src/jdk.compiler/share/classes/com/sun/tools/javac/comp/Attr.java
changeset 47216 71c04702a3d5
parent 45756 67f4f8f4d34a
child 47248 22d665f53a4a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/jdk.compiler/share/classes/com/sun/tools/javac/comp/Attr.java	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,5135 @@
+/*
+ * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package com.sun.tools.javac.comp;
+
+import java.util.*;
+
+import javax.lang.model.element.ElementKind;
+import javax.tools.JavaFileObject;
+
+import com.sun.source.tree.IdentifierTree;
+import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
+import com.sun.source.tree.MemberSelectTree;
+import com.sun.source.tree.TreeVisitor;
+import com.sun.source.util.SimpleTreeVisitor;
+import com.sun.tools.javac.code.*;
+import com.sun.tools.javac.code.Directive.RequiresFlag;
+import com.sun.tools.javac.code.Lint.LintCategory;
+import com.sun.tools.javac.code.Scope.WriteableScope;
+import com.sun.tools.javac.code.Symbol.*;
+import com.sun.tools.javac.code.Type.*;
+import com.sun.tools.javac.code.TypeMetadata.Annotations;
+import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
+import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
+import com.sun.tools.javac.comp.Check.CheckContext;
+import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
+import com.sun.tools.javac.comp.Infer.FreeTypeListener;
+import com.sun.tools.javac.jvm.*;
+import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
+import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
+import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
+import com.sun.tools.javac.resources.CompilerProperties.Errors;
+import com.sun.tools.javac.resources.CompilerProperties.Fragments;
+import com.sun.tools.javac.resources.CompilerProperties.Warnings;
+import com.sun.tools.javac.tree.*;
+import com.sun.tools.javac.tree.JCTree.*;
+import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
+import com.sun.tools.javac.util.*;
+import com.sun.tools.javac.util.DefinedBy.Api;
+import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
+import com.sun.tools.javac.util.JCDiagnostic.Fragment;
+import com.sun.tools.javac.util.List;
+
+import static com.sun.tools.javac.code.Flags.*;
+import static com.sun.tools.javac.code.Flags.ANNOTATION;
+import static com.sun.tools.javac.code.Flags.BLOCK;
+import static com.sun.tools.javac.code.Kinds.*;
+import static com.sun.tools.javac.code.Kinds.Kind.*;
+import static com.sun.tools.javac.code.TypeTag.*;
+import static com.sun.tools.javac.code.TypeTag.WILDCARD;
+import static com.sun.tools.javac.tree.JCTree.Tag.*;
+import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
+
+/** This is the main context-dependent analysis phase in GJC. It
+ *  encompasses name resolution, type checking and constant folding as
+ *  subtasks. Some subtasks involve auxiliary classes.
+ *  @see Check
+ *  @see Resolve
+ *  @see ConstFold
+ *  @see Infer
+ *
+ *  <p><b>This is NOT part of any supported API.
+ *  If you write code that depends on this, you do so at your own risk.
+ *  This code and its internal interfaces are subject to change or
+ *  deletion without notice.</b>
+ */
+public class Attr extends JCTree.Visitor {
+    protected static final Context.Key<Attr> attrKey = new Context.Key<>();
+
+    final Names names;
+    final Log log;
+    final Symtab syms;
+    final Resolve rs;
+    final Operators operators;
+    final Infer infer;
+    final Analyzer analyzer;
+    final DeferredAttr deferredAttr;
+    final Check chk;
+    final Flow flow;
+    final MemberEnter memberEnter;
+    final TypeEnter typeEnter;
+    final TreeMaker make;
+    final ConstFold cfolder;
+    final Enter enter;
+    final Target target;
+    final Types types;
+    final JCDiagnostic.Factory diags;
+    final TypeAnnotations typeAnnotations;
+    final DeferredLintHandler deferredLintHandler;
+    final TypeEnvs typeEnvs;
+    final Dependencies dependencies;
+    final Annotate annotate;
+    final ArgumentAttr argumentAttr;
+
+    public static Attr instance(Context context) {
+        Attr instance = context.get(attrKey);
+        if (instance == null)
+            instance = new Attr(context);
+        return instance;
+    }
+
+    protected Attr(Context context) {
+        context.put(attrKey, this);
+
+        names = Names.instance(context);
+        log = Log.instance(context);
+        syms = Symtab.instance(context);
+        rs = Resolve.instance(context);
+        operators = Operators.instance(context);
+        chk = Check.instance(context);
+        flow = Flow.instance(context);
+        memberEnter = MemberEnter.instance(context);
+        typeEnter = TypeEnter.instance(context);
+        make = TreeMaker.instance(context);
+        enter = Enter.instance(context);
+        infer = Infer.instance(context);
+        analyzer = Analyzer.instance(context);
+        deferredAttr = DeferredAttr.instance(context);
+        cfolder = ConstFold.instance(context);
+        target = Target.instance(context);
+        types = Types.instance(context);
+        diags = JCDiagnostic.Factory.instance(context);
+        annotate = Annotate.instance(context);
+        typeAnnotations = TypeAnnotations.instance(context);
+        deferredLintHandler = DeferredLintHandler.instance(context);
+        typeEnvs = TypeEnvs.instance(context);
+        dependencies = Dependencies.instance(context);
+        argumentAttr = ArgumentAttr.instance(context);
+
+        Options options = Options.instance(context);
+
+        Source source = Source.instance(context);
+        allowStringsInSwitch = source.allowStringsInSwitch();
+        allowPoly = source.allowPoly();
+        allowTypeAnnos = source.allowTypeAnnotations();
+        allowLambda = source.allowLambda();
+        allowDefaultMethods = source.allowDefaultMethods();
+        allowStaticInterfaceMethods = source.allowStaticInterfaceMethods();
+        sourceName = source.name;
+        useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
+
+        statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
+        varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
+        unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
+        methodAttrInfo = new MethodAttrInfo();
+        unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
+        unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
+        recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
+    }
+
+    /** Switch: support target-typing inference
+     */
+    boolean allowPoly;
+
+    /** Switch: support type annotations.
+     */
+    boolean allowTypeAnnos;
+
+    /** Switch: support lambda expressions ?
+     */
+    boolean allowLambda;
+
+    /** Switch: support default methods ?
+     */
+    boolean allowDefaultMethods;
+
+    /** Switch: static interface methods enabled?
+     */
+    boolean allowStaticInterfaceMethods;
+
+    /**
+     * Switch: warn about use of variable before declaration?
+     * RFE: 6425594
+     */
+    boolean useBeforeDeclarationWarning;
+
+    /**
+     * Switch: allow strings in switch?
+     */
+    boolean allowStringsInSwitch;
+
+    /**
+     * Switch: name of source level; used for error reporting.
+     */
+    String sourceName;
+
+    /** Check kind and type of given tree against protokind and prototype.
+     *  If check succeeds, store type in tree and return it.
+     *  If check fails, store errType in tree and return it.
+     *  No checks are performed if the prototype is a method type.
+     *  It is not necessary in this case since we know that kind and type
+     *  are correct.
+     *
+     *  @param tree     The tree whose kind and type is checked
+     *  @param found    The computed type of the tree
+     *  @param ownkind  The computed kind of the tree
+     *  @param resultInfo  The expected result of the tree
+     */
+    Type check(final JCTree tree,
+               final Type found,
+               final KindSelector ownkind,
+               final ResultInfo resultInfo) {
+        InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
+        Type owntype;
+        boolean shouldCheck = !found.hasTag(ERROR) &&
+                !resultInfo.pt.hasTag(METHOD) &&
+                !resultInfo.pt.hasTag(FORALL);
+        if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
+            log.error(tree.pos(),
+                      Errors.UnexpectedType(resultInfo.pkind.kindNames(),
+                                            ownkind.kindNames()));
+            owntype = types.createErrorType(found);
+        } else if (allowPoly && inferenceContext.free(found)) {
+            //delay the check if there are inference variables in the found type
+            //this means we are dealing with a partially inferred poly expression
+            owntype = shouldCheck ? resultInfo.pt : found;
+            if (resultInfo.checkMode.installPostInferenceHook()) {
+                inferenceContext.addFreeTypeListener(List.of(found),
+                        instantiatedContext -> {
+                            ResultInfo pendingResult =
+                                    resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
+                            check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
+                        });
+            }
+        } else {
+            owntype = shouldCheck ?
+            resultInfo.check(tree, found) :
+            found;
+        }
+        if (resultInfo.checkMode.updateTreeType()) {
+            tree.type = owntype;
+        }
+        return owntype;
+    }
+
+    /** Is given blank final variable assignable, i.e. in a scope where it
+     *  may be assigned to even though it is final?
+     *  @param v      The blank final variable.
+     *  @param env    The current environment.
+     */
+    boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
+        Symbol owner = env.info.scope.owner;
+           // owner refers to the innermost variable, method or
+           // initializer block declaration at this point.
+        return
+            v.owner == owner
+            ||
+            ((owner.name == names.init ||    // i.e. we are in a constructor
+              owner.kind == VAR ||           // i.e. we are in a variable initializer
+              (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
+             &&
+             v.owner == owner.owner
+             &&
+             ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
+    }
+
+    /** Check that variable can be assigned to.
+     *  @param pos    The current source code position.
+     *  @param v      The assigned variable
+     *  @param base   If the variable is referred to in a Select, the part
+     *                to the left of the `.', null otherwise.
+     *  @param env    The current environment.
+     */
+    void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
+        if (v.name == names._this) {
+            log.error(pos, Errors.CantAssignValToThis);
+        } else if ((v.flags() & FINAL) != 0 &&
+            ((v.flags() & HASINIT) != 0
+             ||
+             !((base == null ||
+               (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
+               isAssignableAsBlankFinal(v, env)))) {
+            if (v.isResourceVariable()) { //TWR resource
+                log.error(pos, Errors.TryResourceMayNotBeAssigned(v));
+            } else {
+                log.error(pos, Errors.CantAssignValToFinalVar(v));
+            }
+        }
+    }
+
+    /** Does tree represent a static reference to an identifier?
+     *  It is assumed that tree is either a SELECT or an IDENT.
+     *  We have to weed out selects from non-type names here.
+     *  @param tree    The candidate tree.
+     */
+    boolean isStaticReference(JCTree tree) {
+        if (tree.hasTag(SELECT)) {
+            Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
+            if (lsym == null || lsym.kind != TYP) {
+                return false;
+            }
+        }
+        return true;
+    }
+
+    /** Is this symbol a type?
+     */
+    static boolean isType(Symbol sym) {
+        return sym != null && sym.kind == TYP;
+    }
+
+    /** The current `this' symbol.
+     *  @param env    The current environment.
+     */
+    Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
+        return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
+    }
+
+    /** Attribute a parsed identifier.
+     * @param tree Parsed identifier name
+     * @param topLevel The toplevel to use
+     */
+    public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
+        Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
+        localEnv.enclClass = make.ClassDef(make.Modifiers(0),
+                                           syms.errSymbol.name,
+                                           null, null, null, null);
+        localEnv.enclClass.sym = syms.errSymbol;
+        return attribIdent(tree, localEnv);
+    }
+
+    /** Attribute a parsed identifier.
+     * @param tree Parsed identifier name
+     * @param env The env to use
+     */
+    public Symbol attribIdent(JCTree tree, Env<AttrContext> env) {
+        return tree.accept(identAttributer, env);
+    }
+    // where
+        private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
+        private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
+            @Override @DefinedBy(Api.COMPILER_TREE)
+            public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
+                Symbol site = visit(node.getExpression(), env);
+                if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN)
+                    return site;
+                Name name = (Name)node.getIdentifier();
+                if (site.kind == PCK) {
+                    env.toplevel.packge = (PackageSymbol)site;
+                    return rs.findIdentInPackage(env, (TypeSymbol)site, name,
+                            KindSelector.TYP_PCK);
+                } else {
+                    env.enclClass.sym = (ClassSymbol)site;
+                    return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
+                }
+            }
+
+            @Override @DefinedBy(Api.COMPILER_TREE)
+            public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
+                return rs.findIdent(env, (Name)node.getName(), KindSelector.TYP_PCK);
+            }
+        }
+
+    public Type coerce(Type etype, Type ttype) {
+        return cfolder.coerce(etype, ttype);
+    }
+
+    public Type attribType(JCTree node, TypeSymbol sym) {
+        Env<AttrContext> env = typeEnvs.get(sym);
+        Env<AttrContext> localEnv = env.dup(node, env.info.dup());
+        return attribTree(node, localEnv, unknownTypeInfo);
+    }
+
+    public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
+        // Attribute qualifying package or class.
+        JCFieldAccess s = (JCFieldAccess)tree.qualid;
+        return attribTree(s.selected, env,
+                          new ResultInfo(tree.staticImport ?
+                                         KindSelector.TYP : KindSelector.TYP_PCK,
+                       Type.noType));
+    }
+
+    public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
+        breakTree = tree;
+        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
+        try {
+            attribExpr(expr, env);
+        } catch (BreakAttr b) {
+            return b.env;
+        } catch (AssertionError ae) {
+            if (ae.getCause() instanceof BreakAttr) {
+                return ((BreakAttr)(ae.getCause())).env;
+            } else {
+                throw ae;
+            }
+        } finally {
+            breakTree = null;
+            log.useSource(prev);
+        }
+        return env;
+    }
+
+    public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
+        breakTree = tree;
+        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
+        try {
+            attribStat(stmt, env);
+        } catch (BreakAttr b) {
+            return b.env;
+        } catch (AssertionError ae) {
+            if (ae.getCause() instanceof BreakAttr) {
+                return ((BreakAttr)(ae.getCause())).env;
+            } else {
+                throw ae;
+            }
+        } finally {
+            breakTree = null;
+            log.useSource(prev);
+        }
+        return env;
+    }
+
+    private JCTree breakTree = null;
+
+    private static class BreakAttr extends RuntimeException {
+        static final long serialVersionUID = -6924771130405446405L;
+        private Env<AttrContext> env;
+        private BreakAttr(Env<AttrContext> env) {
+            this.env = env;
+        }
+    }
+
+    /**
+     * Mode controlling behavior of Attr.Check
+     */
+    enum CheckMode {
+
+        NORMAL,
+
+        /**
+         * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is
+         * that the captured var cache in {@code InferenceContext} will be used in read-only
+         * mode when performing inference checks.
+         */
+        NO_TREE_UPDATE {
+            @Override
+            public boolean updateTreeType() {
+                return false;
+            }
+        },
+        /**
+         * Mode signalling that caller will manage free types in tree decorations.
+         */
+        NO_INFERENCE_HOOK {
+            @Override
+            public boolean installPostInferenceHook() {
+                return false;
+            }
+        };
+
+        public boolean updateTreeType() {
+            return true;
+        }
+        public boolean installPostInferenceHook() {
+            return true;
+        }
+    }
+
+
+    class ResultInfo {
+        final KindSelector pkind;
+        final Type pt;
+        final CheckContext checkContext;
+        final CheckMode checkMode;
+
+        ResultInfo(KindSelector pkind, Type pt) {
+            this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
+        }
+
+        ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
+            this(pkind, pt, chk.basicHandler, checkMode);
+        }
+
+        protected ResultInfo(KindSelector pkind,
+                             Type pt, CheckContext checkContext) {
+            this(pkind, pt, checkContext, CheckMode.NORMAL);
+        }
+
+        protected ResultInfo(KindSelector pkind,
+                             Type pt, CheckContext checkContext, CheckMode checkMode) {
+            this.pkind = pkind;
+            this.pt = pt;
+            this.checkContext = checkContext;
+            this.checkMode = checkMode;
+        }
+
+        /**
+         * Should {@link Attr#attribTree} use the {@ArgumentAttr} visitor instead of this one?
+         * @param tree The tree to be type-checked.
+         * @return true if {@ArgumentAttr} should be used.
+         */
+        protected boolean needsArgumentAttr(JCTree tree) { return false; }
+
+        protected Type check(final DiagnosticPosition pos, final Type found) {
+            return chk.checkType(pos, found, pt, checkContext);
+        }
+
+        protected ResultInfo dup(Type newPt) {
+            return new ResultInfo(pkind, newPt, checkContext, checkMode);
+        }
+
+        protected ResultInfo dup(CheckContext newContext) {
+            return new ResultInfo(pkind, pt, newContext, checkMode);
+        }
+
+        protected ResultInfo dup(Type newPt, CheckContext newContext) {
+            return new ResultInfo(pkind, newPt, newContext, checkMode);
+        }
+
+        protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
+            return new ResultInfo(pkind, newPt, newContext, newMode);
+        }
+
+        protected ResultInfo dup(CheckMode newMode) {
+            return new ResultInfo(pkind, pt, checkContext, newMode);
+        }
+
+        @Override
+        public String toString() {
+            if (pt != null) {
+                return pt.toString();
+            } else {
+                return "";
+            }
+        }
+    }
+
+    class MethodAttrInfo extends ResultInfo {
+        public MethodAttrInfo() {
+            this(chk.basicHandler);
+        }
+
+        public MethodAttrInfo(CheckContext checkContext) {
+            super(KindSelector.VAL, Infer.anyPoly, checkContext);
+        }
+
+        @Override
+        protected boolean needsArgumentAttr(JCTree tree) {
+            return true;
+        }
+
+        protected ResultInfo dup(Type newPt) {
+            throw new IllegalStateException();
+        }
+
+        protected ResultInfo dup(CheckContext newContext) {
+            return new MethodAttrInfo(newContext);
+        }
+
+        protected ResultInfo dup(Type newPt, CheckContext newContext) {
+            throw new IllegalStateException();
+        }
+
+        protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
+            throw new IllegalStateException();
+        }
+
+        protected ResultInfo dup(CheckMode newMode) {
+            throw new IllegalStateException();
+        }
+    }
+
+    class RecoveryInfo extends ResultInfo {
+
+        public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
+            super(KindSelector.VAL, Type.recoveryType,
+                  new Check.NestedCheckContext(chk.basicHandler) {
+                @Override
+                public DeferredAttr.DeferredAttrContext deferredAttrContext() {
+                    return deferredAttrContext;
+                }
+                @Override
+                public boolean compatible(Type found, Type req, Warner warn) {
+                    return true;
+                }
+                @Override
+                public void report(DiagnosticPosition pos, JCDiagnostic details) {
+                    chk.basicHandler.report(pos, details);
+                }
+            });
+        }
+    }
+
+    final ResultInfo statInfo;
+    final ResultInfo varAssignmentInfo;
+    final ResultInfo methodAttrInfo;
+    final ResultInfo unknownExprInfo;
+    final ResultInfo unknownTypeInfo;
+    final ResultInfo unknownTypeExprInfo;
+    final ResultInfo recoveryInfo;
+
+    Type pt() {
+        return resultInfo.pt;
+    }
+
+    KindSelector pkind() {
+        return resultInfo.pkind;
+    }
+
+/* ************************************************************************
+ * Visitor methods
+ *************************************************************************/
+
+    /** Visitor argument: the current environment.
+     */
+    Env<AttrContext> env;
+
+    /** Visitor argument: the currently expected attribution result.
+     */
+    ResultInfo resultInfo;
+
+    /** Visitor result: the computed type.
+     */
+    Type result;
+
+    /** Visitor method: attribute a tree, catching any completion failure
+     *  exceptions. Return the tree's type.
+     *
+     *  @param tree    The tree to be visited.
+     *  @param env     The environment visitor argument.
+     *  @param resultInfo   The result info visitor argument.
+     */
+    Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
+        Env<AttrContext> prevEnv = this.env;
+        ResultInfo prevResult = this.resultInfo;
+        try {
+            this.env = env;
+            this.resultInfo = resultInfo;
+            if (resultInfo.needsArgumentAttr(tree)) {
+                result = argumentAttr.attribArg(tree, env);
+            } else {
+                tree.accept(this);
+            }
+            if (tree == breakTree &&
+                    resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
+                throw new BreakAttr(copyEnv(env));
+            }
+            return result;
+        } catch (CompletionFailure ex) {
+            tree.type = syms.errType;
+            return chk.completionError(tree.pos(), ex);
+        } finally {
+            this.env = prevEnv;
+            this.resultInfo = prevResult;
+        }
+    }
+
+    Env<AttrContext> copyEnv(Env<AttrContext> env) {
+        Env<AttrContext> newEnv =
+                env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
+        if (newEnv.outer != null) {
+            newEnv.outer = copyEnv(newEnv.outer);
+        }
+        return newEnv;
+    }
+
+    WriteableScope copyScope(WriteableScope sc) {
+        WriteableScope newScope = WriteableScope.create(sc.owner);
+        List<Symbol> elemsList = List.nil();
+        for (Symbol sym : sc.getSymbols()) {
+            elemsList = elemsList.prepend(sym);
+        }
+        for (Symbol s : elemsList) {
+            newScope.enter(s);
+        }
+        return newScope;
+    }
+
+    /** Derived visitor method: attribute an expression tree.
+     */
+    public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
+        return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
+    }
+
+    /** Derived visitor method: attribute an expression tree with
+     *  no constraints on the computed type.
+     */
+    public Type attribExpr(JCTree tree, Env<AttrContext> env) {
+        return attribTree(tree, env, unknownExprInfo);
+    }
+
+    /** Derived visitor method: attribute a type tree.
+     */
+    public Type attribType(JCTree tree, Env<AttrContext> env) {
+        Type result = attribType(tree, env, Type.noType);
+        return result;
+    }
+
+    /** Derived visitor method: attribute a type tree.
+     */
+    Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
+        Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
+        return result;
+    }
+
+    /** Derived visitor method: attribute a statement or definition tree.
+     */
+    public Type attribStat(JCTree tree, Env<AttrContext> env) {
+        Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env);
+        try {
+            return attribTree(tree, env, statInfo);
+        } finally {
+            analyzer.analyzeIfNeeded(tree, analyzeEnv);
+        }
+    }
+
+    /** Attribute a list of expressions, returning a list of types.
+     */
+    List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
+        ListBuffer<Type> ts = new ListBuffer<>();
+        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
+            ts.append(attribExpr(l.head, env, pt));
+        return ts.toList();
+    }
+
+    /** Attribute a list of statements, returning nothing.
+     */
+    <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
+        for (List<T> l = trees; l.nonEmpty(); l = l.tail)
+            attribStat(l.head, env);
+    }
+
+    /** Attribute the arguments in a method call, returning the method kind.
+     */
+    KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
+        KindSelector kind = initialKind;
+        for (JCExpression arg : trees) {
+            Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, allowPoly ? methodAttrInfo : unknownExprInfo));
+            if (argtype.hasTag(DEFERRED)) {
+                kind = KindSelector.of(KindSelector.POLY, kind);
+            }
+            argtypes.append(argtype);
+        }
+        return kind;
+    }
+
+    /** Attribute a type argument list, returning a list of types.
+     *  Caller is responsible for calling checkRefTypes.
+     */
+    List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
+        ListBuffer<Type> argtypes = new ListBuffer<>();
+        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
+            argtypes.append(attribType(l.head, env));
+        return argtypes.toList();
+    }
+
+    /** Attribute a type argument list, returning a list of types.
+     *  Check that all the types are references.
+     */
+    List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
+        List<Type> types = attribAnyTypes(trees, env);
+        return chk.checkRefTypes(trees, types);
+    }
+
+    /**
+     * Attribute type variables (of generic classes or methods).
+     * Compound types are attributed later in attribBounds.
+     * @param typarams the type variables to enter
+     * @param env      the current environment
+     */
+    void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
+        for (JCTypeParameter tvar : typarams) {
+            TypeVar a = (TypeVar)tvar.type;
+            a.tsym.flags_field |= UNATTRIBUTED;
+            a.bound = Type.noType;
+            if (!tvar.bounds.isEmpty()) {
+                List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
+                for (JCExpression bound : tvar.bounds.tail)
+                    bounds = bounds.prepend(attribType(bound, env));
+                types.setBounds(a, bounds.reverse());
+            } else {
+                // if no bounds are given, assume a single bound of
+                // java.lang.Object.
+                types.setBounds(a, List.of(syms.objectType));
+            }
+            a.tsym.flags_field &= ~UNATTRIBUTED;
+        }
+        for (JCTypeParameter tvar : typarams) {
+            chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
+        }
+    }
+
+    /**
+     * Attribute the type references in a list of annotations.
+     */
+    void attribAnnotationTypes(List<JCAnnotation> annotations,
+                               Env<AttrContext> env) {
+        for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
+            JCAnnotation a = al.head;
+            attribType(a.annotationType, env);
+        }
+    }
+
+    /**
+     * Attribute a "lazy constant value".
+     *  @param env         The env for the const value
+     *  @param variable    The initializer for the const value
+     *  @param type        The expected type, or null
+     *  @see VarSymbol#setLazyConstValue
+     */
+    public Object attribLazyConstantValue(Env<AttrContext> env,
+                                      JCVariableDecl variable,
+                                      Type type) {
+
+        DiagnosticPosition prevLintPos
+                = deferredLintHandler.setPos(variable.pos());
+
+        final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
+        try {
+            Type itype = attribExpr(variable.init, env, type);
+            if (itype.constValue() != null) {
+                return coerce(itype, type).constValue();
+            } else {
+                return null;
+            }
+        } finally {
+            log.useSource(prevSource);
+            deferredLintHandler.setPos(prevLintPos);
+        }
+    }
+
+    /** Attribute type reference in an `extends' or `implements' clause.
+     *  Supertypes of anonymous inner classes are usually already attributed.
+     *
+     *  @param tree              The tree making up the type reference.
+     *  @param env               The environment current at the reference.
+     *  @param classExpected     true if only a class is expected here.
+     *  @param interfaceExpected true if only an interface is expected here.
+     */
+    Type attribBase(JCTree tree,
+                    Env<AttrContext> env,
+                    boolean classExpected,
+                    boolean interfaceExpected,
+                    boolean checkExtensible) {
+        Type t = tree.type != null ?
+            tree.type :
+            attribType(tree, env);
+        return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
+    }
+    Type checkBase(Type t,
+                   JCTree tree,
+                   Env<AttrContext> env,
+                   boolean classExpected,
+                   boolean interfaceExpected,
+                   boolean checkExtensible) {
+        final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ?
+                (((JCTypeApply) tree).clazz).pos() : tree.pos();
+        if (t.tsym.isAnonymous()) {
+            log.error(pos, Errors.CantInheritFromAnon);
+            return types.createErrorType(t);
+        }
+        if (t.isErroneous())
+            return t;
+        if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
+            // check that type variable is already visible
+            if (t.getUpperBound() == null) {
+                log.error(pos, Errors.IllegalForwardRef);
+                return types.createErrorType(t);
+            }
+        } else {
+            t = chk.checkClassType(pos, t, checkExtensible);
+        }
+        if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
+            log.error(pos, Errors.IntfExpectedHere);
+            // return errType is necessary since otherwise there might
+            // be undetected cycles which cause attribution to loop
+            return types.createErrorType(t);
+        } else if (checkExtensible &&
+                   classExpected &&
+                   (t.tsym.flags() & INTERFACE) != 0) {
+            log.error(pos, Errors.NoIntfExpectedHere);
+            return types.createErrorType(t);
+        }
+        if (checkExtensible &&
+            ((t.tsym.flags() & FINAL) != 0)) {
+            log.error(pos,
+                      Errors.CantInheritFromFinal(t.tsym));
+        }
+        chk.checkNonCyclic(pos, t);
+        return t;
+    }
+
+    Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
+        Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
+        id.type = env.info.scope.owner.enclClass().type;
+        id.sym = env.info.scope.owner.enclClass();
+        return id.type;
+    }
+
+    public void visitClassDef(JCClassDecl tree) {
+        Optional<ArgumentAttr.LocalCacheContext> localCacheContext =
+                Optional.ofNullable(env.info.isSpeculative ?
+                        argumentAttr.withLocalCacheContext() : null);
+        try {
+            // Local and anonymous classes have not been entered yet, so we need to
+            // do it now.
+            if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
+                enter.classEnter(tree, env);
+            } else {
+                // If this class declaration is part of a class level annotation,
+                // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
+                // order to simplify later steps and allow for sensible error
+                // messages.
+                if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
+                    enter.classEnter(tree, env);
+            }
+
+            ClassSymbol c = tree.sym;
+            if (c == null) {
+                // exit in case something drastic went wrong during enter.
+                result = null;
+            } else {
+                // make sure class has been completed:
+                c.complete();
+
+                // If this class appears as an anonymous class
+                // in a superclass constructor call
+                // disable implicit outer instance from being passed.
+                // (This would be an illegal access to "this before super").
+                if (env.info.isSelfCall &&
+                        env.tree.hasTag(NEWCLASS)) {
+                    c.flags_field |= NOOUTERTHIS;
+                }
+                attribClass(tree.pos(), c);
+                result = tree.type = c.type;
+            }
+        } finally {
+            localCacheContext.ifPresent(LocalCacheContext::leave);
+        }
+    }
+
+    public void visitMethodDef(JCMethodDecl tree) {
+        MethodSymbol m = tree.sym;
+        boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
+
+        Lint lint = env.info.lint.augment(m);
+        Lint prevLint = chk.setLint(lint);
+        MethodSymbol prevMethod = chk.setMethod(m);
+        try {
+            deferredLintHandler.flush(tree.pos());
+            chk.checkDeprecatedAnnotation(tree.pos(), m);
+
+
+            // Create a new environment with local scope
+            // for attributing the method.
+            Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
+            localEnv.info.lint = lint;
+
+            attribStats(tree.typarams, localEnv);
+
+            // If we override any other methods, check that we do so properly.
+            // JLS ???
+            if (m.isStatic()) {
+                chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
+            } else {
+                chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
+            }
+            chk.checkOverride(env, tree, m);
+
+            if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
+                log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location()));
+            }
+
+            // Enter all type parameters into the local method scope.
+            for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
+                localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
+
+            ClassSymbol owner = env.enclClass.sym;
+            if ((owner.flags() & ANNOTATION) != 0 &&
+                    (tree.params.nonEmpty() ||
+                    tree.recvparam != null))
+                log.error(tree.params.nonEmpty() ?
+                        tree.params.head.pos() :
+                        tree.recvparam.pos(),
+                        Errors.IntfAnnotationMembersCantHaveParams);
+
+            // Attribute all value parameters.
+            for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
+                attribStat(l.head, localEnv);
+            }
+
+            chk.checkVarargsMethodDecl(localEnv, tree);
+
+            // Check that type parameters are well-formed.
+            chk.validate(tree.typarams, localEnv);
+
+            // Check that result type is well-formed.
+            if (tree.restype != null && !tree.restype.type.hasTag(VOID))
+                chk.validate(tree.restype, localEnv);
+
+            // Check that receiver type is well-formed.
+            if (tree.recvparam != null) {
+                // Use a new environment to check the receiver parameter.
+                // Otherwise I get "might not have been initialized" errors.
+                // Is there a better way?
+                Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
+                attribType(tree.recvparam, newEnv);
+                chk.validate(tree.recvparam, newEnv);
+            }
+
+            // annotation method checks
+            if ((owner.flags() & ANNOTATION) != 0) {
+                // annotation method cannot have throws clause
+                if (tree.thrown.nonEmpty()) {
+                    log.error(tree.thrown.head.pos(),
+                              Errors.ThrowsNotAllowedInIntfAnnotation);
+                }
+                // annotation method cannot declare type-parameters
+                if (tree.typarams.nonEmpty()) {
+                    log.error(tree.typarams.head.pos(),
+                              Errors.IntfAnnotationMembersCantHaveTypeParams);
+                }
+                // validate annotation method's return type (could be an annotation type)
+                chk.validateAnnotationType(tree.restype);
+                // ensure that annotation method does not clash with members of Object/Annotation
+                chk.validateAnnotationMethod(tree.pos(), m);
+            }
+
+            for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
+                chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
+
+            if (tree.body == null) {
+                // Empty bodies are only allowed for
+                // abstract, native, or interface methods, or for methods
+                // in a retrofit signature class.
+                if (tree.defaultValue != null) {
+                    if ((owner.flags() & ANNOTATION) == 0)
+                        log.error(tree.pos(),
+                                  Errors.DefaultAllowedInIntfAnnotationMember);
+                }
+                if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
+                    log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract);
+            } else if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
+                if ((owner.flags() & INTERFACE) != 0) {
+                    log.error(tree.body.pos(), Errors.IntfMethCantHaveBody);
+                } else {
+                    log.error(tree.pos(), Errors.AbstractMethCantHaveBody);
+                }
+            } else if ((tree.mods.flags & NATIVE) != 0) {
+                log.error(tree.pos(), Errors.NativeMethCantHaveBody);
+            } else {
+                // Add an implicit super() call unless an explicit call to
+                // super(...) or this(...) is given
+                // or we are compiling class java.lang.Object.
+                if (tree.name == names.init && owner.type != syms.objectType) {
+                    JCBlock body = tree.body;
+                    if (body.stats.isEmpty() ||
+                            !TreeInfo.isSelfCall(body.stats.head)) {
+                        body.stats = body.stats.
+                                prepend(typeEnter.SuperCall(make.at(body.pos),
+                                        List.nil(),
+                                        List.nil(),
+                                        false));
+                    } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
+                            (tree.mods.flags & GENERATEDCONSTR) == 0 &&
+                            TreeInfo.isSuperCall(body.stats.head)) {
+                        // enum constructors are not allowed to call super
+                        // directly, so make sure there aren't any super calls
+                        // in enum constructors, except in the compiler
+                        // generated one.
+                        log.error(tree.body.stats.head.pos(),
+                                  Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym));
+                    }
+                }
+
+                // Attribute all type annotations in the body
+                annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
+                annotate.flush();
+
+                // Attribute method body.
+                attribStat(tree.body, localEnv);
+            }
+
+            localEnv.info.scope.leave();
+            result = tree.type = m.type;
+        } finally {
+            chk.setLint(prevLint);
+            chk.setMethod(prevMethod);
+        }
+    }
+
+    public void visitVarDef(JCVariableDecl tree) {
+        // Local variables have not been entered yet, so we need to do it now:
+        if (env.info.scope.owner.kind == MTH) {
+            if (tree.sym != null) {
+                // parameters have already been entered
+                env.info.scope.enter(tree.sym);
+            } else {
+                try {
+                    annotate.blockAnnotations();
+                    memberEnter.memberEnter(tree, env);
+                } finally {
+                    annotate.unblockAnnotations();
+                }
+            }
+        } else {
+            if (tree.init != null) {
+                // Field initializer expression need to be entered.
+                annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
+                annotate.flush();
+            }
+        }
+
+        VarSymbol v = tree.sym;
+        Lint lint = env.info.lint.augment(v);
+        Lint prevLint = chk.setLint(lint);
+
+        // Check that the variable's declared type is well-formed.
+        boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
+                ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
+                (tree.sym.flags() & PARAMETER) != 0;
+        chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
+
+        try {
+            v.getConstValue(); // ensure compile-time constant initializer is evaluated
+            deferredLintHandler.flush(tree.pos());
+            chk.checkDeprecatedAnnotation(tree.pos(), v);
+
+            if (tree.init != null) {
+                if ((v.flags_field & FINAL) == 0 ||
+                    !memberEnter.needsLazyConstValue(tree.init)) {
+                    // Not a compile-time constant
+                    // Attribute initializer in a new environment
+                    // with the declared variable as owner.
+                    // Check that initializer conforms to variable's declared type.
+                    Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
+                    initEnv.info.lint = lint;
+                    // In order to catch self-references, we set the variable's
+                    // declaration position to maximal possible value, effectively
+                    // marking the variable as undefined.
+                    initEnv.info.enclVar = v;
+                    attribExpr(tree.init, initEnv, v.type);
+                }
+            }
+            result = tree.type = v.type;
+        }
+        finally {
+            chk.setLint(prevLint);
+        }
+    }
+
+    public void visitSkip(JCSkip tree) {
+        result = null;
+    }
+
+    public void visitBlock(JCBlock tree) {
+        if (env.info.scope.owner.kind == TYP) {
+            // Block is a static or instance initializer;
+            // let the owner of the environment be a freshly
+            // created BLOCK-method.
+            Symbol fakeOwner =
+                new MethodSymbol(tree.flags | BLOCK |
+                    env.info.scope.owner.flags() & STRICTFP, names.empty, null,
+                    env.info.scope.owner);
+            final Env<AttrContext> localEnv =
+                env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
+
+            if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
+            // Attribute all type annotations in the block
+            annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
+            annotate.flush();
+            attribStats(tree.stats, localEnv);
+
+            {
+                // Store init and clinit type annotations with the ClassSymbol
+                // to allow output in Gen.normalizeDefs.
+                ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
+                List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
+                if ((tree.flags & STATIC) != 0) {
+                    cs.appendClassInitTypeAttributes(tas);
+                } else {
+                    cs.appendInitTypeAttributes(tas);
+                }
+            }
+        } else {
+            // Create a new local environment with a local scope.
+            Env<AttrContext> localEnv =
+                env.dup(tree, env.info.dup(env.info.scope.dup()));
+            try {
+                attribStats(tree.stats, localEnv);
+            } finally {
+                localEnv.info.scope.leave();
+            }
+        }
+        result = null;
+    }
+
+    public void visitDoLoop(JCDoWhileLoop tree) {
+        attribStat(tree.body, env.dup(tree));
+        attribExpr(tree.cond, env, syms.booleanType);
+        result = null;
+    }
+
+    public void visitWhileLoop(JCWhileLoop tree) {
+        attribExpr(tree.cond, env, syms.booleanType);
+        attribStat(tree.body, env.dup(tree));
+        result = null;
+    }
+
+    public void visitForLoop(JCForLoop tree) {
+        Env<AttrContext> loopEnv =
+            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
+        try {
+            attribStats(tree.init, loopEnv);
+            if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
+            loopEnv.tree = tree; // before, we were not in loop!
+            attribStats(tree.step, loopEnv);
+            attribStat(tree.body, loopEnv);
+            result = null;
+        }
+        finally {
+            loopEnv.info.scope.leave();
+        }
+    }
+
+    public void visitForeachLoop(JCEnhancedForLoop tree) {
+        Env<AttrContext> loopEnv =
+            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
+        try {
+            //the Formal Parameter of a for-each loop is not in the scope when
+            //attributing the for-each expression; we mimick this by attributing
+            //the for-each expression first (against original scope).
+            Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
+            attribStat(tree.var, loopEnv);
+            chk.checkNonVoid(tree.pos(), exprType);
+            Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
+            if (elemtype == null) {
+                // or perhaps expr implements Iterable<T>?
+                Type base = types.asSuper(exprType, syms.iterableType.tsym);
+                if (base == null) {
+                    log.error(tree.expr.pos(),
+                              Errors.ForeachNotApplicableToType(exprType,
+                                                                Fragments.TypeReqArrayOrIterable));
+                    elemtype = types.createErrorType(exprType);
+                } else {
+                    List<Type> iterableParams = base.allparams();
+                    elemtype = iterableParams.isEmpty()
+                        ? syms.objectType
+                        : types.wildUpperBound(iterableParams.head);
+                }
+            }
+            chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
+            loopEnv.tree = tree; // before, we were not in loop!
+            attribStat(tree.body, loopEnv);
+            result = null;
+        }
+        finally {
+            loopEnv.info.scope.leave();
+        }
+    }
+
+    public void visitLabelled(JCLabeledStatement tree) {
+        // Check that label is not used in an enclosing statement
+        Env<AttrContext> env1 = env;
+        while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
+            if (env1.tree.hasTag(LABELLED) &&
+                ((JCLabeledStatement) env1.tree).label == tree.label) {
+                log.error(tree.pos(),
+                          Errors.LabelAlreadyInUse(tree.label));
+                break;
+            }
+            env1 = env1.next;
+        }
+
+        attribStat(tree.body, env.dup(tree));
+        result = null;
+    }
+
+    public void visitSwitch(JCSwitch tree) {
+        Type seltype = attribExpr(tree.selector, env);
+
+        Env<AttrContext> switchEnv =
+            env.dup(tree, env.info.dup(env.info.scope.dup()));
+
+        try {
+
+            boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
+            boolean stringSwitch = types.isSameType(seltype, syms.stringType);
+            if (stringSwitch && !allowStringsInSwitch) {
+                log.error(DiagnosticFlag.SOURCE_LEVEL, tree.selector.pos(), Errors.StringSwitchNotSupportedInSource(sourceName));
+            }
+            if (!enumSwitch && !stringSwitch)
+                seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
+
+            // Attribute all cases and
+            // check that there are no duplicate case labels or default clauses.
+            Set<Object> labels = new HashSet<>(); // The set of case labels.
+            boolean hasDefault = false;      // Is there a default label?
+            for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
+                JCCase c = l.head;
+                if (c.pat != null) {
+                    if (enumSwitch) {
+                        Symbol sym = enumConstant(c.pat, seltype);
+                        if (sym == null) {
+                            log.error(c.pat.pos(), Errors.EnumLabelMustBeUnqualifiedEnum);
+                        } else if (!labels.add(sym)) {
+                            log.error(c.pos(), Errors.DuplicateCaseLabel);
+                        }
+                    } else {
+                        Type pattype = attribExpr(c.pat, switchEnv, seltype);
+                        if (!pattype.hasTag(ERROR)) {
+                            if (pattype.constValue() == null) {
+                                log.error(c.pat.pos(),
+                                          (stringSwitch ? "string.const.req" : "const.expr.req"));
+                            } else if (!labels.add(pattype.constValue())) {
+                                log.error(c.pos(), Errors.DuplicateCaseLabel);
+                            }
+                        }
+                    }
+                } else if (hasDefault) {
+                    log.error(c.pos(), Errors.DuplicateDefaultLabel);
+                } else {
+                    hasDefault = true;
+                }
+                Env<AttrContext> caseEnv =
+                    switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
+                try {
+                    attribStats(c.stats, caseEnv);
+                } finally {
+                    caseEnv.info.scope.leave();
+                    addVars(c.stats, switchEnv.info.scope);
+                }
+            }
+
+            result = null;
+        }
+        finally {
+            switchEnv.info.scope.leave();
+        }
+    }
+    // where
+        /** Add any variables defined in stats to the switch scope. */
+        private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
+            for (;stats.nonEmpty(); stats = stats.tail) {
+                JCTree stat = stats.head;
+                if (stat.hasTag(VARDEF))
+                    switchScope.enter(((JCVariableDecl) stat).sym);
+            }
+        }
+    // where
+    /** Return the selected enumeration constant symbol, or null. */
+    private Symbol enumConstant(JCTree tree, Type enumType) {
+        if (tree.hasTag(IDENT)) {
+            JCIdent ident = (JCIdent)tree;
+            Name name = ident.name;
+            for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
+                if (sym.kind == VAR) {
+                    Symbol s = ident.sym = sym;
+                    ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
+                    ident.type = s.type;
+                    return ((s.flags_field & Flags.ENUM) == 0)
+                        ? null : s;
+                }
+            }
+        }
+        return null;
+    }
+
+    public void visitSynchronized(JCSynchronized tree) {
+        chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
+        attribStat(tree.body, env);
+        result = null;
+    }
+
+    public void visitTry(JCTry tree) {
+        // Create a new local environment with a local
+        Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
+        try {
+            boolean isTryWithResource = tree.resources.nonEmpty();
+            // Create a nested environment for attributing the try block if needed
+            Env<AttrContext> tryEnv = isTryWithResource ?
+                env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
+                localEnv;
+            try {
+                // Attribute resource declarations
+                for (JCTree resource : tree.resources) {
+                    CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
+                        @Override
+                        public void report(DiagnosticPosition pos, JCDiagnostic details) {
+                            chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details)));
+                        }
+                    };
+                    ResultInfo twrResult =
+                        new ResultInfo(KindSelector.VAR,
+                                       syms.autoCloseableType,
+                                       twrContext);
+                    if (resource.hasTag(VARDEF)) {
+                        attribStat(resource, tryEnv);
+                        twrResult.check(resource, resource.type);
+
+                        //check that resource type cannot throw InterruptedException
+                        checkAutoCloseable(resource.pos(), localEnv, resource.type);
+
+                        VarSymbol var = ((JCVariableDecl) resource).sym;
+                        var.setData(ElementKind.RESOURCE_VARIABLE);
+                    } else {
+                        attribTree(resource, tryEnv, twrResult);
+                    }
+                }
+                // Attribute body
+                attribStat(tree.body, tryEnv);
+            } finally {
+                if (isTryWithResource)
+                    tryEnv.info.scope.leave();
+            }
+
+            // Attribute catch clauses
+            for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
+                JCCatch c = l.head;
+                Env<AttrContext> catchEnv =
+                    localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
+                try {
+                    Type ctype = attribStat(c.param, catchEnv);
+                    if (TreeInfo.isMultiCatch(c)) {
+                        //multi-catch parameter is implicitly marked as final
+                        c.param.sym.flags_field |= FINAL | UNION;
+                    }
+                    if (c.param.sym.kind == VAR) {
+                        c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
+                    }
+                    chk.checkType(c.param.vartype.pos(),
+                                  chk.checkClassType(c.param.vartype.pos(), ctype),
+                                  syms.throwableType);
+                    attribStat(c.body, catchEnv);
+                } finally {
+                    catchEnv.info.scope.leave();
+                }
+            }
+
+            // Attribute finalizer
+            if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
+            result = null;
+        }
+        finally {
+            localEnv.info.scope.leave();
+        }
+    }
+
+    void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
+        if (!resource.isErroneous() &&
+            types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
+            !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
+            Symbol close = syms.noSymbol;
+            Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
+            try {
+                close = rs.resolveQualifiedMethod(pos,
+                        env,
+                        types.skipTypeVars(resource, false),
+                        names.close,
+                        List.nil(),
+                        List.nil());
+            }
+            finally {
+                log.popDiagnosticHandler(discardHandler);
+            }
+            if (close.kind == MTH &&
+                    close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
+                    chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
+                    env.info.lint.isEnabled(LintCategory.TRY)) {
+                log.warning(LintCategory.TRY, pos, Warnings.TryResourceThrowsInterruptedExc(resource));
+            }
+        }
+    }
+
+    public void visitConditional(JCConditional tree) {
+        Type condtype = attribExpr(tree.cond, env, syms.booleanType);
+
+        tree.polyKind = (!allowPoly ||
+                pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly ||
+                isBooleanOrNumeric(env, tree)) ?
+                PolyKind.STANDALONE : PolyKind.POLY;
+
+        if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
+            //this means we are returning a poly conditional from void-compatible lambda expression
+            resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid));
+            result = tree.type = types.createErrorType(resultInfo.pt);
+            return;
+        }
+
+        ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
+                unknownExprInfo :
+                resultInfo.dup(conditionalContext(resultInfo.checkContext));
+
+        Type truetype = attribTree(tree.truepart, env, condInfo);
+        Type falsetype = attribTree(tree.falsepart, env, condInfo);
+
+        Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
+        if (condtype.constValue() != null &&
+                truetype.constValue() != null &&
+                falsetype.constValue() != null &&
+                !owntype.hasTag(NONE)) {
+            //constant folding
+            owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
+        }
+        result = check(tree, owntype, KindSelector.VAL, resultInfo);
+    }
+    //where
+        private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
+            switch (tree.getTag()) {
+                case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
+                              ((JCLiteral)tree).typetag == BOOLEAN ||
+                              ((JCLiteral)tree).typetag == BOT;
+                case LAMBDA: case REFERENCE: return false;
+                case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
+                case CONDEXPR:
+                    JCConditional condTree = (JCConditional)tree;
+                    return isBooleanOrNumeric(env, condTree.truepart) &&
+                            isBooleanOrNumeric(env, condTree.falsepart);
+                case APPLY:
+                    JCMethodInvocation speculativeMethodTree =
+                            (JCMethodInvocation)deferredAttr.attribSpeculative(
+                                    tree, env, unknownExprInfo,
+                                    argumentAttr.withLocalCacheContext());
+                    Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
+                    Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
+                            env.enclClass.type :
+                            ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
+                    Type owntype = types.memberType(receiverType, msym).getReturnType();
+                    return primitiveOrBoxed(owntype);
+                case NEWCLASS:
+                    JCExpression className =
+                            removeClassParams.translate(((JCNewClass)tree).clazz);
+                    JCExpression speculativeNewClassTree =
+                            (JCExpression)deferredAttr.attribSpeculative(
+                                    className, env, unknownTypeInfo,
+                                    argumentAttr.withLocalCacheContext());
+                    return primitiveOrBoxed(speculativeNewClassTree.type);
+                default:
+                    Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo,
+                            argumentAttr.withLocalCacheContext()).type;
+                    return primitiveOrBoxed(speculativeType);
+            }
+        }
+        //where
+            boolean primitiveOrBoxed(Type t) {
+                return (!t.hasTag(TYPEVAR) && types.unboxedTypeOrType(t).isPrimitive());
+            }
+
+            TreeTranslator removeClassParams = new TreeTranslator() {
+                @Override
+                public void visitTypeApply(JCTypeApply tree) {
+                    result = translate(tree.clazz);
+                }
+            };
+
+        CheckContext conditionalContext(CheckContext checkContext) {
+            return new Check.NestedCheckContext(checkContext) {
+                //this will use enclosing check context to check compatibility of
+                //subexpression against target type; if we are in a method check context,
+                //depending on whether boxing is allowed, we could have incompatibilities
+                @Override
+                public void report(DiagnosticPosition pos, JCDiagnostic details) {
+                    enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details)));
+                }
+            };
+        }
+
+        /** Compute the type of a conditional expression, after
+         *  checking that it exists.  See JLS 15.25. Does not take into
+         *  account the special case where condition and both arms
+         *  are constants.
+         *
+         *  @param pos      The source position to be used for error
+         *                  diagnostics.
+         *  @param thentype The type of the expression's then-part.
+         *  @param elsetype The type of the expression's else-part.
+         */
+        Type condType(DiagnosticPosition pos,
+                               Type thentype, Type elsetype) {
+            // If same type, that is the result
+            if (types.isSameType(thentype, elsetype))
+                return thentype.baseType();
+
+            Type thenUnboxed = (thentype.isPrimitive())
+                ? thentype : types.unboxedType(thentype);
+            Type elseUnboxed = (elsetype.isPrimitive())
+                ? elsetype : types.unboxedType(elsetype);
+
+            // Otherwise, if both arms can be converted to a numeric
+            // type, return the least numeric type that fits both arms
+            // (i.e. return larger of the two, or return int if one
+            // arm is short, the other is char).
+            if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
+                // If one arm has an integer subrange type (i.e., byte,
+                // short, or char), and the other is an integer constant
+                // that fits into the subrange, return the subrange type.
+                if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
+                    elseUnboxed.hasTag(INT) &&
+                    types.isAssignable(elseUnboxed, thenUnboxed)) {
+                    return thenUnboxed.baseType();
+                }
+                if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
+                    thenUnboxed.hasTag(INT) &&
+                    types.isAssignable(thenUnboxed, elseUnboxed)) {
+                    return elseUnboxed.baseType();
+                }
+
+                for (TypeTag tag : primitiveTags) {
+                    Type candidate = syms.typeOfTag[tag.ordinal()];
+                    if (types.isSubtype(thenUnboxed, candidate) &&
+                        types.isSubtype(elseUnboxed, candidate)) {
+                        return candidate;
+                    }
+                }
+            }
+
+            // Those were all the cases that could result in a primitive
+            if (thentype.isPrimitive())
+                thentype = types.boxedClass(thentype).type;
+            if (elsetype.isPrimitive())
+                elsetype = types.boxedClass(elsetype).type;
+
+            if (types.isSubtype(thentype, elsetype))
+                return elsetype.baseType();
+            if (types.isSubtype(elsetype, thentype))
+                return thentype.baseType();
+
+            if (thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
+                log.error(pos,
+                          Errors.NeitherConditionalSubtype(thentype,
+                                                           elsetype));
+                return thentype.baseType();
+            }
+
+            // both are known to be reference types.  The result is
+            // lub(thentype,elsetype). This cannot fail, as it will
+            // always be possible to infer "Object" if nothing better.
+            return types.lub(thentype.baseType(), elsetype.baseType());
+        }
+
+    final static TypeTag[] primitiveTags = new TypeTag[]{
+        BYTE,
+        CHAR,
+        SHORT,
+        INT,
+        LONG,
+        FLOAT,
+        DOUBLE,
+        BOOLEAN,
+    };
+
+    public void visitIf(JCIf tree) {
+        attribExpr(tree.cond, env, syms.booleanType);
+        attribStat(tree.thenpart, env);
+        if (tree.elsepart != null)
+            attribStat(tree.elsepart, env);
+        chk.checkEmptyIf(tree);
+        result = null;
+    }
+
+    public void visitExec(JCExpressionStatement tree) {
+        //a fresh environment is required for 292 inference to work properly ---
+        //see Infer.instantiatePolymorphicSignatureInstance()
+        Env<AttrContext> localEnv = env.dup(tree);
+        attribExpr(tree.expr, localEnv);
+        result = null;
+    }
+
+    public void visitBreak(JCBreak tree) {
+        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
+        result = null;
+    }
+
+    public void visitContinue(JCContinue tree) {
+        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
+        result = null;
+    }
+    //where
+        /** Return the target of a break or continue statement, if it exists,
+         *  report an error if not.
+         *  Note: The target of a labelled break or continue is the
+         *  (non-labelled) statement tree referred to by the label,
+         *  not the tree representing the labelled statement itself.
+         *
+         *  @param pos     The position to be used for error diagnostics
+         *  @param tag     The tag of the jump statement. This is either
+         *                 Tree.BREAK or Tree.CONTINUE.
+         *  @param label   The label of the jump statement, or null if no
+         *                 label is given.
+         *  @param env     The environment current at the jump statement.
+         */
+        private JCTree findJumpTarget(DiagnosticPosition pos,
+                                    JCTree.Tag tag,
+                                    Name label,
+                                    Env<AttrContext> env) {
+            // Search environments outwards from the point of jump.
+            Env<AttrContext> env1 = env;
+            LOOP:
+            while (env1 != null) {
+                switch (env1.tree.getTag()) {
+                    case LABELLED:
+                        JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
+                        if (label == labelled.label) {
+                            // If jump is a continue, check that target is a loop.
+                            if (tag == CONTINUE) {
+                                if (!labelled.body.hasTag(DOLOOP) &&
+                                        !labelled.body.hasTag(WHILELOOP) &&
+                                        !labelled.body.hasTag(FORLOOP) &&
+                                        !labelled.body.hasTag(FOREACHLOOP))
+                                    log.error(pos, Errors.NotLoopLabel(label));
+                                // Found labelled statement target, now go inwards
+                                // to next non-labelled tree.
+                                return TreeInfo.referencedStatement(labelled);
+                            } else {
+                                return labelled;
+                            }
+                        }
+                        break;
+                    case DOLOOP:
+                    case WHILELOOP:
+                    case FORLOOP:
+                    case FOREACHLOOP:
+                        if (label == null) return env1.tree;
+                        break;
+                    case SWITCH:
+                        if (label == null && tag == BREAK) return env1.tree;
+                        break;
+                    case LAMBDA:
+                    case METHODDEF:
+                    case CLASSDEF:
+                        break LOOP;
+                    default:
+                }
+                env1 = env1.next;
+            }
+            if (label != null)
+                log.error(pos, Errors.UndefLabel(label));
+            else if (tag == CONTINUE)
+                log.error(pos, Errors.ContOutsideLoop);
+            else
+                log.error(pos, Errors.BreakOutsideSwitchLoop);
+            return null;
+        }
+
+    public void visitReturn(JCReturn tree) {
+        // Check that there is an enclosing method which is
+        // nested within than the enclosing class.
+        if (env.info.returnResult == null) {
+            log.error(tree.pos(), Errors.RetOutsideMeth);
+        } else {
+            // Attribute return expression, if it exists, and check that
+            // it conforms to result type of enclosing method.
+            if (tree.expr != null) {
+                if (env.info.returnResult.pt.hasTag(VOID)) {
+                    env.info.returnResult.checkContext.report(tree.expr.pos(),
+                              diags.fragment(Fragments.UnexpectedRetVal));
+                }
+                attribTree(tree.expr, env, env.info.returnResult);
+            } else if (!env.info.returnResult.pt.hasTag(VOID) &&
+                    !env.info.returnResult.pt.hasTag(NONE)) {
+                env.info.returnResult.checkContext.report(tree.pos(),
+                              diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt)));
+            }
+        }
+        result = null;
+    }
+
+    public void visitThrow(JCThrow tree) {
+        Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
+        if (allowPoly) {
+            chk.checkType(tree, owntype, syms.throwableType);
+        }
+        result = null;
+    }
+
+    public void visitAssert(JCAssert tree) {
+        attribExpr(tree.cond, env, syms.booleanType);
+        if (tree.detail != null) {
+            chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
+        }
+        result = null;
+    }
+
+     /** Visitor method for method invocations.
+     *  NOTE: The method part of an application will have in its type field
+     *        the return type of the method, not the method's type itself!
+     */
+    public void visitApply(JCMethodInvocation tree) {
+        // The local environment of a method application is
+        // a new environment nested in the current one.
+        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
+
+        // The types of the actual method arguments.
+        List<Type> argtypes;
+
+        // The types of the actual method type arguments.
+        List<Type> typeargtypes = null;
+
+        Name methName = TreeInfo.name(tree.meth);
+
+        boolean isConstructorCall =
+            methName == names._this || methName == names._super;
+
+        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
+        if (isConstructorCall) {
+            // We are seeing a ...this(...) or ...super(...) call.
+            // Check that this is the first statement in a constructor.
+            if (checkFirstConstructorStat(tree, env)) {
+
+                // Record the fact
+                // that this is a constructor call (using isSelfCall).
+                localEnv.info.isSelfCall = true;
+
+                // Attribute arguments, yielding list of argument types.
+                KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
+                argtypes = argtypesBuf.toList();
+                typeargtypes = attribTypes(tree.typeargs, localEnv);
+
+                // Variable `site' points to the class in which the called
+                // constructor is defined.
+                Type site = env.enclClass.sym.type;
+                if (methName == names._super) {
+                    if (site == syms.objectType) {
+                        log.error(tree.meth.pos(), Errors.NoSuperclass(site));
+                        site = types.createErrorType(syms.objectType);
+                    } else {
+                        site = types.supertype(site);
+                    }
+                }
+
+                if (site.hasTag(CLASS)) {
+                    Type encl = site.getEnclosingType();
+                    while (encl != null && encl.hasTag(TYPEVAR))
+                        encl = encl.getUpperBound();
+                    if (encl.hasTag(CLASS)) {
+                        // we are calling a nested class
+
+                        if (tree.meth.hasTag(SELECT)) {
+                            JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
+
+                            // We are seeing a prefixed call, of the form
+                            //     <expr>.super(...).
+                            // Check that the prefix expression conforms
+                            // to the outer instance type of the class.
+                            chk.checkRefType(qualifier.pos(),
+                                             attribExpr(qualifier, localEnv,
+                                                        encl));
+                        } else if (methName == names._super) {
+                            // qualifier omitted; check for existence
+                            // of an appropriate implicit qualifier.
+                            rs.resolveImplicitThis(tree.meth.pos(),
+                                                   localEnv, site, true);
+                        }
+                    } else if (tree.meth.hasTag(SELECT)) {
+                        log.error(tree.meth.pos(),
+                                  Errors.IllegalQualNotIcls(site.tsym));
+                    }
+
+                    // if we're calling a java.lang.Enum constructor,
+                    // prefix the implicit String and int parameters
+                    if (site.tsym == syms.enumSym)
+                        argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
+
+                    // Resolve the called constructor under the assumption
+                    // that we are referring to a superclass instance of the
+                    // current instance (JLS ???).
+                    boolean selectSuperPrev = localEnv.info.selectSuper;
+                    localEnv.info.selectSuper = true;
+                    localEnv.info.pendingResolutionPhase = null;
+                    Symbol sym = rs.resolveConstructor(
+                        tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
+                    localEnv.info.selectSuper = selectSuperPrev;
+
+                    // Set method symbol to resolved constructor...
+                    TreeInfo.setSymbol(tree.meth, sym);
+
+                    // ...and check that it is legal in the current context.
+                    // (this will also set the tree's type)
+                    Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
+                    checkId(tree.meth, site, sym, localEnv,
+                            new ResultInfo(kind, mpt));
+                }
+                // Otherwise, `site' is an error type and we do nothing
+            }
+            result = tree.type = syms.voidType;
+        } else {
+            // Otherwise, we are seeing a regular method call.
+            // Attribute the arguments, yielding list of argument types, ...
+            KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
+            argtypes = argtypesBuf.toList();
+            typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
+
+            // ... and attribute the method using as a prototype a methodtype
+            // whose formal argument types is exactly the list of actual
+            // arguments (this will also set the method symbol).
+            Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
+            localEnv.info.pendingResolutionPhase = null;
+            Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
+
+            // Compute the result type.
+            Type restype = mtype.getReturnType();
+            if (restype.hasTag(WILDCARD))
+                throw new AssertionError(mtype);
+
+            Type qualifier = (tree.meth.hasTag(SELECT))
+                    ? ((JCFieldAccess) tree.meth).selected.type
+                    : env.enclClass.sym.type;
+            Symbol msym = TreeInfo.symbol(tree.meth);
+            restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype);
+
+            chk.checkRefTypes(tree.typeargs, typeargtypes);
+
+            // Check that value of resulting type is admissible in the
+            // current context.  Also, capture the return type
+            Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
+            result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
+        }
+        chk.validate(tree.typeargs, localEnv);
+    }
+    //where
+        Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
+            if (msym != null &&
+                    msym.owner == syms.objectType.tsym &&
+                    methodName == names.getClass &&
+                    argtypes.isEmpty()) {
+                // as a special case, x.getClass() has type Class<? extends |X|>
+                return new ClassType(restype.getEnclosingType(),
+                        List.of(new WildcardType(types.erasure(qualifierType),
+                                BoundKind.EXTENDS,
+                                syms.boundClass)),
+                        restype.tsym,
+                        restype.getMetadata());
+            } else if (msym != null &&
+                    msym.owner == syms.arrayClass &&
+                    methodName == names.clone &&
+                    types.isArray(qualifierType)) {
+                // as a special case, array.clone() has a result that is
+                // the same as static type of the array being cloned
+                return qualifierType;
+            } else {
+                return restype;
+            }
+        }
+
+        /** Check that given application node appears as first statement
+         *  in a constructor call.
+         *  @param tree   The application node
+         *  @param env    The environment current at the application.
+         */
+        boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
+            JCMethodDecl enclMethod = env.enclMethod;
+            if (enclMethod != null && enclMethod.name == names.init) {
+                JCBlock body = enclMethod.body;
+                if (body.stats.head.hasTag(EXEC) &&
+                    ((JCExpressionStatement) body.stats.head).expr == tree)
+                    return true;
+            }
+            log.error(tree.pos(),
+                      Errors.CallMustBeFirstStmtInCtor(TreeInfo.name(tree.meth)));
+            return false;
+        }
+
+        /** Obtain a method type with given argument types.
+         */
+        Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
+            MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass);
+            return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
+        }
+
+    public void visitNewClass(final JCNewClass tree) {
+        Type owntype = types.createErrorType(tree.type);
+
+        // The local environment of a class creation is
+        // a new environment nested in the current one.
+        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
+
+        // The anonymous inner class definition of the new expression,
+        // if one is defined by it.
+        JCClassDecl cdef = tree.def;
+
+        // If enclosing class is given, attribute it, and
+        // complete class name to be fully qualified
+        JCExpression clazz = tree.clazz; // Class field following new
+        JCExpression clazzid;            // Identifier in class field
+        JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
+        annoclazzid = null;
+
+        if (clazz.hasTag(TYPEAPPLY)) {
+            clazzid = ((JCTypeApply) clazz).clazz;
+            if (clazzid.hasTag(ANNOTATED_TYPE)) {
+                annoclazzid = (JCAnnotatedType) clazzid;
+                clazzid = annoclazzid.underlyingType;
+            }
+        } else {
+            if (clazz.hasTag(ANNOTATED_TYPE)) {
+                annoclazzid = (JCAnnotatedType) clazz;
+                clazzid = annoclazzid.underlyingType;
+            } else {
+                clazzid = clazz;
+            }
+        }
+
+        JCExpression clazzid1 = clazzid; // The same in fully qualified form
+
+        if (tree.encl != null) {
+            // We are seeing a qualified new, of the form
+            //    <expr>.new C <...> (...) ...
+            // In this case, we let clazz stand for the name of the
+            // allocated class C prefixed with the type of the qualifier
+            // expression, so that we can
+            // resolve it with standard techniques later. I.e., if
+            // <expr> has type T, then <expr>.new C <...> (...)
+            // yields a clazz T.C.
+            Type encltype = chk.checkRefType(tree.encl.pos(),
+                                             attribExpr(tree.encl, env));
+            // TODO 308: in <expr>.new C, do we also want to add the type annotations
+            // from expr to the combined type, or not? Yes, do this.
+            clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
+                                                 ((JCIdent) clazzid).name);
+
+            EndPosTable endPosTable = this.env.toplevel.endPositions;
+            endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
+            if (clazz.hasTag(ANNOTATED_TYPE)) {
+                JCAnnotatedType annoType = (JCAnnotatedType) clazz;
+                List<JCAnnotation> annos = annoType.annotations;
+
+                if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
+                    clazzid1 = make.at(tree.pos).
+                        TypeApply(clazzid1,
+                                  ((JCTypeApply) clazz).arguments);
+                }
+
+                clazzid1 = make.at(tree.pos).
+                    AnnotatedType(annos, clazzid1);
+            } else if (clazz.hasTag(TYPEAPPLY)) {
+                clazzid1 = make.at(tree.pos).
+                    TypeApply(clazzid1,
+                              ((JCTypeApply) clazz).arguments);
+            }
+
+            clazz = clazzid1;
+        }
+
+        // Attribute clazz expression and store
+        // symbol + type back into the attributed tree.
+        Type clazztype;
+
+        try {
+            env.info.isNewClass = true;
+            clazztype = TreeInfo.isEnumInit(env.tree) ?
+                attribIdentAsEnumType(env, (JCIdent)clazz) :
+                attribType(clazz, env);
+        } finally {
+            env.info.isNewClass = false;
+        }
+
+        clazztype = chk.checkDiamond(tree, clazztype);
+        chk.validate(clazz, localEnv);
+        if (tree.encl != null) {
+            // We have to work in this case to store
+            // symbol + type back into the attributed tree.
+            tree.clazz.type = clazztype;
+            TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
+            clazzid.type = ((JCIdent) clazzid).sym.type;
+            if (annoclazzid != null) {
+                annoclazzid.type = clazzid.type;
+            }
+            if (!clazztype.isErroneous()) {
+                if (cdef != null && clazztype.tsym.isInterface()) {
+                    log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew);
+                } else if (clazztype.tsym.isStatic()) {
+                    log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym));
+                }
+            }
+        } else if (!clazztype.tsym.isInterface() &&
+                   clazztype.getEnclosingType().hasTag(CLASS)) {
+            // Check for the existence of an apropos outer instance
+            rs.resolveImplicitThis(tree.pos(), env, clazztype);
+        }
+
+        // Attribute constructor arguments.
+        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
+        final KindSelector pkind =
+            attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
+        List<Type> argtypes = argtypesBuf.toList();
+        List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
+
+        // If we have made no mistakes in the class type...
+        if (clazztype.hasTag(CLASS)) {
+            // Enums may not be instantiated except implicitly
+            if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
+                (!env.tree.hasTag(VARDEF) ||
+                 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
+                 ((JCVariableDecl) env.tree).init != tree))
+                log.error(tree.pos(), Errors.EnumCantBeInstantiated);
+
+            boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
+                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
+            boolean skipNonDiamondPath = false;
+            // Check that class is not abstract
+            if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
+                (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
+                log.error(tree.pos(),
+                          Errors.AbstractCantBeInstantiated(clazztype.tsym));
+                skipNonDiamondPath = true;
+            } else if (cdef != null && clazztype.tsym.isInterface()) {
+                // Check that no constructor arguments are given to
+                // anonymous classes implementing an interface
+                if (!argtypes.isEmpty())
+                    log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs);
+
+                if (!typeargtypes.isEmpty())
+                    log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs);
+
+                // Error recovery: pretend no arguments were supplied.
+                argtypes = List.nil();
+                typeargtypes = List.nil();
+                skipNonDiamondPath = true;
+            }
+            if (TreeInfo.isDiamond(tree)) {
+                ClassType site = new ClassType(clazztype.getEnclosingType(),
+                            clazztype.tsym.type.getTypeArguments(),
+                                               clazztype.tsym,
+                                               clazztype.getMetadata());
+
+                Env<AttrContext> diamondEnv = localEnv.dup(tree);
+                diamondEnv.info.selectSuper = cdef != null;
+                diamondEnv.info.pendingResolutionPhase = null;
+
+                //if the type of the instance creation expression is a class type
+                //apply method resolution inference (JLS 15.12.2.7). The return type
+                //of the resolved constructor will be a partially instantiated type
+                Symbol constructor = rs.resolveDiamond(tree.pos(),
+                            diamondEnv,
+                            site,
+                            argtypes,
+                            typeargtypes);
+                tree.constructor = constructor.baseSymbol();
+
+                final TypeSymbol csym = clazztype.tsym;
+                ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
+                        diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
+                Type constructorType = tree.constructorType = types.createErrorType(clazztype);
+                constructorType = checkId(tree, site,
+                        constructor,
+                        diamondEnv,
+                        diamondResult);
+
+                tree.clazz.type = types.createErrorType(clazztype);
+                if (!constructorType.isErroneous()) {
+                    tree.clazz.type = clazz.type = constructorType.getReturnType();
+                    tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
+                }
+                clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
+            }
+
+            // Resolve the called constructor under the assumption
+            // that we are referring to a superclass instance of the
+            // current instance (JLS ???).
+            else if (!skipNonDiamondPath) {
+                //the following code alters some of the fields in the current
+                //AttrContext - hence, the current context must be dup'ed in
+                //order to avoid downstream failures
+                Env<AttrContext> rsEnv = localEnv.dup(tree);
+                rsEnv.info.selectSuper = cdef != null;
+                rsEnv.info.pendingResolutionPhase = null;
+                tree.constructor = rs.resolveConstructor(
+                    tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
+                if (cdef == null) { //do not check twice!
+                    tree.constructorType = checkId(tree,
+                            clazztype,
+                            tree.constructor,
+                            rsEnv,
+                            new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
+                    if (rsEnv.info.lastResolveVarargs())
+                        Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
+                }
+            }
+
+            if (cdef != null) {
+                visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
+                return;
+            }
+
+            if (tree.constructor != null && tree.constructor.kind == MTH)
+                owntype = clazztype;
+        }
+        result = check(tree, owntype, KindSelector.VAL, resultInfo);
+        InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
+        if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
+            //we need to wait for inference to finish and then replace inference vars in the constructor type
+            inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
+                    instantiatedContext -> {
+                        tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
+                    });
+        }
+        chk.validate(tree.typeargs, localEnv);
+    }
+
+        // where
+        private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
+                                                   JCClassDecl cdef, Env<AttrContext> localEnv,
+                                                   List<Type> argtypes, List<Type> typeargtypes,
+                                                   KindSelector pkind) {
+            // We are seeing an anonymous class instance creation.
+            // In this case, the class instance creation
+            // expression
+            //
+            //    E.new <typeargs1>C<typargs2>(args) { ... }
+            //
+            // is represented internally as
+            //
+            //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
+            //
+            // This expression is then *transformed* as follows:
+            //
+            // (1) add an extends or implements clause
+            // (2) add a constructor.
+            //
+            // For instance, if C is a class, and ET is the type of E,
+            // the expression
+            //
+            //    E.new <typeargs1>C<typargs2>(args) { ... }
+            //
+            // is translated to (where X is a fresh name and typarams is the
+            // parameter list of the super constructor):
+            //
+            //   new <typeargs1>X(<*nullchk*>E, args) where
+            //     X extends C<typargs2> {
+            //       <typarams> X(ET e, args) {
+            //         e.<typeargs1>super(args)
+            //       }
+            //       ...
+            //     }
+            InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
+            final boolean isDiamond = TreeInfo.isDiamond(tree);
+            if (isDiamond
+                    && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
+                    || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
+                final ResultInfo resultInfoForClassDefinition = this.resultInfo;
+                inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
+                        instantiatedContext -> {
+                            tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
+                            tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type);
+                            ResultInfo prevResult = this.resultInfo;
+                            try {
+                                this.resultInfo = resultInfoForClassDefinition;
+                                visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
+                                                            localEnv, argtypes, typeargtypes, pkind);
+                            } finally {
+                                this.resultInfo = prevResult;
+                            }
+                        });
+            } else {
+                if (isDiamond && clazztype.hasTag(CLASS)) {
+                    List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
+                    if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
+                        // One or more types inferred in the previous steps is non-denotable.
+                        Fragment fragment = Diamond(clazztype.tsym);
+                        log.error(tree.clazz.pos(),
+                                Errors.CantApplyDiamond1(
+                                        fragment,
+                                        invalidDiamondArgs.size() > 1 ?
+                                                DiamondInvalidArgs(invalidDiamondArgs, fragment) :
+                                                DiamondInvalidArg(invalidDiamondArgs, fragment)));
+                    }
+                    // For <>(){}, inferred types must also be accessible.
+                    for (Type t : clazztype.getTypeArguments()) {
+                        rs.checkAccessibleType(env, t);
+                    }
+                }
+
+                // If we already errored, be careful to avoid a further avalanche. ErrorType answers
+                // false for isInterface call even when the original type is an interface.
+                boolean implementing = clazztype.tsym.isInterface() ||
+                        clazztype.isErroneous() && clazztype.getOriginalType().tsym.isInterface();
+
+                if (implementing) {
+                    cdef.implementing = List.of(clazz);
+                } else {
+                    cdef.extending = clazz;
+                }
+
+                if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
+                    isSerializable(clazztype)) {
+                    localEnv.info.isSerializable = true;
+                }
+
+                attribStat(cdef, localEnv);
+
+                List<Type> finalargtypes;
+                // If an outer instance is given,
+                // prefix it to the constructor arguments
+                // and delete it from the new expression
+                if (tree.encl != null && !clazztype.tsym.isInterface()) {
+                    tree.args = tree.args.prepend(makeNullCheck(tree.encl));
+                    finalargtypes = argtypes.prepend(tree.encl.type);
+                    tree.encl = null;
+                } else {
+                    finalargtypes = argtypes;
+                }
+
+                // Reassign clazztype and recompute constructor. As this necessarily involves
+                // another attribution pass for deferred types in the case of <>, replicate
+                // them. Original arguments have right decorations already.
+                if (isDiamond && pkind.contains(KindSelector.POLY)) {
+                    finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
+                }
+
+                clazztype = cdef.sym.type;
+                Symbol sym = tree.constructor = rs.resolveConstructor(
+                        tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
+                Assert.check(!sym.kind.isResolutionError());
+                tree.constructor = sym;
+                tree.constructorType = checkId(tree,
+                        clazztype,
+                        tree.constructor,
+                        localEnv,
+                        new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
+            }
+            Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
+                                clazztype : types.createErrorType(tree.type);
+            result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
+            chk.validate(tree.typeargs, localEnv);
+        }
+
+        CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
+            return new Check.NestedCheckContext(checkContext) {
+                @Override
+                public void report(DiagnosticPosition _unused, JCDiagnostic details) {
+                    enclosingContext.report(clazz.clazz,
+                            diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details)));
+                }
+            };
+        }
+
+    /** Make an attributed null check tree.
+     */
+    public JCExpression makeNullCheck(JCExpression arg) {
+        // optimization: new Outer() can never be null; skip null check
+        if (arg.getTag() == NEWCLASS)
+            return arg;
+        // optimization: X.this is never null; skip null check
+        Name name = TreeInfo.name(arg);
+        if (name == names._this || name == names._super) return arg;
+
+        JCTree.Tag optag = NULLCHK;
+        JCUnary tree = make.at(arg.pos).Unary(optag, arg);
+        tree.operator = operators.resolveUnary(arg, optag, arg.type);
+        tree.type = arg.type;
+        return tree;
+    }
+
+    public void visitNewArray(JCNewArray tree) {
+        Type owntype = types.createErrorType(tree.type);
+        Env<AttrContext> localEnv = env.dup(tree);
+        Type elemtype;
+        if (tree.elemtype != null) {
+            elemtype = attribType(tree.elemtype, localEnv);
+            chk.validate(tree.elemtype, localEnv);
+            owntype = elemtype;
+            for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
+                attribExpr(l.head, localEnv, syms.intType);
+                owntype = new ArrayType(owntype, syms.arrayClass);
+            }
+        } else {
+            // we are seeing an untyped aggregate { ... }
+            // this is allowed only if the prototype is an array
+            if (pt().hasTag(ARRAY)) {
+                elemtype = types.elemtype(pt());
+            } else {
+                if (!pt().hasTag(ERROR)) {
+                    log.error(tree.pos(),
+                              Errors.IllegalInitializerForType(pt()));
+                }
+                elemtype = types.createErrorType(pt());
+            }
+        }
+        if (tree.elems != null) {
+            attribExprs(tree.elems, localEnv, elemtype);
+            owntype = new ArrayType(elemtype, syms.arrayClass);
+        }
+        if (!types.isReifiable(elemtype))
+            log.error(tree.pos(), Errors.GenericArrayCreation);
+        result = check(tree, owntype, KindSelector.VAL, resultInfo);
+    }
+
+    /*
+     * A lambda expression can only be attributed when a target-type is available.
+     * In addition, if the target-type is that of a functional interface whose
+     * descriptor contains inference variables in argument position the lambda expression
+     * is 'stuck' (see DeferredAttr).
+     */
+    @Override
+    public void visitLambda(final JCLambda that) {
+        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
+            if (pt().hasTag(NONE)) {
+                //lambda only allowed in assignment or method invocation/cast context
+                log.error(that.pos(), Errors.UnexpectedLambda);
+            }
+            result = that.type = types.createErrorType(pt());
+            return;
+        }
+        //create an environment for attribution of the lambda expression
+        final Env<AttrContext> localEnv = lambdaEnv(that, env);
+        boolean needsRecovery =
+                resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
+        try {
+            if (needsRecovery && isSerializable(pt())) {
+                localEnv.info.isSerializable = true;
+                localEnv.info.isLambda = true;
+            }
+            List<Type> explicitParamTypes = null;
+            if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
+                //attribute lambda parameters
+                attribStats(that.params, localEnv);
+                explicitParamTypes = TreeInfo.types(that.params);
+            }
+
+            TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes);
+            Type currentTarget = targetInfo.target;
+            Type lambdaType = targetInfo.descriptor;
+
+            if (currentTarget.isErroneous()) {
+                result = that.type = currentTarget;
+                return;
+            }
+
+            setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
+
+            if (lambdaType.hasTag(FORALL)) {
+                //lambda expression target desc cannot be a generic method
+                Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
+                                                                    kindName(currentTarget.tsym),
+                                                                    currentTarget.tsym);
+                resultInfo.checkContext.report(that, diags.fragment(msg));
+                result = that.type = types.createErrorType(pt());
+                return;
+            }
+
+            if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
+                //add param type info in the AST
+                List<Type> actuals = lambdaType.getParameterTypes();
+                List<JCVariableDecl> params = that.params;
+
+                boolean arityMismatch = false;
+
+                while (params.nonEmpty()) {
+                    if (actuals.isEmpty()) {
+                        //not enough actuals to perform lambda parameter inference
+                        arityMismatch = true;
+                    }
+                    //reset previously set info
+                    Type argType = arityMismatch ?
+                            syms.errType :
+                            actuals.head;
+                    params.head.vartype = make.at(params.head).Type(argType);
+                    params.head.sym = null;
+                    actuals = actuals.isEmpty() ?
+                            actuals :
+                            actuals.tail;
+                    params = params.tail;
+                }
+
+                //attribute lambda parameters
+                attribStats(that.params, localEnv);
+
+                if (arityMismatch) {
+                    resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
+                        result = that.type = types.createErrorType(currentTarget);
+                        return;
+                }
+            }
+
+            //from this point on, no recovery is needed; if we are in assignment context
+            //we will be able to attribute the whole lambda body, regardless of errors;
+            //if we are in a 'check' method context, and the lambda is not compatible
+            //with the target-type, it will be recovered anyway in Attr.checkId
+            needsRecovery = false;
+
+            ResultInfo bodyResultInfo = localEnv.info.returnResult =
+                    lambdaBodyResult(that, lambdaType, resultInfo);
+
+            if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
+                attribTree(that.getBody(), localEnv, bodyResultInfo);
+            } else {
+                JCBlock body = (JCBlock)that.body;
+                attribStats(body.stats, localEnv);
+            }
+
+            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
+
+            boolean isSpeculativeRound =
+                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
+
+            preFlow(that);
+            flow.analyzeLambda(env, that, make, isSpeculativeRound);
+
+            that.type = currentTarget; //avoids recovery at this stage
+            checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
+
+            if (!isSpeculativeRound) {
+                //add thrown types as bounds to the thrown types free variables if needed:
+                if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
+                    List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
+                    if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) {
+                        log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes()));
+                    }
+                }
+
+                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
+            }
+            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
+        } catch (Types.FunctionDescriptorLookupError ex) {
+            JCDiagnostic cause = ex.getDiagnostic();
+            resultInfo.checkContext.report(that, cause);
+            result = that.type = types.createErrorType(pt());
+            return;
+        } catch (Throwable t) {
+            //when an unexpected exception happens, avoid attempts to attribute the same tree again
+            //as that would likely cause the same exception again.
+            needsRecovery = false;
+            throw t;
+        } finally {
+            localEnv.info.scope.leave();
+            if (needsRecovery) {
+                attribTree(that, env, recoveryInfo);
+            }
+        }
+    }
+    //where
+        class TargetInfo {
+            Type target;
+            Type descriptor;
+
+            public TargetInfo(Type target, Type descriptor) {
+                this.target = target;
+                this.descriptor = descriptor;
+            }
+        }
+
+        TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) {
+            Type lambdaType;
+            Type currentTarget = resultInfo.pt;
+            if (resultInfo.pt != Type.recoveryType) {
+                /* We need to adjust the target. If the target is an
+                 * intersection type, for example: SAM & I1 & I2 ...
+                 * the target will be updated to SAM
+                 */
+                currentTarget = targetChecker.visit(currentTarget, that);
+                if (explicitParamTypes != null) {
+                    currentTarget = infer.instantiateFunctionalInterface(that,
+                            currentTarget, explicitParamTypes, resultInfo.checkContext);
+                }
+                currentTarget = types.removeWildcards(currentTarget);
+                lambdaType = types.findDescriptorType(currentTarget);
+            } else {
+                currentTarget = Type.recoveryType;
+                lambdaType = fallbackDescriptorType(that);
+            }
+            if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) {
+                //lambda expression target desc cannot be a generic method
+                Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
+                                                                    kindName(currentTarget.tsym),
+                                                                    currentTarget.tsym);
+                resultInfo.checkContext.report(that, diags.fragment(msg));
+                currentTarget = types.createErrorType(pt());
+            }
+            return new TargetInfo(currentTarget, lambdaType);
+        }
+
+        void preFlow(JCLambda tree) {
+            new PostAttrAnalyzer() {
+                @Override
+                public void scan(JCTree tree) {
+                    if (tree == null ||
+                            (tree.type != null &&
+                            tree.type == Type.stuckType)) {
+                        //don't touch stuck expressions!
+                        return;
+                    }
+                    super.scan(tree);
+                }
+            }.scan(tree);
+        }
+
+        Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
+
+            @Override
+            public Type visitClassType(ClassType t, DiagnosticPosition pos) {
+                return t.isIntersection() ?
+                        visitIntersectionClassType((IntersectionClassType)t, pos) : t;
+            }
+
+            public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
+                Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
+                Type target = null;
+                for (Type bound : ict.getExplicitComponents()) {
+                    TypeSymbol boundSym = bound.tsym;
+                    if (types.isFunctionalInterface(boundSym) &&
+                            types.findDescriptorSymbol(boundSym) == desc) {
+                        target = bound;
+                    } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
+                        //bound must be an interface
+                        reportIntersectionError(pos, "not.an.intf.component", boundSym);
+                    }
+                }
+                return target != null ?
+                        target :
+                        ict.getExplicitComponents().head; //error recovery
+            }
+
+            private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
+                ListBuffer<Type> targs = new ListBuffer<>();
+                ListBuffer<Type> supertypes = new ListBuffer<>();
+                for (Type i : ict.interfaces_field) {
+                    if (i.isParameterized()) {
+                        targs.appendList(i.tsym.type.allparams());
+                    }
+                    supertypes.append(i.tsym.type);
+                }
+                IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
+                notionalIntf.allparams_field = targs.toList();
+                notionalIntf.tsym.flags_field |= INTERFACE;
+                return notionalIntf.tsym;
+            }
+
+            private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
+                resultInfo.checkContext.report(pos,
+                                               diags.fragment(Fragments.BadIntersectionTargetForFunctionalExpr(diags.fragment(key, args))));
+            }
+        };
+
+        private Type fallbackDescriptorType(JCExpression tree) {
+            switch (tree.getTag()) {
+                case LAMBDA:
+                    JCLambda lambda = (JCLambda)tree;
+                    List<Type> argtypes = List.nil();
+                    for (JCVariableDecl param : lambda.params) {
+                        argtypes = param.vartype != null ?
+                                argtypes.append(param.vartype.type) :
+                                argtypes.append(syms.errType);
+                    }
+                    return new MethodType(argtypes, Type.recoveryType,
+                            List.of(syms.throwableType), syms.methodClass);
+                case REFERENCE:
+                    return new MethodType(List.nil(), Type.recoveryType,
+                            List.of(syms.throwableType), syms.methodClass);
+                default:
+                    Assert.error("Cannot get here!");
+            }
+            return null;
+        }
+
+        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
+                final InferenceContext inferenceContext, final Type... ts) {
+            checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
+        }
+
+        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
+                final InferenceContext inferenceContext, final List<Type> ts) {
+            if (inferenceContext.free(ts)) {
+                inferenceContext.addFreeTypeListener(ts,
+                        solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts)));
+            } else {
+                for (Type t : ts) {
+                    rs.checkAccessibleType(env, t);
+                }
+            }
+        }
+
+        /**
+         * Lambda/method reference have a special check context that ensures
+         * that i.e. a lambda return type is compatible with the expected
+         * type according to both the inherited context and the assignment
+         * context.
+         */
+        class FunctionalReturnContext extends Check.NestedCheckContext {
+
+            FunctionalReturnContext(CheckContext enclosingContext) {
+                super(enclosingContext);
+            }
+
+            @Override
+            public boolean compatible(Type found, Type req, Warner warn) {
+                //return type must be compatible in both current context and assignment context
+                return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn);
+            }
+
+            @Override
+            public void report(DiagnosticPosition pos, JCDiagnostic details) {
+                enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details)));
+            }
+        }
+
+        class ExpressionLambdaReturnContext extends FunctionalReturnContext {
+
+            JCExpression expr;
+            boolean expStmtExpected;
+
+            ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
+                super(enclosingContext);
+                this.expr = expr;
+            }
+
+            @Override
+            public void report(DiagnosticPosition pos, JCDiagnostic details) {
+                if (expStmtExpected) {
+                    enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected));
+                } else {
+                    super.report(pos, details);
+                }
+            }
+
+            @Override
+            public boolean compatible(Type found, Type req, Warner warn) {
+                //a void return is compatible with an expression statement lambda
+                if (req.hasTag(VOID)) {
+                    expStmtExpected = true;
+                    return TreeInfo.isExpressionStatement(expr);
+                } else {
+                    return super.compatible(found, req, warn);
+                }
+            }
+        }
+
+        ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) {
+            FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
+                    new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
+                    new FunctionalReturnContext(resultInfo.checkContext);
+
+            return descriptor.getReturnType() == Type.recoveryType ?
+                    recoveryInfo :
+                    new ResultInfo(KindSelector.VAL,
+                            descriptor.getReturnType(), funcContext);
+        }
+
+        /**
+        * Lambda compatibility. Check that given return types, thrown types, parameter types
+        * are compatible with the expected functional interface descriptor. This means that:
+        * (i) parameter types must be identical to those of the target descriptor; (ii) return
+        * types must be compatible with the return type of the expected descriptor.
+        */
+        void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
+            Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
+
+            //return values have already been checked - but if lambda has no return
+            //values, we must ensure that void/value compatibility is correct;
+            //this amounts at checking that, if a lambda body can complete normally,
+            //the descriptor's return type must be void
+            if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
+                    !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
+                Fragment msg =
+                        Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType));
+                checkContext.report(tree,
+                                    diags.fragment(msg));
+            }
+
+            List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
+            if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
+                checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
+            }
+        }
+
+        /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
+         * static field and that lambda has type annotations, these annotations will
+         * also be stored at these fake clinit methods.
+         *
+         * LambdaToMethod also use fake clinit methods so they can be reused.
+         * Also as LTM is a phase subsequent to attribution, the methods from
+         * clinits can be safely removed by LTM to save memory.
+         */
+        private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
+
+        public MethodSymbol removeClinit(ClassSymbol sym) {
+            return clinits.remove(sym);
+        }
+
+        /* This method returns an environment to be used to attribute a lambda
+         * expression.
+         *
+         * The owner of this environment is a method symbol. If the current owner
+         * is not a method, for example if the lambda is used to initialize
+         * a field, then if the field is:
+         *
+         * - an instance field, we use the first constructor.
+         * - a static field, we create a fake clinit method.
+         */
+        public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
+            Env<AttrContext> lambdaEnv;
+            Symbol owner = env.info.scope.owner;
+            if (owner.kind == VAR && owner.owner.kind == TYP) {
+                //field initializer
+                ClassSymbol enclClass = owner.enclClass();
+                Symbol newScopeOwner = env.info.scope.owner;
+                /* if the field isn't static, then we can get the first constructor
+                 * and use it as the owner of the environment. This is what
+                 * LTM code is doing to look for type annotations so we are fine.
+                 */
+                if ((owner.flags() & STATIC) == 0) {
+                    for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) {
+                        newScopeOwner = s;
+                        break;
+                    }
+                } else {
+                    /* if the field is static then we need to create a fake clinit
+                     * method, this method can later be reused by LTM.
+                     */
+                    MethodSymbol clinit = clinits.get(enclClass);
+                    if (clinit == null) {
+                        Type clinitType = new MethodType(List.nil(),
+                                syms.voidType, List.nil(), syms.methodClass);
+                        clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
+                                names.clinit, clinitType, enclClass);
+                        clinit.params = List.nil();
+                        clinits.put(enclClass, clinit);
+                    }
+                    newScopeOwner = clinit;
+                }
+                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner)));
+            } else {
+                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
+            }
+            return lambdaEnv;
+        }
+
+    @Override
+    public void visitReference(final JCMemberReference that) {
+        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
+            if (pt().hasTag(NONE)) {
+                //method reference only allowed in assignment or method invocation/cast context
+                log.error(that.pos(), Errors.UnexpectedMref);
+            }
+            result = that.type = types.createErrorType(pt());
+            return;
+        }
+        final Env<AttrContext> localEnv = env.dup(that);
+        try {
+            //attribute member reference qualifier - if this is a constructor
+            //reference, the expected kind must be a type
+            Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
+
+            if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
+                exprType = chk.checkConstructorRefType(that.expr, exprType);
+                if (!exprType.isErroneous() &&
+                    exprType.isRaw() &&
+                    that.typeargs != null) {
+                    log.error(that.expr.pos(),
+                              Errors.InvalidMref(Kinds.kindName(that.getMode()),
+                                                 Fragments.MrefInferAndExplicitParams));
+                    exprType = types.createErrorType(exprType);
+                }
+            }
+
+            if (exprType.isErroneous()) {
+                //if the qualifier expression contains problems,
+                //give up attribution of method reference
+                result = that.type = exprType;
+                return;
+            }
+
+            if (TreeInfo.isStaticSelector(that.expr, names)) {
+                //if the qualifier is a type, validate it; raw warning check is
+                //omitted as we don't know at this stage as to whether this is a
+                //raw selector (because of inference)
+                chk.validate(that.expr, env, false);
+            } else {
+                Symbol lhsSym = TreeInfo.symbol(that.expr);
+                localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
+            }
+            //attrib type-arguments
+            List<Type> typeargtypes = List.nil();
+            if (that.typeargs != null) {
+                typeargtypes = attribTypes(that.typeargs, localEnv);
+            }
+
+            boolean isTargetSerializable =
+                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
+                    isSerializable(pt());
+            TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
+            Type currentTarget = targetInfo.target;
+            Type desc = targetInfo.descriptor;
+
+            setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
+            List<Type> argtypes = desc.getParameterTypes();
+            Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
+
+            if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
+                referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
+            }
+
+            Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
+            List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
+            try {
+                refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
+                        that.name, argtypes, typeargtypes, referenceCheck,
+                        resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
+            } finally {
+                resultInfo.checkContext.inferenceContext().rollback(saved_undet);
+            }
+
+            Symbol refSym = refResult.fst;
+            Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
+
+            /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
+             *  JDK-8075541
+             */
+            if (refSym.kind != MTH) {
+                boolean targetError;
+                switch (refSym.kind) {
+                    case ABSENT_MTH:
+                    case MISSING_ENCL:
+                        targetError = false;
+                        break;
+                    case WRONG_MTH:
+                    case WRONG_MTHS:
+                    case AMBIGUOUS:
+                    case HIDDEN:
+                    case STATICERR:
+                        targetError = true;
+                        break;
+                    default:
+                        Assert.error("unexpected result kind " + refSym.kind);
+                        targetError = false;
+                }
+
+                JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
+                                that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
+
+                JCDiagnostic.DiagnosticType diagKind = targetError ?
+                        JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
+
+                JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
+                        "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
+
+                if (targetError && currentTarget == Type.recoveryType) {
+                    //a target error doesn't make sense during recovery stage
+                    //as we don't know what actual parameter types are
+                    result = that.type = currentTarget;
+                    return;
+                } else {
+                    if (targetError) {
+                        resultInfo.checkContext.report(that, diag);
+                    } else {
+                        log.report(diag);
+                    }
+                    result = that.type = types.createErrorType(currentTarget);
+                    return;
+                }
+            }
+
+            that.sym = refSym.baseSymbol();
+            that.kind = lookupHelper.referenceKind(that.sym);
+            that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
+
+            if (desc.getReturnType() == Type.recoveryType) {
+                // stop here
+                result = that.type = currentTarget;
+                return;
+            }
+
+            if (!env.info.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) {
+                Type enclosingType = exprType.getEnclosingType();
+                if (enclosingType != null && enclosingType.hasTag(CLASS)) {
+                    // Check for the existence of an apropriate outer instance
+                    rs.resolveImplicitThis(that.pos(), env, exprType);
+                }
+            }
+
+            if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
+
+                if (that.getMode() == ReferenceMode.INVOKE &&
+                        TreeInfo.isStaticSelector(that.expr, names) &&
+                        that.kind.isUnbound() &&
+                        !desc.getParameterTypes().head.isParameterized()) {
+                    chk.checkRaw(that.expr, localEnv);
+                }
+
+                if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
+                        exprType.getTypeArguments().nonEmpty()) {
+                    //static ref with class type-args
+                    log.error(that.expr.pos(),
+                              Errors.InvalidMref(Kinds.kindName(that.getMode()),
+                                                 Fragments.StaticMrefWithTargs));
+                    result = that.type = types.createErrorType(currentTarget);
+                    return;
+                }
+
+                if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
+                    // Check that super-qualified symbols are not abstract (JLS)
+                    rs.checkNonAbstract(that.pos(), that.sym);
+                }
+
+                if (isTargetSerializable) {
+                    chk.checkAccessFromSerializableElement(that, true);
+                }
+            }
+
+            ResultInfo checkInfo =
+                    resultInfo.dup(newMethodTemplate(
+                        desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
+                        that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
+                        new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
+
+            Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
+
+            if (that.kind.isUnbound() &&
+                    resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
+                //re-generate inference constraints for unbound receiver
+                if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
+                    //cannot happen as this has already been checked - we just need
+                    //to regenerate the inference constraints, as that has been lost
+                    //as a result of the call to inferenceContext.save()
+                    Assert.error("Can't get here");
+                }
+            }
+
+            if (!refType.isErroneous()) {
+                refType = types.createMethodTypeWithReturn(refType,
+                        adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
+            }
+
+            //go ahead with standard method reference compatibility check - note that param check
+            //is a no-op (as this has been taken care during method applicability)
+            boolean isSpeculativeRound =
+                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
+
+            that.type = currentTarget; //avoids recovery at this stage
+            checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
+            if (!isSpeculativeRound) {
+                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
+            }
+            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
+        } catch (Types.FunctionDescriptorLookupError ex) {
+            JCDiagnostic cause = ex.getDiagnostic();
+            resultInfo.checkContext.report(that, cause);
+            result = that.type = types.createErrorType(pt());
+            return;
+        }
+    }
+    //where
+        ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
+            //if this is a constructor reference, the expected kind must be a type
+            return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
+                                  KindSelector.VAL_TYP : KindSelector.TYP,
+                                  Type.noType);
+        }
+
+
+    @SuppressWarnings("fallthrough")
+    void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
+        InferenceContext inferenceContext = checkContext.inferenceContext();
+        Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
+
+        Type resType;
+        switch (tree.getMode()) {
+            case NEW:
+                if (!tree.expr.type.isRaw()) {
+                    resType = tree.expr.type;
+                    break;
+                }
+            default:
+                resType = refType.getReturnType();
+        }
+
+        Type incompatibleReturnType = resType;
+
+        if (returnType.hasTag(VOID)) {
+            incompatibleReturnType = null;
+        }
+
+        if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
+            if (resType.isErroneous() ||
+                    new FunctionalReturnContext(checkContext).compatible(resType, returnType,
+                            checkContext.checkWarner(tree, resType, returnType))) {
+                incompatibleReturnType = null;
+            }
+        }
+
+        if (incompatibleReturnType != null) {
+            Fragment msg =
+                    Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType()));
+            checkContext.report(tree, diags.fragment(msg));
+        } else {
+            if (inferenceContext.free(refType)) {
+                // we need to wait for inference to finish and then replace inference vars in the referent type
+                inferenceContext.addFreeTypeListener(List.of(refType),
+                        instantiatedContext -> {
+                            tree.referentType = instantiatedContext.asInstType(refType);
+                        });
+            } else {
+                tree.referentType = refType;
+            }
+        }
+
+        if (!speculativeAttr) {
+            if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) {
+                log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes()));
+            }
+        }
+    }
+
+    boolean checkExConstraints(
+            List<Type> thrownByFuncExpr,
+            List<Type> thrownAtFuncType,
+            InferenceContext inferenceContext) {
+        /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that
+         *  are not proper types
+         */
+        List<Type> nonProperList = thrownAtFuncType.stream()
+                .filter(e -> inferenceContext.free(e)).collect(List.collector());
+        List<Type> properList = thrownAtFuncType.diff(nonProperList);
+
+        /** Let X1,...,Xm be the checked exception types that the lambda body can throw or
+         *  in the throws clause of the invocation type of the method reference's compile-time
+         *  declaration
+         */
+        List<Type> checkedList = thrownByFuncExpr.stream()
+                .filter(e -> chk.isChecked(e)).collect(List.collector());
+
+        /** If n = 0 (the function type's throws clause consists only of proper types), then
+         *  if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type
+         *  in the throws clause, the constraint reduces to false; otherwise, the constraint
+         *  reduces to true
+         */
+        ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>();
+        for (Type checked : checkedList) {
+            boolean isSubtype = false;
+            for (Type proper : properList) {
+                if (types.isSubtype(checked, proper)) {
+                    isSubtype = true;
+                    break;
+                }
+            }
+            if (!isSubtype) {
+                uncaughtByProperTypes.add(checked);
+            }
+        }
+
+        if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) {
+            return false;
+        }
+
+        /** If n > 0, the constraint reduces to a set of subtyping constraints:
+         *  for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the
+         *  throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej>
+         */
+        List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList);
+        uncaughtByProperTypes.forEach(checkedEx -> {
+            nonProperAsUndet.forEach(nonProper -> {
+                types.isSubtype(checkedEx, nonProper);
+            });
+        });
+
+        /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej
+         */
+        nonProperAsUndet.stream()
+                .filter(t -> t.hasTag(UNDETVAR))
+                .forEach(t -> ((UndetVar)t).setThrow());
+        return true;
+    }
+
+    /**
+     * Set functional type info on the underlying AST. Note: as the target descriptor
+     * might contain inference variables, we might need to register an hook in the
+     * current inference context.
+     */
+    private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
+            final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
+        if (checkContext.inferenceContext().free(descriptorType)) {
+            checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType),
+                    inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
+                    inferenceContext.asInstType(primaryTarget), checkContext));
+        } else {
+            ListBuffer<Type> targets = new ListBuffer<>();
+            if (pt.hasTag(CLASS)) {
+                if (pt.isCompound()) {
+                    targets.append(types.removeWildcards(primaryTarget)); //this goes first
+                    for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
+                        if (t != primaryTarget) {
+                            targets.append(types.removeWildcards(t));
+                        }
+                    }
+                } else {
+                    targets.append(types.removeWildcards(primaryTarget));
+                }
+            }
+            fExpr.targets = targets.toList();
+            if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
+                    pt != Type.recoveryType) {
+                //check that functional interface class is well-formed
+                try {
+                    /* Types.makeFunctionalInterfaceClass() may throw an exception
+                     * when it's executed post-inference. See the listener code
+                     * above.
+                     */
+                    ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
+                            names.empty, List.of(fExpr.targets.head), ABSTRACT);
+                    if (csym != null) {
+                        chk.checkImplementations(env.tree, csym, csym);
+                        try {
+                            //perform an additional functional interface check on the synthetic class,
+                            //as there may be spurious errors for raw targets - because of existing issues
+                            //with membership and inheritance (see JDK-8074570).
+                            csym.flags_field |= INTERFACE;
+                            types.findDescriptorType(csym.type);
+                        } catch (FunctionDescriptorLookupError err) {
+                            resultInfo.checkContext.report(fExpr,
+                                    diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.targets.head)));
+                        }
+                    }
+                } catch (Types.FunctionDescriptorLookupError ex) {
+                    JCDiagnostic cause = ex.getDiagnostic();
+                    resultInfo.checkContext.report(env.tree, cause);
+                }
+            }
+        }
+    }
+
+    public void visitParens(JCParens tree) {
+        Type owntype = attribTree(tree.expr, env, resultInfo);
+        result = check(tree, owntype, pkind(), resultInfo);
+        Symbol sym = TreeInfo.symbol(tree);
+        if (sym != null && sym.kind.matches(KindSelector.TYP_PCK))
+            log.error(tree.pos(), Errors.IllegalParenthesizedExpression);
+    }
+
+    public void visitAssign(JCAssign tree) {
+        Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
+        Type capturedType = capture(owntype);
+        attribExpr(tree.rhs, env, owntype);
+        result = check(tree, capturedType, KindSelector.VAL, resultInfo);
+    }
+
+    public void visitAssignop(JCAssignOp tree) {
+        // Attribute arguments.
+        Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
+        Type operand = attribExpr(tree.rhs, env);
+        // Find operator.
+        Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
+        if (operator != operators.noOpSymbol &&
+                !owntype.isErroneous() &&
+                !operand.isErroneous()) {
+            chk.checkDivZero(tree.rhs.pos(), operator, operand);
+            chk.checkCastable(tree.rhs.pos(),
+                              operator.type.getReturnType(),
+                              owntype);
+        }
+        result = check(tree, owntype, KindSelector.VAL, resultInfo);
+    }
+
+    public void visitUnary(JCUnary tree) {
+        // Attribute arguments.
+        Type argtype = (tree.getTag().isIncOrDecUnaryOp())
+            ? attribTree(tree.arg, env, varAssignmentInfo)
+            : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
+
+        // Find operator.
+        Symbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
+        Type owntype = types.createErrorType(tree.type);
+        if (operator != operators.noOpSymbol &&
+                !argtype.isErroneous()) {
+            owntype = (tree.getTag().isIncOrDecUnaryOp())
+                ? tree.arg.type
+                : operator.type.getReturnType();
+            int opc = ((OperatorSymbol)operator).opcode;
+
+            // If the argument is constant, fold it.
+            if (argtype.constValue() != null) {
+                Type ctype = cfolder.fold1(opc, argtype);
+                if (ctype != null) {
+                    owntype = cfolder.coerce(ctype, owntype);
+                }
+            }
+        }
+        result = check(tree, owntype, KindSelector.VAL, resultInfo);
+    }
+
+    public void visitBinary(JCBinary tree) {
+        // Attribute arguments.
+        Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
+        Type right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, env));
+        // Find operator.
+        Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
+        Type owntype = types.createErrorType(tree.type);
+        if (operator != operators.noOpSymbol &&
+                !left.isErroneous() &&
+                !right.isErroneous()) {
+            owntype = operator.type.getReturnType();
+            int opc = ((OperatorSymbol)operator).opcode;
+            // If both arguments are constants, fold them.
+            if (left.constValue() != null && right.constValue() != null) {
+                Type ctype = cfolder.fold2(opc, left, right);
+                if (ctype != null) {
+                    owntype = cfolder.coerce(ctype, owntype);
+                }
+            }
+
+            // Check that argument types of a reference ==, != are
+            // castable to each other, (JLS 15.21).  Note: unboxing
+            // comparisons will not have an acmp* opc at this point.
+            if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
+                if (!types.isCastable(left, right, new Warner(tree.pos()))) {
+                    log.error(tree.pos(), Errors.IncomparableTypes(left, right));
+                }
+            }
+
+            chk.checkDivZero(tree.rhs.pos(), operator, right);
+        }
+        result = check(tree, owntype, KindSelector.VAL, resultInfo);
+    }
+
+    public void visitTypeCast(final JCTypeCast tree) {
+        Type clazztype = attribType(tree.clazz, env);
+        chk.validate(tree.clazz, env, false);
+        //a fresh environment is required for 292 inference to work properly ---
+        //see Infer.instantiatePolymorphicSignatureInstance()
+        Env<AttrContext> localEnv = env.dup(tree);
+        //should we propagate the target type?
+        final ResultInfo castInfo;
+        JCExpression expr = TreeInfo.skipParens(tree.expr);
+        boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
+        if (isPoly) {
+            //expression is a poly - we need to propagate target type info
+            castInfo = new ResultInfo(KindSelector.VAL, clazztype,
+                                      new Check.NestedCheckContext(resultInfo.checkContext) {
+                @Override
+                public boolean compatible(Type found, Type req, Warner warn) {
+                    return types.isCastable(found, req, warn);
+                }
+            });
+        } else {
+            //standalone cast - target-type info is not propagated
+            castInfo = unknownExprInfo;
+        }
+        Type exprtype = attribTree(tree.expr, localEnv, castInfo);
+        Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
+        if (exprtype.constValue() != null)
+            owntype = cfolder.coerce(exprtype, owntype);
+        result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
+        if (!isPoly)
+            chk.checkRedundantCast(localEnv, tree);
+    }
+
+    public void visitTypeTest(JCInstanceOf tree) {
+        Type exprtype = chk.checkNullOrRefType(
+                tree.expr.pos(), attribExpr(tree.expr, env));
+        Type clazztype = attribType(tree.clazz, env);
+        if (!clazztype.hasTag(TYPEVAR)) {
+            clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
+        }
+        if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
+            log.error(tree.clazz.pos(), Errors.IllegalGenericTypeForInstof);
+            clazztype = types.createErrorType(clazztype);
+        }
+        chk.validate(tree.clazz, env, false);
+        chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
+        result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
+    }
+
+    public void visitIndexed(JCArrayAccess tree) {
+        Type owntype = types.createErrorType(tree.type);
+        Type atype = attribExpr(tree.indexed, env);
+        attribExpr(tree.index, env, syms.intType);
+        if (types.isArray(atype))
+            owntype = types.elemtype(atype);
+        else if (!atype.hasTag(ERROR))
+            log.error(tree.pos(), Errors.ArrayReqButFound(atype));
+        if (!pkind().contains(KindSelector.VAL))
+            owntype = capture(owntype);
+        result = check(tree, owntype, KindSelector.VAR, resultInfo);
+    }
+
+    public void visitIdent(JCIdent tree) {
+        Symbol sym;
+
+        // Find symbol
+        if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
+            // If we are looking for a method, the prototype `pt' will be a
+            // method type with the type of the call's arguments as parameters.
+            env.info.pendingResolutionPhase = null;
+            sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
+        } else if (tree.sym != null && tree.sym.kind != VAR) {
+            sym = tree.sym;
+        } else {
+            sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
+        }
+        tree.sym = sym;
+
+        // (1) Also find the environment current for the class where
+        //     sym is defined (`symEnv').
+        // Only for pre-tiger versions (1.4 and earlier):
+        // (2) Also determine whether we access symbol out of an anonymous
+        //     class in a this or super call.  This is illegal for instance
+        //     members since such classes don't carry a this$n link.
+        //     (`noOuterThisPath').
+        Env<AttrContext> symEnv = env;
+        boolean noOuterThisPath = false;
+        if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
+            sym.kind.matches(KindSelector.VAL_MTH) &&
+            sym.owner.kind == TYP &&
+            tree.name != names._this && tree.name != names._super) {
+
+            // Find environment in which identifier is defined.
+            while (symEnv.outer != null &&
+                   !sym.isMemberOf(symEnv.enclClass.sym, types)) {
+                if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
+                    noOuterThisPath = false;
+                symEnv = symEnv.outer;
+            }
+        }
+
+        // If symbol is a variable, ...
+        if (sym.kind == VAR) {
+            VarSymbol v = (VarSymbol)sym;
+
+            // ..., evaluate its initializer, if it has one, and check for
+            // illegal forward reference.
+            checkInit(tree, env, v, false);
+
+            // If we are expecting a variable (as opposed to a value), check
+            // that the variable is assignable in the current environment.
+            if (KindSelector.ASG.subset(pkind()))
+                checkAssignable(tree.pos(), v, null, env);
+        }
+
+        // In a constructor body,
+        // if symbol is a field or instance method, check that it is
+        // not accessed before the supertype constructor is called.
+        if ((symEnv.info.isSelfCall || noOuterThisPath) &&
+            sym.kind.matches(KindSelector.VAL_MTH) &&
+            sym.owner.kind == TYP &&
+            (sym.flags() & STATIC) == 0) {
+            chk.earlyRefError(tree.pos(), sym.kind == VAR ?
+                                          sym : thisSym(tree.pos(), env));
+        }
+        Env<AttrContext> env1 = env;
+        if (sym.kind != ERR && sym.kind != TYP &&
+            sym.owner != null && sym.owner != env1.enclClass.sym) {
+            // If the found symbol is inaccessible, then it is
+            // accessed through an enclosing instance.  Locate this
+            // enclosing instance:
+            while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
+                env1 = env1.outer;
+        }
+
+        if (env.info.isSerializable) {
+            chk.checkAccessFromSerializableElement(tree, env.info.isLambda);
+        }
+
+        result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
+    }
+
+    public void visitSelect(JCFieldAccess tree) {
+        // Determine the expected kind of the qualifier expression.
+        KindSelector skind = KindSelector.NIL;
+        if (tree.name == names._this || tree.name == names._super ||
+                tree.name == names._class)
+        {
+            skind = KindSelector.TYP;
+        } else {
+            if (pkind().contains(KindSelector.PCK))
+                skind = KindSelector.of(skind, KindSelector.PCK);
+            if (pkind().contains(KindSelector.TYP))
+                skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
+            if (pkind().contains(KindSelector.VAL_MTH))
+                skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
+        }
+
+        // Attribute the qualifier expression, and determine its symbol (if any).
+        Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));
+        if (!pkind().contains(KindSelector.TYP_PCK))
+            site = capture(site); // Capture field access
+
+        // don't allow T.class T[].class, etc
+        if (skind == KindSelector.TYP) {
+            Type elt = site;
+            while (elt.hasTag(ARRAY))
+                elt = ((ArrayType)elt).elemtype;
+            if (elt.hasTag(TYPEVAR)) {
+                log.error(tree.pos(), Errors.TypeVarCantBeDeref);
+                result = tree.type = types.createErrorType(tree.name, site.tsym, site);
+                tree.sym = tree.type.tsym;
+                return ;
+            }
+        }
+
+        // If qualifier symbol is a type or `super', assert `selectSuper'
+        // for the selection. This is relevant for determining whether
+        // protected symbols are accessible.
+        Symbol sitesym = TreeInfo.symbol(tree.selected);
+        boolean selectSuperPrev = env.info.selectSuper;
+        env.info.selectSuper =
+            sitesym != null &&
+            sitesym.name == names._super;
+
+        // Determine the symbol represented by the selection.
+        env.info.pendingResolutionPhase = null;
+        Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
+        if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
+            log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym));
+            sym = syms.errSymbol;
+        }
+        if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
+            site = capture(site);
+            sym = selectSym(tree, sitesym, site, env, resultInfo);
+        }
+        boolean varArgs = env.info.lastResolveVarargs();
+        tree.sym = sym;
+
+        if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
+            site = types.skipTypeVars(site, true);
+        }
+
+        // If that symbol is a variable, ...
+        if (sym.kind == VAR) {
+            VarSymbol v = (VarSymbol)sym;
+
+            // ..., evaluate its initializer, if it has one, and check for
+            // illegal forward reference.
+            checkInit(tree, env, v, true);
+
+            // If we are expecting a variable (as opposed to a value), check
+            // that the variable is assignable in the current environment.
+            if (KindSelector.ASG.subset(pkind()))
+                checkAssignable(tree.pos(), v, tree.selected, env);
+        }
+
+        if (sitesym != null &&
+                sitesym.kind == VAR &&
+                ((VarSymbol)sitesym).isResourceVariable() &&
+                sym.kind == MTH &&
+                sym.name.equals(names.close) &&
+                sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
+                env.info.lint.isEnabled(LintCategory.TRY)) {
+            log.warning(LintCategory.TRY, tree, Warnings.TryExplicitCloseCall);
+        }
+
+        // Disallow selecting a type from an expression
+        if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
+            tree.type = check(tree.selected, pt(),
+                              sitesym == null ?
+                                      KindSelector.VAL : sitesym.kind.toSelector(),
+                              new ResultInfo(KindSelector.TYP_PCK, pt()));
+        }
+
+        if (isType(sitesym)) {
+            if (sym.name == names._this) {
+                // If `C' is the currently compiled class, check that
+                // C.this' does not appear in a call to a super(...)
+                if (env.info.isSelfCall &&
+                    site.tsym == env.enclClass.sym) {
+                    chk.earlyRefError(tree.pos(), sym);
+                }
+            } else {
+                // Check if type-qualified fields or methods are static (JLS)
+                if ((sym.flags() & STATIC) == 0 &&
+                    sym.name != names._super &&
+                    (sym.kind == VAR || sym.kind == MTH)) {
+                    rs.accessBase(rs.new StaticError(sym),
+                              tree.pos(), site, sym.name, true);
+                }
+            }
+            if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
+                    sym.isStatic() && sym.kind == MTH) {
+                log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), Errors.StaticIntfMethodInvokeNotSupportedInSource(sourceName));
+            }
+        } else if (sym.kind != ERR &&
+                   (sym.flags() & STATIC) != 0 &&
+                   sym.name != names._class) {
+            // If the qualified item is not a type and the selected item is static, report
+            // a warning. Make allowance for the class of an array type e.g. Object[].class)
+            chk.warnStatic(tree, "static.not.qualified.by.type",
+                           sym.kind.kindName(), sym.owner);
+        }
+
+        // If we are selecting an instance member via a `super', ...
+        if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
+
+            // Check that super-qualified symbols are not abstract (JLS)
+            rs.checkNonAbstract(tree.pos(), sym);
+
+            if (site.isRaw()) {
+                // Determine argument types for site.
+                Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
+                if (site1 != null) site = site1;
+            }
+        }
+
+        if (env.info.isSerializable) {
+            chk.checkAccessFromSerializableElement(tree, env.info.isLambda);
+        }
+
+        env.info.selectSuper = selectSuperPrev;
+        result = checkId(tree, site, sym, env, resultInfo);
+    }
+    //where
+        /** Determine symbol referenced by a Select expression,
+         *
+         *  @param tree   The select tree.
+         *  @param site   The type of the selected expression,
+         *  @param env    The current environment.
+         *  @param resultInfo The current result.
+         */
+        private Symbol selectSym(JCFieldAccess tree,
+                                 Symbol location,
+                                 Type site,
+                                 Env<AttrContext> env,
+                                 ResultInfo resultInfo) {
+            DiagnosticPosition pos = tree.pos();
+            Name name = tree.name;
+            switch (site.getTag()) {
+            case PACKAGE:
+                return rs.accessBase(
+                    rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
+                    pos, location, site, name, true);
+            case ARRAY:
+            case CLASS:
+                if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
+                    return rs.resolveQualifiedMethod(
+                        pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
+                } else if (name == names._this || name == names._super) {
+                    return rs.resolveSelf(pos, env, site.tsym, name);
+                } else if (name == names._class) {
+                    // In this case, we have already made sure in
+                    // visitSelect that qualifier expression is a type.
+                    Type t = syms.classType;
+                    List<Type> typeargs = List.of(types.erasure(site));
+                    t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
+                    return new VarSymbol(
+                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
+                } else {
+                    // We are seeing a plain identifier as selector.
+                    Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
+                        sym = rs.accessBase(sym, pos, location, site, name, true);
+                    return sym;
+                }
+            case WILDCARD:
+                throw new AssertionError(tree);
+            case TYPEVAR:
+                // Normally, site.getUpperBound() shouldn't be null.
+                // It should only happen during memberEnter/attribBase
+                // when determining the super type which *must* beac
+                // done before attributing the type variables.  In
+                // other words, we are seeing this illegal program:
+                // class B<T> extends A<T.foo> {}
+                Symbol sym = (site.getUpperBound() != null)
+                    ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
+                    : null;
+                if (sym == null) {
+                    log.error(pos, Errors.TypeVarCantBeDeref);
+                    return syms.errSymbol;
+                } else {
+                    Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
+                        rs.new AccessError(env, site, sym) :
+                                sym;
+                    rs.accessBase(sym2, pos, location, site, name, true);
+                    return sym;
+                }
+            case ERROR:
+                // preserve identifier names through errors
+                return types.createErrorType(name, site.tsym, site).tsym;
+            default:
+                // The qualifier expression is of a primitive type -- only
+                // .class is allowed for these.
+                if (name == names._class) {
+                    // In this case, we have already made sure in Select that
+                    // qualifier expression is a type.
+                    Type t = syms.classType;
+                    Type arg = types.boxedClass(site).type;
+                    t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
+                    return new VarSymbol(
+                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
+                } else {
+                    log.error(pos, Errors.CantDeref(site));
+                    return syms.errSymbol;
+                }
+            }
+        }
+
+        /** Determine type of identifier or select expression and check that
+         *  (1) the referenced symbol is not deprecated
+         *  (2) the symbol's type is safe (@see checkSafe)
+         *  (3) if symbol is a variable, check that its type and kind are
+         *      compatible with the prototype and protokind.
+         *  (4) if symbol is an instance field of a raw type,
+         *      which is being assigned to, issue an unchecked warning if its
+         *      type changes under erasure.
+         *  (5) if symbol is an instance method of a raw type, issue an
+         *      unchecked warning if its argument types change under erasure.
+         *  If checks succeed:
+         *    If symbol is a constant, return its constant type
+         *    else if symbol is a method, return its result type
+         *    otherwise return its type.
+         *  Otherwise return errType.
+         *
+         *  @param tree       The syntax tree representing the identifier
+         *  @param site       If this is a select, the type of the selected
+         *                    expression, otherwise the type of the current class.
+         *  @param sym        The symbol representing the identifier.
+         *  @param env        The current environment.
+         *  @param resultInfo    The expected result
+         */
+        Type checkId(JCTree tree,
+                     Type site,
+                     Symbol sym,
+                     Env<AttrContext> env,
+                     ResultInfo resultInfo) {
+            return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
+                    checkMethodId(tree, site, sym, env, resultInfo) :
+                    checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
+        }
+
+        Type checkMethodId(JCTree tree,
+                     Type site,
+                     Symbol sym,
+                     Env<AttrContext> env,
+                     ResultInfo resultInfo) {
+            boolean isPolymorhicSignature =
+                (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
+            return isPolymorhicSignature ?
+                    checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
+                    checkMethodIdInternal(tree, site, sym, env, resultInfo);
+        }
+
+        Type checkSigPolyMethodId(JCTree tree,
+                     Type site,
+                     Symbol sym,
+                     Env<AttrContext> env,
+                     ResultInfo resultInfo) {
+            //recover original symbol for signature polymorphic methods
+            checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
+            env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
+            return sym.type;
+        }
+
+        Type checkMethodIdInternal(JCTree tree,
+                     Type site,
+                     Symbol sym,
+                     Env<AttrContext> env,
+                     ResultInfo resultInfo) {
+            if (resultInfo.pkind.contains(KindSelector.POLY)) {
+                Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
+                Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
+                resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
+                return owntype;
+            } else {
+                return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
+            }
+        }
+
+        Type checkIdInternal(JCTree tree,
+                     Type site,
+                     Symbol sym,
+                     Type pt,
+                     Env<AttrContext> env,
+                     ResultInfo resultInfo) {
+            if (pt.isErroneous()) {
+                return types.createErrorType(site);
+            }
+            Type owntype; // The computed type of this identifier occurrence.
+            switch (sym.kind) {
+            case TYP:
+                // For types, the computed type equals the symbol's type,
+                // except for two situations:
+                owntype = sym.type;
+                if (owntype.hasTag(CLASS)) {
+                    chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
+                    Type ownOuter = owntype.getEnclosingType();
+
+                    // (a) If the symbol's type is parameterized, erase it
+                    // because no type parameters were given.
+                    // We recover generic outer type later in visitTypeApply.
+                    if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
+                        owntype = types.erasure(owntype);
+                    }
+
+                    // (b) If the symbol's type is an inner class, then
+                    // we have to interpret its outer type as a superclass
+                    // of the site type. Example:
+                    //
+                    // class Tree<A> { class Visitor { ... } }
+                    // class PointTree extends Tree<Point> { ... }
+                    // ...PointTree.Visitor...
+                    //
+                    // Then the type of the last expression above is
+                    // Tree<Point>.Visitor.
+                    else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
+                        Type normOuter = site;
+                        if (normOuter.hasTag(CLASS)) {
+                            normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
+                        }
+                        if (normOuter == null) // perhaps from an import
+                            normOuter = types.erasure(ownOuter);
+                        if (normOuter != ownOuter)
+                            owntype = new ClassType(
+                                normOuter, List.nil(), owntype.tsym,
+                                owntype.getMetadata());
+                    }
+                }
+                break;
+            case VAR:
+                VarSymbol v = (VarSymbol)sym;
+                // Test (4): if symbol is an instance field of a raw type,
+                // which is being assigned to, issue an unchecked warning if
+                // its type changes under erasure.
+                if (KindSelector.ASG.subset(pkind()) &&
+                    v.owner.kind == TYP &&
+                    (v.flags() & STATIC) == 0 &&
+                    (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
+                    Type s = types.asOuterSuper(site, v.owner);
+                    if (s != null &&
+                        s.isRaw() &&
+                        !types.isSameType(v.type, v.erasure(types))) {
+                        chk.warnUnchecked(tree.pos(),
+                                          "unchecked.assign.to.var",
+                                          v, s);
+                    }
+                }
+                // The computed type of a variable is the type of the
+                // variable symbol, taken as a member of the site type.
+                owntype = (sym.owner.kind == TYP &&
+                           sym.name != names._this && sym.name != names._super)
+                    ? types.memberType(site, sym)
+                    : sym.type;
+
+                // If the variable is a constant, record constant value in
+                // computed type.
+                if (v.getConstValue() != null && isStaticReference(tree))
+                    owntype = owntype.constType(v.getConstValue());
+
+                if (resultInfo.pkind == KindSelector.VAL) {
+                    owntype = capture(owntype); // capture "names as expressions"
+                }
+                break;
+            case MTH: {
+                owntype = checkMethod(site, sym,
+                        new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode),
+                        env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
+                        resultInfo.pt.getTypeArguments());
+                break;
+            }
+            case PCK: case ERR:
+                owntype = sym.type;
+                break;
+            default:
+                throw new AssertionError("unexpected kind: " + sym.kind +
+                                         " in tree " + tree);
+            }
+
+            // Emit a `deprecation' warning if symbol is deprecated.
+            // (for constructors (but not for constructor references), the error
+            // was given when the constructor was resolved)
+
+            if (sym.name != names.init || tree.hasTag(REFERENCE)) {
+                chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
+                chk.checkSunAPI(tree.pos(), sym);
+                chk.checkProfile(tree.pos(), sym);
+            }
+
+            // If symbol is a variable, check that its type and
+            // kind are compatible with the prototype and protokind.
+            return check(tree, owntype, sym.kind.toSelector(), resultInfo);
+        }
+
+        /** Check that variable is initialized and evaluate the variable's
+         *  initializer, if not yet done. Also check that variable is not
+         *  referenced before it is defined.
+         *  @param tree    The tree making up the variable reference.
+         *  @param env     The current environment.
+         *  @param v       The variable's symbol.
+         */
+        private void checkInit(JCTree tree,
+                               Env<AttrContext> env,
+                               VarSymbol v,
+                               boolean onlyWarning) {
+            // A forward reference is diagnosed if the declaration position
+            // of the variable is greater than the current tree position
+            // and the tree and variable definition occur in the same class
+            // definition.  Note that writes don't count as references.
+            // This check applies only to class and instance
+            // variables.  Local variables follow different scope rules,
+            // and are subject to definite assignment checking.
+            Env<AttrContext> initEnv = enclosingInitEnv(env);
+            if (initEnv != null &&
+                (initEnv.info.enclVar == v || v.pos > tree.pos) &&
+                v.owner.kind == TYP &&
+                v.owner == env.info.scope.owner.enclClass() &&
+                ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
+                (!env.tree.hasTag(ASSIGN) ||
+                 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
+                String suffix = (initEnv.info.enclVar == v) ?
+                                "self.ref" : "forward.ref";
+                if (!onlyWarning || isStaticEnumField(v)) {
+                    log.error(tree.pos(), "illegal." + suffix);
+                } else if (useBeforeDeclarationWarning) {
+                    log.warning(tree.pos(), suffix, v);
+                }
+            }
+
+            v.getConstValue(); // ensure initializer is evaluated
+
+            checkEnumInitializer(tree, env, v);
+        }
+
+        /**
+         * Returns the enclosing init environment associated with this env (if any). An init env
+         * can be either a field declaration env or a static/instance initializer env.
+         */
+        Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
+            while (true) {
+                switch (env.tree.getTag()) {
+                    case VARDEF:
+                        JCVariableDecl vdecl = (JCVariableDecl)env.tree;
+                        if (vdecl.sym.owner.kind == TYP) {
+                            //field
+                            return env;
+                        }
+                        break;
+                    case BLOCK:
+                        if (env.next.tree.hasTag(CLASSDEF)) {
+                            //instance/static initializer
+                            return env;
+                        }
+                        break;
+                    case METHODDEF:
+                    case CLASSDEF:
+                    case TOPLEVEL:
+                        return null;
+                }
+                Assert.checkNonNull(env.next);
+                env = env.next;
+            }
+        }
+
+        /**
+         * Check for illegal references to static members of enum.  In
+         * an enum type, constructors and initializers may not
+         * reference its static members unless they are constant.
+         *
+         * @param tree    The tree making up the variable reference.
+         * @param env     The current environment.
+         * @param v       The variable's symbol.
+         * @jls  section 8.9 Enums
+         */
+        private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
+            // JLS:
+            //
+            // "It is a compile-time error to reference a static field
+            // of an enum type that is not a compile-time constant
+            // (15.28) from constructors, instance initializer blocks,
+            // or instance variable initializer expressions of that
+            // type. It is a compile-time error for the constructors,
+            // instance initializer blocks, or instance variable
+            // initializer expressions of an enum constant e to refer
+            // to itself or to an enum constant of the same type that
+            // is declared to the right of e."
+            if (isStaticEnumField(v)) {
+                ClassSymbol enclClass = env.info.scope.owner.enclClass();
+
+                if (enclClass == null || enclClass.owner == null)
+                    return;
+
+                // See if the enclosing class is the enum (or a
+                // subclass thereof) declaring v.  If not, this
+                // reference is OK.
+                if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
+                    return;
+
+                // If the reference isn't from an initializer, then
+                // the reference is OK.
+                if (!Resolve.isInitializer(env))
+                    return;
+
+                log.error(tree.pos(), Errors.IllegalEnumStaticRef);
+            }
+        }
+
+        /** Is the given symbol a static, non-constant field of an Enum?
+         *  Note: enum literals should not be regarded as such
+         */
+        private boolean isStaticEnumField(VarSymbol v) {
+            return Flags.isEnum(v.owner) &&
+                   Flags.isStatic(v) &&
+                   !Flags.isConstant(v) &&
+                   v.name != names._class;
+        }
+
+    /**
+     * Check that method arguments conform to its instantiation.
+     **/
+    public Type checkMethod(Type site,
+                            final Symbol sym,
+                            ResultInfo resultInfo,
+                            Env<AttrContext> env,
+                            final List<JCExpression> argtrees,
+                            List<Type> argtypes,
+                            List<Type> typeargtypes) {
+        // Test (5): if symbol is an instance method of a raw type, issue
+        // an unchecked warning if its argument types change under erasure.
+        if ((sym.flags() & STATIC) == 0 &&
+            (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
+            Type s = types.asOuterSuper(site, sym.owner);
+            if (s != null && s.isRaw() &&
+                !types.isSameTypes(sym.type.getParameterTypes(),
+                                   sym.erasure(types).getParameterTypes())) {
+                chk.warnUnchecked(env.tree.pos(),
+                                  "unchecked.call.mbr.of.raw.type",
+                                  sym, s);
+            }
+        }
+
+        if (env.info.defaultSuperCallSite != null) {
+            for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
+                if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
+                        types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
+                List<MethodSymbol> icand_sup =
+                        types.interfaceCandidates(sup, (MethodSymbol)sym);
+                if (icand_sup.nonEmpty() &&
+                        icand_sup.head != sym &&
+                        icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
+                    log.error(env.tree.pos(),
+                              Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup)));
+                    break;
+                }
+            }
+            env.info.defaultSuperCallSite = null;
+        }
+
+        if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
+            JCMethodInvocation app = (JCMethodInvocation)env.tree;
+            if (app.meth.hasTag(SELECT) &&
+                    !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
+                log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site));
+            }
+        }
+
+        // Compute the identifier's instantiated type.
+        // For methods, we need to compute the instance type by
+        // Resolve.instantiate from the symbol's type as well as
+        // any type arguments and value arguments.
+        Warner noteWarner = new Warner();
+        try {
+            Type owntype = rs.checkMethod(
+                    env,
+                    site,
+                    sym,
+                    resultInfo,
+                    argtypes,
+                    typeargtypes,
+                    noteWarner);
+
+            DeferredAttr.DeferredTypeMap checkDeferredMap =
+                deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
+
+            argtypes = argtypes.map(checkDeferredMap);
+
+            if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
+                chk.warnUnchecked(env.tree.pos(),
+                        "unchecked.meth.invocation.applied",
+                        kindName(sym),
+                        sym.name,
+                        rs.methodArguments(sym.type.getParameterTypes()),
+                        rs.methodArguments(argtypes.map(checkDeferredMap)),
+                        kindName(sym.location()),
+                        sym.location());
+                if (resultInfo.pt != Infer.anyPoly ||
+                        !owntype.hasTag(METHOD) ||
+                        !owntype.isPartial()) {
+                    //if this is not a partially inferred method type, erase return type. Otherwise,
+                    //erasure is carried out in PartiallyInferredMethodType.check().
+                    owntype = new MethodType(owntype.getParameterTypes(),
+                            types.erasure(owntype.getReturnType()),
+                            types.erasure(owntype.getThrownTypes()),
+                            syms.methodClass);
+                }
+            }
+
+            PolyKind pkind = (sym.type.hasTag(FORALL) &&
+                 sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
+                 PolyKind.POLY : PolyKind.STANDALONE;
+            TreeInfo.setPolyKind(env.tree, pkind);
+
+            return (resultInfo.pt == Infer.anyPoly) ?
+                    owntype :
+                    chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
+                            resultInfo.checkContext.inferenceContext());
+        } catch (Infer.InferenceException ex) {
+            //invalid target type - propagate exception outwards or report error
+            //depending on the current check context
+            resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
+            return types.createErrorType(site);
+        } catch (Resolve.InapplicableMethodException ex) {
+            final JCDiagnostic diag = ex.getDiagnostic();
+            Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
+                @Override
+                protected Pair<Symbol, JCDiagnostic> errCandidate() {
+                    return new Pair<>(sym, diag);
+                }
+            };
+            List<Type> argtypes2 = argtypes.map(
+                    rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
+            JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
+                    env.tree, sym, site, sym.name, argtypes2, typeargtypes);
+            log.report(errDiag);
+            return types.createErrorType(site);
+        }
+    }
+
+    public void visitLiteral(JCLiteral tree) {
+        result = check(tree, litType(tree.typetag).constType(tree.value),
+                KindSelector.VAL, resultInfo);
+    }
+    //where
+    /** Return the type of a literal with given type tag.
+     */
+    Type litType(TypeTag tag) {
+        return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
+    }
+
+    public void visitTypeIdent(JCPrimitiveTypeTree tree) {
+        result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
+    }
+
+    public void visitTypeArray(JCArrayTypeTree tree) {
+        Type etype = attribType(tree.elemtype, env);
+        Type type = new ArrayType(etype, syms.arrayClass);
+        result = check(tree, type, KindSelector.TYP, resultInfo);
+    }
+
+    /** Visitor method for parameterized types.
+     *  Bound checking is left until later, since types are attributed
+     *  before supertype structure is completely known
+     */
+    public void visitTypeApply(JCTypeApply tree) {
+        Type owntype = types.createErrorType(tree.type);
+
+        // Attribute functor part of application and make sure it's a class.
+        Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
+
+        // Attribute type parameters
+        List<Type> actuals = attribTypes(tree.arguments, env);
+
+        if (clazztype.hasTag(CLASS)) {
+            List<Type> formals = clazztype.tsym.type.getTypeArguments();
+            if (actuals.isEmpty()) //diamond
+                actuals = formals;
+
+            if (actuals.length() == formals.length()) {
+                List<Type> a = actuals;
+                List<Type> f = formals;
+                while (a.nonEmpty()) {
+                    a.head = a.head.withTypeVar(f.head);
+                    a = a.tail;
+                    f = f.tail;
+                }
+                // Compute the proper generic outer
+                Type clazzOuter = clazztype.getEnclosingType();
+                if (clazzOuter.hasTag(CLASS)) {
+                    Type site;
+                    JCExpression clazz = TreeInfo.typeIn(tree.clazz);
+                    if (clazz.hasTag(IDENT)) {
+                        site = env.enclClass.sym.type;
+                    } else if (clazz.hasTag(SELECT)) {
+                        site = ((JCFieldAccess) clazz).selected.type;
+                    } else throw new AssertionError(""+tree);
+                    if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
+                        if (site.hasTag(CLASS))
+                            site = types.asOuterSuper(site, clazzOuter.tsym);
+                        if (site == null)
+                            site = types.erasure(clazzOuter);
+                        clazzOuter = site;
+                    }
+                }
+                owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
+                                        clazztype.getMetadata());
+            } else {
+                if (formals.length() != 0) {
+                    log.error(tree.pos(),
+                              Errors.WrongNumberTypeArgs(Integer.toString(formals.length())));
+                } else {
+                    log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym));
+                }
+                owntype = types.createErrorType(tree.type);
+            }
+        }
+        result = check(tree, owntype, KindSelector.TYP, resultInfo);
+    }
+
+    public void visitTypeUnion(JCTypeUnion tree) {
+        ListBuffer<Type> multicatchTypes = new ListBuffer<>();
+        ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
+        for (JCExpression typeTree : tree.alternatives) {
+            Type ctype = attribType(typeTree, env);
+            ctype = chk.checkType(typeTree.pos(),
+                          chk.checkClassType(typeTree.pos(), ctype),
+                          syms.throwableType);
+            if (!ctype.isErroneous()) {
+                //check that alternatives of a union type are pairwise
+                //unrelated w.r.t. subtyping
+                if (chk.intersects(ctype,  multicatchTypes.toList())) {
+                    for (Type t : multicatchTypes) {
+                        boolean sub = types.isSubtype(ctype, t);
+                        boolean sup = types.isSubtype(t, ctype);
+                        if (sub || sup) {
+                            //assume 'a' <: 'b'
+                            Type a = sub ? ctype : t;
+                            Type b = sub ? t : ctype;
+                            log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b));
+                        }
+                    }
+                }
+                multicatchTypes.append(ctype);
+                if (all_multicatchTypes != null)
+                    all_multicatchTypes.append(ctype);
+            } else {
+                if (all_multicatchTypes == null) {
+                    all_multicatchTypes = new ListBuffer<>();
+                    all_multicatchTypes.appendList(multicatchTypes);
+                }
+                all_multicatchTypes.append(ctype);
+            }
+        }
+        Type t = check(tree, types.lub(multicatchTypes.toList()),
+                KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
+        if (t.hasTag(CLASS)) {
+            List<Type> alternatives =
+                ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
+            t = new UnionClassType((ClassType) t, alternatives);
+        }
+        tree.type = result = t;
+    }
+
+    public void visitTypeIntersection(JCTypeIntersection tree) {
+        attribTypes(tree.bounds, env);
+        tree.type = result = checkIntersection(tree, tree.bounds);
+    }
+
+    public void visitTypeParameter(JCTypeParameter tree) {
+        TypeVar typeVar = (TypeVar) tree.type;
+
+        if (tree.annotations != null && tree.annotations.nonEmpty()) {
+            annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
+        }
+
+        if (!typeVar.bound.isErroneous()) {
+            //fixup type-parameter bound computed in 'attribTypeVariables'
+            typeVar.bound = checkIntersection(tree, tree.bounds);
+        }
+    }
+
+    Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
+        Set<Type> boundSet = new HashSet<>();
+        if (bounds.nonEmpty()) {
+            // accept class or interface or typevar as first bound.
+            bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
+            boundSet.add(types.erasure(bounds.head.type));
+            if (bounds.head.type.isErroneous()) {
+                return bounds.head.type;
+            }
+            else if (bounds.head.type.hasTag(TYPEVAR)) {
+                // if first bound was a typevar, do not accept further bounds.
+                if (bounds.tail.nonEmpty()) {
+                    log.error(bounds.tail.head.pos(),
+                              Errors.TypeVarMayNotBeFollowedByOtherBounds);
+                    return bounds.head.type;
+                }
+            } else {
+                // if first bound was a class or interface, accept only interfaces
+                // as further bounds.
+                for (JCExpression bound : bounds.tail) {
+                    bound.type = checkBase(bound.type, bound, env, false, true, false);
+                    if (bound.type.isErroneous()) {
+                        bounds = List.of(bound);
+                    }
+                    else if (bound.type.hasTag(CLASS)) {
+                        chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
+                    }
+                }
+            }
+        }
+
+        if (bounds.length() == 0) {
+            return syms.objectType;
+        } else if (bounds.length() == 1) {
+            return bounds.head.type;
+        } else {
+            Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
+            // ... the variable's bound is a class type flagged COMPOUND
+            // (see comment for TypeVar.bound).
+            // In this case, generate a class tree that represents the
+            // bound class, ...
+            JCExpression extending;
+            List<JCExpression> implementing;
+            if (!bounds.head.type.isInterface()) {
+                extending = bounds.head;
+                implementing = bounds.tail;
+            } else {
+                extending = null;
+                implementing = bounds;
+            }
+            JCClassDecl cd = make.at(tree).ClassDef(
+                make.Modifiers(PUBLIC | ABSTRACT),
+                names.empty, List.nil(),
+                extending, implementing, List.nil());
+
+            ClassSymbol c = (ClassSymbol)owntype.tsym;
+            Assert.check((c.flags() & COMPOUND) != 0);
+            cd.sym = c;
+            c.sourcefile = env.toplevel.sourcefile;
+
+            // ... and attribute the bound class
+            c.flags_field |= UNATTRIBUTED;
+            Env<AttrContext> cenv = enter.classEnv(cd, env);
+            typeEnvs.put(c, cenv);
+            attribClass(c);
+            return owntype;
+        }
+    }
+
+    public void visitWildcard(JCWildcard tree) {
+        //- System.err.println("visitWildcard("+tree+");");//DEBUG
+        Type type = (tree.kind.kind == BoundKind.UNBOUND)
+            ? syms.objectType
+            : attribType(tree.inner, env);
+        result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
+                                              tree.kind.kind,
+                                              syms.boundClass),
+                KindSelector.TYP, resultInfo);
+    }
+
+    public void visitAnnotation(JCAnnotation tree) {
+        Assert.error("should be handled in annotate");
+    }
+
+    public void visitAnnotatedType(JCAnnotatedType tree) {
+        attribAnnotationTypes(tree.annotations, env);
+        Type underlyingType = attribType(tree.underlyingType, env);
+        Type annotatedType = underlyingType.annotatedType(Annotations.TO_BE_SET);
+
+        if (!env.info.isNewClass)
+            annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
+        result = tree.type = annotatedType;
+    }
+
+    public void visitErroneous(JCErroneous tree) {
+        if (tree.errs != null)
+            for (JCTree err : tree.errs)
+                attribTree(err, env, new ResultInfo(KindSelector.ERR, pt()));
+        result = tree.type = syms.errType;
+    }
+
+    /** Default visitor method for all other trees.
+     */
+    public void visitTree(JCTree tree) {
+        throw new AssertionError();
+    }
+
+    /**
+     * Attribute an env for either a top level tree or class or module declaration.
+     */
+    public void attrib(Env<AttrContext> env) {
+        switch (env.tree.getTag()) {
+            case MODULEDEF:
+                attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym);
+                break;
+            case TOPLEVEL:
+                attribTopLevel(env);
+                break;
+            case PACKAGEDEF:
+                attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge);
+                break;
+            default:
+                attribClass(env.tree.pos(), env.enclClass.sym);
+        }
+    }
+
+    /**
+     * Attribute a top level tree. These trees are encountered when the
+     * package declaration has annotations.
+     */
+    public void attribTopLevel(Env<AttrContext> env) {
+        JCCompilationUnit toplevel = env.toplevel;
+        try {
+            annotate.flush();
+        } catch (CompletionFailure ex) {
+            chk.completionError(toplevel.pos(), ex);
+        }
+    }
+
+    public void attribPackage(DiagnosticPosition pos, PackageSymbol p) {
+        try {
+            annotate.flush();
+            attribPackage(p);
+        } catch (CompletionFailure ex) {
+            chk.completionError(pos, ex);
+        }
+    }
+
+    void attribPackage(PackageSymbol p) {
+        Env<AttrContext> env = typeEnvs.get(p);
+        chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p);
+    }
+
+    public void attribModule(DiagnosticPosition pos, ModuleSymbol m) {
+        try {
+            annotate.flush();
+            attribModule(m);
+        } catch (CompletionFailure ex) {
+            chk.completionError(pos, ex);
+        }
+    }
+
+    void attribModule(ModuleSymbol m) {
+        // Get environment current at the point of module definition.
+        Env<AttrContext> env = enter.typeEnvs.get(m);
+        attribStat(env.tree, env);
+    }
+
+    /** Main method: attribute class definition associated with given class symbol.
+     *  reporting completion failures at the given position.
+     *  @param pos The source position at which completion errors are to be
+     *             reported.
+     *  @param c   The class symbol whose definition will be attributed.
+     */
+    public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
+        try {
+            annotate.flush();
+            attribClass(c);
+        } catch (CompletionFailure ex) {
+            chk.completionError(pos, ex);
+        }
+    }
+
+    /** Attribute class definition associated with given class symbol.
+     *  @param c   The class symbol whose definition will be attributed.
+     */
+    void attribClass(ClassSymbol c) throws CompletionFailure {
+        if (c.type.hasTag(ERROR)) return;
+
+        // Check for cycles in the inheritance graph, which can arise from
+        // ill-formed class files.
+        chk.checkNonCyclic(null, c.type);
+
+        Type st = types.supertype(c.type);
+        if ((c.flags_field & Flags.COMPOUND) == 0) {
+            // First, attribute superclass.
+            if (st.hasTag(CLASS))
+                attribClass((ClassSymbol)st.tsym);
+
+            // Next attribute owner, if it is a class.
+            if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
+                attribClass((ClassSymbol)c.owner);
+        }
+
+        // The previous operations might have attributed the current class
+        // if there was a cycle. So we test first whether the class is still
+        // UNATTRIBUTED.
+        if ((c.flags_field & UNATTRIBUTED) != 0) {
+            c.flags_field &= ~UNATTRIBUTED;
+
+            // Get environment current at the point of class definition.
+            Env<AttrContext> env = typeEnvs.get(c);
+
+            // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
+            // because the annotations were not available at the time the env was created. Therefore,
+            // we look up the environment chain for the first enclosing environment for which the
+            // lint value is set. Typically, this is the parent env, but might be further if there
+            // are any envs created as a result of TypeParameter nodes.
+            Env<AttrContext> lintEnv = env;
+            while (lintEnv.info.lint == null)
+                lintEnv = lintEnv.next;
+
+            // Having found the enclosing lint value, we can initialize the lint value for this class
+            env.info.lint = lintEnv.info.lint.augment(c);
+
+            Lint prevLint = chk.setLint(env.info.lint);
+            JavaFileObject prev = log.useSource(c.sourcefile);
+            ResultInfo prevReturnRes = env.info.returnResult;
+
+            try {
+                deferredLintHandler.flush(env.tree);
+                env.info.returnResult = null;
+                // java.lang.Enum may not be subclassed by a non-enum
+                if (st.tsym == syms.enumSym &&
+                    ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
+                    log.error(env.tree.pos(), Errors.EnumNoSubclassing);
+
+                // Enums may not be extended by source-level classes
+                if (st.tsym != null &&
+                    ((st.tsym.flags_field & Flags.ENUM) != 0) &&
+                    ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
+                    log.error(env.tree.pos(), Errors.EnumTypesNotExtensible);
+                }
+
+                if (isSerializable(c.type)) {
+                    env.info.isSerializable = true;
+                }
+
+                attribClassBody(env, c);
+
+                chk.checkDeprecatedAnnotation(env.tree.pos(), c);
+                chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
+                chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
+                chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree);
+            } finally {
+                env.info.returnResult = prevReturnRes;
+                log.useSource(prev);
+                chk.setLint(prevLint);
+            }
+
+        }
+    }
+
+    public void visitImport(JCImport tree) {
+        // nothing to do
+    }
+
+    public void visitModuleDef(JCModuleDecl tree) {
+        tree.sym.completeUsesProvides();
+        ModuleSymbol msym = tree.sym;
+        Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym);
+        Lint prevLint = chk.setLint(lint);
+        chk.checkModuleName(tree);
+        chk.checkDeprecatedAnnotation(tree, msym);
+
+        try {
+            deferredLintHandler.flush(tree.pos());
+        } finally {
+            chk.setLint(prevLint);
+        }
+    }
+
+    /** Finish the attribution of a class. */
+    private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
+        JCClassDecl tree = (JCClassDecl)env.tree;
+        Assert.check(c == tree.sym);
+
+        // Validate type parameters, supertype and interfaces.
+        attribStats(tree.typarams, env);
+        if (!c.isAnonymous()) {
+            //already checked if anonymous
+            chk.validate(tree.typarams, env);
+            chk.validate(tree.extending, env);
+            chk.validate(tree.implementing, env);
+        }
+
+        c.markAbstractIfNeeded(types);
+
+        // If this is a non-abstract class, check that it has no abstract
+        // methods or unimplemented methods of an implemented interface.
+        if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
+            chk.checkAllDefined(tree.pos(), c);
+        }
+
+        if ((c.flags() & ANNOTATION) != 0) {
+            if (tree.implementing.nonEmpty())
+                log.error(tree.implementing.head.pos(),
+                          Errors.CantExtendIntfAnnotation);
+            if (tree.typarams.nonEmpty()) {
+                log.error(tree.typarams.head.pos(),
+                          Errors.IntfAnnotationCantHaveTypeParams(c));
+            }
+
+            // If this annotation type has a @Repeatable, validate
+            Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
+            // If this annotation type has a @Repeatable, validate
+            if (repeatable != null) {
+                // get diagnostic position for error reporting
+                DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
+                Assert.checkNonNull(cbPos);
+
+                chk.validateRepeatable(c, repeatable, cbPos);
+            }
+        } else {
+            // Check that all extended classes and interfaces
+            // are compatible (i.e. no two define methods with same arguments
+            // yet different return types).  (JLS 8.4.6.3)
+            chk.checkCompatibleSupertypes(tree.pos(), c.type);
+            if (allowDefaultMethods) {
+                chk.checkDefaultMethodClashes(tree.pos(), c.type);
+            }
+        }
+
+        // Check that class does not import the same parameterized interface
+        // with two different argument lists.
+        chk.checkClassBounds(tree.pos(), c.type);
+
+        tree.type = c.type;
+
+        for (List<JCTypeParameter> l = tree.typarams;
+             l.nonEmpty(); l = l.tail) {
+             Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
+        }
+
+        // Check that a generic class doesn't extend Throwable
+        if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
+            log.error(tree.extending.pos(), Errors.GenericThrowable);
+
+        // Check that all methods which implement some
+        // method conform to the method they implement.
+        chk.checkImplementations(tree);
+
+        //check that a resource implementing AutoCloseable cannot throw InterruptedException
+        checkAutoCloseable(tree.pos(), env, c.type);
+
+        for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
+            // Attribute declaration
+            attribStat(l.head, env);
+            // Check that declarations in inner classes are not static (JLS 8.1.2)
+            // Make an exception for static constants.
+            if (c.owner.kind != PCK &&
+                ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
+                (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
+                Symbol sym = null;
+                if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
+                if (sym == null ||
+                    sym.kind != VAR ||
+                    ((VarSymbol) sym).getConstValue() == null)
+                    log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c));
+            }
+        }
+
+        // Check for cycles among non-initial constructors.
+        chk.checkCyclicConstructors(tree);
+
+        // Check for cycles among annotation elements.
+        chk.checkNonCyclicElements(tree);
+
+        // Check for proper use of serialVersionUID
+        if (env.info.lint.isEnabled(LintCategory.SERIAL)
+                && isSerializable(c.type)
+                && (c.flags() & Flags.ENUM) == 0
+                && !c.isAnonymous()
+                && checkForSerial(c)) {
+            checkSerialVersionUID(tree, c);
+        }
+        if (allowTypeAnnos) {
+            // Correctly organize the postions of the type annotations
+            typeAnnotations.organizeTypeAnnotationsBodies(tree);
+
+            // Check type annotations applicability rules
+            validateTypeAnnotations(tree, false);
+        }
+    }
+        // where
+        boolean checkForSerial(ClassSymbol c) {
+            if ((c.flags() & ABSTRACT) == 0) {
+                return true;
+            } else {
+                return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
+            }
+        }
+
+        public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = s ->
+                s.kind == MTH && (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
+
+        /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
+        private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
+            for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
+                if (types.isSameType(al.head.annotationType.type, t))
+                    return al.head.pos();
+            }
+
+            return null;
+        }
+
+        /** check if a type is a subtype of Serializable, if that is available. */
+        boolean isSerializable(Type t) {
+            try {
+                syms.serializableType.complete();
+            }
+            catch (CompletionFailure e) {
+                return false;
+            }
+            return types.isSubtype(t, syms.serializableType);
+        }
+
+        /** Check that an appropriate serialVersionUID member is defined. */
+        private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
+
+            // check for presence of serialVersionUID
+            VarSymbol svuid = null;
+            for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
+                if (sym.kind == VAR) {
+                    svuid = (VarSymbol)sym;
+                    break;
+                }
+            }
+
+            if (svuid == null) {
+                log.warning(LintCategory.SERIAL,
+                        tree.pos(), Warnings.MissingSVUID(c));
+                return;
+            }
+
+            // check that it is static final
+            if ((svuid.flags() & (STATIC | FINAL)) !=
+                (STATIC | FINAL))
+                log.warning(LintCategory.SERIAL,
+                        TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.ImproperSVUID(c));
+
+            // check that it is long
+            else if (!svuid.type.hasTag(LONG))
+                log.warning(LintCategory.SERIAL,
+                        TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.LongSVUID(c));
+
+            // check constant
+            else if (svuid.getConstValue() == null)
+                log.warning(LintCategory.SERIAL,
+                        TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.ConstantSVUID(c));
+        }
+
+    private Type capture(Type type) {
+        return types.capture(type);
+    }
+
+    public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
+        tree.accept(new TypeAnnotationsValidator(sigOnly));
+    }
+    //where
+    private final class TypeAnnotationsValidator extends TreeScanner {
+
+        private final boolean sigOnly;
+        public TypeAnnotationsValidator(boolean sigOnly) {
+            this.sigOnly = sigOnly;
+        }
+
+        public void visitAnnotation(JCAnnotation tree) {
+            chk.validateTypeAnnotation(tree, false);
+            super.visitAnnotation(tree);
+        }
+        public void visitAnnotatedType(JCAnnotatedType tree) {
+            if (!tree.underlyingType.type.isErroneous()) {
+                super.visitAnnotatedType(tree);
+            }
+        }
+        public void visitTypeParameter(JCTypeParameter tree) {
+            chk.validateTypeAnnotations(tree.annotations, true);
+            scan(tree.bounds);
+            // Don't call super.
+            // This is needed because above we call validateTypeAnnotation with
+            // false, which would forbid annotations on type parameters.
+            // super.visitTypeParameter(tree);
+        }
+        public void visitMethodDef(JCMethodDecl tree) {
+            if (tree.recvparam != null &&
+                    !tree.recvparam.vartype.type.isErroneous()) {
+                checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
+                        tree.recvparam.vartype.type.tsym);
+            }
+            if (tree.restype != null && tree.restype.type != null) {
+                validateAnnotatedType(tree.restype, tree.restype.type);
+            }
+            if (sigOnly) {
+                scan(tree.mods);
+                scan(tree.restype);
+                scan(tree.typarams);
+                scan(tree.recvparam);
+                scan(tree.params);
+                scan(tree.thrown);
+            } else {
+                scan(tree.defaultValue);
+                scan(tree.body);
+            }
+        }
+        public void visitVarDef(final JCVariableDecl tree) {
+            //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
+            if (tree.sym != null && tree.sym.type != null)
+                validateAnnotatedType(tree.vartype, tree.sym.type);
+            scan(tree.mods);
+            scan(tree.vartype);
+            if (!sigOnly) {
+                scan(tree.init);
+            }
+        }
+        public void visitTypeCast(JCTypeCast tree) {
+            if (tree.clazz != null && tree.clazz.type != null)
+                validateAnnotatedType(tree.clazz, tree.clazz.type);
+            super.visitTypeCast(tree);
+        }
+        public void visitTypeTest(JCInstanceOf tree) {
+            if (tree.clazz != null && tree.clazz.type != null)
+                validateAnnotatedType(tree.clazz, tree.clazz.type);
+            super.visitTypeTest(tree);
+        }
+        public void visitNewClass(JCNewClass tree) {
+            if (tree.clazz != null && tree.clazz.type != null) {
+                if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
+                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
+                            tree.clazz.type.tsym);
+                }
+                if (tree.def != null) {
+                    checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
+                }
+
+                validateAnnotatedType(tree.clazz, tree.clazz.type);
+            }
+            super.visitNewClass(tree);
+        }
+        public void visitNewArray(JCNewArray tree) {
+            if (tree.elemtype != null && tree.elemtype.type != null) {
+                if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
+                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
+                            tree.elemtype.type.tsym);
+                }
+                validateAnnotatedType(tree.elemtype, tree.elemtype.type);
+            }
+            super.visitNewArray(tree);
+        }
+        public void visitClassDef(JCClassDecl tree) {
+            //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
+            if (sigOnly) {
+                scan(tree.mods);
+                scan(tree.typarams);
+                scan(tree.extending);
+                scan(tree.implementing);
+            }
+            for (JCTree member : tree.defs) {
+                if (member.hasTag(Tag.CLASSDEF)) {
+                    continue;
+                }
+                scan(member);
+            }
+        }
+        public void visitBlock(JCBlock tree) {
+            if (!sigOnly) {
+                scan(tree.stats);
+            }
+        }
+
+        /* I would want to model this after
+         * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
+         * and override visitSelect and visitTypeApply.
+         * However, we only set the annotated type in the top-level type
+         * of the symbol.
+         * Therefore, we need to override each individual location where a type
+         * can occur.
+         */
+        private void validateAnnotatedType(final JCTree errtree, final Type type) {
+            //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
+
+            if (type.isPrimitiveOrVoid()) {
+                return;
+            }
+
+            JCTree enclTr = errtree;
+            Type enclTy = type;
+
+            boolean repeat = true;
+            while (repeat) {
+                if (enclTr.hasTag(TYPEAPPLY)) {
+                    List<Type> tyargs = enclTy.getTypeArguments();
+                    List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
+                    if (trargs.length() > 0) {
+                        // Nothing to do for diamonds
+                        if (tyargs.length() == trargs.length()) {
+                            for (int i = 0; i < tyargs.length(); ++i) {
+                                validateAnnotatedType(trargs.get(i), tyargs.get(i));
+                            }
+                        }
+                        // If the lengths don't match, it's either a diamond
+                        // or some nested type that redundantly provides
+                        // type arguments in the tree.
+                    }
+
+                    // Look at the clazz part of a generic type
+                    enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
+                }
+
+                if (enclTr.hasTag(SELECT)) {
+                    enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
+                    if (enclTy != null &&
+                            !enclTy.hasTag(NONE)) {
+                        enclTy = enclTy.getEnclosingType();
+                    }
+                } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
+                    JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
+                    if (enclTy == null || enclTy.hasTag(NONE)) {
+                        if (at.getAnnotations().size() == 1) {
+                            log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping1(at.getAnnotations().head.attribute));
+                        } else {
+                            ListBuffer<Attribute.Compound> comps = new ListBuffer<>();
+                            for (JCAnnotation an : at.getAnnotations()) {
+                                comps.add(an.attribute);
+                            }
+                            log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping(comps.toList()));
+                        }
+                        repeat = false;
+                    }
+                    enclTr = at.underlyingType;
+                    // enclTy doesn't need to be changed
+                } else if (enclTr.hasTag(IDENT)) {
+                    repeat = false;
+                } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
+                    JCWildcard wc = (JCWildcard) enclTr;
+                    if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD) {
+                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getExtendsBound());
+                    } else if (wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
+                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getSuperBound());
+                    } else {
+                        // Nothing to do for UNBOUND
+                    }
+                    repeat = false;
+                } else if (enclTr.hasTag(TYPEARRAY)) {
+                    JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
+                    validateAnnotatedType(art.getType(), ((ArrayType)enclTy).getComponentType());
+                    repeat = false;
+                } else if (enclTr.hasTag(TYPEUNION)) {
+                    JCTypeUnion ut = (JCTypeUnion) enclTr;
+                    for (JCTree t : ut.getTypeAlternatives()) {
+                        validateAnnotatedType(t, t.type);
+                    }
+                    repeat = false;
+                } else if (enclTr.hasTag(TYPEINTERSECTION)) {
+                    JCTypeIntersection it = (JCTypeIntersection) enclTr;
+                    for (JCTree t : it.getBounds()) {
+                        validateAnnotatedType(t, t.type);
+                    }
+                    repeat = false;
+                } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
+                           enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
+                    repeat = false;
+                } else {
+                    Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
+                            " within: "+ errtree + " with kind: " + errtree.getKind());
+                }
+            }
+        }
+
+        private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
+                Symbol sym) {
+            // Ensure that no declaration annotations are present.
+            // Note that a tree type might be an AnnotatedType with
+            // empty annotations, if only declaration annotations were given.
+            // This method will raise an error for such a type.
+            for (JCAnnotation ai : annotations) {
+                if (!ai.type.isErroneous() &&
+                        typeAnnotations.annotationTargetType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
+                    log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
+                }
+            }
+        }
+    }
+
+    // <editor-fold desc="post-attribution visitor">
+
+    /**
+     * Handle missing types/symbols in an AST. This routine is useful when
+     * the compiler has encountered some errors (which might have ended up
+     * terminating attribution abruptly); if the compiler is used in fail-over
+     * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
+     * prevents NPE to be progagated during subsequent compilation steps.
+     */
+    public void postAttr(JCTree tree) {
+        new PostAttrAnalyzer().scan(tree);
+    }
+
+    class PostAttrAnalyzer extends TreeScanner {
+
+        private void initTypeIfNeeded(JCTree that) {
+            if (that.type == null) {
+                if (that.hasTag(METHODDEF)) {
+                    that.type = dummyMethodType((JCMethodDecl)that);
+                } else {
+                    that.type = syms.unknownType;
+                }
+            }
+        }
+
+        /* Construct a dummy method type. If we have a method declaration,
+         * and the declared return type is void, then use that return type
+         * instead of UNKNOWN to avoid spurious error messages in lambda
+         * bodies (see:JDK-8041704).
+         */
+        private Type dummyMethodType(JCMethodDecl md) {
+            Type restype = syms.unknownType;
+            if (md != null && md.restype.hasTag(TYPEIDENT)) {
+                JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
+                if (prim.typetag == VOID)
+                    restype = syms.voidType;
+            }
+            return new MethodType(List.nil(), restype,
+                                  List.nil(), syms.methodClass);
+        }
+        private Type dummyMethodType() {
+            return dummyMethodType(null);
+        }
+
+        @Override
+        public void scan(JCTree tree) {
+            if (tree == null) return;
+            if (tree instanceof JCExpression) {
+                initTypeIfNeeded(tree);
+            }
+            super.scan(tree);
+        }
+
+        @Override
+        public void visitIdent(JCIdent that) {
+            if (that.sym == null) {
+                that.sym = syms.unknownSymbol;
+            }
+        }
+
+        @Override
+        public void visitSelect(JCFieldAccess that) {
+            if (that.sym == null) {
+                that.sym = syms.unknownSymbol;
+            }
+            super.visitSelect(that);
+        }
+
+        @Override
+        public void visitClassDef(JCClassDecl that) {
+            initTypeIfNeeded(that);
+            if (that.sym == null) {
+                that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
+            }
+            super.visitClassDef(that);
+        }
+
+        @Override
+        public void visitMethodDef(JCMethodDecl that) {
+            initTypeIfNeeded(that);
+            if (that.sym == null) {
+                that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
+            }
+            super.visitMethodDef(that);
+        }
+
+        @Override
+        public void visitVarDef(JCVariableDecl that) {
+            initTypeIfNeeded(that);
+            if (that.sym == null) {
+                that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
+                that.sym.adr = 0;
+            }
+            if (that.vartype == null) {
+                that.vartype = make.Erroneous();
+            }
+            super.visitVarDef(that);
+        }
+
+        @Override
+        public void visitNewClass(JCNewClass that) {
+            if (that.constructor == null) {
+                that.constructor = new MethodSymbol(0, names.init,
+                        dummyMethodType(), syms.noSymbol);
+            }
+            if (that.constructorType == null) {
+                that.constructorType = syms.unknownType;
+            }
+            super.visitNewClass(that);
+        }
+
+        @Override
+        public void visitAssignop(JCAssignOp that) {
+            if (that.operator == null) {
+                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
+                        -1, syms.noSymbol);
+            }
+            super.visitAssignop(that);
+        }
+
+        @Override
+        public void visitBinary(JCBinary that) {
+            if (that.operator == null) {
+                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
+                        -1, syms.noSymbol);
+            }
+            super.visitBinary(that);
+        }
+
+        @Override
+        public void visitUnary(JCUnary that) {
+            if (that.operator == null) {
+                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
+                        -1, syms.noSymbol);
+            }
+            super.visitUnary(that);
+        }
+
+        @Override
+        public void visitLambda(JCLambda that) {
+            super.visitLambda(that);
+            if (that.targets == null) {
+                that.targets = List.nil();
+            }
+        }
+
+        @Override
+        public void visitReference(JCMemberReference that) {
+            super.visitReference(that);
+            if (that.sym == null) {
+                that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
+                        syms.noSymbol);
+            }
+            if (that.targets == null) {
+                that.targets = List.nil();
+            }
+        }
+    }
+    // </editor-fold>
+
+    public void setPackageSymbols(JCExpression pid, Symbol pkg) {
+        new TreeScanner() {
+            Symbol packge = pkg;
+            @Override
+            public void visitIdent(JCIdent that) {
+                that.sym = packge;
+            }
+
+            @Override
+            public void visitSelect(JCFieldAccess that) {
+                that.sym = packge;
+                packge = packge.owner;
+                super.visitSelect(that);
+            }
+        }.scan(pid);
+    }
+
+}