), env);
+            visit(t.getThrownTypes(), env);
+            return null;
+        }
+    };
+
+    /** Try to instantiate the type of a method so that it fits
+     *  given type arguments and argument types. If successful, return
+     *  the method's instantiated type, else return null.
+     *  The instantiation will take into account an additional leading
+     *  formal parameter if the method is an instance method seen as a member
+     *  of an under determined site. In this case, we treat site as an additional
+     *  parameter and the parameters of the class containing the method as
+     *  additional type variables that get instantiated.
+     *
+     *  @param env         The current environment
+     *  @param site        The type of which the method is a member.
+     *  @param m           The method symbol.
+     *  @param argtypes    The invocation's given value arguments.
+     *  @param typeargtypes    The invocation's given type arguments.
+     *  @param allowBoxing Allow boxing conversions of arguments.
+     *  @param useVarargs Box trailing arguments into an array for varargs.
+     */
+    Type rawInstantiate(Env<AttrContext> env,
+                        Type site,
+                        Symbol m,
+                        ResultInfo resultInfo,
+                        List<Type> argtypes,
+                        List<Type> typeargtypes,
+                        boolean allowBoxing,
+                        boolean useVarargs,
+                        Warner warn) throws Infer.InferenceException {
+        Type mt = types.memberType(site, m);
+        // tvars is the list of formal type variables for which type arguments
+        // need to inferred.
+        List<Type> tvars = List.nil();
+        if (typeargtypes == null) typeargtypes = List.nil();
+        if (!mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
+            // This is not a polymorphic method, but typeargs are supplied
+            // which is fine, see JLS 15.12.2.1
+        } else if (mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
+            ForAll pmt = (ForAll) mt;
+            if (typeargtypes.length() != pmt.tvars.length())
+                 // not enough args
+                throw inapplicableMethodException.setMessage("wrong.number.type.args", Integer.toString(pmt.tvars.length()));
+            // Check type arguments are within bounds
+            List<Type> formals = pmt.tvars;
+            List<Type> actuals = typeargtypes;
+            while (formals.nonEmpty() && actuals.nonEmpty()) {
+                List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head),
+                                                pmt.tvars, typeargtypes);
+                for (; bounds.nonEmpty(); bounds = bounds.tail) {
+                    if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn))
+                        throw inapplicableMethodException.setMessage("explicit.param.do.not.conform.to.bounds",actuals.head, bounds);
+                }
+                formals = formals.tail;
+                actuals = actuals.tail;
+            }
+            mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes);
+        } else if (mt.hasTag(FORALL)) {
+            ForAll pmt = (ForAll) mt;
+            List<Type> tvars1 = types.newInstances(pmt.tvars);
+            tvars = tvars.appendList(tvars1);
+            mt = types.subst(pmt.qtype, pmt.tvars, tvars1);
+        }
+
+        // find out whether we need to go the slow route via infer
+        boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/
+        for (List<Type> l = argtypes;
+             l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded;
+             l = l.tail) {
+            if (l.head.hasTag(FORALL)) instNeeded = true;
+        }
+
+        if (instNeeded) {
+            return infer.instantiateMethod(env,
+                                    tvars,
+                                    (MethodType)mt,
+                                    resultInfo,
+                                    (MethodSymbol)m,
+                                    argtypes,
+                                    allowBoxing,
+                                    useVarargs,
+                                    currentResolutionContext,
+                                    warn);
+        }
+
+        DeferredAttr.DeferredAttrContext dc = currentResolutionContext.deferredAttrContext(m, infer.emptyContext, resultInfo, warn);
+        currentResolutionContext.methodCheck.argumentsAcceptable(env, dc,
+                                argtypes, mt.getParameterTypes(), warn);
+        dc.complete();
+        return mt;
+    }
+
+    Type checkMethod(Env<AttrContext> env,
+                     Type site,
+                     Symbol m,
+                     ResultInfo resultInfo,
+                     List<Type> argtypes,
+                     List<Type> typeargtypes,
+                     Warner warn) {
+        MethodResolutionContext prevContext = currentResolutionContext;
+        try {
+            currentResolutionContext = new MethodResolutionContext();
+            currentResolutionContext.attrMode = (resultInfo.pt == Infer.anyPoly) ?
+                    AttrMode.SPECULATIVE : DeferredAttr.AttrMode.CHECK;
+            if (env.tree.hasTag(JCTree.Tag.REFERENCE)) {
+                //method/constructor references need special check class
+                //to handle inference variables in 'argtypes' (might happen
+                //during an unsticking round)
+                currentResolutionContext.methodCheck =
+                        new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
+            }
+            MethodResolutionPhase step = currentResolutionContext.step = env.info.pendingResolutionPhase;
+            return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
+                    step.isBoxingRequired(), step.isVarargsRequired(), warn);
+        }
+        finally {
+            currentResolutionContext = prevContext;
+        }
+    }
+
+    /** Same but returns null instead throwing a NoInstanceException
+     */
+    Type instantiate(Env<AttrContext> env,
+                     Type site,
+                     Symbol m,
+                     ResultInfo resultInfo,
+                     List<Type> argtypes,
+                     List<Type> typeargtypes,
+                     boolean allowBoxing,
+                     boolean useVarargs,
+                     Warner warn) {
+        try {
+            return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
+                                  allowBoxing, useVarargs, warn);
+        } catch (InapplicableMethodException ex) {
+            return null;
+        }
+    }
+
+    /**
+     * This interface defines an entry point that should be used to perform a
+     * method check. A method check usually consist in determining as to whether
+     * a set of types (actuals) is compatible with another set of types (formals).
+     * Since the notion of compatibility can vary depending on the circumstances,
+     * this interfaces allows to easily add new pluggable method check routines.
+     */
+    interface MethodCheck {
+        /**
+         * Main method check routine. A method check usually consist in determining
+         * as to whether a set of types (actuals) is compatible with another set of
+         * types (formals). If an incompatibility is found, an unchecked exception
+         * is assumed to be thrown.
+         */
+        void argumentsAcceptable(Env<AttrContext> env,
+                                DeferredAttrContext deferredAttrContext,
+                                List<Type> argtypes,
+                                List<Type> formals,
+                                Warner warn);
+
+        /**
+         * Retrieve the method check object that will be used during a
+         * most specific check.
+         */
+        MethodCheck mostSpecificCheck(List<Type> actuals);
+    }
+
+    /**
+     * Helper enum defining all method check diagnostics (used by resolveMethodCheck).
+     */
+    enum MethodCheckDiag {
+        /**
+         * Actuals and formals differs in length.
+         */
+        ARITY_MISMATCH("arg.length.mismatch", "infer.arg.length.mismatch"),
+        /**
+         * An actual is incompatible with a formal.
+         */
+        ARG_MISMATCH("no.conforming.assignment.exists", "infer.no.conforming.assignment.exists"),
+        /**
+         * An actual is incompatible with the varargs element type.
+         */
+        VARARG_MISMATCH("varargs.argument.mismatch", "infer.varargs.argument.mismatch"),
+        /**
+         * The varargs element type is inaccessible.
+         */
+        INACCESSIBLE_VARARGS("inaccessible.varargs.type", "inaccessible.varargs.type");
+
+        final String basicKey;
+        final String inferKey;
+
+        MethodCheckDiag(String basicKey, String inferKey) {
+            this.basicKey = basicKey;
+            this.inferKey = inferKey;
+        }
+
+        String regex() {
+            return String.format("([a-z]*\\.)*(%s|%s)", basicKey, inferKey);
+        }
+    }
+
+    /**
+     * Dummy method check object. All methods are deemed applicable, regardless
+     * of their formal parameter types.
+     */
+    MethodCheck nilMethodCheck = new MethodCheck() {
+        public void argumentsAcceptable(Env<AttrContext> env, DeferredAttrContext deferredAttrContext, List<Type> argtypes, List<Type> formals, Warner warn) {
+            //do nothing - method always applicable regardless of actuals
+        }
+
+        public MethodCheck mostSpecificCheck(List<Type> actuals) {
+            return this;
+        }
+    };
+
+    /**
+     * Base class for 'real' method checks. The class defines the logic for
+     * iterating through formals and actuals and provides and entry point
+     * that can be used by subclasses in order to define the actual check logic.
+     */
+    abstract class AbstractMethodCheck implements MethodCheck {
+        @Override
+        public void argumentsAcceptable(final Env<AttrContext> env,
+                                    DeferredAttrContext deferredAttrContext,
+                                    List<Type> argtypes,
+                                    List<Type> formals,
+                                    Warner warn) {
+            //should we expand formals?
+            boolean useVarargs = deferredAttrContext.phase.isVarargsRequired();
+            JCTree callTree = treeForDiagnostics(env);
+            List<JCExpression> trees = TreeInfo.args(callTree);
+
+            //inference context used during this method check
+            InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
+
+            Type varargsFormal = useVarargs ? formals.last() : null;
+
+            if (varargsFormal == null &&
+                    argtypes.size() != formals.size()) {
+                reportMC(callTree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
+            }
+
+            while (argtypes.nonEmpty() && formals.head != varargsFormal) {
+                DiagnosticPosition pos = trees != null ? trees.head : null;
+                checkArg(pos, false, argtypes.head, formals.head, deferredAttrContext, warn);
+                argtypes = argtypes.tail;
+                formals = formals.tail;
+                trees = trees != null ? trees.tail : trees;
+            }
+
+            if (formals.head != varargsFormal) {
+                reportMC(callTree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
+            }
+
+            if (useVarargs) {
+                //note: if applicability check is triggered by most specific test,
+                //the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
+                final Type elt = types.elemtype(varargsFormal);
+                while (argtypes.nonEmpty()) {
+                    DiagnosticPosition pos = trees != null ? trees.head : null;
+                    checkArg(pos, true, argtypes.head, elt, deferredAttrContext, warn);
+                    argtypes = argtypes.tail;
+                    trees = trees != null ? trees.tail : trees;
+                }
+            }
+        }
+
+            // where
+            private JCTree treeForDiagnostics(Env<AttrContext> env) {
+                return env.info.preferredTreeForDiagnostics != null ? env.info.preferredTreeForDiagnostics : env.tree;
+            }
+
+        /**
+         * Does the actual argument conforms to the corresponding formal?
+         */
+        abstract void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn);
+
+        protected void reportMC(DiagnosticPosition pos, MethodCheckDiag diag, InferenceContext inferenceContext, Object... args) {
+            boolean inferDiag = inferenceContext != infer.emptyContext;
+            InapplicableMethodException ex = inferDiag ?
+                    infer.inferenceException : inapplicableMethodException;
+            if (inferDiag && (!diag.inferKey.equals(diag.basicKey))) {
+                Object[] args2 = new Object[args.length + 1];
+                System.arraycopy(args, 0, args2, 1, args.length);
+                args2[0] = inferenceContext.inferenceVars();
+                args = args2;
+            }
+            String key = inferDiag ? diag.inferKey : diag.basicKey;
+            throw ex.setMessage(diags.create(DiagnosticType.FRAGMENT, log.currentSource(), pos, key, args));
+        }
+
+        public MethodCheck mostSpecificCheck(List<Type> actuals) {
+            return nilMethodCheck;
+        }
+
+    }
+
+    /**
+     * Arity-based method check. A method is applicable if the number of actuals
+     * supplied conforms to the method signature.
+     */
+    MethodCheck arityMethodCheck = new AbstractMethodCheck() {
+        @Override
+        void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
+            //do nothing - actual always compatible to formals
+        }
+
+        @Override
+        public String toString() {
+            return "arityMethodCheck";
+        }
+    };
+
+    /**
+     * Main method applicability routine. Given a list of actual types A,
+     * a list of formal types F, determines whether the types in A are
+     * compatible (by method invocation conversion) with the types in F.
+     *
+     * Since this routine is shared between overload resolution and method
+     * type-inference, a (possibly empty) inference context is used to convert
+     * formal types to the corresponding 'undet' form ahead of a compatibility
+     * check so that constraints can be propagated and collected.
+     *
+     * Moreover, if one or more types in A is a deferred type, this routine uses
+     * DeferredAttr in order to perform deferred attribution. If one or more actual
+     * deferred types are stuck, they are placed in a queue and revisited later
+     * after the remainder of the arguments have been seen. If this is not sufficient
+     * to 'unstuck' the argument, a cyclic inference error is called out.
+     *
+     * A method check handler (see above) is used in order to report errors.
+     */
+    MethodCheck resolveMethodCheck = new AbstractMethodCheck() {
+
+        @Override
+        void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
+            ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
+            mresult.check(pos, actual);
+        }
+
+        @Override
+        public void argumentsAcceptable(final Env<AttrContext> env,
+                                    DeferredAttrContext deferredAttrContext,
+                                    List<Type> argtypes,
+                                    List<Type> formals,
+                                    Warner warn) {
+            super.argumentsAcceptable(env, deferredAttrContext, argtypes, formals, warn);
+            // should we check varargs element type accessibility?
+            if (deferredAttrContext.phase.isVarargsRequired()) {
+                if (deferredAttrContext.mode == AttrMode.CHECK || !checkVarargsAccessAfterResolution) {
+                    varargsAccessible(env, types.elemtype(formals.last()), deferredAttrContext.inferenceContext);
+                }
+            }
+        }
+
+        /**
+         * Test that the runtime array element type corresponding to 't' is accessible.  't' should be the
+         * varargs element type of either the method invocation type signature (after inference completes)
+         * or the method declaration signature (before inference completes).
+         */
+        private void varargsAccessible(final Env<AttrContext> env, final Type t, final InferenceContext inferenceContext) {
+            if (inferenceContext.free(t)) {
+                inferenceContext.addFreeTypeListener(List.of(t),
+                        solvedContext -> varargsAccessible(env, solvedContext.asInstType(t), solvedContext));
+            } else {
+                if (!isAccessible(env, types.erasure(t))) {
+                    Symbol location = env.enclClass.sym;
+                    reportMC(env.tree, MethodCheckDiag.INACCESSIBLE_VARARGS, inferenceContext, t, Kinds.kindName(location), location);
+                }
+            }
+        }
+
+        private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
+                final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
+            CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
+                MethodCheckDiag methodDiag = varargsCheck ?
+                                 MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
+
+                @Override
+                public void report(DiagnosticPosition pos, JCDiagnostic details) {
+                    reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
+                }
+            };
+            return new MethodResultInfo(to, checkContext);
+        }
+
+        @Override
+        public MethodCheck mostSpecificCheck(List<Type> actuals) {
+            return new MostSpecificCheck(actuals);
+        }
+
+        @Override
+        public String toString() {
+            return "resolveMethodCheck";
+        }
+    };
+
+    /**
+     * This class handles method reference applicability checks; since during
+     * these checks it's sometime possible to have inference variables on
+     * the actual argument types list, the method applicability check must be
+     * extended so that inference variables are 'opened' as needed.
+     */
+    class MethodReferenceCheck extends AbstractMethodCheck {
+
+        InferenceContext pendingInferenceContext;
+
+        MethodReferenceCheck(InferenceContext pendingInferenceContext) {
+            this.pendingInferenceContext = pendingInferenceContext;
+        }
+
+        @Override
+        void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
+            ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
+            mresult.check(pos, actual);
+        }
+
+        private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
+                final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
+            CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
+                MethodCheckDiag methodDiag = varargsCheck ?
+                                 MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
+
+                @Override
+                public boolean compatible(Type found, Type req, Warner warn) {
+                    found = pendingInferenceContext.asUndetVar(found);
+                    if (found.hasTag(UNDETVAR) && req.isPrimitive()) {
+                        req = types.boxedClass(req).type;
+                    }
+                    return super.compatible(found, req, warn);
+                }
+
+                @Override
+                public void report(DiagnosticPosition pos, JCDiagnostic details) {
+                    reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
+                }
+            };
+            return new MethodResultInfo(to, checkContext);
+        }
+
+        @Override
+        public MethodCheck mostSpecificCheck(List<Type> actuals) {
+            return new MostSpecificCheck(actuals);
+        }
+
+        @Override
+        public String toString() {
+            return "MethodReferenceCheck";
+        }
+    }
+
+    /**
+     * Check context to be used during method applicability checks. A method check
+     * context might contain inference variables.
+     */
+    abstract class MethodCheckContext implements CheckContext {
+
+        boolean strict;
+        DeferredAttrContext deferredAttrContext;
+        Warner rsWarner;
+
+        public MethodCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
+           this.strict = strict;
+           this.deferredAttrContext = deferredAttrContext;
+           this.rsWarner = rsWarner;
+        }
+
+        public boolean compatible(Type found, Type req, Warner warn) {
+            InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
+            return strict ?
+                    types.isSubtypeUnchecked(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn) :
+                    types.isConvertible(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn);
+        }
+
+        public void report(DiagnosticPosition pos, JCDiagnostic details) {
+            throw inapplicableMethodException.setMessage(details);
+        }
+
+        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
+            return rsWarner;
+        }
+
+        public InferenceContext inferenceContext() {
+            return deferredAttrContext.inferenceContext;
+        }
+
+        public DeferredAttrContext deferredAttrContext() {
+            return deferredAttrContext;
+        }
+
+        @Override
+        public String toString() {
+            return "MethodCheckContext";
+        }
+    }
+
+    /**
+     * ResultInfo class to be used during method applicability checks. Check
+     * for deferred types goes through special path.
+     */
+    class MethodResultInfo extends ResultInfo {
+
+        public MethodResultInfo(Type pt, CheckContext checkContext) {
+            attr.super(KindSelector.VAL, pt, checkContext);
+        }
+
+        @Override
+        protected Type check(DiagnosticPosition pos, Type found) {
+            if (found.hasTag(DEFERRED)) {
+                DeferredType dt = (DeferredType)found;
+                return dt.check(this);
+            } else {
+                Type uResult = U(found);
+                Type capturedType = pos == null || pos.getTree() == null ?
+                        types.capture(uResult) :
+                        checkContext.inferenceContext()
+                            .cachedCapture(pos.getTree(), uResult, true);
+                return super.check(pos, chk.checkNonVoid(pos, capturedType));
+            }
+        }
+
+        /**
+         * javac has a long-standing 'simplification' (see 6391995):
+         * given an actual argument type, the method check is performed
+         * on its upper bound. This leads to inconsistencies when an
+         * argument type is checked against itself. For example, given
+         * a type-variable T, it is not true that {@code U(T) <: T},
+         * so we need to guard against that.
+         */
+        private Type U(Type found) {
+            return found == pt ?
+                    found : types.cvarUpperBound(found);
+        }
+
+        @Override
+        protected MethodResultInfo dup(Type newPt) {
+            return new MethodResultInfo(newPt, checkContext);
+        }
+
+        @Override
+        protected ResultInfo dup(CheckContext newContext) {
+            return new MethodResultInfo(pt, newContext);
+        }
+
+        @Override
+        protected ResultInfo dup(Type newPt, CheckContext newContext) {
+            return new MethodResultInfo(newPt, newContext);
+        }
+    }
+
+    /**
+     * Most specific method applicability routine. Given a list of actual types A,
+     * a list of formal types F1, and a list of formal types F2, the routine determines
+     * as to whether the types in F1 can be considered more specific than those in F2 w.r.t.
+     * argument types A.
+     */
+    class MostSpecificCheck implements MethodCheck {
+
+        List<Type> actuals;
+
+        MostSpecificCheck(List<Type> actuals) {
+            this.actuals = actuals;
+        }
+
+        @Override
+        public void argumentsAcceptable(final Env<AttrContext> env,
+                                    DeferredAttrContext deferredAttrContext,
+                                    List<Type> formals1,
+                                    List<Type> formals2,
+                                    Warner warn) {
+            formals2 = adjustArgs(formals2, deferredAttrContext.msym, formals1.length(), deferredAttrContext.phase.isVarargsRequired());
+            while (formals2.nonEmpty()) {
+                ResultInfo mresult = methodCheckResult(formals2.head, deferredAttrContext, warn, actuals.head);
+                mresult.check(null, formals1.head);
+                formals1 = formals1.tail;
+                formals2 = formals2.tail;
+                actuals = actuals.isEmpty() ? actuals : actuals.tail;
+            }
+        }
+
+       /**
+        * Create a method check context to be used during the most specific applicability check
+        */
+        ResultInfo methodCheckResult(Type to, DeferredAttr.DeferredAttrContext deferredAttrContext,
+               Warner rsWarner, Type actual) {
+            return attr.new ResultInfo(KindSelector.VAL, to,
+                   new MostSpecificCheckContext(deferredAttrContext, rsWarner, actual));
+        }
+
+        /**
+         * Subclass of method check context class that implements most specific
+         * method conversion. If the actual type under analysis is a deferred type
+         * a full blown structural analysis is carried out.
+         */
+        class MostSpecificCheckContext extends MethodCheckContext {
+
+            Type actual;
+
+            public MostSpecificCheckContext(DeferredAttrContext deferredAttrContext, Warner rsWarner, Type actual) {
+                super(true, deferredAttrContext, rsWarner);
+                this.actual = actual;
+            }
+
+            public boolean compatible(Type found, Type req, Warner warn) {
+                if (allowFunctionalInterfaceMostSpecific &&
+                        unrelatedFunctionalInterfaces(found, req) &&
+                        (actual != null && actual.getTag() == DEFERRED)) {
+                    DeferredType dt = (DeferredType) actual;
+                    JCTree speculativeTree = dt.speculativeTree(deferredAttrContext);
+                    if (speculativeTree != deferredAttr.stuckTree) {
+                        return functionalInterfaceMostSpecific(found, req, speculativeTree);
+                    }
+                }
+                return compatibleBySubtyping(found, req);
+            }
+
+            private boolean compatibleBySubtyping(Type found, Type req) {
+                if (!strict && found.isPrimitive() != req.isPrimitive()) {
+                    found = found.isPrimitive() ? types.boxedClass(found).type : types.unboxedType(found);
+                }
+                return types.isSubtypeNoCapture(found, deferredAttrContext.inferenceContext.asUndetVar(req));
+            }
+
+            /** Whether {@code t} and {@code s} are unrelated functional interface types. */
+            private boolean unrelatedFunctionalInterfaces(Type t, Type s) {
+                return types.isFunctionalInterface(t.tsym) &&
+                       types.isFunctionalInterface(s.tsym) &&
+                       unrelatedInterfaces(t, s);
+            }
+
+            /** Whether {@code t} and {@code s} are unrelated interface types; recurs on intersections. **/
+            private boolean unrelatedInterfaces(Type t, Type s) {
+                if (t.isCompound()) {
+                    for (Type ti : types.interfaces(t)) {
+                        if (!unrelatedInterfaces(ti, s)) {
+                            return false;
+                        }
+                    }
+                    return true;
+                } else if (s.isCompound()) {
+                    for (Type si : types.interfaces(s)) {
+                        if (!unrelatedInterfaces(t, si)) {
+                            return false;
+                        }
+                    }
+                    return true;
+                } else {
+                    return types.asSuper(t, s.tsym) == null && types.asSuper(s, t.tsym) == null;
+                }
+            }
+
+            /** Parameters {@code t} and {@code s} are unrelated functional interface types. */
+            private boolean functionalInterfaceMostSpecific(Type t, Type s, JCTree tree) {
+                Type tDesc = types.findDescriptorType(types.capture(t));
+                Type tDescNoCapture = types.findDescriptorType(t);
+                Type sDesc = types.findDescriptorType(s);
+                final List<Type> tTypeParams = tDesc.getTypeArguments();
+                final List<Type> tTypeParamsNoCapture = tDescNoCapture.getTypeArguments();
+                final List<Type> sTypeParams = sDesc.getTypeArguments();
+
+                // compare type parameters
+                if (tDesc.hasTag(FORALL) && !types.hasSameBounds((ForAll) tDesc, (ForAll) tDescNoCapture)) {
+                    return false;
+                }
+                // can't use Types.hasSameBounds on sDesc because bounds may have ivars
+                List<Type> tIter = tTypeParams;
+                List<Type> sIter = sTypeParams;
+                while (tIter.nonEmpty() && sIter.nonEmpty()) {
+                    Type tBound = tIter.head.getUpperBound();
+                    Type sBound = types.subst(sIter.head.getUpperBound(), sTypeParams, tTypeParams);
+                    if (tBound.containsAny(tTypeParams) && inferenceContext().free(sBound)) {
+                        return false;
+                    }
+                    if (!types.isSameType(tBound, inferenceContext().asUndetVar(sBound))) {
+                        return false;
+                    }
+                    tIter = tIter.tail;
+                    sIter = sIter.tail;
+                }
+                if (!tIter.isEmpty() || !sIter.isEmpty()) {
+                    return false;
+                }
+
+                // compare parameters
+                List<Type> tParams = tDesc.getParameterTypes();
+                List<Type> tParamsNoCapture = tDescNoCapture.getParameterTypes();
+                List<Type> sParams = sDesc.getParameterTypes();
+                while (tParams.nonEmpty() && tParamsNoCapture.nonEmpty() && sParams.nonEmpty()) {
+                    Type tParam = tParams.head;
+                    Type tParamNoCapture = types.subst(tParamsNoCapture.head, tTypeParamsNoCapture, tTypeParams);
+                    Type sParam = types.subst(sParams.head, sTypeParams, tTypeParams);
+                    if (tParam.containsAny(tTypeParams) && inferenceContext().free(sParam)) {
+                        return false;
+                    }
+                    if (!types.isSubtype(inferenceContext().asUndetVar(sParam), tParam)) {
+                        return false;
+                    }
+                    if (!types.isSameType(tParamNoCapture, inferenceContext().asUndetVar(sParam))) {
+                        return false;
+                    }
+                    tParams = tParams.tail;
+                    tParamsNoCapture = tParamsNoCapture.tail;
+                    sParams = sParams.tail;
+                }
+                if (!tParams.isEmpty() || !tParamsNoCapture.isEmpty() || !sParams.isEmpty()) {
+                    return false;
+                }
+
+                // compare returns
+                Type tRet = tDesc.getReturnType();
+                Type sRet = types.subst(sDesc.getReturnType(), sTypeParams, tTypeParams);
+                if (tRet.containsAny(tTypeParams) && inferenceContext().free(sRet)) {
+                    return false;
+                }
+                MostSpecificFunctionReturnChecker msc = new MostSpecificFunctionReturnChecker(tRet, sRet);
+                msc.scan(tree);
+                return msc.result;
+            }
+
+            /**
+             * Tests whether one functional interface type can be considered more specific
+             * than another unrelated functional interface type for the scanned expression.
+             */
+            class MostSpecificFunctionReturnChecker extends DeferredAttr.PolyScanner {
+
+                final Type tRet;
+                final Type sRet;
+                boolean result;
+
+                /** Parameters {@code t} and {@code s} are unrelated functional interface types. */
+                MostSpecificFunctionReturnChecker(Type tRet, Type sRet) {
+                    this.tRet = tRet;
+                    this.sRet = sRet;
+                    result = true;
+                }
+
+                @Override
+                void skip(JCTree tree) {
+                    result &= false;
+                }
+
+                @Override
+                public void visitConditional(JCConditional tree) {
+                    scan(asExpr(tree.truepart));
+                    scan(asExpr(tree.falsepart));
+                }
+
+                @Override
+                public void visitReference(JCMemberReference tree) {
+                    if (sRet.hasTag(VOID)) {
+                        result &= true;
+                    } else if (tRet.hasTag(VOID)) {
+                        result &= false;
+                    } else if (tRet.isPrimitive() != sRet.isPrimitive()) {
+                        boolean retValIsPrimitive =
+                                tree.refPolyKind == PolyKind.STANDALONE &&
+                                tree.sym.type.getReturnType().isPrimitive();
+                        result &= (retValIsPrimitive == tRet.isPrimitive()) &&
+                                  (retValIsPrimitive != sRet.isPrimitive());
+                    } else {
+                        result &= compatibleBySubtyping(tRet, sRet);
+                    }
+                }
+
+                @Override
+                public void visitParens(JCParens tree) {
+                    scan(asExpr(tree.expr));
+                }
+
+                @Override
+                public void visitLambda(JCLambda tree) {
+                    if (sRet.hasTag(VOID)) {
+                        result &= true;
+                    } else if (tRet.hasTag(VOID)) {
+                        result &= false;
+                    } else {
+                        List<JCExpression> lambdaResults = lambdaResults(tree);
+                        if (!lambdaResults.isEmpty() && unrelatedFunctionalInterfaces(tRet, sRet)) {
+                            for (JCExpression expr : lambdaResults) {
+                                result &= functionalInterfaceMostSpecific(tRet, sRet, expr);
+                            }
+                        } else if (!lambdaResults.isEmpty() && tRet.isPrimitive() != sRet.isPrimitive()) {
+                            for (JCExpression expr : lambdaResults) {
+                                boolean retValIsPrimitive = expr.isStandalone() && expr.type.isPrimitive();
+                                result &= (retValIsPrimitive == tRet.isPrimitive()) &&
+                                        (retValIsPrimitive != sRet.isPrimitive());
+                            }
+                        } else {
+                            result &= compatibleBySubtyping(tRet, sRet);
+                        }
+                    }
+                }
+                //where
+
+                private List<JCExpression> lambdaResults(JCLambda lambda) {
+                    if (lambda.getBodyKind() == JCTree.JCLambda.BodyKind.EXPRESSION) {
+                        return List.of(asExpr((JCExpression) lambda.body));
+                    } else {
+                        final ListBuffer<JCExpression> buffer = new ListBuffer<>();
+                        DeferredAttr.LambdaReturnScanner lambdaScanner =
+                                new DeferredAttr.LambdaReturnScanner() {
+                                    @Override
+                                    public void visitReturn(JCReturn tree) {
+                                        if (tree.expr != null) {
+                                            buffer.append(asExpr(tree.expr));
+                                        }
+                                    }
+                                };
+                        lambdaScanner.scan(lambda.body);
+                        return buffer.toList();
+                    }
+                }
+
+                private JCExpression asExpr(JCExpression expr) {
+                    if (expr.type.hasTag(DEFERRED)) {
+                        JCTree speculativeTree = ((DeferredType)expr.type).speculativeTree(deferredAttrContext);
+                        if (speculativeTree != deferredAttr.stuckTree) {
+                            expr = (JCExpression)speculativeTree;
+                        }
+                    }
+                    return expr;
+                }
+            }
+
+        }
+
+        public MethodCheck mostSpecificCheck(List<Type> actuals) {
+            Assert.error("Cannot get here!");
+            return null;
+        }
+    }
+
+    public static class InapplicableMethodException extends RuntimeException {
+        private static final long serialVersionUID = 0;
+
+        JCDiagnostic diagnostic;
+        JCDiagnostic.Factory diags;
+
+        InapplicableMethodException(JCDiagnostic.Factory diags) {
+            this.diagnostic = null;
+            this.diags = diags;
+        }
+        InapplicableMethodException setMessage() {
+            return setMessage((JCDiagnostic)null);
+        }
+        InapplicableMethodException setMessage(String key) {
+            return setMessage(key != null ? diags.fragment(key) : null);
+        }
+        InapplicableMethodException setMessage(String key, Object... args) {
+            return setMessage(key != null ? diags.fragment(key, args) : null);
+        }
+        InapplicableMethodException setMessage(JCDiagnostic diag) {
+            this.diagnostic = diag;
+            return this;
+        }
+
+        public JCDiagnostic getDiagnostic() {
+            return diagnostic;
+        }
+    }
+    private final InapplicableMethodException inapplicableMethodException;
+
+/* ***************************************************************************
+ *  Symbol lookup
+ *  the following naming conventions for arguments are used
+ *
+ *       env      is the environment where the symbol was mentioned
+ *       site     is the type of which the symbol is a member
+ *       name     is the symbol's name
+ *                if no arguments are given
+ *       argtypes are the value arguments, if we search for a method
+ *
+ *  If no symbol was found, a ResolveError detailing the problem is returned.
+ ****************************************************************************/
+
+    /** Find field. Synthetic fields are always skipped.
+     *  @param env     The current environment.
+     *  @param site    The original type from where the selection takes place.
+     *  @param name    The name of the field.
+     *  @param c       The class to search for the field. This is always
+     *                 a superclass or implemented interface of site's class.
+     */
+    Symbol findField(Env<AttrContext> env,
+                     Type site,
+                     Name name,
+                     TypeSymbol c) {
+        while (c.type.hasTag(TYPEVAR))
+            c = c.type.getUpperBound().tsym;
+        Symbol bestSoFar = varNotFound;
+        Symbol sym;
+        for (Symbol s : c.members().getSymbolsByName(name)) {
+            if (s.kind == VAR && (s.flags_field & SYNTHETIC) == 0) {
+                return isAccessible(env, site, s)
+                    ? s : new AccessError(env, site, s);
+            }
+        }
+        Type st = types.supertype(c.type);
+        if (st != null && (st.hasTag(CLASS) || st.hasTag(TYPEVAR))) {
+            sym = findField(env, site, name, st.tsym);
+            bestSoFar = bestOf(bestSoFar, sym);
+        }
+        for (List<Type> l = types.interfaces(c.type);
+             bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
+             l = l.tail) {
+            sym = findField(env, site, name, l.head.tsym);
+            if (bestSoFar.exists() && sym.exists() &&
+                sym.owner != bestSoFar.owner)
+                bestSoFar = new AmbiguityError(bestSoFar, sym);
+            else
+                bestSoFar = bestOf(bestSoFar, sym);
+        }
+        return bestSoFar;
+    }
+
+    /** Resolve a field identifier, throw a fatal error if not found.
+     *  @param pos       The position to use for error reporting.
+     *  @param env       The environment current at the method invocation.
+     *  @param site      The type of the qualifying expression, in which
+     *                   identifier is searched.
+     *  @param name      The identifier's name.
+     */
+    public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env,
+                                          Type site, Name name) {
+        Symbol sym = findField(env, site, name, site.tsym);
+        if (sym.kind == VAR) return (VarSymbol)sym;
+        else throw new FatalError(
+                 diags.fragment(Fragments.FatalErrCantLocateField(name)));
+    }
+
+    /** Find unqualified variable or field with given name.
+     *  Synthetic fields always skipped.
+     *  @param env     The current environment.
+     *  @param name    The name of the variable or field.
+     */
+    Symbol findVar(Env<AttrContext> env, Name name) {
+        Symbol bestSoFar = varNotFound;
+        Env<AttrContext> env1 = env;
+        boolean staticOnly = false;
+        while (env1.outer != null) {
+            Symbol sym = null;
+            if (isStatic(env1)) staticOnly = true;
+            for (Symbol s : env1.info.scope.getSymbolsByName(name)) {
+                if (s.kind == VAR && (s.flags_field & SYNTHETIC) == 0) {
+                    sym = s;
+                    break;
+                }
+            }
+            if (sym == null) {
+                sym = findField(env1, env1.enclClass.sym.type, name, env1.enclClass.sym);
+            }
+            if (sym.exists()) {
+                if (staticOnly &&
+                    sym.kind == VAR &&
+                    sym.owner.kind == TYP &&
+                    (sym.flags() & STATIC) == 0)
+                    return new StaticError(sym);
+                else
+                    return sym;
+            } else {
+                bestSoFar = bestOf(bestSoFar, sym);
+            }
+
+            if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
+            env1 = env1.outer;
+        }
+
+        Symbol sym = findField(env, syms.predefClass.type, name, syms.predefClass);
+        if (sym.exists())
+            return sym;
+        if (bestSoFar.exists())
+            return bestSoFar;
+
+        Symbol origin = null;
+        for (Scope sc : new Scope[] { env.toplevel.namedImportScope, env.toplevel.starImportScope }) {
+            for (Symbol currentSymbol : sc.getSymbolsByName(name)) {
+                if (currentSymbol.kind != VAR)
+                    continue;
+                // invariant: sym.kind == Symbol.Kind.VAR
+                if (!bestSoFar.kind.isResolutionError() &&
+                    currentSymbol.owner != bestSoFar.owner)
+                    return new AmbiguityError(bestSoFar, currentSymbol);
+                else if (!bestSoFar.kind.betterThan(VAR)) {
+                    origin = sc.getOrigin(currentSymbol).owner;
+                    bestSoFar = isAccessible(env, origin.type, currentSymbol)
+                        ? currentSymbol : new AccessError(env, origin.type, currentSymbol);
+                }
+            }
+            if (bestSoFar.exists()) break;
+        }
+        if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type)
+            return bestSoFar.clone(origin);
+        else
+            return bestSoFar;
+    }
+
+    Warner noteWarner = new Warner();
+
+    /** Select the best method for a call site among two choices.
+     *  @param env              The current environment.
+     *  @param site             The original type from where the
+     *                          selection takes place.
+     *  @param argtypes         The invocation's value arguments,
+     *  @param typeargtypes     The invocation's type arguments,
+     *  @param sym              Proposed new best match.
+     *  @param bestSoFar        Previously found best match.
+     *  @param allowBoxing Allow boxing conversions of arguments.
+     *  @param useVarargs Box trailing arguments into an array for varargs.
+     */
+    @SuppressWarnings("fallthrough")
+    Symbol selectBest(Env<AttrContext> env,
+                      Type site,
+                      List<Type> argtypes,
+                      List<Type> typeargtypes,
+                      Symbol sym,
+                      Symbol bestSoFar,
+                      boolean allowBoxing,
+                      boolean useVarargs) {
+        if (sym.kind == ERR ||
+                !sym.isInheritedIn(site.tsym, types)) {
+            return bestSoFar;
+        } else if (useVarargs && (sym.flags() & VARARGS) == 0) {
+            return bestSoFar.kind.isResolutionError() ?
+                    new BadVarargsMethod((ResolveError)bestSoFar.baseSymbol()) :
+                    bestSoFar;
+        }
+        Assert.check(!sym.kind.isResolutionError());
+        try {
+            types.noWarnings.clear();
+            Type mt = rawInstantiate(env, site, sym, null, argtypes, typeargtypes,
+                               allowBoxing, useVarargs, types.noWarnings);
+            currentResolutionContext.addApplicableCandidate(sym, mt);
+        } catch (InapplicableMethodException ex) {
+            currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic());
+            switch (bestSoFar.kind) {
+                case ABSENT_MTH:
+                    return new InapplicableSymbolError(currentResolutionContext);
+                case WRONG_MTH:
+                    bestSoFar = new InapplicableSymbolsError(currentResolutionContext);
+                default:
+                    return bestSoFar;
+            }
+        }
+        if (!isAccessible(env, site, sym)) {
+            return (bestSoFar.kind == ABSENT_MTH)
+                ? new AccessError(env, site, sym)
+                : bestSoFar;
+        }
+        return (bestSoFar.kind.isResolutionError() && bestSoFar.kind != AMBIGUOUS)
+            ? sym
+            : mostSpecific(argtypes, sym, bestSoFar, env, site, useVarargs);
+    }
+
+    /* Return the most specific of the two methods for a call,
+     *  given that both are accessible and applicable.
+     *  @param m1               A new candidate for most specific.
+     *  @param m2               The previous most specific candidate.
+     *  @param env              The current environment.
+     *  @param site             The original type from where the selection
+     *                          takes place.
+     *  @param allowBoxing Allow boxing conversions of arguments.
+     *  @param useVarargs Box trailing arguments into an array for varargs.
+     */
+    Symbol mostSpecific(List<Type> argtypes, Symbol m1,
+                        Symbol m2,
+                        Env<AttrContext> env,
+                        final Type site,
+                        boolean useVarargs) {
+        switch (m2.kind) {
+        case MTH:
+            if (m1 == m2) return m1;
+            boolean m1SignatureMoreSpecific =
+                    signatureMoreSpecific(argtypes, env, site, m1, m2, useVarargs);
+            boolean m2SignatureMoreSpecific =
+                    signatureMoreSpecific(argtypes, env, site, m2, m1, useVarargs);
+            if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) {
+                Type mt1 = types.memberType(site, m1);
+                Type mt2 = types.memberType(site, m2);
+                if (!types.overrideEquivalent(mt1, mt2))
+                    return ambiguityError(m1, m2);
+
+                // same signature; select (a) the non-bridge method, or
+                // (b) the one that overrides the other, or (c) the concrete
+                // one, or (d) merge both abstract signatures
+                if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE))
+                    return ((m1.flags() & BRIDGE) != 0) ? m2 : m1;
+
+                // if one overrides or hides the other, use it
+                TypeSymbol m1Owner = (TypeSymbol)m1.owner;
+                TypeSymbol m2Owner = (TypeSymbol)m2.owner;
+                if (types.asSuper(m1Owner.type, m2Owner) != null &&
+                    ((m1.owner.flags_field & INTERFACE) == 0 ||
+                     (m2.owner.flags_field & INTERFACE) != 0) &&
+                    m1.overrides(m2, m1Owner, types, false))
+                    return m1;
+                if (types.asSuper(m2Owner.type, m1Owner) != null &&
+                    ((m2.owner.flags_field & INTERFACE) == 0 ||
+                     (m1.owner.flags_field & INTERFACE) != 0) &&
+                    m2.overrides(m1, m2Owner, types, false))
+                    return m2;
+                boolean m1Abstract = (m1.flags() & ABSTRACT) != 0;
+                boolean m2Abstract = (m2.flags() & ABSTRACT) != 0;
+                if (m1Abstract && !m2Abstract) return m2;
+                if (m2Abstract && !m1Abstract) return m1;
+                // both abstract or both concrete
+                return ambiguityError(m1, m2);
+            }
+            if (m1SignatureMoreSpecific) return m1;
+            if (m2SignatureMoreSpecific) return m2;
+            return ambiguityError(m1, m2);
+        case AMBIGUOUS:
+            //compare m1 to ambiguous methods in m2
+            AmbiguityError e = (AmbiguityError)m2.baseSymbol();
+            boolean m1MoreSpecificThanAnyAmbiguous = true;
+            boolean allAmbiguousMoreSpecificThanM1 = true;
+            for (Symbol s : e.ambiguousSyms) {
+                Symbol moreSpecific = mostSpecific(argtypes, m1, s, env, site, useVarargs);
+                m1MoreSpecificThanAnyAmbiguous &= moreSpecific == m1;
+                allAmbiguousMoreSpecificThanM1 &= moreSpecific == s;
+            }
+            if (m1MoreSpecificThanAnyAmbiguous)
+                return m1;
+            //if m1 is more specific than some ambiguous methods, but other ambiguous methods are
+            //more specific than m1, add it as a new ambiguous method:
+            if (!allAmbiguousMoreSpecificThanM1)
+                e.addAmbiguousSymbol(m1);
+            return e;
+        default:
+            throw new AssertionError();
+        }
+    }
+    //where
+    private boolean signatureMoreSpecific(List<Type> actuals, Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean useVarargs) {
+        noteWarner.clear();
+        int maxLength = Math.max(
+                            Math.max(m1.type.getParameterTypes().length(), actuals.length()),
+                            m2.type.getParameterTypes().length());
+        MethodResolutionContext prevResolutionContext = currentResolutionContext;
+        try {
+            currentResolutionContext = new MethodResolutionContext();
+            currentResolutionContext.step = prevResolutionContext.step;
+            currentResolutionContext.methodCheck =
+                    prevResolutionContext.methodCheck.mostSpecificCheck(actuals);
+            Type mst = instantiate(env, site, m2, null,
+                    adjustArgs(types.cvarLowerBounds(types.memberType(site, m1).getParameterTypes()), m1, maxLength, useVarargs), null,
+                    false, useVarargs, noteWarner);
+            return mst != null &&
+                    !noteWarner.hasLint(Lint.LintCategory.UNCHECKED);
+        } finally {
+            currentResolutionContext = prevResolutionContext;
+        }
+    }
+
+    List<Type> adjustArgs(List<Type> args, Symbol msym, int length, boolean allowVarargs) {
+        if ((msym.flags() & VARARGS) != 0 && allowVarargs) {
+            Type varargsElem = types.elemtype(args.last());
+            if (varargsElem == null) {
+                Assert.error("Bad varargs = " + args.last() + " " + msym);
+            }
+            List<Type> newArgs = args.reverse().tail.prepend(varargsElem).reverse();
+            while (newArgs.length() < length) {
+                newArgs = newArgs.append(newArgs.last());
+            }
+            return newArgs;
+        } else {
+            return args;
+        }
+    }
+    //where
+    Symbol ambiguityError(Symbol m1, Symbol m2) {
+        if (((m1.flags() | m2.flags()) & CLASH) != 0) {
+            return (m1.flags() & CLASH) == 0 ? m1 : m2;
+        } else {
+            return new AmbiguityError(m1, m2);
+        }
+    }
+
+    Symbol findMethodInScope(Env<AttrContext> env,
+            Type site,
+            Name name,
+            List<Type> argtypes,
+            List<Type> typeargtypes,
+            Scope sc,
+            Symbol bestSoFar,
+            boolean allowBoxing,
+            boolean useVarargs,
+            boolean abstractok) {
+        for (Symbol s : sc.getSymbolsByName(name, new LookupFilter(abstractok))) {
+            bestSoFar = selectBest(env, site, argtypes, typeargtypes, s,
+                    bestSoFar, allowBoxing, useVarargs);
+        }
+        return bestSoFar;
+    }
+    //where
+        class LookupFilter implements Filter<Symbol> {
+
+            boolean abstractOk;
+
+            LookupFilter(boolean abstractOk) {
+                this.abstractOk = abstractOk;
+            }
+
+            public boolean accepts(Symbol s) {
+                long flags = s.flags();
+                return s.kind == MTH &&
+                        (flags & SYNTHETIC) == 0 &&
+                        (abstractOk ||
+                        (flags & DEFAULT) != 0 ||
+                        (flags & ABSTRACT) == 0);
+            }
+        }
+
+    /** Find best qualified method matching given name, type and value
+     *  arguments.
+     *  @param env       The current environment.
+     *  @param site      The original type from where the selection
+     *                   takes place.
+     *  @param name      The method's name.
+     *  @param argtypes  The method's value arguments.
+     *  @param typeargtypes The method's type arguments
+     *  @param allowBoxing Allow boxing conversions of arguments.
+     *  @param useVarargs Box trailing arguments into an array for varargs.
+     */
+    Symbol findMethod(Env<AttrContext> env,
+                      Type site,
+                      Name name,
+                      List<Type> argtypes,
+                      List<Type> typeargtypes,
+                      boolean allowBoxing,
+                      boolean useVarargs) {
+        Symbol bestSoFar = methodNotFound;
+        bestSoFar = findMethod(env,
+                          site,
+                          name,
+                          argtypes,
+                          typeargtypes,
+                          site.tsym.type,
+                          bestSoFar,
+                          allowBoxing,
+                          useVarargs);
+        return bestSoFar;
+    }
+    // where
+    private Symbol findMethod(Env<AttrContext> env,
+                              Type site,
+                              Name name,
+                              List<Type> argtypes,
+                              List<Type> typeargtypes,
+                              Type intype,
+                              Symbol bestSoFar,
+                              boolean allowBoxing,
+                              boolean useVarargs) {
+        @SuppressWarnings({"unchecked","rawtypes"})
+        List<Type>[] itypes = (List<Type>[])new List[] { List.<Type>nil(), List.<Type>nil() };
+
+        InterfaceLookupPhase iphase = InterfaceLookupPhase.ABSTRACT_OK;
+        for (TypeSymbol s : superclasses(intype)) {
+            bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
+                    s.members(), bestSoFar, allowBoxing, useVarargs, true);
+            if (name == names.init) return bestSoFar;
+            iphase = (iphase == null) ? null : iphase.update(s, this);
+            if (iphase != null) {
+                for (Type itype : types.interfaces(s.type)) {
+                    itypes[iphase.ordinal()] = types.union(types.closure(itype), itypes[iphase.ordinal()]);
+                }
+            }
+        }
+
+        Symbol concrete = bestSoFar.kind.isValid() &&
+                (bestSoFar.flags() & ABSTRACT) == 0 ?
+                bestSoFar : methodNotFound;
+
+        for (InterfaceLookupPhase iphase2 : InterfaceLookupPhase.values()) {
+            //keep searching for abstract methods
+            for (Type itype : itypes[iphase2.ordinal()]) {
+                if (!itype.isInterface()) continue; //skip j.l.Object (included by Types.closure())
+                if (iphase2 == InterfaceLookupPhase.DEFAULT_OK &&
+                        (itype.tsym.flags() & DEFAULT) == 0) continue;
+                bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
+                        itype.tsym.members(), bestSoFar, allowBoxing, useVarargs, true);
+                if (concrete != bestSoFar &&
+                    concrete.kind.isValid() &&
+                    bestSoFar.kind.isValid() &&
+                        types.isSubSignature(concrete.type, bestSoFar.type)) {
+                    //this is an hack - as javac does not do full membership checks
+                    //most specific ends up comparing abstract methods that might have
+                    //been implemented by some concrete method in a subclass and,
+                    //because of raw override, it is possible for an abstract method
+                    //to be more specific than the concrete method - so we need
+                    //to explicitly call that out (see CR 6178365)
+                    bestSoFar = concrete;
+                }
+            }
+        }
+        return bestSoFar;
+    }
+
+    enum InterfaceLookupPhase {
+        ABSTRACT_OK() {
+            @Override
+            InterfaceLookupPhase update(Symbol s, Resolve rs) {
+                //We should not look for abstract methods if receiver is a concrete class
+                //(as concrete classes are expected to implement all abstracts coming
+                //from superinterfaces)
+                if ((s.flags() & (ABSTRACT | INTERFACE | ENUM)) != 0) {
+                    return this;
+                } else {
+                    return DEFAULT_OK;
+                }
+            }
+        },
+        DEFAULT_OK() {
+            @Override
+            InterfaceLookupPhase update(Symbol s, Resolve rs) {
+                return this;
+            }
+        };
+
+        abstract InterfaceLookupPhase update(Symbol s, Resolve rs);
+    }
+
+    /**
+     * Return an Iterable object to scan the superclasses of a given type.
+     * It's crucial that the scan is done lazily, as we don't want to accidentally
+     * access more supertypes than strictly needed (as this could trigger completion
+     * errors if some of the not-needed supertypes are missing/ill-formed).
+     */
+    Iterable<TypeSymbol> superclasses(final Type intype) {
+        return () -> new Iterator<TypeSymbol>() {
+
+            List<TypeSymbol> seen = List.nil();
+            TypeSymbol currentSym = symbolFor(intype);
+            TypeSymbol prevSym = null;
+
+            public boolean hasNext() {
+                if (currentSym == syms.noSymbol) {
+                    currentSym = symbolFor(types.supertype(prevSym.type));
+                }
+                return currentSym != null;
+            }
+
+            public TypeSymbol next() {
+                prevSym = currentSym;
+                currentSym = syms.noSymbol;
+                Assert.check(prevSym != null || prevSym != syms.noSymbol);
+                return prevSym;
+            }
+
+            public void remove() {
+                throw new UnsupportedOperationException();
+            }
+
+            TypeSymbol symbolFor(Type t) {
+                if (!t.hasTag(CLASS) &&
+                        !t.hasTag(TYPEVAR)) {
+                    return null;
+                }
+                t = types.skipTypeVars(t, false);
+                if (seen.contains(t.tsym)) {
+                    //degenerate case in which we have a circular
+                    //class hierarchy - because of ill-formed classfiles
+                    return null;
+                }
+                seen = seen.prepend(t.tsym);
+                return t.tsym;
+            }
+        };
+    }
+
+    /** Find unqualified method matching given name, type and value arguments.
+     *  @param env       The current environment.
+     *  @param name      The method's name.
+     *  @param argtypes  The method's value arguments.
+     *  @param typeargtypes  The method's type arguments.
+     *  @param allowBoxing Allow boxing conversions of arguments.
+     *  @param useVarargs Box trailing arguments into an array for varargs.
+     */
+    Symbol findFun(Env<AttrContext> env, Name name,
+                   List<Type> argtypes, List<Type> typeargtypes,
+                   boolean allowBoxing, boolean useVarargs) {
+        Symbol bestSoFar = methodNotFound;
+        Env<AttrContext> env1 = env;
+        boolean staticOnly = false;
+        while (env1.outer != null) {
+            if (isStatic(env1)) staticOnly = true;
+            Assert.check(env1.info.preferredTreeForDiagnostics == null);
+            env1.info.preferredTreeForDiagnostics = env.tree;
+            try {
+                Symbol sym = findMethod(
+                    env1, env1.enclClass.sym.type, name, argtypes, typeargtypes,
+                    allowBoxing, useVarargs);
+                if (sym.exists()) {
+                    if (staticOnly &&
+                        sym.kind == MTH &&
+                        sym.owner.kind == TYP &&
+                        (sym.flags() & STATIC) == 0) return new StaticError(sym);
+                    else return sym;
+                } else {
+                    bestSoFar = bestOf(bestSoFar, sym);
+                }
+            } finally {
+                env1.info.preferredTreeForDiagnostics = null;
+            }
+            if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
+            env1 = env1.outer;
+        }
+
+        Symbol sym = findMethod(env, syms.predefClass.type, name, argtypes,
+                                typeargtypes, allowBoxing, useVarargs);
+        if (sym.exists())
+            return sym;
+
+        for (Symbol currentSym : env.toplevel.namedImportScope.getSymbolsByName(name)) {
+            Symbol origin = env.toplevel.namedImportScope.getOrigin(currentSym).owner;
+            if (currentSym.kind == MTH) {
+                if (currentSym.owner.type != origin.type)
+                    currentSym = currentSym.clone(origin);
+                if (!isAccessible(env, origin.type, currentSym))
+                    currentSym = new AccessError(env, origin.type, currentSym);
+                bestSoFar = selectBest(env, origin.type,
+                                       argtypes, typeargtypes,
+                                       currentSym, bestSoFar,
+                                       allowBoxing, useVarargs);
+            }
+        }
+        if (bestSoFar.exists())
+            return bestSoFar;
+
+        for (Symbol currentSym : env.toplevel.starImportScope.getSymbolsByName(name)) {
+            Symbol origin = env.toplevel.starImportScope.getOrigin(currentSym).owner;
+            if (currentSym.kind == MTH) {
+                if (currentSym.owner.type != origin.type)
+                    currentSym = currentSym.clone(origin);
+                if (!isAccessible(env, origin.type, currentSym))
+                    currentSym = new AccessError(env, origin.type, currentSym);
+                bestSoFar = selectBest(env, origin.type,
+                                       argtypes, typeargtypes,
+                                       currentSym, bestSoFar,
+                                       allowBoxing, useVarargs);
+            }
+        }
+        return bestSoFar;
+    }
+
+    /** Load toplevel or member class with given fully qualified name and
+     *  verify that it is accessible.
+     *  @param env       The current environment.
+     *  @param name      The fully qualified name of the class to be loaded.
+     */
+    Symbol loadClass(Env<AttrContext> env, Name name, RecoveryLoadClass recoveryLoadClass) {
+        try {
+            ClassSymbol c = finder.loadClass(env.toplevel.modle, name);
+            return isAccessible(env, c) ? c : new AccessError(env, null, c);
+        } catch (ClassFinder.BadClassFile err) {
+            throw err;
+        } catch (CompletionFailure ex) {
+            Symbol candidate = recoveryLoadClass.loadClass(env, name);
+
+            if (candidate != null) {
+                return candidate;
+            }
+
+            return typeNotFound;
+        }
+    }
+
+    public interface RecoveryLoadClass {
+        Symbol loadClass(Env<AttrContext> env, Name name);
+    }
+
+    private final RecoveryLoadClass noRecovery = (env, name) -> null;
+
+    private final RecoveryLoadClass doRecoveryLoadClass = new RecoveryLoadClass() {
+        @Override public Symbol loadClass(Env<AttrContext> env, Name name) {
+            List<Name> candidates = Convert.classCandidates(name);
+            return lookupInvisibleSymbol(env, name,
+                                         n -> () -> createCompoundIterator(candidates,
+                                                                           c -> syms.getClassesForName(c)
+                                                                                    .iterator()),
+                                         (ms, n) -> {
+                for (Name candidate : candidates) {
+                    try {
+                        return finder.loadClass(ms, candidate);
+                    } catch (CompletionFailure cf) {
+                        //ignore
+                    }
+                }
+                return null;
+            }, sym -> sym.kind == Kind.TYP, false, typeNotFound);
+        }
+    };
+
+    private final RecoveryLoadClass namedImportScopeRecovery = (env, name) -> {
+        Scope importScope = env.toplevel.namedImportScope;
+        Symbol existing = importScope.findFirst(Convert.shortName(name),
+                                                sym -> sym.kind == TYP && sym.flatName() == name);
+
+        if (existing != null) {
+            return new InvisibleSymbolError(env, true, existing);
+        }
+        return null;
+    };
+
+    private final RecoveryLoadClass starImportScopeRecovery = (env, name) -> {
+        Scope importScope = env.toplevel.starImportScope;
+        Symbol existing = importScope.findFirst(Convert.shortName(name),
+                                                sym -> sym.kind == TYP && sym.flatName() == name);
+
+        if (existing != null) {
+            try {
+                existing = finder.loadClass(existing.packge().modle, name);
+
+                return new InvisibleSymbolError(env, true, existing);
+            } catch (CompletionFailure cf) {
+                //ignore
+            }
+        }
+
+        return null;
+    };
+
+    Symbol lookupPackage(Env<AttrContext> env, Name name) {
+        PackageSymbol pack = syms.lookupPackage(env.toplevel.modle, name);
+
+        if (allowModules && isImportOnDemand(env, name)) {
+            pack.complete();
+            if (!pack.exists()) {
+                Name nameAndDot = name.append('.', names.empty);
+                boolean prefixOfKnown =
+                        env.toplevel.modle.visiblePackages.values()
+                                                          .stream()
+                                                          .anyMatch(p -> p.fullname.startsWith(nameAndDot));
+
+                return lookupInvisibleSymbol(env, name, syms::getPackagesForName, syms::enterPackage, sym -> {
+                    sym.complete();
+                    return sym.exists();
+                }, prefixOfKnown, pack);
+            }
+        }
+
+        return pack;
+    }
+
+    private boolean isImportOnDemand(Env<AttrContext> env, Name name) {
+        if (!env.tree.hasTag(IMPORT))
+            return false;
+
+        JCTree qualid = ((JCImport) env.tree).qualid;
+
+        if (!qualid.hasTag(SELECT))
+            return false;
+
+        if (TreeInfo.name(qualid) != names.asterisk)
+            return false;
+
+        return TreeInfo.fullName(((JCFieldAccess) qualid).selected) == name;
+    }
+
+    private <S extends Symbol> Symbol lookupInvisibleSymbol(Env<AttrContext> env,
+                                                            Name name,
+                                                            Function<Name, Iterable<S>> get,
+                                                            BiFunction<ModuleSymbol, Name, S> load,
+                                                            Predicate<S> validate,
+                                                            boolean suppressError,
+                                                            Symbol defaultResult) {
+        //even if a class/package cannot be found in the current module and among packages in modules
+        //it depends on that are exported for any or this module, the class/package may exist internally
+        //in some of these modules, or may exist in a module on which this module does not depend.
+        //Provide better diagnostic in such cases by looking for the class in any module:
+        Iterable<? extends S> candidates = get.apply(name);
+
+        for (S sym : candidates) {
+            if (validate.test(sym))
+                return createInvisibleSymbolError(env, suppressError, sym);
+        }
+
+        Set<ModuleSymbol> recoverableModules = new HashSet<>(syms.getAllModules());
+
+        recoverableModules.remove(env.toplevel.modle);
+
+        for (ModuleSymbol ms : recoverableModules) {
+            //avoid overly eager completing classes from source-based modules, as those
+            //may not be completable with the current compiler settings:
+            if (ms.sourceLocation == null) {
+                if (ms.classLocation == null) {
+                    ms = moduleFinder.findModule(ms);
+                }
+
+                if (ms.kind != ERR) {
+                    S sym = load.apply(ms, name);
+
+                    if (sym != null && validate.test(sym)) {
+                        return createInvisibleSymbolError(env, suppressError, sym);
+                    }
+                }
+            }
+        }
+
+        return defaultResult;
+    }
+
+    private Symbol createInvisibleSymbolError(Env<AttrContext> env, boolean suppressError, Symbol sym) {
+        if (symbolPackageVisible(env, sym)) {
+            return new AccessError(env, null, sym);
+        } else {
+            return new InvisibleSymbolError(env, suppressError, sym);
+        }
+    }
+
+    private boolean symbolPackageVisible(Env<AttrContext> env, Symbol sym) {
+        ModuleSymbol envMod = env.toplevel.modle;
+        PackageSymbol symPack = sym.packge();
+        return envMod == symPack.modle ||
+               envMod.visiblePackages.containsKey(symPack.fullname);
+    }
+
+    /**
+     * Find a type declared in a scope (not inherited).  Return null
+     * if none is found.
+     *  @param env       The current environment.
+     *  @param site      The original type from where the selection takes
+     *                   place.
+     *  @param name      The type's name.
+     *  @param c         The class to search for the member type. This is
+     *                   always a superclass or implemented interface of
+     *                   site's class.
+     */
+    Symbol findImmediateMemberType(Env<AttrContext> env,
+                                   Type site,
+                                   Name name,
+                                   TypeSymbol c) {
+        for (Symbol sym : c.members().getSymbolsByName(name)) {
+            if (sym.kind == TYP) {
+                return isAccessible(env, site, sym)
+                    ? sym
+                    : new AccessError(env, site, sym);
+            }
+        }
+        return typeNotFound;
+    }
+
+    /** Find a member type inherited from a superclass or interface.
+     *  @param env       The current environment.
+     *  @param site      The original type from where the selection takes
+     *                   place.
+     *  @param name      The type's name.
+     *  @param c         The class to search for the member type. This is
+     *                   always a superclass or implemented interface of
+     *                   site's class.
+     */
+    Symbol findInheritedMemberType(Env<AttrContext> env,
+                                   Type site,
+                                   Name name,
+                                   TypeSymbol c) {
+        Symbol bestSoFar = typeNotFound;
+        Symbol sym;
+        Type st = types.supertype(c.type);
+        if (st != null && st.hasTag(CLASS)) {
+            sym = findMemberType(env, site, name, st.tsym);
+            bestSoFar = bestOf(bestSoFar, sym);
+        }
+        for (List<Type> l = types.interfaces(c.type);
+             bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
+             l = l.tail) {
+            sym = findMemberType(env, site, name, l.head.tsym);
+            if (!bestSoFar.kind.isResolutionError() &&
+                !sym.kind.isResolutionError() &&
+                sym.owner != bestSoFar.owner)
+                bestSoFar = new AmbiguityError(bestSoFar, sym);
+            else
+                bestSoFar = bestOf(bestSoFar, sym);
+        }
+        return bestSoFar;
+    }
+
+    /** Find qualified member type.
+     *  @param env       The current environment.
+     *  @param site      The original type from where the selection takes
+     *                   place.
+     *  @param name      The type's name.
+     *  @param c         The class to search for the member type. This is
+     *                   always a superclass or implemented interface of
+     *                   site's class.
+     */
+    Symbol findMemberType(Env<AttrContext> env,
+                          Type site,
+                          Name name,
+                          TypeSymbol c) {
+        Symbol sym = findImmediateMemberType(env, site, name, c);
+
+        if (sym != typeNotFound)
+            return sym;
+
+        return findInheritedMemberType(env, site, name, c);
+
+    }
+
+    /** Find a global type in given scope and load corresponding class.
+     *  @param env       The current environment.
+     *  @param scope     The scope in which to look for the type.
+     *  @param name      The type's name.
+     */
+    Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name, RecoveryLoadClass recoveryLoadClass) {
+        Symbol bestSoFar = typeNotFound;
+        for (Symbol s : scope.getSymbolsByName(name)) {
+            Symbol sym = loadClass(env, s.flatName(), recoveryLoadClass);
+            if (bestSoFar.kind == TYP && sym.kind == TYP &&
+                bestSoFar != sym)
+                return new AmbiguityError(bestSoFar, sym);
+            else
+                bestSoFar = bestOf(bestSoFar, sym);
+        }
+        return bestSoFar;
+    }
+
+    Symbol findTypeVar(Env<AttrContext> env, Name name, boolean staticOnly) {
+        for (Symbol sym : env.info.scope.getSymbolsByName(name)) {
+            if (sym.kind == TYP) {
+                if (staticOnly &&
+                    sym.type.hasTag(TYPEVAR) &&
+                    sym.owner.kind == TYP)
+                    return new StaticError(sym);
+                return sym;
+            }
+        }
+        return typeNotFound;
+    }
+
+    /** Find an unqualified type symbol.
+     *  @param env       The current environment.
+     *  @param name      The type's name.
+     */
+    Symbol findType(Env<AttrContext> env, Name name) {
+        if (name == names.empty)
+            return typeNotFound; // do not allow inadvertent "lookup" of anonymous types
+        Symbol bestSoFar = typeNotFound;
+        Symbol sym;
+        boolean staticOnly = false;
+        for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) {
+            if (isStatic(env1)) staticOnly = true;
+            // First, look for a type variable and the first member type
+            final Symbol tyvar = findTypeVar(env1, name, staticOnly);
+            sym = findImmediateMemberType(env1, env1.enclClass.sym.type,
+                                          name, env1.enclClass.sym);
+
+            // Return the type variable if we have it, and have no
+            // immediate member, OR the type variable is for a method.
+            if (tyvar != typeNotFound) {
+                if (env.baseClause || sym == typeNotFound ||
+                    (tyvar.kind == TYP && tyvar.exists() &&
+                     tyvar.owner.kind == MTH)) {
+                    return tyvar;
+                }
+            }
+
+            // If the environment is a class def, finish up,
+            // otherwise, do the entire findMemberType
+            if (sym == typeNotFound)
+                sym = findInheritedMemberType(env1, env1.enclClass.sym.type,
+                                              name, env1.enclClass.sym);
+
+            if (staticOnly && sym.kind == TYP &&
+                sym.type.hasTag(CLASS) &&
+                sym.type.getEnclosingType().hasTag(CLASS) &&
+                env1.enclClass.sym.type.isParameterized() &&
+                sym.type.getEnclosingType().isParameterized())
+                return new StaticError(sym);
+            else if (sym.exists()) return sym;
+            else bestSoFar = bestOf(bestSoFar, sym);
+
+            JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass;
+            if ((encl.sym.flags() & STATIC) != 0)
+                staticOnly = true;
+        }
+
+        if (!env.tree.hasTag(IMPORT)) {
+            sym = findGlobalType(env, env.toplevel.namedImportScope, name, namedImportScopeRecovery);
+            if (sym.exists()) return sym;
+            else bestSoFar = bestOf(bestSoFar, sym);
+
+            sym = findGlobalType(env, env.toplevel.packge.members(), name, noRecovery);
+            if (sym.exists()) return sym;
+            else bestSoFar = bestOf(bestSoFar, sym);
+
+            sym = findGlobalType(env, env.toplevel.starImportScope, name, starImportScopeRecovery);
+            if (sym.exists()) return sym;
+            else bestSoFar = bestOf(bestSoFar, sym);
+        }
+
+        return bestSoFar;
+    }
+
+    /** Find an unqualified identifier which matches a specified kind set.
+     *  @param env       The current environment.
+     *  @param name      The identifier's name.
+     *  @param kind      Indicates the possible symbol kinds
+     *                   (a subset of VAL, TYP, PCK).
+     */
+    Symbol findIdent(Env<AttrContext> env, Name name, KindSelector kind) {
+        Symbol bestSoFar = typeNotFound;
+        Symbol sym;
+
+        if (kind.contains(KindSelector.VAL)) {
+            sym = findVar(env, name);
+            if (sym.exists()) return sym;
+            else bestSoFar = bestOf(bestSoFar, sym);
+        }
+
+        if (kind.contains(KindSelector.TYP)) {
+            sym = findType(env, name);
+
+            if (sym.exists()) return sym;
+            else bestSoFar = bestOf(bestSoFar, sym);
+        }
+
+        if (kind.contains(KindSelector.PCK))
+            return lookupPackage(env, name);
+        else return bestSoFar;
+    }
+
+    /** Find an identifier in a package which matches a specified kind set.
+     *  @param env       The current environment.
+     *  @param name      The identifier's name.
+     *  @param kind      Indicates the possible symbol kinds
+     *                   (a nonempty subset of TYP, PCK).
+     */
+    Symbol findIdentInPackage(Env<AttrContext> env, TypeSymbol pck,
+                              Name name, KindSelector kind) {
+        Name fullname = TypeSymbol.formFullName(name, pck);
+        Symbol bestSoFar = typeNotFound;
+        if (kind.contains(KindSelector.TYP)) {
+            RecoveryLoadClass recoveryLoadClass =
+                    allowModules && !kind.contains(KindSelector.PCK) &&
+                    !pck.exists() && !env.info.isSpeculative ?
+                        doRecoveryLoadClass : noRecovery;
+            Symbol sym = loadClass(env, fullname, recoveryLoadClass);
+            if (sym.exists()) {
+                // don't allow programs to use flatnames
+                if (name == sym.name) return sym;
+            }
+            else bestSoFar = bestOf(bestSoFar, sym);
+        }
+        if (kind.contains(KindSelector.PCK)) {
+            return lookupPackage(env, fullname);
+        }
+        return bestSoFar;
+    }
+
+    /** Find an identifier among the members of a given type `site'.
+     *  @param env       The current environment.
+     *  @param site      The type containing the symbol to be found.
+     *  @param name      The identifier's name.
+     *  @param kind      Indicates the possible symbol kinds
+     *                   (a subset of VAL, TYP).
+     */
+    Symbol findIdentInType(Env<AttrContext> env, Type site,
+                           Name name, KindSelector kind) {
+        Symbol bestSoFar = typeNotFound;
+        Symbol sym;
+        if (kind.contains(KindSelector.VAL)) {
+            sym = findField(env, site, name, site.tsym);
+            if (sym.exists()) return sym;
+            else bestSoFar = bestOf(bestSoFar, sym);
+        }
+
+        if (kind.contains(KindSelector.TYP)) {
+            sym = findMemberType(env, site, name, site.tsym);
+            if (sym.exists()) return sym;
+            else bestSoFar = bestOf(bestSoFar, sym);
+        }
+        return bestSoFar;
+    }
+
+/* ***************************************************************************
+ *  Access checking
+ *  The following methods convert ResolveErrors to ErrorSymbols, issuing
+ *  an error message in the process
+ ****************************************************************************/
+
+    /** If `sym' is a bad symbol: report error and return errSymbol
+     *  else pass through unchanged,
+     *  additional arguments duplicate what has been used in trying to find the
+     *  symbol {@literal (--> flyweight pattern)}. This improves performance since we
+     *  expect misses to happen frequently.
+     *
+     *  @param sym       The symbol that was found, or a ResolveError.
+     *  @param pos       The position to use for error reporting.
+     *  @param location  The symbol the served as a context for this lookup
+     *  @param site      The original type from where the selection took place.
+     *  @param name      The symbol's name.
+     *  @param qualified Did we get here through a qualified expression resolution?
+     *  @param argtypes  The invocation's value arguments,
+     *                   if we looked for a method.
+     *  @param typeargtypes  The invocation's type arguments,
+     *                   if we looked for a method.
+     *  @param logResolveHelper helper class used to log resolve errors
+     */
+    Symbol accessInternal(Symbol sym,
+                  DiagnosticPosition pos,
+                  Symbol location,
+                  Type site,
+                  Name name,
+                  boolean qualified,
+                  List<Type> argtypes,
+                  List<Type> typeargtypes,
+                  LogResolveHelper logResolveHelper) {
+        if (sym.kind.isResolutionError()) {
+            ResolveError errSym = (ResolveError)sym.baseSymbol();
+            sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol);
+            argtypes = logResolveHelper.getArgumentTypes(errSym, sym, name, argtypes);
+            if (logResolveHelper.resolveDiagnosticNeeded(site, argtypes, typeargtypes)) {
+                logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes);
+            }
+        }
+        return sym;
+    }
+
+    /**
+     * Variant of the generalized access routine, to be used for generating method
+     * resolution diagnostics
+     */
+    Symbol accessMethod(Symbol sym,
+                  DiagnosticPosition pos,
+                  Symbol location,
+                  Type site,
+                  Name name,
+                  boolean qualified,
+                  List<Type> argtypes,
+                  List<Type> typeargtypes) {
+        return accessInternal(sym, pos, location, site, name, qualified, argtypes, typeargtypes, methodLogResolveHelper);
+    }
+
+    /** Same as original accessMethod(), but without location.
+     */
+    Symbol accessMethod(Symbol sym,
+                  DiagnosticPosition pos,
+                  Type site,
+                  Name name,
+                  boolean qualified,
+                  List<Type> argtypes,
+                  List<Type> typeargtypes) {
+        return accessMethod(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes);
+    }
+
+    /**
+     * Variant of the generalized access routine, to be used for generating variable,
+     * type resolution diagnostics
+     */
+    Symbol accessBase(Symbol sym,
+                  DiagnosticPosition pos,
+                  Symbol location,
+                  Type site,
+                  Name name,
+                  boolean qualified) {
+        return accessInternal(sym, pos, location, site, name, qualified, List.nil(), null, basicLogResolveHelper);
+    }
+
+    /** Same as original accessBase(), but without location.
+     */
+    Symbol accessBase(Symbol sym,
+                  DiagnosticPosition pos,
+                  Type site,
+                  Name name,
+                  boolean qualified) {
+        return accessBase(sym, pos, site.tsym, site, name, qualified);
+    }
+
+    interface LogResolveHelper {
+        boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes);
+        List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes);
+    }
+
+    LogResolveHelper basicLogResolveHelper = new LogResolveHelper() {
+        public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
+            return !site.isErroneous();
+        }
+        public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
+            return argtypes;
+        }
+    };
+
+    LogResolveHelper methodLogResolveHelper = new LogResolveHelper() {
+        public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
+            return !site.isErroneous() &&
+                        !Type.isErroneous(argtypes) &&
+                        (typeargtypes == null || !Type.isErroneous(typeargtypes));
+        }
+        public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
+            return argtypes.map(new ResolveDeferredRecoveryMap(AttrMode.SPECULATIVE, accessedSym, currentResolutionContext.step));
+        }
+    };
+
+    class ResolveDeferredRecoveryMap extends DeferredAttr.RecoveryDeferredTypeMap {
+
+        public ResolveDeferredRecoveryMap(AttrMode mode, Symbol msym, MethodResolutionPhase step) {
+            deferredAttr.super(mode, msym, step);
+        }
+
+        @Override
+        protected Type typeOf(DeferredType dt) {
+            Type res = super.typeOf(dt);
+            if (!res.isErroneous()) {
+                switch (TreeInfo.skipParens(dt.tree).getTag()) {
+                    case LAMBDA:
+                    case REFERENCE:
+                        return dt;
+                    case CONDEXPR:
+                        return res == Type.recoveryType ?
+                                dt : res;
+                }
+            }
+            return res;
+        }
+    }
+
+    /** Check that sym is not an abstract method.
+     */
+    void checkNonAbstract(DiagnosticPosition pos, Symbol sym) {
+        if ((sym.flags() & ABSTRACT) != 0 && (sym.flags() & DEFAULT) == 0)
+            log.error(pos,
+                      Errors.AbstractCantBeAccessedDirectly(kindName(sym),sym, sym.location()));
+    }
+
+/* ***************************************************************************
+ *  Name resolution
+ *  Naming conventions are as for symbol lookup
+ *  Unlike the find... methods these methods will report access errors
+ ****************************************************************************/
+
+    /** Resolve an unqualified (non-method) identifier.
+     *  @param pos       The position to use for error reporting.
+     *  @param env       The environment current at the identifier use.
+     *  @param name      The identifier's name.
+     *  @param kind      The set of admissible symbol kinds for the identifier.
+     */
+    Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env,
+                        Name name, KindSelector kind) {
+        return accessBase(
+            findIdent(env, name, kind),
+            pos, env.enclClass.sym.type, name, false);
+    }
+
+    /** Resolve an unqualified method identifier.
+     *  @param pos       The position to use for error reporting.
+     *  @param env       The environment current at the method invocation.
+     *  @param name      The identifier's name.
+     *  @param argtypes  The types of the invocation's value arguments.
+     *  @param typeargtypes  The types of the invocation's type arguments.
+     */
+    Symbol resolveMethod(DiagnosticPosition pos,
+                         Env<AttrContext> env,
+                         Name name,
+                         List<Type> argtypes,
+                         List<Type> typeargtypes) {
+        return lookupMethod(env, pos, env.enclClass.sym, resolveMethodCheck,
+                new BasicLookupHelper(name, env.enclClass.sym.type, argtypes, typeargtypes) {
+                    @Override
+                    Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
+                        return findFun(env, name, argtypes, typeargtypes,
+                                phase.isBoxingRequired(),
+                                phase.isVarargsRequired());
+                    }});
+    }
+
+    /** Resolve a qualified method identifier
+     *  @param pos       The position to use for error reporting.
+     *  @param env       The environment current at the method invocation.
+     *  @param site      The type of the qualifying expression, in which
+     *                   identifier is searched.
+     *  @param name      The identifier's name.
+     *  @param argtypes  The types of the invocation's value arguments.
+     *  @param typeargtypes  The types of the invocation's type arguments.
+     */
+    Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
+                                  Type site, Name name, List<Type> argtypes,
+                                  List<Type> typeargtypes) {
+        return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes);
+    }
+    Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
+                                  Symbol location, Type site, Name name, List<Type> argtypes,
+                                  List<Type> typeargtypes) {
+        return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes);
+    }
+    private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext,
+                                  DiagnosticPosition pos, Env<AttrContext> env,
+                                  Symbol location, Type site, Name name, List<Type> argtypes,
+                                  List<Type> typeargtypes) {
+        return lookupMethod(env, pos, location, resolveContext, new BasicLookupHelper(name, site, argtypes, typeargtypes) {
+            @Override
+            Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
+                return findMethod(env, site, name, argtypes, typeargtypes,
+                        phase.isBoxingRequired(),
+                        phase.isVarargsRequired());
+            }
+            @Override
+            Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
+                if (sym.kind.isResolutionError()) {
+                    sym = super.access(env, pos, location, sym);
+                } else if (allowMethodHandles) {
+                    MethodSymbol msym = (MethodSymbol)sym;
+                    if ((msym.flags() & SIGNATURE_POLYMORPHIC) != 0) {
+                        return findPolymorphicSignatureInstance(env, sym, argtypes);
+                    }
+                }
+                return sym;
+            }
+        });
+    }
+
+    /** Find or create an implicit method of exactly the given type (after erasure).
+     *  Searches in a side table, not the main scope of the site.
+     *  This emulates the lookup process required by JSR 292 in JVM.
+     *  @param env       Attribution environment
+     *  @param spMethod  signature polymorphic method - i.e. MH.invokeExact
+     *  @param argtypes  The required argument types
+     */
+    Symbol findPolymorphicSignatureInstance(Env<AttrContext> env,
+                                            final Symbol spMethod,
+                                            List<Type> argtypes) {
+        Type mtype = infer.instantiatePolymorphicSignatureInstance(env,
+                (MethodSymbol)spMethod, currentResolutionContext, argtypes);
+        for (Symbol sym : polymorphicSignatureScope.getSymbolsByName(spMethod.name)) {
+            // Check that there is already a method symbol for the method
+            // type and owner
+            if (types.isSameType(mtype, sym.type) &&
+                spMethod.owner == sym.owner) {
+                return sym;
+            }
+        }
+
+        // Create the desired method
+        // Retain static modifier is to support invocations to
+        // MethodHandle.linkTo* methods
+        long flags = ABSTRACT | HYPOTHETICAL |
+                     spMethod.flags() & (Flags.AccessFlags | Flags.STATIC);
+        Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner) {
+            @Override
+            public Symbol baseSymbol() {
+                return spMethod;
+            }
+        };
+        if (!mtype.isErroneous()) { // Cache only if kosher.
+            polymorphicSignatureScope.enter(msym);
+        }
+        return msym;
+    }
+
+    /** Resolve a qualified method identifier, throw a fatal error if not
+     *  found.
+     *  @param pos       The position to use for error reporting.
+     *  @param env       The environment current at the method invocation.
+     *  @param site      The type of the qualifying expression, in which
+     *                   identifier is searched.
+     *  @param name      The identifier's name.
+     *  @param argtypes  The types of the invocation's value arguments.
+     *  @param typeargtypes  The types of the invocation's type arguments.
+     */
+    public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env,
+                                        Type site, Name name,
+                                        List<Type> argtypes,
+                                        List<Type> typeargtypes) {
+        MethodResolutionContext resolveContext = new MethodResolutionContext();
+        resolveContext.internalResolution = true;
+        Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym,
+                site, name, argtypes, typeargtypes);
+        if (sym.kind == MTH) return (MethodSymbol)sym;
+        else throw new FatalError(
+                 diags.fragment(Fragments.FatalErrCantLocateMeth(name)));
+    }
+
+    /** Resolve constructor.
+     *  @param pos       The position to use for error reporting.
+     *  @param env       The environment current at the constructor invocation.
+     *  @param site      The type of class for which a constructor is searched.
+     *  @param argtypes  The types of the constructor invocation's value
+     *                   arguments.
+     *  @param typeargtypes  The types of the constructor invocation's type
+     *                   arguments.
+     */
+    Symbol resolveConstructor(DiagnosticPosition pos,
+                              Env<AttrContext> env,
+                              Type site,
+                              List<Type> argtypes,
+                              List<Type> typeargtypes) {
+        return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes);
+    }
+
+    private Symbol resolveConstructor(MethodResolutionContext resolveContext,
+                              final DiagnosticPosition pos,
+                              Env<AttrContext> env,
+                              Type site,
+                              List<Type> argtypes,
+                              List<Type> typeargtypes) {
+        return lookupMethod(env, pos, site.tsym, resolveContext, new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
+            @Override
+            Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
+                return findConstructor(pos, env, site, argtypes, typeargtypes,
+                        phase.isBoxingRequired(),
+                        phase.isVarargsRequired());
+            }
+        });
+    }
+
+    /** Resolve a constructor, throw a fatal error if not found.
+     *  @param pos       The position to use for error reporting.
+     *  @param env       The environment current at the method invocation.
+     *  @param site      The type to be constructed.
+     *  @param argtypes  The types of the invocation's value arguments.
+     *  @param typeargtypes  The types of the invocation's type arguments.
+     */
+    public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env,
+                                        Type site,
+                                        List<Type> argtypes,
+                                        List<Type> typeargtypes) {
+        MethodResolutionContext resolveContext = new MethodResolutionContext();
+        resolveContext.internalResolution = true;
+        Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes);
+        if (sym.kind == MTH) return (MethodSymbol)sym;
+        else throw new FatalError(
+                 diags.fragment(Fragments.FatalErrCantLocateCtor(site)));
+    }
+
+    Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env,
+                              Type site, List<Type> argtypes,
+                              List<Type> typeargtypes,
+                              boolean allowBoxing,
+                              boolean useVarargs) {
+        Symbol sym = findMethod(env, site,
+                                    names.init, argtypes,
+                                    typeargtypes, allowBoxing,
+                                    useVarargs);
+        chk.checkDeprecated(pos, env.info.scope.owner, sym);
+        return sym;
+    }
+
+    /** Resolve constructor using diamond inference.
+     *  @param pos       The position to use for error reporting.
+     *  @param env       The environment current at the constructor invocation.
+     *  @param site      The type of class for which a constructor is searched.
+     *                   The scope of this class has been touched in attribution.
+     *  @param argtypes  The types of the constructor invocation's value
+     *                   arguments.
+     *  @param typeargtypes  The types of the constructor invocation's type
+     *                   arguments.
+     */
+    Symbol resolveDiamond(DiagnosticPosition pos,
+                              Env<AttrContext> env,
+                              Type site,
+                              List<Type> argtypes,
+                              List<Type> typeargtypes) {
+        return lookupMethod(env, pos, site.tsym, resolveMethodCheck,
+                new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
+                    @Override
+                    Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
+                        return findDiamond(env, site, argtypes, typeargtypes,
+                                phase.isBoxingRequired(),
+                                phase.isVarargsRequired());
+                    }
+                    @Override
+                    Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
+                        if (sym.kind.isResolutionError()) {
+                            if (sym.kind != WRONG_MTH &&
+                                sym.kind != WRONG_MTHS) {
+                                sym = super.access(env, pos, location, sym);
+                            } else {
+                                final JCDiagnostic details = sym.kind == WRONG_MTH ?
+                                                ((InapplicableSymbolError)sym.baseSymbol()).errCandidate().snd :
+                                                null;
+                                sym = new DiamondError(sym, currentResolutionContext);
+                                sym = accessMethod(sym, pos, site, names.init, true, argtypes, typeargtypes);
+                                env.info.pendingResolutionPhase = currentResolutionContext.step;
+                            }
+                        }
+                        return sym;
+                    }});
+    }
+
+    /** This method scans all the constructor symbol in a given class scope -
+     *  assuming that the original scope contains a constructor of the kind:
+     *  {@code Foo(X x, Y y)}, where X,Y are class type-variables declared in Foo,
+     *  a method check is executed against the modified constructor type:
+     *  {@code <X,Y>Foo<X,Y>(X x, Y y)}. This is crucial in order to enable diamond
+     *  inference. The inferred return type of the synthetic constructor IS
+     *  the inferred type for the diamond operator.
+     */
+    private Symbol findDiamond(Env<AttrContext> env,
+                              Type site,
+                              List<Type> argtypes,
+                              List<Type> typeargtypes,
+                              boolean allowBoxing,
+                              boolean useVarargs) {
+        Symbol bestSoFar = methodNotFound;
+        TypeSymbol tsym = site.tsym.isInterface() ? syms.objectType.tsym : site.tsym;
+        for (final Symbol sym : tsym.members().getSymbolsByName(names.init)) {
+            //- System.out.println(" e " + e.sym);
+            if (sym.kind == MTH &&
+                (sym.flags_field & SYNTHETIC) == 0) {
+                    List<Type> oldParams = sym.type.hasTag(FORALL) ?
+                            ((ForAll)sym.type).tvars :
+                            List.nil();
+                    Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams),
+                                                 types.createMethodTypeWithReturn(sym.type.asMethodType(), site));
+                    MethodSymbol newConstr = new MethodSymbol(sym.flags(), names.init, constrType, site.tsym) {
+                        @Override
+                        public Symbol baseSymbol() {
+                            return sym;
+                        }
+                    };
+                    bestSoFar = selectBest(env, site, argtypes, typeargtypes,
+                            newConstr,
+                            bestSoFar,
+                            allowBoxing,
+                            useVarargs);
+            }
+        }
+        return bestSoFar;
+    }
+
+    Symbol getMemberReference(DiagnosticPosition pos,
+            Env<AttrContext> env,
+            JCMemberReference referenceTree,
+            Type site,
+            Name name) {
+
+        site = types.capture(site);
+
+        ReferenceLookupHelper lookupHelper = makeReferenceLookupHelper(
+                referenceTree, site, name, List.nil(), null, VARARITY);
+
+        Env<AttrContext> newEnv = env.dup(env.tree, env.info.dup());
+        Symbol sym = lookupMethod(newEnv, env.tree.pos(), site.tsym,
+                nilMethodCheck, lookupHelper);
+
+        env.info.pendingResolutionPhase = newEnv.info.pendingResolutionPhase;
+
+        return sym;
+    }
+
+    ReferenceLookupHelper makeReferenceLookupHelper(JCMemberReference referenceTree,
+                                  Type site,
+                                  Name name,
+                                  List<Type> argtypes,
+                                  List<Type> typeargtypes,
+                                  MethodResolutionPhase maxPhase) {
+        if (!name.equals(names.init)) {
+            //method reference
+            return new MethodReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
+        } else if (site.hasTag(ARRAY)) {
+            //array constructor reference
+            return new ArrayConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
+        } else {
+            //class constructor reference
+            return new ConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
+        }
+    }
+
+    /**
+     * Resolution of member references is typically done as a single
+     * overload resolution step, where the argument types A are inferred from
+     * the target functional descriptor.
+     *
+     * If the member reference is a method reference with a type qualifier,
+     * a two-step lookup process is performed. The first step uses the
+     * expected argument list A, while the second step discards the first
+     * type from A (which is treated as a receiver type).
+     *
+     * There are two cases in which inference is performed: (i) if the member
+     * reference is a constructor reference and the qualifier type is raw - in
+     * which case diamond inference is used to infer a parameterization for the
+     * type qualifier; (ii) if the member reference is an unbound reference
+     * where the type qualifier is raw - in that case, during the unbound lookup
+     * the receiver argument type is used to infer an instantiation for the raw
+     * qualifier type.
+     *
+     * When a multi-step resolution process is exploited, the process of picking
+     * the resulting symbol is delegated to an helper class {@link com.sun.tools.javac.comp.Resolve.ReferenceChooser}.
+     *
+     * This routine returns a pair (T,S), where S is the member reference symbol,
+     * and T is the type of the class in which S is defined. This is necessary as
+     * the type T might be dynamically inferred (i.e. if constructor reference
+     * has a raw qualifier).
+     */
+    Pair<Symbol, ReferenceLookupHelper> resolveMemberReference(Env<AttrContext> env,
+                                  JCMemberReference referenceTree,
+                                  Type site,
+                                  Name name,
+                                  List<Type> argtypes,
+                                  List<Type> typeargtypes,
+                                  MethodCheck methodCheck,
+                                  InferenceContext inferenceContext,
+                                  ReferenceChooser referenceChooser) {
+
+        //step 1 - bound lookup
+        ReferenceLookupHelper boundLookupHelper = makeReferenceLookupHelper(
+                referenceTree, site, name, argtypes, typeargtypes, VARARITY);
+        Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
+        MethodResolutionContext boundSearchResolveContext = new MethodResolutionContext();
+        boundSearchResolveContext.methodCheck = methodCheck;
+        Symbol boundSym = lookupMethod(boundEnv, env.tree.pos(),
+                site.tsym, boundSearchResolveContext, boundLookupHelper);
+        ReferenceLookupResult boundRes = new ReferenceLookupResult(boundSym, boundSearchResolveContext);
+
+        //step 2 - unbound lookup
+        Symbol unboundSym = methodNotFound;
+        Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
+        ReferenceLookupHelper unboundLookupHelper = boundLookupHelper.unboundLookup(inferenceContext);
+        ReferenceLookupResult unboundRes = referenceNotFound;
+        if (unboundLookupHelper != null) {
+            MethodResolutionContext unboundSearchResolveContext =
+                    new MethodResolutionContext();
+            unboundSearchResolveContext.methodCheck = methodCheck;
+            unboundSym = lookupMethod(unboundEnv, env.tree.pos(),
+                    site.tsym, unboundSearchResolveContext, unboundLookupHelper);
+            unboundRes = new ReferenceLookupResult(unboundSym, unboundSearchResolveContext);
+        }
+
+        //merge results
+        Pair<Symbol, ReferenceLookupHelper> res;
+        Symbol bestSym = referenceChooser.result(boundRes, unboundRes);
+        res = new Pair<>(bestSym,
+                bestSym == unboundSym ? unboundLookupHelper : boundLookupHelper);
+        env.info.pendingResolutionPhase = bestSym == unboundSym ?
+                unboundEnv.info.pendingResolutionPhase :
+                boundEnv.info.pendingResolutionPhase;
+
+        return res;
+    }
+
+    /**
+     * This class is used to represent a method reference lookup result. It keeps track of two
+     * things: (i) the symbol found during a method reference lookup and (ii) the static kind
+     * of the lookup (see {@link com.sun.tools.javac.comp.Resolve.ReferenceLookupResult.StaticKind}).
+     */
+    static class ReferenceLookupResult {
+
+        /**
+         * Static kind associated with a method reference lookup. Erroneous lookups end up with
+         * the UNDEFINED kind; successful lookups will end up with either STATIC, NON_STATIC,
+         * depending on whether all applicable candidates are static or non-static methods,
+         * respectively. If a successful lookup has both static and non-static applicable methods,
+         * its kind is set to BOTH.
+         */
+        enum StaticKind {
+            STATIC,
+            NON_STATIC,
+            BOTH,
+            UNDEFINED;
+
+            /**
+             * Retrieve the static kind associated with a given (method) symbol.
+             */
+            static StaticKind from(Symbol s) {
+                return s.isStatic() ?
+                        STATIC : NON_STATIC;
+            }
+
+            /**
+             * Merge two static kinds together.
+             */
+            static StaticKind reduce(StaticKind sk1, StaticKind sk2) {
+                if (sk1 == UNDEFINED) {
+                    return sk2;
+                } else if (sk2 == UNDEFINED) {
+                    return sk1;
+                } else {
+                    return sk1 == sk2 ? sk1 : BOTH;
+                }
+            }
+        }
+
+        /** The static kind. */
+        StaticKind staticKind;
+
+        /** The lookup result. */
+        Symbol sym;
+
+        ReferenceLookupResult(Symbol sym, MethodResolutionContext resolutionContext) {
+            this.staticKind = staticKind(sym, resolutionContext);
+            this.sym = sym;
+        }
+
+        private StaticKind staticKind(Symbol sym, MethodResolutionContext resolutionContext) {
+            switch (sym.kind) {
+                case MTH:
+                case AMBIGUOUS:
+                    return resolutionContext.candidates.stream()
+                            .filter(c -> c.isApplicable() && c.step == resolutionContext.step)
+                            .map(c -> StaticKind.from(c.sym))
+                            .reduce(StaticKind::reduce)
+                            .orElse(StaticKind.UNDEFINED);
+                default:
+                    return StaticKind.UNDEFINED;
+            }
+        }
+
+        /**
+         * Does this result corresponds to a successful lookup (i.e. one where a method has been found?)
+         */
+        boolean isSuccess() {
+            return staticKind != StaticKind.UNDEFINED;
+        }
+
+        /**
+         * Does this result have given static kind?
+         */
+        boolean hasKind(StaticKind sk) {
+            return this.staticKind == sk;
+        }
+
+        /**
+         * Error recovery helper: can this lookup result be ignored (for the purpose of returning
+         * some 'better' result) ?
+         */
+        boolean canIgnore() {
+            switch (sym.kind) {
+                case ABSENT_MTH:
+                    return true;
+                case WRONG_MTH:
+                    InapplicableSymbolError errSym =
+                            (InapplicableSymbolError)sym.baseSymbol();
+                    return new Template(MethodCheckDiag.ARITY_MISMATCH.regex())
+                            .matches(errSym.errCandidate().snd);
+                case WRONG_MTHS:
+                    InapplicableSymbolsError errSyms =
+                            (InapplicableSymbolsError)sym.baseSymbol();
+                    return errSyms.filterCandidates(errSyms.mapCandidates()).isEmpty();
+                default:
+                    return false;
+            }
+        }
+    }
+
+    /**
+     * This abstract class embodies the logic that converts one (bound lookup) or two (unbound lookup)
+     * {@code ReferenceLookupResult} objects into a (@code Symbol), which is then regarded as the
+     * result of method reference resolution.
+     */
+    abstract class ReferenceChooser {
+        /**
+         * Generate a result from a pair of lookup result objects. This method delegates to the
+         * appropriate result generation routine.
+         */
+        Symbol result(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
+            return unboundRes != referenceNotFound ?
+                    unboundResult(boundRes, unboundRes) :
+                    boundResult(boundRes);
+        }
+
+        /**
+         * Generate a symbol from a given bound lookup result.
+         */
+        abstract Symbol boundResult(ReferenceLookupResult boundRes);
+
+        /**
+         * Generate a symbol from a pair of bound/unbound lookup results.
+         */
+        abstract Symbol unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes);
+    }
+
+    /**
+     * This chooser implements the selection strategy used during a full lookup; this logic
+     * is described in JLS SE 8 (15.3.2).
+     */
+    ReferenceChooser basicReferenceChooser = new ReferenceChooser() {
+
+        @Override
+        Symbol boundResult(ReferenceLookupResult boundRes) {
+            return !boundRes.isSuccess() || boundRes.hasKind(StaticKind.NON_STATIC) ?
+                    boundRes.sym : //the search produces a non-static method
+                    new BadMethodReferenceError(boundRes.sym, false);
+        }
+
+        @Override
+        Symbol unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
+            if (boundRes.hasKind(StaticKind.STATIC) &&
+                    (!unboundRes.isSuccess() || unboundRes.hasKind(StaticKind.STATIC))) {
+                //the first search produces a static method and no non-static method is applicable
+                //during the second search
+                return boundRes.sym;
+            } else if (unboundRes.hasKind(StaticKind.NON_STATIC) &&
+                    (!boundRes.isSuccess() || boundRes.hasKind(StaticKind.NON_STATIC))) {
+                //the second search produces a non-static method and no static method is applicable
+                //during the first search
+                return unboundRes.sym;
+            } else if (boundRes.isSuccess() && unboundRes.isSuccess()) {
+                //both searches produce some result; ambiguity (error recovery)
+                return ambiguityError(boundRes.sym, unboundRes.sym);
+            } else if (boundRes.isSuccess() || unboundRes.isSuccess()) {
+                //Both searches failed to produce a result with correct staticness (i.e. first search
+                //produces an non-static method). Alternatively, a given search produced a result
+                //with the right staticness, but the other search has applicable methods with wrong
+                //staticness (error recovery)
+                return new BadMethodReferenceError(boundRes.isSuccess() ? boundRes.sym : unboundRes.sym, true);
+            } else {
+                //both searches fail to produce a result - pick 'better' error using heuristics (error recovery)
+                return (boundRes.canIgnore() && !unboundRes.canIgnore()) ?
+                        unboundRes.sym : boundRes.sym;
+            }
+        }
+    };
+
+    /**
+     * This chooser implements the selection strategy used during an arity-based lookup; this logic
+     * is described in JLS SE 8 (15.12.2.1).
+     */
+    ReferenceChooser structuralReferenceChooser = new ReferenceChooser() {
+
+        @Override
+        Symbol boundResult(ReferenceLookupResult boundRes) {
+            return (!boundRes.isSuccess() || !boundRes.hasKind(StaticKind.STATIC)) ?
+                    boundRes.sym : //the search has at least one applicable non-static method
+                    new BadMethodReferenceError(boundRes.sym, false);
+        }
+
+        @Override
+        Symbol unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
+            if (boundRes.isSuccess() && !boundRes.hasKind(StaticKind.NON_STATIC)) {
+                //the first serach has at least one applicable static method
+                return boundRes.sym;
+            } else if (unboundRes.isSuccess() && !unboundRes.hasKind(StaticKind.STATIC)) {
+                //the second search has at least one applicable non-static method
+                return unboundRes.sym;
+            } else if (boundRes.isSuccess() || unboundRes.isSuccess()) {
+                //either the first search produces a non-static method, or second search produces
+                //a non-static method (error recovery)
+                return new BadMethodReferenceError(boundRes.isSuccess() ? boundRes.sym : unboundRes.sym, true);
+            } else {
+                //both searches fail to produce a result - pick 'better' error using heuristics (error recovery)
+                return (boundRes.canIgnore() && !unboundRes.canIgnore()) ?
+                        unboundRes.sym : boundRes.sym;
+            }
+        }
+    };
+
+    /**
+     * Helper for defining custom method-like lookup logic; a lookup helper
+     * provides hooks for (i) the actual lookup logic and (ii) accessing the
+     * lookup result (this step might result in compiler diagnostics to be generated)
+     */
+    abstract class LookupHelper {
+
+        /** name of the symbol to lookup */
+        Name name;
+
+        /** location in which the lookup takes place */
+        Type site;
+
+        /** actual types used during the lookup */
+        List<Type> argtypes;
+
+        /** type arguments used during the lookup */
+        List<Type> typeargtypes;
+
+        /** Max overload resolution phase handled by this helper */
+        MethodResolutionPhase maxPhase;
+
+        LookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
+            this.name = name;
+            this.site = site;
+            this.argtypes = argtypes;
+            this.typeargtypes = typeargtypes;
+            this.maxPhase = maxPhase;
+        }
+
+        /**
+         * Should lookup stop at given phase with given result
+         */
+        final boolean shouldStop(Symbol sym, MethodResolutionPhase phase) {
+            return phase.ordinal() > maxPhase.ordinal() ||
+                !sym.kind.isResolutionError() || sym.kind == AMBIGUOUS;
+        }
+
+        /**
+         * Search for a symbol under a given overload resolution phase - this method
+         * is usually called several times, once per each overload resolution phase
+         */
+        abstract Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase);
+
+        /**
+         * Dump overload resolution info
+         */
+        void debug(DiagnosticPosition pos, Symbol sym) {
+            //do nothing
+        }
+
+        /**
+         * Validate the result of the lookup
+         */
+        abstract Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym);
+    }
+
+    abstract class BasicLookupHelper extends LookupHelper {
+
+        BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes) {
+            this(name, site, argtypes, typeargtypes, MethodResolutionPhase.VARARITY);
+        }
+
+        BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
+            super(name, site, argtypes, typeargtypes, maxPhase);
+        }
+
+        @Override
+        final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
+            Symbol sym = doLookup(env, phase);
+            if (sym.kind == AMBIGUOUS) {
+                AmbiguityError a_err = (AmbiguityError)sym.baseSymbol();
+                sym = a_err.mergeAbstracts(site);
+            }
+            return sym;
+        }
+
+        abstract Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase);
+
+        @Override
+        Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
+            if (sym.kind.isResolutionError()) {
+                //if nothing is found return the 'first' error
+                sym = accessMethod(sym, pos, location, site, name, true, argtypes, typeargtypes);
+            }
+            return sym;
+        }
+
+        @Override
+        void debug(DiagnosticPosition pos, Symbol sym) {
+            reportVerboseResolutionDiagnostic(pos, name, site, argtypes, typeargtypes, sym);
+        }
+    }
+
+    /**
+     * Helper class for member reference lookup. A reference lookup helper
+     * defines the basic logic for member reference lookup; a method gives
+     * access to an 'unbound' helper used to perform an unbound member
+     * reference lookup.
+     */
+    abstract class ReferenceLookupHelper extends LookupHelper {
+
+        /** The member reference tree */
+        JCMemberReference referenceTree;
+
+        ReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
+                List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
+            super(name, site, argtypes, typeargtypes, maxPhase);
+            this.referenceTree = referenceTree;
+        }
+
+        /**
+         * Returns an unbound version of this lookup helper. By default, this
+         * method returns an dummy lookup helper.
+         */
+        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
+            return null;
+        }
+
+        /**
+         * Get the kind of the member reference
+         */
+        abstract JCMemberReference.ReferenceKind referenceKind(Symbol sym);
+
+        Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
+            if (sym.kind == AMBIGUOUS) {
+                AmbiguityError a_err = (AmbiguityError)sym.baseSymbol();
+                sym = a_err.mergeAbstracts(site);
+            }
+            //skip error reporting
+            return sym;
+        }
+    }
+
+    /**
+     * Helper class for method reference lookup. The lookup logic is based
+     * upon Resolve.findMethod; in certain cases, this helper class has a
+     * corresponding unbound helper class (see UnboundMethodReferenceLookupHelper).
+     * In such cases, non-static lookup results are thrown away.
+     */
+    class MethodReferenceLookupHelper extends ReferenceLookupHelper {
+
+        /** The original method reference lookup site. */
+        Type originalSite;
+
+        MethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
+                List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
+            super(referenceTree, name, types.skipTypeVars(site, true), argtypes, typeargtypes, maxPhase);
+            this.originalSite = site;
+        }
+
+        @Override
+        final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
+            return findMethod(env, site, name, argtypes, typeargtypes,
+                    phase.isBoxingRequired(), phase.isVarargsRequired());
+        }
+
+        @Override
+        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
+            if (TreeInfo.isStaticSelector(referenceTree.expr, names)) {
+                if (argtypes.nonEmpty() &&
+                        (argtypes.head.hasTag(NONE) ||
+                        types.isSubtypeUnchecked(inferenceContext.asUndetVar(argtypes.head), originalSite))) {
+                    return new UnboundMethodReferenceLookupHelper(referenceTree, name,
+                            originalSite, argtypes, typeargtypes, maxPhase);
+                } else {
+                    return new ReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase) {
+                        @Override
+                        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
+                            return this;
+                        }
+
+                        @Override
+                        Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
+                            return methodNotFound;
+                        }
+
+                        @Override
+                        ReferenceKind referenceKind(Symbol sym) {
+                            Assert.error();
+                            return null;
+                        }
+                    };
+                }
+            } else {
+                return super.unboundLookup(inferenceContext);
+            }
+        }
+
+        @Override
+        ReferenceKind referenceKind(Symbol sym) {
+            if (sym.isStatic()) {
+                return ReferenceKind.STATIC;
+            } else {
+                Name selName = TreeInfo.name(referenceTree.getQualifierExpression());
+                return selName != null && selName == names._super ?
+                        ReferenceKind.SUPER :
+                        ReferenceKind.BOUND;
+            }
+        }
+    }
+
+    /**
+     * Helper class for unbound method reference lookup. Essentially the same
+     * as the basic method reference lookup helper; main difference is that static
+     * lookup results are thrown away. If qualifier type is raw, an attempt to
+     * infer a parameterized type is made using the first actual argument (that
+     * would otherwise be ignored during the lookup).
+     */
+    class UnboundMethodReferenceLookupHelper extends MethodReferenceLookupHelper {
+
+        UnboundMethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
+                List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
+            super(referenceTree, name, site, argtypes.tail, typeargtypes, maxPhase);
+            if (site.isRaw() && !argtypes.head.hasTag(NONE)) {
+                Type asSuperSite = types.asSuper(argtypes.head, site.tsym);
+                this.site = types.skipTypeVars(asSuperSite, true);
+            }
+        }
+
+        @Override
+        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
+            return this;
+        }
+
+        @Override
+        ReferenceKind referenceKind(Symbol sym) {
+            return ReferenceKind.UNBOUND;
+        }
+    }
+
+    /**
+     * Helper class for array constructor lookup; an array constructor lookup
+     * is simulated by looking up a method that returns the array type specified
+     * as qualifier, and that accepts a single int parameter (size of the array).
+     */
+    class ArrayConstructorReferenceLookupHelper extends ReferenceLookupHelper {
+
+        ArrayConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
+                List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
+            super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
+        }
+
+        @Override
+        protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
+            WriteableScope sc = WriteableScope.create(syms.arrayClass);
+            MethodSymbol arrayConstr = new MethodSymbol(PUBLIC, name, null, site.tsym);
+            arrayConstr.type = new MethodType(List.of(syms.intType), site, List.nil(), syms.methodClass);
+            sc.enter(arrayConstr);
+            return findMethodInScope(env, site, name, argtypes, typeargtypes, sc, methodNotFound, phase.isBoxingRequired(), phase.isVarargsRequired(), false);
+        }
+
+        @Override
+        ReferenceKind referenceKind(Symbol sym) {
+            return ReferenceKind.ARRAY_CTOR;
+        }
+    }
+
+    /**
+     * Helper class for constructor reference lookup. The lookup logic is based
+     * upon either Resolve.findMethod or Resolve.findDiamond - depending on
+     * whether the constructor reference needs diamond inference (this is the case
+     * if the qualifier type is raw). A special erroneous symbol is returned
+     * if the lookup returns the constructor of an inner class and there's no
+     * enclosing instance in scope.
+     */
+    class ConstructorReferenceLookupHelper extends ReferenceLookupHelper {
+
+        boolean needsInference;
+
+        ConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
+                List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
+            super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
+            if (site.isRaw()) {
+                this.site = new ClassType(site.getEnclosingType(), site.tsym.type.getTypeArguments(), site.tsym, site.getMetadata());
+                needsInference = true;
+            }
+        }
+
+        @Override
+        protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
+            Symbol sym = needsInference ?
+                findDiamond(env, site, argtypes, typeargtypes, phase.isBoxingRequired(), phase.isVarargsRequired()) :
+                findMethod(env, site, name, argtypes, typeargtypes,
+                        phase.isBoxingRequired(), phase.isVarargsRequired());
+            return enclosingInstanceMissing(env, site) ? new BadConstructorReferenceError(sym) : sym;
+        }
+
+        @Override
+        ReferenceKind referenceKind(Symbol sym) {
+            return site.getEnclosingType().hasTag(NONE) ?
+                    ReferenceKind.TOPLEVEL : ReferenceKind.IMPLICIT_INNER;
+        }
+    }
+
+    /**
+     * Main overload resolution routine. On each overload resolution step, a
+     * lookup helper class is used to perform the method/constructor lookup;
+     * at the end of the lookup, the helper is used to validate the results
+     * (this last step might trigger overload resolution diagnostics).
+     */
+    Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, MethodCheck methodCheck, LookupHelper lookupHelper) {
+        MethodResolutionContext resolveContext = new MethodResolutionContext();
+        resolveContext.methodCheck = methodCheck;
+        return lookupMethod(env, pos, location, resolveContext, lookupHelper);
+    }
+
+    Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location,
+            MethodResolutionContext resolveContext, LookupHelper lookupHelper) {
+        MethodResolutionContext prevResolutionContext = currentResolutionContext;
+        try {
+            Symbol bestSoFar = methodNotFound;
+            currentResolutionContext = resolveContext;
+            for (MethodResolutionPhase phase : methodResolutionSteps) {
+                if (lookupHelper.shouldStop(bestSoFar, phase))
+                    break;
+                MethodResolutionPhase prevPhase = currentResolutionContext.step;
+                Symbol prevBest = bestSoFar;
+                currentResolutionContext.step = phase;
+                Symbol sym = lookupHelper.lookup(env, phase);
+                lookupHelper.debug(pos, sym);
+                bestSoFar = phase.mergeResults(bestSoFar, sym);
+                env.info.pendingResolutionPhase = (prevBest == bestSoFar) ? prevPhase : phase;
+            }
+            return lookupHelper.access(env, pos, location, bestSoFar);
+        } finally {
+            currentResolutionContext = prevResolutionContext;
+        }
+    }
+
+    /**
+     * Resolve `c.name' where name == this or name == super.
+     * @param pos           The position to use for error reporting.
+     * @param env           The environment current at the expression.
+     * @param c             The qualifier.
+     * @param name          The identifier's name.
+     */
+    Symbol resolveSelf(DiagnosticPosition pos,
+                       Env<AttrContext> env,
+                       TypeSymbol c,
+                       Name name) {
+        Env<AttrContext> env1 = env;
+        boolean staticOnly = false;
+        while (env1.outer != null) {
+            if (isStatic(env1)) staticOnly = true;
+            if (env1.enclClass.sym == c) {
+                Symbol sym = env1.info.scope.findFirst(name);
+                if (sym != null) {
+                    if (staticOnly) sym = new StaticError(sym);
+                    return accessBase(sym, pos, env.enclClass.sym.type,
+                                  name, true);
+                }
+            }
+            if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
+            env1 = env1.outer;
+        }
+        if (c.isInterface() &&
+            name == names._super && !isStatic(env) &&
+            types.isDirectSuperInterface(c, env.enclClass.sym)) {
+            //this might be a default super call if one of the superinterfaces is 'c'
+            for (Type t : pruneInterfaces(env.enclClass.type)) {
+                if (t.tsym == c) {
+                    env.info.defaultSuperCallSite = t;
+                    return new VarSymbol(0, names._super,
+                            types.asSuper(env.enclClass.type, c), env.enclClass.sym);
+                }
+            }
+            //find a direct super type that is a subtype of 'c'
+            for (Type i : types.directSupertypes(env.enclClass.type)) {
+                if (i.tsym.isSubClass(c, types) && i.tsym != c) {
+                    log.error(pos,
+                              Errors.IllegalDefaultSuperCall(c,
+                                                             Fragments.RedundantSupertype(c, i)));
+                    return syms.errSymbol;
+                }
+            }
+            Assert.error();
+        }
+        log.error(pos, Errors.NotEnclClass(c));
+        return syms.errSymbol;
+    }
+    //where
+    private List<Type> pruneInterfaces(Type t) {
+        ListBuffer<Type> result = new ListBuffer<>();
+        for (Type t1 : types.interfaces(t)) {
+            boolean shouldAdd = true;
+            for (Type t2 : types.directSupertypes(t)) {
+                if (t1 != t2 && types.isSubtypeNoCapture(t2, t1)) {
+                    shouldAdd = false;
+                }
+            }
+            if (shouldAdd) {
+                result.append(t1);
+            }
+        }
+        return result.toList();
+    }
+
+
+    /**
+     * Resolve `c.this' for an enclosing class c that contains the
+     * named member.
+     * @param pos           The position to use for error reporting.
+     * @param env           The environment current at the expression.
+     * @param member        The member that must be contained in the result.
+     */
+    Symbol resolveSelfContaining(DiagnosticPosition pos,
+                                 Env<AttrContext> env,
+                                 Symbol member,
+                                 boolean isSuperCall) {
+        Symbol sym = resolveSelfContainingInternal(env, member, isSuperCall);
+        if (sym == null) {
+            log.error(pos, Errors.EnclClassRequired(member));
+            return syms.errSymbol;
+        } else {
+            return accessBase(sym, pos, env.enclClass.sym.type, sym.name, true);
+        }
+    }
+
+    boolean enclosingInstanceMissing(Env<AttrContext> env, Type type) {
+        if (type.hasTag(CLASS) && type.getEnclosingType().hasTag(CLASS)) {
+            Symbol encl = resolveSelfContainingInternal(env, type.tsym, false);
+            return encl == null || encl.kind.isResolutionError();
+        }
+        return false;
+    }
+
+    private Symbol resolveSelfContainingInternal(Env<AttrContext> env,
+                                 Symbol member,
+                                 boolean isSuperCall) {
+        Name name = names._this;
+        Env<AttrContext> env1 = isSuperCall ? env.outer : env;
+        boolean staticOnly = false;
+        if (env1 != null) {
+            while (env1 != null && env1.outer != null) {
+                if (isStatic(env1)) staticOnly = true;
+                if (env1.enclClass.sym.isSubClass(member.owner.enclClass(), types)) {
+                    Symbol sym = env1.info.scope.findFirst(name);
+                    if (sym != null) {
+                        if (staticOnly) sym = new StaticError(sym);
+                        return sym;
+                    }
+                }
+                if ((env1.enclClass.sym.flags() & STATIC) != 0)
+                    staticOnly = true;
+                env1 = env1.outer;
+            }
+        }
+        return null;
+    }
+
+    /**
+     * Resolve an appropriate implicit this instance for t's container.
+     * JLS 8.8.5.1 and 15.9.2
+     */
+    Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t) {
+        return resolveImplicitThis(pos, env, t, false);
+    }
+
+    Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t, boolean isSuperCall) {
+        Type thisType = (t.tsym.owner.kind.matches(KindSelector.VAL_MTH)
+                         ? resolveSelf(pos, env, t.getEnclosingType().tsym, names._this)
+                         : resolveSelfContaining(pos, env, t.tsym, isSuperCall)).type;
+        if (env.info.isSelfCall && thisType.tsym == env.enclClass.sym) {
+            log.error(pos, Errors.CantRefBeforeCtorCalled("this"));
+        }
+        return thisType;
+    }
+
+/* ***************************************************************************
+ *  ResolveError classes, indicating error situations when accessing symbols
+ ****************************************************************************/
+
+    //used by TransTypes when checking target type of synthetic cast
+    public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) {
+        AccessError error = new AccessError(env, env.enclClass.type, type.tsym);
+        logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null);
+    }
+    //where
+    private void logResolveError(ResolveError error,
+            DiagnosticPosition pos,
+            Symbol location,
+            Type site,
+            Name name,
+            List<Type> argtypes,
+            List<Type> typeargtypes) {
+        JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
+                pos, location, site, name, argtypes, typeargtypes);
+        if (d != null) {
+            d.setFlag(DiagnosticFlag.RESOLVE_ERROR);
+            log.report(d);
+        }
+    }
+
+    private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args");
+
+    public Object methodArguments(List<Type> argtypes) {
+        if (argtypes == null || argtypes.isEmpty()) {
+            return noArgs;
+        } else {
+            ListBuffer<Object> diagArgs = new ListBuffer<>();
+            for (Type t : argtypes) {
+                if (t.hasTag(DEFERRED)) {
+                    diagArgs.append(((DeferredAttr.DeferredType)t).tree);
+                } else {
+                    diagArgs.append(t);
+                }
+            }
+            return diagArgs;
+        }
+    }
+
+    /**
+     * Root class for resolution errors. Subclass of ResolveError
+     * represent a different kinds of resolution error - as such they must
+     * specify how they map into concrete compiler diagnostics.
+     */
+    abstract class ResolveError extends Symbol {
+
+        /** The name of the kind of error, for debugging only. */
+        final String debugName;
+
+        ResolveError(Kind kind, String debugName) {
+            super(kind, 0, null, null, null);
+            this.debugName = debugName;
+        }
+
+        @Override @DefinedBy(Api.LANGUAGE_MODEL)
+        public <R, P> R accept(ElementVisitor<R, P> v, P p) {
+            throw new AssertionError();
+        }
+
+        @Override
+        public String toString() {
+            return debugName;
+        }
+
+        @Override
+        public boolean exists() {
+            return false;
+        }
+
+        @Override
+        public boolean isStatic() {
+            return false;
+        }
+
+        /**
+         * Create an external representation for this erroneous symbol to be
+         * used during attribution - by default this returns the symbol of a
+         * brand new error type which stores the original type found
+         * during resolution.
+         *
+         * @param name     the name used during resolution
+         * @param location the location from which the symbol is accessed
+         */
+        protected Symbol access(Name name, TypeSymbol location) {
+            return types.createErrorType(name, location, syms.errSymbol.type).tsym;
+        }
+
+        /**
+         * Create a diagnostic representing this resolution error.
+         *
+         * @param dkind     The kind of the diagnostic to be created (e.g error).
+         * @param pos       The position to be used for error reporting.
+         * @param site      The original type from where the selection took place.
+         * @param name      The name of the symbol to be resolved.
+         * @param argtypes  The invocation's value arguments,
+         *                  if we looked for a method.
+         * @param typeargtypes  The invocation's type arguments,
+         *                      if we looked for a method.
+         */
+        abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
+                DiagnosticPosition pos,
+                Symbol location,
+                Type site,
+                Name name,
+                List<Type> argtypes,
+                List<Type> typeargtypes);
+    }
+
+    /**
+     * This class is the root class of all resolution errors caused by
+     * an invalid symbol being found during resolution.
+     */
+    abstract class InvalidSymbolError extends ResolveError {
+
+        /** The invalid symbol found during resolution */
+        Symbol sym;
+
+        InvalidSymbolError(Kind kind, Symbol sym, String debugName) {
+            super(kind, debugName);
+            this.sym = sym;
+        }
+
+        @Override
+        public boolean exists() {
+            return true;
+        }
+
+        @Override
+        public String toString() {
+             return super.toString() + " wrongSym=" + sym;
+        }
+
+        @Override
+        public Symbol access(Name name, TypeSymbol location) {
+            if (!sym.kind.isResolutionError() && sym.kind.matches(KindSelector.TYP))
+                return types.createErrorType(name, location, sym.type).tsym;
+            else
+                return sym;
+        }
+    }
+
+    /**
+     * InvalidSymbolError error class indicating that a symbol matching a
+     * given name does not exists in a given site.
+     */
+    class SymbolNotFoundError extends ResolveError {
+
+        SymbolNotFoundError(Kind kind) {
+            this(kind, "symbol not found error");
+        }
+
+        SymbolNotFoundError(Kind kind, String debugName) {
+            super(kind, debugName);
+        }
+
+        @Override
+        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
+                DiagnosticPosition pos,
+                Symbol location,
+                Type site,
+                Name name,
+                List<Type> argtypes,
+                List<Type> typeargtypes) {
+            argtypes = argtypes == null ? List.nil() : argtypes;
+            typeargtypes = typeargtypes == null ? List.nil() : typeargtypes;
+            if (name == names.error)
+                return null;
+
+            boolean hasLocation = false;
+            if (location == null) {
+                location = site.tsym;
+            }
+            if (!location.name.isEmpty()) {
+                if (location.kind == PCK && !site.tsym.exists()) {
+                    return diags.create(dkind, log.currentSource(), pos,
+                        "doesnt.exist", location);
+                }
+                hasLocation = !location.name.equals(names._this) &&
+                        !location.name.equals(names._super);
+            }
+            boolean isConstructor = name == names.init;
+            KindName kindname = isConstructor ? KindName.CONSTRUCTOR : kind.absentKind();
+            Name idname = isConstructor ? site.tsym.name : name;
+            String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation);
+            if (hasLocation) {
+                return diags.create(dkind, log.currentSource(), pos,
+                        errKey, kindname, idname, //symbol kindname, name
+                        typeargtypes, args(argtypes), //type parameters and arguments (if any)
+                        getLocationDiag(location, site)); //location kindname, type
+            }
+            else {
+                return diags.create(dkind, log.currentSource(), pos,
+                        errKey, kindname, idname, //symbol kindname, name
+                        typeargtypes, args(argtypes)); //type parameters and arguments (if any)
+            }
+        }
+        //where
+        private Object args(List<Type> args) {
+            return args.isEmpty() ? args : methodArguments(args);
+        }
+
+        private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) {
+            String key = "cant.resolve";
+            String suffix = hasLocation ? ".location" : "";
+            switch (kindname) {
+                case METHOD:
+                case CONSTRUCTOR: {
+                    suffix += ".args";
+                    suffix += hasTypeArgs ? ".params" : "";
+                }
+            }
+            return key + suffix;
+        }
+        private JCDiagnostic getLocationDiag(Symbol location, Type site) {
+            if (location.kind == VAR) {
+                return diags.fragment(Fragments.Location1(kindName(location),
+                                                          location,
+                                                          location.type));
+            } else {
+                return diags.fragment(Fragments.Location(typeKindName(site),
+                                      site,
+                                      null));
+            }
+        }
+    }
+
+    /**
+     * InvalidSymbolError error class indicating that a given symbol
+     * (either a method, a constructor or an operand) is not applicable
+     * given an actual arguments/type argument list.
+     */
+    class InapplicableSymbolError extends ResolveError {
+
+        protected MethodResolutionContext resolveContext;
+
+        InapplicableSymbolError(MethodResolutionContext context) {
+            this(WRONG_MTH, "inapplicable symbol error", context);
+        }
+
+        protected InapplicableSymbolError(Kind kind, String debugName, MethodResolutionContext context) {
+            super(kind, debugName);
+            this.resolveContext = context;
+        }
+
+        @Override
+        public String toString() {
+            return super.toString();
+        }
+
+        @Override
+        public boolean exists() {
+            return true;
+        }
+
+        @Override
+        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
+                DiagnosticPosition pos,
+                Symbol location,
+                Type site,
+                Name name,
+                List<Type> argtypes,
+                List<Type> typeargtypes) {
+            if (name == names.error)
+                return null;
+
+            Pair<Symbol, JCDiagnostic> c = errCandidate();
+            if (compactMethodDiags) {
+                JCDiagnostic simpleDiag =
+                    MethodResolutionDiagHelper.rewrite(diags, pos, log.currentSource(), dkind, c.snd);
+                if (simpleDiag != null) {
+                    return simpleDiag;
+                }
+            }
+            Symbol ws = c.fst.asMemberOf(site, types);
+            return diags.create(dkind, log.currentSource(), pos,
+                      "cant.apply.symbol",
+                      kindName(ws),
+                      ws.name == names.init ? ws.owner.name : ws.name,
+                      methodArguments(ws.type.getParameterTypes()),
+                      methodArguments(argtypes),
+                      kindName(ws.owner),
+                      ws.owner.type,
+                      c.snd);
+        }
+
+        @Override
+        public Symbol access(Name name, TypeSymbol location) {
+            return types.createErrorType(name, location, syms.errSymbol.type).tsym;
+        }
+
+        protected Pair<Symbol, JCDiagnostic> errCandidate() {
+            Candidate bestSoFar = null;
+            for (Candidate c : resolveContext.candidates) {
+                if (c.isApplicable()) continue;
+                bestSoFar = c;
+            }
+            Assert.checkNonNull(bestSoFar);
+            return new Pair<>(bestSoFar.sym, bestSoFar.details);
+        }
+    }
+
+    /**
+     * ResolveError error class indicating that a symbol (either methods, constructors or operand)
+     * is not applicable given an actual arguments/type argument list.
+     */
+    class InapplicableSymbolsError extends InapplicableSymbolError {
+
+        InapplicableSymbolsError(MethodResolutionContext context) {
+            super(WRONG_MTHS, "inapplicable symbols", context);
+        }
+
+        @Override
+        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
+                DiagnosticPosition pos,
+                Symbol location,
+                Type site,
+                Name name,
+                List<Type> argtypes,
+                List<Type> typeargtypes) {
+            Map<Symbol, JCDiagnostic> candidatesMap = mapCandidates();
+            Map<Symbol, JCDiagnostic> filteredCandidates = compactMethodDiags ?
+                    filterCandidates(candidatesMap) :
+                    mapCandidates();
+            if (filteredCandidates.isEmpty()) {
+                filteredCandidates = candidatesMap;
+            }
+            boolean truncatedDiag = candidatesMap.size() != filteredCandidates.size();
+            if (filteredCandidates.size() > 1) {
+                JCDiagnostic err = diags.create(dkind,
+                        null,
+                        truncatedDiag ?
+                            EnumSet.of(DiagnosticFlag.COMPRESSED) :
+                            EnumSet.noneOf(DiagnosticFlag.class),
+                        log.currentSource(),
+                        pos,
+                        "cant.apply.symbols",
+                        name == names.init ? KindName.CONSTRUCTOR : kind.absentKind(),
+                        name == names.init ? site.tsym.name : name,
+                        methodArguments(argtypes));
+                return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(filteredCandidates, site));
+            } else if (filteredCandidates.size() == 1) {
+                Map.Entry<Symbol, JCDiagnostic> _e =
+                                filteredCandidates.entrySet().iterator().next();
+                final Pair<Symbol, JCDiagnostic> p = new Pair<>(_e.getKey(), _e.getValue());
+                JCDiagnostic d = new InapplicableSymbolError(resolveContext) {
+                    @Override
+                    protected Pair<Symbol, JCDiagnostic> errCandidate() {
+                        return p;
+                    }
+                }.getDiagnostic(dkind, pos,
+                    location, site, name, argtypes, typeargtypes);
+                if (truncatedDiag) {
+                    d.setFlag(DiagnosticFlag.COMPRESSED);
+                }
+                return d;
+            } else {
+                return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos,
+                    location, site, name, argtypes, typeargtypes);
+            }
+        }
+        //where
+            private Map<Symbol, JCDiagnostic> mapCandidates() {
+                Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<>();
+                for (Candidate c : resolveContext.candidates) {
+                    if (c.isApplicable()) continue;
+                    candidates.put(c.sym, c.details);
+                }
+                return candidates;
+            }
+
+            Map<Symbol, JCDiagnostic> filterCandidates(Map<Symbol, JCDiagnostic> candidatesMap) {
+                Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<>();
+                for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
+                    JCDiagnostic d = _entry.getValue();
+                    if (!new Template(MethodCheckDiag.ARITY_MISMATCH.regex()).matches(d)) {
+                        candidates.put(_entry.getKey(), d);
+                    }
+                }
+                return candidates;
+            }
+
+            private List<JCDiagnostic> candidateDetails(Map<Symbol, JCDiagnostic> candidatesMap, Type site) {
+                List<JCDiagnostic> details = List.nil();
+                for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
+                    Symbol sym = _entry.getKey();
+                    JCDiagnostic detailDiag =
+                            diags.fragment(Fragments.InapplicableMethod(Kinds.kindName(sym),
+                                                                        sym.location(site, types),
+                                                                        sym.asMemberOf(site, types),
+                                                                        _entry.getValue()));
+                    details = details.prepend(detailDiag);
+                }
+                //typically members are visited in reverse order (see Scope)
+                //so we need to reverse the candidate list so that candidates
+                //conform to source order
+                return details;
+            }
+    }
+
+    /**
+     * DiamondError error class indicating that a constructor symbol is not applicable
+     * given an actual arguments/type argument list using diamond inference.
+     */
+    class DiamondError extends InapplicableSymbolError {
+
+        Symbol sym;
+
+        public DiamondError(Symbol sym, MethodResolutionContext context) {
+            super(sym.kind, "diamondError", context);
+            this.sym = sym;
+        }
+
+        JCDiagnostic getDetails() {
+            return (sym.kind == WRONG_MTH) ?
+                    ((InapplicableSymbolError)sym.baseSymbol()).errCandidate().snd :
+                    null;
+        }
+
+        @Override
+        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos,
+                Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
+            JCDiagnostic details = getDetails();
+            if (details != null && compactMethodDiags) {
+                JCDiagnostic simpleDiag =
+                        MethodResolutionDiagHelper.rewrite(diags, pos, log.currentSource(), dkind, details);
+                if (simpleDiag != null) {
+                    return simpleDiag;
+                }
+            }
+            String key = details == null ?
+                "cant.apply.diamond" :
+                "cant.apply.diamond.1";
+            return diags.create(dkind, log.currentSource(), pos, key,
+                    Fragments.Diamond(site.tsym), details);
+        }
+    }
+
+    /**
+     * An InvalidSymbolError error class indicating that a symbol is not
+     * accessible from a given site
+     */
+    class AccessError extends InvalidSymbolError {
+
+        private Env<AttrContext> env;
+        private Type site;
+
+        AccessError(Env<AttrContext> env, Type site, Symbol sym) {
+            super(HIDDEN, sym, "access error");
+            this.env = env;
+            this.site = site;
+        }
+
+        @Override
+        public boolean exists() {
+            return false;
+        }
+
+        @Override
+        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
+                DiagnosticPosition pos,
+                Symbol location,
+                Type site,
+                Name name,
+                List<Type> argtypes,
+                List<Type> typeargtypes) {
+            if (sym.owner.type.hasTag(ERROR))
+                return null;
+
+            if (sym.name == names.init && sym.owner != site.tsym) {
+                return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind,
+                        pos, location, site, name, argtypes, typeargtypes);
+            }
+            else if ((sym.flags() & PUBLIC) != 0
+                || (env != null && this.site != null
+                    && !isAccessible(env, this.site))) {
+                if (sym.owner.kind == PCK) {
+                    return diags.create(dkind, log.currentSource(),
+                            pos, "not.def.access.package.cant.access",
+                        sym, sym.location(), inaccessiblePackageReason(env, sym.packge()));
+                } else if (   sym.packge() != syms.rootPackage
+                           && !symbolPackageVisible(env, sym)) {
+                    return diags.create(dkind, log.currentSource(),
+                            pos, "not.def.access.class.intf.cant.access.reason",
+                            sym, sym.location(), sym.location().packge(),
+                            inaccessiblePackageReason(env, sym.packge()));
+                } else {
+                    return diags.create(dkind, log.currentSource(),
+                            pos, "not.def.access.class.intf.cant.access",
+                        sym, sym.location());
+                }
+            }
+            else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) {
+                return diags.create(dkind, log.currentSource(),
+                        pos, "report.access", sym,
+                        asFlagSet(sym.flags() & (PRIVATE | PROTECTED)),
+                        sym.location());
+            }
+            else {
+                return diags.create(dkind, log.currentSource(),
+                        pos, "not.def.public.cant.access", sym, sym.location());
+            }
+        }
+
+        private String toString(Type type) {
+            StringBuilder sb = new StringBuilder();
+            sb.append(type);
+            if (type != null) {
+                sb.append("[tsym:").append(type.tsym);
+                if (type.tsym != null)
+                    sb.append("packge:").append(type.tsym.packge());
+                sb.append("]");
+            }
+            return sb.toString();
+        }
+    }
+
+    class InvisibleSymbolError extends InvalidSymbolError {
+
+        private final Env<AttrContext> env;
+        private final boolean suppressError;
+
+        InvisibleSymbolError(Env<AttrContext> env, boolean suppressError, Symbol sym) {
+            super(HIDDEN, sym, "invisible class error");
+            this.env = env;
+            this.suppressError = suppressError;
+            this.name = sym.name;
+        }
+
+        @Override
+        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
+                DiagnosticPosition pos,
+                Symbol location,
+                Type site,
+                Name name,
+                List<Type> argtypes,
+                List<Type> typeargtypes) {
+            if (suppressError)
+                return null;
+
+            if (sym.kind == PCK) {
+                JCDiagnostic details = inaccessiblePackageReason(env, sym.packge());
+                return diags.create(dkind, log.currentSource(),
+                        pos, "package.not.visible", sym, details);
+            }
+
+            JCDiagnostic details = inaccessiblePackageReason(env, sym.packge());
+
+            if (pos.getTree() != null) {
+                Symbol o = sym;
+                JCTree tree = pos.getTree();
+
+                while (o.kind != PCK && tree.hasTag(SELECT)) {
+                    o = o.owner;
+                    tree = ((JCFieldAccess) tree).selected;
+                }
+
+                if (o.kind == PCK) {
+                    pos = tree.pos();
+
+                    return diags.create(dkind, log.currentSource(),
+                            pos, "package.not.visible", o, details);
+                }
+            }
+
+            return diags.create(dkind, log.currentSource(),
+                    pos, "not.def.access.package.cant.access", sym, sym.packge(), details);
+        }
+    }
+
+    JCDiagnostic inaccessiblePackageReason(Env<AttrContext> env, PackageSymbol sym) {
+        //no dependency:
+        if (!env.toplevel.modle.readModules.contains(sym.modle)) {
+            //does not read:
+            if (sym.modle != syms.unnamedModule) {
+                if (env.toplevel.modle != syms.unnamedModule) {
+                    return diags.fragment(Fragments.NotDefAccessDoesNotRead(env.toplevel.modle,
+                                                                            sym,
+                                                                            sym.modle));
+                } else {
+                    return diags.fragment(Fragments.NotDefAccessDoesNotReadFromUnnamed(sym,
+                                                                                       sym.modle));
+                }
+            } else {
+                return diags.fragment(Fragments.NotDefAccessDoesNotReadUnnamed(sym,
+                                                                               env.toplevel.modle));
+            }
+        } else {
+            if (sym.packge().modle.exports.stream().anyMatch(e -> e.packge == sym)) {
+                //not exported to this module:
+                if (env.toplevel.modle != syms.unnamedModule) {
+                    return diags.fragment(Fragments.NotDefAccessNotExportedToModule(sym,
+                                                                                    sym.modle,
+                                                                                    env.toplevel.modle));
+                } else {
+                    return diags.fragment(Fragments.NotDefAccessNotExportedToModuleFromUnnamed(sym,
+                                                                                               sym.modle));
+                }
+            } else {
+                //not exported:
+                if (env.toplevel.modle != syms.unnamedModule) {
+                    return diags.fragment(Fragments.NotDefAccessNotExported(sym,
+                                                                            sym.modle));
+                } else {
+                    return diags.fragment(Fragments.NotDefAccessNotExportedFromUnnamed(sym,
+                                                                                       sym.modle));
+                }
+            }
+        }
+    }
+
+    /**
+     * InvalidSymbolError error class indicating that an instance member
+     * has erroneously been accessed from a static context.
+     */
+    class StaticError extends InvalidSymbolError {
+
+        StaticError(Symbol sym) {
+            super(STATICERR, sym, "static error");
+        }
+
+        @Override
+        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
+                DiagnosticPosition pos,
+                Symbol location,
+                Type site,
+                Name name,
+                List<Type> argtypes,
+                List<Type> typeargtypes) {
+            Symbol errSym = ((sym.kind == TYP && sym.type.hasTag(CLASS))
+                ? types.erasure(sym.type).tsym
+                : sym);
+            return diags.create(dkind, log.currentSource(), pos,
+                    "non-static.cant.be.ref", kindName(sym), errSym);
+        }
+    }
+
+    /**
+     * InvalidSymbolError error class indicating that a pair of symbols
+     * (either methods, constructors or operands) are ambiguous
+     * given an actual arguments/type argument list.
+     */
+    class AmbiguityError extends ResolveError {
+
+        /** The other maximally specific symbol */
+        List<Symbol> ambiguousSyms = List.nil();
+
+        @Override
+        public boolean exists() {
+            return true;
+        }
+
+        AmbiguityError(Symbol sym1, Symbol sym2) {
+            super(AMBIGUOUS, "ambiguity error");
+            ambiguousSyms = flatten(sym2).appendList(flatten(sym1));
+        }
+
+        private List<Symbol> flatten(Symbol sym) {
+            if (sym.kind == AMBIGUOUS) {
+                return ((AmbiguityError)sym.baseSymbol()).ambiguousSyms;
+            } else {
+                return List.of(sym);
+            }
+        }
+
+        AmbiguityError addAmbiguousSymbol(Symbol s) {
+            ambiguousSyms = ambiguousSyms.prepend(s);
+            return this;
+        }
+
+        @Override
+        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
+                DiagnosticPosition pos,
+                Symbol location,
+                Type site,
+                Name name,
+                List<Type> argtypes,
+                List<Type> typeargtypes) {
+            List<Symbol> diagSyms = ambiguousSyms.reverse();
+            Symbol s1 = diagSyms.head;
+            Symbol s2 = diagSyms.tail.head;
+            Name sname = s1.name;
+            if (sname == names.init) sname = s1.owner.name;
+            return diags.create(dkind, log.currentSource(),
+                    pos, "ref.ambiguous", sname,
+                    kindName(s1),
+                    s1,
+                    s1.location(site, types),
+                    kindName(s2),
+                    s2,
+                    s2.location(site, types));
+        }
+
+        /**
+         * If multiple applicable methods are found during overload and none of them
+         * is more specific than the others, attempt to merge their signatures.
+         */
+        Symbol mergeAbstracts(Type site) {
+            List<Symbol> ambiguousInOrder = ambiguousSyms.reverse();
+            return types.mergeAbstracts(ambiguousInOrder, site, true).orElse(this);
+        }
+
+        @Override
+        protected Symbol access(Name name, TypeSymbol location) {
+            Symbol firstAmbiguity = ambiguousSyms.last();
+            return firstAmbiguity.kind == TYP ?
+                    types.createErrorType(name, location, firstAmbiguity.type).tsym :
+                    firstAmbiguity;
+        }
+    }
+
+    class BadVarargsMethod extends ResolveError {
+
+        ResolveError delegatedError;
+
+        BadVarargsMethod(ResolveError delegatedError) {
+            super(delegatedError.kind, "badVarargs");
+            this.delegatedError = delegatedError;
+        }
+
+        @Override
+        public Symbol baseSymbol() {
+            return delegatedError.baseSymbol();
+        }
+
+        @Override
+        protected Symbol access(Name name, TypeSymbol location) {
+            return delegatedError.access(name, location);
+        }
+
+        @Override
+        public boolean exists() {
+            return true;
+        }
+
+        @Override
+        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
+            return delegatedError.getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes);
+        }
+    }
+
+    /**
+     * BadMethodReferenceError error class indicating that a method reference symbol has been found,
+     * but with the wrong staticness.
+     */
+    class BadMethodReferenceError extends StaticError {
+
+        boolean unboundLookup;
+
+        public BadMethodReferenceError(Symbol sym, boolean unboundLookup) {
+            super(sym);
+            this.unboundLookup = unboundLookup;
+        }
+
+        @Override
+        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
+            final String key;
+            if (!unboundLookup) {
+                key = "bad.static.method.in.bound.lookup";
+            } else if (sym.isStatic()) {
+                key = "bad.static.method.in.unbound.lookup";
+            } else {
+                key = "bad.instance.method.in.unbound.lookup";
+            }
+            return sym.kind.isResolutionError() ?
+                    ((ResolveError)sym).getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes) :
+                    diags.create(dkind, log.currentSource(), pos, key, Kinds.kindName(sym), sym);
+        }
+    }
+
+    /**
+     * BadConstructorReferenceError error class indicating that a constructor reference symbol has been found,
+     * but pointing to a class for which an enclosing instance is not available.
+     */
+    class BadConstructorReferenceError extends InvalidSymbolError {
+
+        public BadConstructorReferenceError(Symbol sym) {
+            super(MISSING_ENCL, sym, "BadConstructorReferenceError");
+        }
+
+        @Override
+        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
+           return diags.create(dkind, log.currentSource(), pos,
+                "cant.access.inner.cls.constr", site.tsym.name, argtypes, site.getEnclosingType());
+        }
+    }
+
+    /**
+     * Helper class for method resolution diagnostic simplification.
+     * Certain resolution diagnostic are rewritten as simpler diagnostic
+     * where the enclosing resolution diagnostic (i.e. 'inapplicable method')
+     * is stripped away, as it doesn't carry additional info. The logic
+     * for matching a given diagnostic is given in terms of a template
+     * hierarchy: a diagnostic template can be specified programmatically,
+     * so that only certain diagnostics are matched. Each templete is then
+     * associated with a rewriter object that carries out the task of rewtiting
+     * the diagnostic to a simpler one.
+     */
+    static class MethodResolutionDiagHelper {
+
+        /**
+         * A diagnostic rewriter transforms a method resolution diagnostic
+         * into a simpler one
+         */
+        interface DiagnosticRewriter {
+            JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
+                    DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
+                    DiagnosticType preferredKind, JCDiagnostic d);
+        }
+
+        /**
+         * A diagnostic template is made up of two ingredients: (i) a regular
+         * expression for matching a diagnostic key and (ii) a list of sub-templates
+         * for matching diagnostic arguments.
+         */
+        static class Template {
+
+            /** regex used to match diag key */
+            String regex;
+
+            /** templates used to match diagnostic args */
+            Template[] subTemplates;
+
+            Template(String key, Template... subTemplates) {
+                this.regex = key;
+                this.subTemplates = subTemplates;
+            }
+
+            /**
+             * Returns true if the regex matches the diagnostic key and if
+             * all diagnostic arguments are matches by corresponding sub-templates.
+             */
+            boolean matches(Object o) {
+                JCDiagnostic d = (JCDiagnostic)o;
+                Object[] args = d.getArgs();
+                if (!d.getCode().matches(regex) ||
+                        subTemplates.length != d.getArgs().length) {
+                    return false;
+                }
+                for (int i = 0; i < args.length ; i++) {
+                    if (!subTemplates[i].matches(args[i])) {
+                        return false;
+                    }
+                }
+                return true;
+            }
+        }
+
+        /**
+         * Common rewriter for all argument mismatch simplifications.
+         */
+        static class ArgMismatchRewriter implements DiagnosticRewriter {
+
+            /** the index of the subdiagnostic to be used as primary. */
+            int causeIndex;
+
+            public ArgMismatchRewriter(int causeIndex) {
+                this.causeIndex = causeIndex;
+            }
+
+            @Override
+            public JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
+                    DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
+                    DiagnosticType preferredKind, JCDiagnostic d) {
+                JCDiagnostic cause = (JCDiagnostic)d.getArgs()[causeIndex];
+                DiagnosticPosition pos = d.getDiagnosticPosition();
+                if (pos == null) {
+                    pos = preferedPos;
+                }
+                return diags.create(preferredKind, preferredSource, pos,
+                        "prob.found.req", cause);
+            }
+        }
+
+        /** a dummy template that match any diagnostic argument */
+        static final Template skip = new Template("") {
+            @Override
+            boolean matches(Object d) {
+                return true;
+            }
+        };
+
+        /** template for matching inference-free arguments mismatch failures */
+        static final Template argMismatchTemplate = new Template(MethodCheckDiag.ARG_MISMATCH.regex(), skip);
+
+        /** template for matching inference related arguments mismatch failures */
+        static final Template inferArgMismatchTemplate = new Template(MethodCheckDiag.ARG_MISMATCH.regex(), skip, skip) {
+            @Override
+            boolean matches(Object o) {
+                if (!super.matches(o)) {
+                    return false;
+                }
+                JCDiagnostic d = (JCDiagnostic)o;
+                @SuppressWarnings("unchecked")
+                List<Type> tvars = (List<Type>)d.getArgs()[0];
+                return !containsAny(d, tvars);
+            }
+
+            BiPredicate<Object, List<Type>> containsPredicate = (o, ts) -> {
+                if (o instanceof Type) {
+                    return ((Type)o).containsAny(ts);
+                } else if (o instanceof JCDiagnostic) {
+                    return containsAny((JCDiagnostic)o, ts);
+                } else {
+                    return false;
+                }
+            };
+
+            boolean containsAny(JCDiagnostic d, List<Type> ts) {
+                return Stream.of(d.getArgs())
+                        .anyMatch(o -> containsPredicate.test(o, ts));
+            }
+        };
+
+        /** rewriter map used for method resolution simplification */
+        static final Map<Template, DiagnosticRewriter> rewriters = new LinkedHashMap<>();
+
+        static {
+            rewriters.put(argMismatchTemplate, new ArgMismatchRewriter(0));
+            rewriters.put(inferArgMismatchTemplate, new ArgMismatchRewriter(1));
+        }
+
+        /**
+         * Main entry point for diagnostic rewriting - given a diagnostic, see if any templates matches it,
+         * and rewrite it accordingly.
+         */
+        static JCDiagnostic rewrite(JCDiagnostic.Factory diags, DiagnosticPosition pos, DiagnosticSource source,
+                                    DiagnosticType dkind, JCDiagnostic d) {
+            for (Map.Entry<Template, DiagnosticRewriter> _entry : rewriters.entrySet()) {
+                if (_entry.getKey().matches(d)) {
+                    JCDiagnostic simpleDiag =
+                            _entry.getValue().rewriteDiagnostic(diags, pos, source, dkind, d);
+                    simpleDiag.setFlag(DiagnosticFlag.COMPRESSED);
+                    return simpleDiag;
+                }
+            }
+            return null;
+        }
+    }
+
+    enum MethodResolutionPhase {
+        BASIC(false, false),
+        BOX(true, false),
+        VARARITY(true, true) {
+            @Override
+            public Symbol mergeResults(Symbol bestSoFar, Symbol sym) {
+                //Check invariants (see {@code LookupHelper.shouldStop})
+                Assert.check(bestSoFar.kind.isResolutionError() && bestSoFar.kind != AMBIGUOUS);
+                if (!sym.kind.isResolutionError()) {
+                    //varargs resolution successful
+                    return sym;
+                } else {
+                    //pick best error
+                    switch (bestSoFar.kind) {
+                        case WRONG_MTH:
+                        case WRONG_MTHS:
+                            //Override previous errors if they were caused by argument mismatch.
+                            //This generally means preferring current symbols - but we need to pay
+                            //attention to the fact that the varargs lookup returns 'less' candidates
+                            //than the previous rounds, and adjust that accordingly.
+                            switch (sym.kind) {
+                                case WRONG_MTH:
+                                    //if the previous round matched more than one method, return that
+                                    //result instead
+                                    return bestSoFar.kind == WRONG_MTHS ?
+                                            bestSoFar : sym;
+                                case ABSENT_MTH:
+                                    //do not override erroneous symbol if the arity lookup did not
+                                    //match any method
+                                    return bestSoFar;
+                                case WRONG_MTHS:
+                                default:
+                                    //safe to override
+                                    return sym;
+                            }
+                        default:
+                            //otherwise, return first error
+                            return bestSoFar;
+                    }
+                }
+            }
+        };
+
+        final boolean isBoxingRequired;
+        final boolean isVarargsRequired;
+
+        MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) {
+           this.isBoxingRequired = isBoxingRequired;
+           this.isVarargsRequired = isVarargsRequired;
+        }
+
+        public boolean isBoxingRequired() {
+            return isBoxingRequired;
+        }
+
+        public boolean isVarargsRequired() {
+            return isVarargsRequired;
+        }
+
+        public Symbol mergeResults(Symbol prev, Symbol sym) {
+            return sym;
+        }
+    }
+
+    final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY);
+
+    /**
+     * A resolution context is used to keep track of intermediate results of
+     * overload resolution, such as list of method that are not applicable
+     * (used to generate more precise diagnostics) and so on. Resolution contexts
+     * can be nested - this means that when each overload resolution routine should
+     * work within the resolution context it created.
+     */
+    class MethodResolutionContext {
+
+        private List<Candidate> candidates = List.nil();
+
+        MethodResolutionPhase step = null;
+
+        MethodCheck methodCheck = resolveMethodCheck;
+
+        private boolean internalResolution = false;
+        private DeferredAttr.AttrMode attrMode = DeferredAttr.AttrMode.SPECULATIVE;
+
+        void addInapplicableCandidate(Symbol sym, JCDiagnostic details) {
+            Candidate c = new Candidate(currentResolutionContext.step, sym, details, null);
+            candidates = candidates.append(c);
+        }
+
+        void addApplicableCandidate(Symbol sym, Type mtype) {
+            Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype);
+            candidates = candidates.append(c);
+        }
+
+        DeferredAttrContext deferredAttrContext(Symbol sym, InferenceContext inferenceContext, ResultInfo pendingResult, Warner warn) {
+            DeferredAttrContext parent = (pendingResult == null)
+                ? deferredAttr.emptyDeferredAttrContext
+                : pendingResult.checkContext.deferredAttrContext();
+            return deferredAttr.new DeferredAttrContext(attrMode, sym, step,
+                    inferenceContext, parent, warn);
+        }
+
+        /**
+         * This class represents an overload resolution candidate. There are two
+         * kinds of candidates: applicable methods and inapplicable methods;
+         * applicable methods have a pointer to the instantiated method type,
+         * while inapplicable candidates contain further details about the
+         * reason why the method has been considered inapplicable.
+         */
+        @SuppressWarnings("overrides")
+        class Candidate {
+
+            final MethodResolutionPhase step;
+            final Symbol sym;
+            final JCDiagnostic details;
+            final Type mtype;
+
+            private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) {
+                this.step = step;
+                this.sym = sym;
+                this.details = details;
+                this.mtype = mtype;
+            }
+
+            boolean isApplicable() {
+                return mtype != null;
+            }
+        }
+
+        DeferredAttr.AttrMode attrMode() {
+            return attrMode;
+        }
+
+        boolean internal() {
+            return internalResolution;
+        }
+    }
+
+    MethodResolutionContext currentResolutionContext = null;
+}