src/jdk.compiler/share/classes/com/sun/tools/javac/code/Types.java
changeset 47216 71c04702a3d5
parent 45756 67f4f8f4d34a
child 47268 48ec75306997
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/jdk.compiler/share/classes/com/sun/tools/javac/code/Types.java	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,4941 @@
+/*
+ * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package com.sun.tools.javac.code;
+
+import java.lang.ref.SoftReference;
+import java.util.HashSet;
+import java.util.HashMap;
+import java.util.Locale;
+import java.util.Map;
+import java.util.Optional;
+import java.util.Set;
+import java.util.WeakHashMap;
+import java.util.function.BiPredicate;
+import java.util.function.Function;
+import java.util.stream.Collector;
+
+import javax.tools.JavaFileObject;
+
+import com.sun.tools.javac.code.Attribute.RetentionPolicy;
+import com.sun.tools.javac.code.Lint.LintCategory;
+import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
+import com.sun.tools.javac.code.TypeMetadata.Entry.Kind;
+import com.sun.tools.javac.comp.AttrContext;
+import com.sun.tools.javac.comp.Check;
+import com.sun.tools.javac.comp.Enter;
+import com.sun.tools.javac.comp.Env;
+import com.sun.tools.javac.util.*;
+
+import static com.sun.tools.javac.code.BoundKind.*;
+import static com.sun.tools.javac.code.Flags.*;
+import static com.sun.tools.javac.code.Kinds.Kind.*;
+import static com.sun.tools.javac.code.Scope.*;
+import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
+import static com.sun.tools.javac.code.Symbol.*;
+import static com.sun.tools.javac.code.Type.*;
+import static com.sun.tools.javac.code.TypeTag.*;
+import static com.sun.tools.javac.jvm.ClassFile.externalize;
+import com.sun.tools.javac.resources.CompilerProperties.Fragments;
+
+/**
+ * Utility class containing various operations on types.
+ *
+ * <p>Unless other names are more illustrative, the following naming
+ * conventions should be observed in this file:
+ *
+ * <dl>
+ * <dt>t</dt>
+ * <dd>If the first argument to an operation is a type, it should be named t.</dd>
+ * <dt>s</dt>
+ * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
+ * <dt>ts</dt>
+ * <dd>If an operations takes a list of types, the first should be named ts.</dd>
+ * <dt>ss</dt>
+ * <dd>A second list of types should be named ss.</dd>
+ * </dl>
+ *
+ * <p><b>This is NOT part of any supported API.
+ * If you write code that depends on this, you do so at your own risk.
+ * This code and its internal interfaces are subject to change or
+ * deletion without notice.</b>
+ */
+public class Types {
+    protected static final Context.Key<Types> typesKey = new Context.Key<>();
+
+    final Symtab syms;
+    final JavacMessages messages;
+    final Names names;
+    final boolean allowObjectToPrimitiveCast;
+    final boolean allowDefaultMethods;
+    final boolean mapCapturesToBounds;
+    final Check chk;
+    final Enter enter;
+    JCDiagnostic.Factory diags;
+    List<Warner> warnStack = List.nil();
+    final Name capturedName;
+    private final FunctionDescriptorLookupError functionDescriptorLookupError;
+
+    public final Warner noWarnings;
+
+    // <editor-fold defaultstate="collapsed" desc="Instantiating">
+    public static Types instance(Context context) {
+        Types instance = context.get(typesKey);
+        if (instance == null)
+            instance = new Types(context);
+        return instance;
+    }
+
+    protected Types(Context context) {
+        context.put(typesKey, this);
+        syms = Symtab.instance(context);
+        names = Names.instance(context);
+        Source source = Source.instance(context);
+        allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
+        allowDefaultMethods = source.allowDefaultMethods();
+        mapCapturesToBounds = source.mapCapturesToBounds();
+        chk = Check.instance(context);
+        enter = Enter.instance(context);
+        capturedName = names.fromString("<captured wildcard>");
+        messages = JavacMessages.instance(context);
+        diags = JCDiagnostic.Factory.instance(context);
+        functionDescriptorLookupError = new FunctionDescriptorLookupError();
+        noWarnings = new Warner(null);
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="bounds">
+    /**
+     * Get a wildcard's upper bound, returning non-wildcards unchanged.
+     * @param t a type argument, either a wildcard or a type
+     */
+    public Type wildUpperBound(Type t) {
+        if (t.hasTag(WILDCARD)) {
+            WildcardType w = (WildcardType) t;
+            if (w.isSuperBound())
+                return w.bound == null ? syms.objectType : w.bound.bound;
+            else
+                return wildUpperBound(w.type);
+        }
+        else return t;
+    }
+
+    /**
+     * Get a capture variable's upper bound, returning other types unchanged.
+     * @param t a type
+     */
+    public Type cvarUpperBound(Type t) {
+        if (t.hasTag(TYPEVAR)) {
+            TypeVar v = (TypeVar) t;
+            return v.isCaptured() ? cvarUpperBound(v.bound) : v;
+        }
+        else return t;
+    }
+
+    /**
+     * Get a wildcard's lower bound, returning non-wildcards unchanged.
+     * @param t a type argument, either a wildcard or a type
+     */
+    public Type wildLowerBound(Type t) {
+        if (t.hasTag(WILDCARD)) {
+            WildcardType w = (WildcardType) t;
+            return w.isExtendsBound() ? syms.botType : wildLowerBound(w.type);
+        }
+        else return t;
+    }
+
+    /**
+     * Get a capture variable's lower bound, returning other types unchanged.
+     * @param t a type
+     */
+    public Type cvarLowerBound(Type t) {
+        if (t.hasTag(TYPEVAR) && ((TypeVar) t).isCaptured()) {
+            return cvarLowerBound(t.getLowerBound());
+        }
+        else return t;
+    }
+
+    /**
+     * Recursively skip type-variables until a class/array type is found; capture conversion is then
+     * (optionally) applied to the resulting type. This is useful for i.e. computing a site that is
+     * suitable for a method lookup.
+     */
+    public Type skipTypeVars(Type site, boolean capture) {
+        while (site.hasTag(TYPEVAR)) {
+            site = site.getUpperBound();
+        }
+        return capture ? capture(site) : site;
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="isUnbounded">
+    /**
+     * Checks that all the arguments to a class are unbounded
+     * wildcards or something else that doesn't make any restrictions
+     * on the arguments. If a class isUnbounded, a raw super- or
+     * subclass can be cast to it without a warning.
+     * @param t a type
+     * @return true iff the given type is unbounded or raw
+     */
+    public boolean isUnbounded(Type t) {
+        return isUnbounded.visit(t);
+    }
+    // where
+        private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
+
+            public Boolean visitType(Type t, Void ignored) {
+                return true;
+            }
+
+            @Override
+            public Boolean visitClassType(ClassType t, Void ignored) {
+                List<Type> parms = t.tsym.type.allparams();
+                List<Type> args = t.allparams();
+                while (parms.nonEmpty()) {
+                    WildcardType unb = new WildcardType(syms.objectType,
+                                                        BoundKind.UNBOUND,
+                                                        syms.boundClass,
+                                                        (TypeVar)parms.head);
+                    if (!containsType(args.head, unb))
+                        return false;
+                    parms = parms.tail;
+                    args = args.tail;
+                }
+                return true;
+            }
+        };
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="asSub">
+    /**
+     * Return the least specific subtype of t that starts with symbol
+     * sym.  If none exists, return null.  The least specific subtype
+     * is determined as follows:
+     *
+     * <p>If there is exactly one parameterized instance of sym that is a
+     * subtype of t, that parameterized instance is returned.<br>
+     * Otherwise, if the plain type or raw type `sym' is a subtype of
+     * type t, the type `sym' itself is returned.  Otherwise, null is
+     * returned.
+     */
+    public Type asSub(Type t, Symbol sym) {
+        return asSub.visit(t, sym);
+    }
+    // where
+        private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
+
+            public Type visitType(Type t, Symbol sym) {
+                return null;
+            }
+
+            @Override
+            public Type visitClassType(ClassType t, Symbol sym) {
+                if (t.tsym == sym)
+                    return t;
+                Type base = asSuper(sym.type, t.tsym);
+                if (base == null)
+                    return null;
+                ListBuffer<Type> from = new ListBuffer<>();
+                ListBuffer<Type> to = new ListBuffer<>();
+                try {
+                    adapt(base, t, from, to);
+                } catch (AdaptFailure ex) {
+                    return null;
+                }
+                Type res = subst(sym.type, from.toList(), to.toList());
+                if (!isSubtype(res, t))
+                    return null;
+                ListBuffer<Type> openVars = new ListBuffer<>();
+                for (List<Type> l = sym.type.allparams();
+                     l.nonEmpty(); l = l.tail)
+                    if (res.contains(l.head) && !t.contains(l.head))
+                        openVars.append(l.head);
+                if (openVars.nonEmpty()) {
+                    if (t.isRaw()) {
+                        // The subtype of a raw type is raw
+                        res = erasure(res);
+                    } else {
+                        // Unbound type arguments default to ?
+                        List<Type> opens = openVars.toList();
+                        ListBuffer<Type> qs = new ListBuffer<>();
+                        for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
+                            qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND,
+                                                       syms.boundClass, (TypeVar) iter.head));
+                        }
+                        res = subst(res, opens, qs.toList());
+                    }
+                }
+                return res;
+            }
+
+            @Override
+            public Type visitErrorType(ErrorType t, Symbol sym) {
+                return t;
+            }
+        };
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="isConvertible">
+    /**
+     * Is t a subtype of or convertible via boxing/unboxing
+     * conversion to s?
+     */
+    public boolean isConvertible(Type t, Type s, Warner warn) {
+        if (t.hasTag(ERROR)) {
+            return true;
+        }
+        boolean tPrimitive = t.isPrimitive();
+        boolean sPrimitive = s.isPrimitive();
+        if (tPrimitive == sPrimitive) {
+            return isSubtypeUnchecked(t, s, warn);
+        }
+        boolean tUndet = t.hasTag(UNDETVAR);
+        boolean sUndet = s.hasTag(UNDETVAR);
+
+        if (tUndet || sUndet) {
+            return tUndet ?
+                    isSubtype(t, boxedTypeOrType(s)) :
+                    isSubtype(boxedTypeOrType(t), s);
+        }
+
+        return tPrimitive
+            ? isSubtype(boxedClass(t).type, s)
+            : isSubtype(unboxedType(t), s);
+    }
+
+    /**
+     * Is t a subtype of or convertible via boxing/unboxing
+     * conversions to s?
+     */
+    public boolean isConvertible(Type t, Type s) {
+        return isConvertible(t, s, noWarnings);
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="findSam">
+
+    /**
+     * Exception used to report a function descriptor lookup failure. The exception
+     * wraps a diagnostic that can be used to generate more details error
+     * messages.
+     */
+    public static class FunctionDescriptorLookupError extends RuntimeException {
+        private static final long serialVersionUID = 0;
+
+        JCDiagnostic diagnostic;
+
+        FunctionDescriptorLookupError() {
+            this.diagnostic = null;
+        }
+
+        FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
+            this.diagnostic = diag;
+            return this;
+        }
+
+        public JCDiagnostic getDiagnostic() {
+            return diagnostic;
+        }
+    }
+
+    /**
+     * A cache that keeps track of function descriptors associated with given
+     * functional interfaces.
+     */
+    class DescriptorCache {
+
+        private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<>();
+
+        class FunctionDescriptor {
+            Symbol descSym;
+
+            FunctionDescriptor(Symbol descSym) {
+                this.descSym = descSym;
+            }
+
+            public Symbol getSymbol() {
+                return descSym;
+            }
+
+            public Type getType(Type site) {
+                site = removeWildcards(site);
+                if (!chk.checkValidGenericType(site)) {
+                    //if the inferred functional interface type is not well-formed,
+                    //or if it's not a subtype of the original target, issue an error
+                    throw failure(diags.fragment(Fragments.NoSuitableFunctionalIntfInst(site)));
+                }
+                return memberType(site, descSym);
+            }
+        }
+
+        class Entry {
+            final FunctionDescriptor cachedDescRes;
+            final int prevMark;
+
+            public Entry(FunctionDescriptor cachedDescRes,
+                    int prevMark) {
+                this.cachedDescRes = cachedDescRes;
+                this.prevMark = prevMark;
+            }
+
+            boolean matches(int mark) {
+                return  this.prevMark == mark;
+            }
+        }
+
+        FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
+            Entry e = _map.get(origin);
+            CompoundScope members = membersClosure(origin.type, false);
+            if (e == null ||
+                    !e.matches(members.getMark())) {
+                FunctionDescriptor descRes = findDescriptorInternal(origin, members);
+                _map.put(origin, new Entry(descRes, members.getMark()));
+                return descRes;
+            }
+            else {
+                return e.cachedDescRes;
+            }
+        }
+
+        /**
+         * Compute the function descriptor associated with a given functional interface
+         */
+        public FunctionDescriptor findDescriptorInternal(TypeSymbol origin,
+                CompoundScope membersCache) throws FunctionDescriptorLookupError {
+            if (!origin.isInterface() || (origin.flags() & ANNOTATION) != 0) {
+                //t must be an interface
+                throw failure("not.a.functional.intf", origin);
+            }
+
+            final ListBuffer<Symbol> abstracts = new ListBuffer<>();
+            for (Symbol sym : membersCache.getSymbols(new DescriptorFilter(origin))) {
+                Type mtype = memberType(origin.type, sym);
+                if (abstracts.isEmpty()) {
+                    abstracts.append(sym);
+                } else if ((sym.name == abstracts.first().name &&
+                        overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
+                    if (!abstracts.stream().filter(msym -> msym.owner.isSubClass(sym.enclClass(), Types.this))
+                            .map(msym -> memberType(origin.type, msym))
+                            .anyMatch(abstractMType -> isSubSignature(abstractMType, mtype))) {
+                        abstracts.append(sym);
+                    }
+                } else {
+                    //the target method(s) should be the only abstract members of t
+                    throw failure("not.a.functional.intf.1",  origin,
+                            diags.fragment(Fragments.IncompatibleAbstracts(Kinds.kindName(origin), origin)));
+                }
+            }
+            if (abstracts.isEmpty()) {
+                //t must define a suitable non-generic method
+                throw failure("not.a.functional.intf.1", origin,
+                            diags.fragment(Fragments.NoAbstracts(Kinds.kindName(origin), origin)));
+            } else if (abstracts.size() == 1) {
+                return new FunctionDescriptor(abstracts.first());
+            } else { // size > 1
+                FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
+                if (descRes == null) {
+                    //we can get here if the functional interface is ill-formed
+                    ListBuffer<JCDiagnostic> descriptors = new ListBuffer<>();
+                    for (Symbol desc : abstracts) {
+                        String key = desc.type.getThrownTypes().nonEmpty() ?
+                                "descriptor.throws" : "descriptor";
+                        descriptors.append(diags.fragment(key, desc.name,
+                                desc.type.getParameterTypes(),
+                                desc.type.getReturnType(),
+                                desc.type.getThrownTypes()));
+                    }
+                    JCDiagnostic msg =
+                            diags.fragment(Fragments.IncompatibleDescsInFunctionalIntf(Kinds.kindName(origin),
+                                                                                       origin));
+                    JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
+                            new JCDiagnostic.MultilineDiagnostic(msg, descriptors.toList());
+                    throw failure(incompatibleDescriptors);
+                }
+                return descRes;
+            }
+        }
+
+        /**
+         * Compute a synthetic type for the target descriptor given a list
+         * of override-equivalent methods in the functional interface type.
+         * The resulting method type is a method type that is override-equivalent
+         * and return-type substitutable with each method in the original list.
+         */
+        private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
+            return mergeAbstracts(methodSyms, origin.type, false)
+                    .map(bestSoFar -> new FunctionDescriptor(bestSoFar.baseSymbol()) {
+                        @Override
+                        public Type getType(Type origin) {
+                            Type mt = memberType(origin, getSymbol());
+                            return createMethodTypeWithThrown(mt, bestSoFar.type.getThrownTypes());
+                        }
+                    }).orElse(null);
+        }
+
+        FunctionDescriptorLookupError failure(String msg, Object... args) {
+            return failure(diags.fragment(msg, args));
+        }
+
+        FunctionDescriptorLookupError failure(JCDiagnostic diag) {
+            return functionDescriptorLookupError.setMessage(diag);
+        }
+    }
+
+    private DescriptorCache descCache = new DescriptorCache();
+
+    /**
+     * Find the method descriptor associated to this class symbol - if the
+     * symbol 'origin' is not a functional interface, an exception is thrown.
+     */
+    public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
+        return descCache.get(origin).getSymbol();
+    }
+
+    /**
+     * Find the type of the method descriptor associated to this class symbol -
+     * if the symbol 'origin' is not a functional interface, an exception is thrown.
+     */
+    public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
+        return descCache.get(origin.tsym).getType(origin);
+    }
+
+    /**
+     * Is given type a functional interface?
+     */
+    public boolean isFunctionalInterface(TypeSymbol tsym) {
+        try {
+            findDescriptorSymbol(tsym);
+            return true;
+        } catch (FunctionDescriptorLookupError ex) {
+            return false;
+        }
+    }
+
+    public boolean isFunctionalInterface(Type site) {
+        try {
+            findDescriptorType(site);
+            return true;
+        } catch (FunctionDescriptorLookupError ex) {
+            return false;
+        }
+    }
+
+    public Type removeWildcards(Type site) {
+        if (site.getTypeArguments().stream().anyMatch(t -> t.hasTag(WILDCARD))) {
+            //compute non-wildcard parameterization - JLS 9.9
+            List<Type> actuals = site.getTypeArguments();
+            List<Type> formals = site.tsym.type.getTypeArguments();
+            ListBuffer<Type> targs = new ListBuffer<>();
+            for (Type formal : formals) {
+                Type actual = actuals.head;
+                Type bound = formal.getUpperBound();
+                if (actuals.head.hasTag(WILDCARD)) {
+                    WildcardType wt = (WildcardType)actual;
+                    //check that bound does not contain other formals
+                    if (bound.containsAny(formals)) {
+                        targs.add(wt.type);
+                    } else {
+                        //compute new type-argument based on declared bound and wildcard bound
+                        switch (wt.kind) {
+                            case UNBOUND:
+                                targs.add(bound);
+                                break;
+                            case EXTENDS:
+                                targs.add(glb(bound, wt.type));
+                                break;
+                            case SUPER:
+                                targs.add(wt.type);
+                                break;
+                            default:
+                                Assert.error("Cannot get here!");
+                        }
+                    }
+                } else {
+                    //not a wildcard - the new type argument remains unchanged
+                    targs.add(actual);
+                }
+                actuals = actuals.tail;
+            }
+            return subst(site.tsym.type, formals, targs.toList());
+        } else {
+            return site;
+        }
+    }
+
+    /**
+     * Create a symbol for a class that implements a given functional interface
+     * and overrides its functional descriptor. This routine is used for two
+     * main purposes: (i) checking well-formedness of a functional interface;
+     * (ii) perform functional interface bridge calculation.
+     */
+    public ClassSymbol makeFunctionalInterfaceClass(Env<AttrContext> env, Name name, List<Type> targets, long cflags) {
+        if (targets.isEmpty()) {
+            return null;
+        }
+        Symbol descSym = findDescriptorSymbol(targets.head.tsym);
+        Type descType = findDescriptorType(targets.head);
+        ClassSymbol csym = new ClassSymbol(cflags, name, env.enclClass.sym.outermostClass());
+        csym.completer = Completer.NULL_COMPLETER;
+        csym.members_field = WriteableScope.create(csym);
+        MethodSymbol instDescSym = new MethodSymbol(descSym.flags(), descSym.name, descType, csym);
+        csym.members_field.enter(instDescSym);
+        Type.ClassType ctype = new Type.ClassType(Type.noType, List.nil(), csym);
+        ctype.supertype_field = syms.objectType;
+        ctype.interfaces_field = targets;
+        csym.type = ctype;
+        csym.sourcefile = ((ClassSymbol)csym.owner).sourcefile;
+        return csym;
+    }
+
+    /**
+     * Find the minimal set of methods that are overridden by the functional
+     * descriptor in 'origin'. All returned methods are assumed to have different
+     * erased signatures.
+     */
+    public List<Symbol> functionalInterfaceBridges(TypeSymbol origin) {
+        Assert.check(isFunctionalInterface(origin));
+        Symbol descSym = findDescriptorSymbol(origin);
+        CompoundScope members = membersClosure(origin.type, false);
+        ListBuffer<Symbol> overridden = new ListBuffer<>();
+        outer: for (Symbol m2 : members.getSymbolsByName(descSym.name, bridgeFilter)) {
+            if (m2 == descSym) continue;
+            else if (descSym.overrides(m2, origin, Types.this, false)) {
+                for (Symbol m3 : overridden) {
+                    if (isSameType(m3.erasure(Types.this), m2.erasure(Types.this)) ||
+                            (m3.overrides(m2, origin, Types.this, false) &&
+                            (pendingBridges((ClassSymbol)origin, m3.enclClass()) ||
+                            (((MethodSymbol)m2).binaryImplementation((ClassSymbol)m3.owner, Types.this) != null)))) {
+                        continue outer;
+                    }
+                }
+                overridden.add(m2);
+            }
+        }
+        return overridden.toList();
+    }
+    //where
+        private Filter<Symbol> bridgeFilter = new Filter<Symbol>() {
+            public boolean accepts(Symbol t) {
+                return t.kind == MTH &&
+                        t.name != names.init &&
+                        t.name != names.clinit &&
+                        (t.flags() & SYNTHETIC) == 0;
+            }
+        };
+        private boolean pendingBridges(ClassSymbol origin, TypeSymbol s) {
+            //a symbol will be completed from a classfile if (a) symbol has
+            //an associated file object with CLASS kind and (b) the symbol has
+            //not been entered
+            if (origin.classfile != null &&
+                    origin.classfile.getKind() == JavaFileObject.Kind.CLASS &&
+                    enter.getEnv(origin) == null) {
+                return false;
+            }
+            if (origin == s) {
+                return true;
+            }
+            for (Type t : interfaces(origin.type)) {
+                if (pendingBridges((ClassSymbol)t.tsym, s)) {
+                    return true;
+                }
+            }
+            return false;
+        }
+    // </editor-fold>
+
+   /**
+    * Scope filter used to skip methods that should be ignored (such as methods
+    * overridden by j.l.Object) during function interface conversion interface check
+    */
+    class DescriptorFilter implements Filter<Symbol> {
+
+       TypeSymbol origin;
+
+       DescriptorFilter(TypeSymbol origin) {
+           this.origin = origin;
+       }
+
+       @Override
+       public boolean accepts(Symbol sym) {
+           return sym.kind == MTH &&
+                   (sym.flags() & (ABSTRACT | DEFAULT)) == ABSTRACT &&
+                   !overridesObjectMethod(origin, sym) &&
+                   (interfaceCandidates(origin.type, (MethodSymbol)sym).head.flags() & DEFAULT) == 0;
+       }
+    }
+
+    // <editor-fold defaultstate="collapsed" desc="isSubtype">
+    /**
+     * Is t an unchecked subtype of s?
+     */
+    public boolean isSubtypeUnchecked(Type t, Type s) {
+        return isSubtypeUnchecked(t, s, noWarnings);
+    }
+    /**
+     * Is t an unchecked subtype of s?
+     */
+    public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
+        boolean result = isSubtypeUncheckedInternal(t, s, true, warn);
+        if (result) {
+            checkUnsafeVarargsConversion(t, s, warn);
+        }
+        return result;
+    }
+    //where
+        private boolean isSubtypeUncheckedInternal(Type t, Type s, boolean capture, Warner warn) {
+            if (t.hasTag(ARRAY) && s.hasTag(ARRAY)) {
+                if (((ArrayType)t).elemtype.isPrimitive()) {
+                    return isSameType(elemtype(t), elemtype(s));
+                } else {
+                    return isSubtypeUncheckedInternal(elemtype(t), elemtype(s), false, warn);
+                }
+            } else if (isSubtype(t, s, capture)) {
+                return true;
+            } else if (t.hasTag(TYPEVAR)) {
+                return isSubtypeUncheckedInternal(t.getUpperBound(), s, false, warn);
+            } else if (!s.isRaw()) {
+                Type t2 = asSuper(t, s.tsym);
+                if (t2 != null && t2.isRaw()) {
+                    if (isReifiable(s)) {
+                        warn.silentWarn(LintCategory.UNCHECKED);
+                    } else {
+                        warn.warn(LintCategory.UNCHECKED);
+                    }
+                    return true;
+                }
+            }
+            return false;
+        }
+
+        private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
+            if (!t.hasTag(ARRAY) || isReifiable(t)) {
+                return;
+            }
+            ArrayType from = (ArrayType)t;
+            boolean shouldWarn = false;
+            switch (s.getTag()) {
+                case ARRAY:
+                    ArrayType to = (ArrayType)s;
+                    shouldWarn = from.isVarargs() &&
+                            !to.isVarargs() &&
+                            !isReifiable(from);
+                    break;
+                case CLASS:
+                    shouldWarn = from.isVarargs();
+                    break;
+            }
+            if (shouldWarn) {
+                warn.warn(LintCategory.VARARGS);
+            }
+        }
+
+    /**
+     * Is t a subtype of s?<br>
+     * (not defined for Method and ForAll types)
+     */
+    final public boolean isSubtype(Type t, Type s) {
+        return isSubtype(t, s, true);
+    }
+    final public boolean isSubtypeNoCapture(Type t, Type s) {
+        return isSubtype(t, s, false);
+    }
+    public boolean isSubtype(Type t, Type s, boolean capture) {
+        if (t.equalsIgnoreMetadata(s))
+            return true;
+        if (s.isPartial())
+            return isSuperType(s, t);
+
+        if (s.isCompound()) {
+            for (Type s2 : interfaces(s).prepend(supertype(s))) {
+                if (!isSubtype(t, s2, capture))
+                    return false;
+            }
+            return true;
+        }
+
+        // Generally, if 's' is a lower-bounded type variable, recur on lower bound; but
+        // for inference variables and intersections, we need to keep 's'
+        // (see JLS 4.10.2 for intersections and 18.2.3 for inference vars)
+        if (!t.hasTag(UNDETVAR) && !t.isCompound()) {
+            // TODO: JDK-8039198, bounds checking sometimes passes in a wildcard as s
+            Type lower = cvarLowerBound(wildLowerBound(s));
+            if (s != lower && !lower.hasTag(BOT))
+                return isSubtype(capture ? capture(t) : t, lower, false);
+        }
+
+        return isSubtype.visit(capture ? capture(t) : t, s);
+    }
+    // where
+        private TypeRelation isSubtype = new TypeRelation()
+        {
+            @Override
+            public Boolean visitType(Type t, Type s) {
+                switch (t.getTag()) {
+                 case BYTE:
+                     return (!s.hasTag(CHAR) && t.getTag().isSubRangeOf(s.getTag()));
+                 case CHAR:
+                     return (!s.hasTag(SHORT) && t.getTag().isSubRangeOf(s.getTag()));
+                 case SHORT: case INT: case LONG:
+                 case FLOAT: case DOUBLE:
+                     return t.getTag().isSubRangeOf(s.getTag());
+                 case BOOLEAN: case VOID:
+                     return t.hasTag(s.getTag());
+                 case TYPEVAR:
+                     return isSubtypeNoCapture(t.getUpperBound(), s);
+                 case BOT:
+                     return
+                         s.hasTag(BOT) || s.hasTag(CLASS) ||
+                         s.hasTag(ARRAY) || s.hasTag(TYPEVAR);
+                 case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
+                 case NONE:
+                     return false;
+                 default:
+                     throw new AssertionError("isSubtype " + t.getTag());
+                 }
+            }
+
+            private Set<TypePair> cache = new HashSet<>();
+
+            private boolean containsTypeRecursive(Type t, Type s) {
+                TypePair pair = new TypePair(t, s);
+                if (cache.add(pair)) {
+                    try {
+                        return containsType(t.getTypeArguments(),
+                                            s.getTypeArguments());
+                    } finally {
+                        cache.remove(pair);
+                    }
+                } else {
+                    return containsType(t.getTypeArguments(),
+                                        rewriteSupers(s).getTypeArguments());
+                }
+            }
+
+            private Type rewriteSupers(Type t) {
+                if (!t.isParameterized())
+                    return t;
+                ListBuffer<Type> from = new ListBuffer<>();
+                ListBuffer<Type> to = new ListBuffer<>();
+                adaptSelf(t, from, to);
+                if (from.isEmpty())
+                    return t;
+                ListBuffer<Type> rewrite = new ListBuffer<>();
+                boolean changed = false;
+                for (Type orig : to.toList()) {
+                    Type s = rewriteSupers(orig);
+                    if (s.isSuperBound() && !s.isExtendsBound()) {
+                        s = new WildcardType(syms.objectType,
+                                             BoundKind.UNBOUND,
+                                             syms.boundClass,
+                                             s.getMetadata());
+                        changed = true;
+                    } else if (s != orig) {
+                        s = new WildcardType(wildUpperBound(s),
+                                             BoundKind.EXTENDS,
+                                             syms.boundClass,
+                                             s.getMetadata());
+                        changed = true;
+                    }
+                    rewrite.append(s);
+                }
+                if (changed)
+                    return subst(t.tsym.type, from.toList(), rewrite.toList());
+                else
+                    return t;
+            }
+
+            @Override
+            public Boolean visitClassType(ClassType t, Type s) {
+                Type sup = asSuper(t, s.tsym);
+                if (sup == null) return false;
+                // If t is an intersection, sup might not be a class type
+                if (!sup.hasTag(CLASS)) return isSubtypeNoCapture(sup, s);
+                return sup.tsym == s.tsym
+                     // Check type variable containment
+                    && (!s.isParameterized() || containsTypeRecursive(s, sup))
+                    && isSubtypeNoCapture(sup.getEnclosingType(),
+                                          s.getEnclosingType());
+            }
+
+            @Override
+            public Boolean visitArrayType(ArrayType t, Type s) {
+                if (s.hasTag(ARRAY)) {
+                    if (t.elemtype.isPrimitive())
+                        return isSameType(t.elemtype, elemtype(s));
+                    else
+                        return isSubtypeNoCapture(t.elemtype, elemtype(s));
+                }
+
+                if (s.hasTag(CLASS)) {
+                    Name sname = s.tsym.getQualifiedName();
+                    return sname == names.java_lang_Object
+                        || sname == names.java_lang_Cloneable
+                        || sname == names.java_io_Serializable;
+                }
+
+                return false;
+            }
+
+            @Override
+            public Boolean visitUndetVar(UndetVar t, Type s) {
+                //todo: test against origin needed? or replace with substitution?
+                if (t == s || t.qtype == s || s.hasTag(ERROR) || s.hasTag(UNKNOWN)) {
+                    return true;
+                } else if (s.hasTag(BOT)) {
+                    //if 's' is 'null' there's no instantiated type U for which
+                    //U <: s (but 'null' itself, which is not a valid type)
+                    return false;
+                }
+
+                t.addBound(InferenceBound.UPPER, s, Types.this);
+                return true;
+            }
+
+            @Override
+            public Boolean visitErrorType(ErrorType t, Type s) {
+                return true;
+            }
+        };
+
+    /**
+     * Is t a subtype of every type in given list `ts'?<br>
+     * (not defined for Method and ForAll types)<br>
+     * Allows unchecked conversions.
+     */
+    public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
+        for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
+            if (!isSubtypeUnchecked(t, l.head, warn))
+                return false;
+        return true;
+    }
+
+    /**
+     * Are corresponding elements of ts subtypes of ss?  If lists are
+     * of different length, return false.
+     */
+    public boolean isSubtypes(List<Type> ts, List<Type> ss) {
+        while (ts.tail != null && ss.tail != null
+               /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
+               isSubtype(ts.head, ss.head)) {
+            ts = ts.tail;
+            ss = ss.tail;
+        }
+        return ts.tail == null && ss.tail == null;
+        /*inlined: ts.isEmpty() && ss.isEmpty();*/
+    }
+
+    /**
+     * Are corresponding elements of ts subtypes of ss, allowing
+     * unchecked conversions?  If lists are of different length,
+     * return false.
+     **/
+    public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
+        while (ts.tail != null && ss.tail != null
+               /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
+               isSubtypeUnchecked(ts.head, ss.head, warn)) {
+            ts = ts.tail;
+            ss = ss.tail;
+        }
+        return ts.tail == null && ss.tail == null;
+        /*inlined: ts.isEmpty() && ss.isEmpty();*/
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="isSuperType">
+    /**
+     * Is t a supertype of s?
+     */
+    public boolean isSuperType(Type t, Type s) {
+        switch (t.getTag()) {
+        case ERROR:
+            return true;
+        case UNDETVAR: {
+            UndetVar undet = (UndetVar)t;
+            if (t == s ||
+                undet.qtype == s ||
+                s.hasTag(ERROR) ||
+                s.hasTag(BOT)) {
+                return true;
+            }
+            undet.addBound(InferenceBound.LOWER, s, this);
+            return true;
+        }
+        default:
+            return isSubtype(s, t);
+        }
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="isSameType">
+    /**
+     * Are corresponding elements of the lists the same type?  If
+     * lists are of different length, return false.
+     */
+    public boolean isSameTypes(List<Type> ts, List<Type> ss) {
+        return isSameTypes(ts, ss, false);
+    }
+    public boolean isSameTypes(List<Type> ts, List<Type> ss, boolean strict) {
+        while (ts.tail != null && ss.tail != null
+               /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
+               isSameType(ts.head, ss.head, strict)) {
+            ts = ts.tail;
+            ss = ss.tail;
+        }
+        return ts.tail == null && ss.tail == null;
+        /*inlined: ts.isEmpty() && ss.isEmpty();*/
+    }
+
+    /**
+     * A polymorphic signature method (JLS 15.12.3) is a method that
+     *   (i) is declared in the java.lang.invoke.MethodHandle/VarHandle classes;
+     *  (ii) takes a single variable arity parameter;
+     * (iii) whose declared type is Object[];
+     *  (iv) has any return type, Object signifying a polymorphic return type; and
+     *   (v) is native.
+    */
+   public boolean isSignaturePolymorphic(MethodSymbol msym) {
+       List<Type> argtypes = msym.type.getParameterTypes();
+       return (msym.flags_field & NATIVE) != 0 &&
+              (msym.owner == syms.methodHandleType.tsym || msym.owner == syms.varHandleType.tsym) &&
+               argtypes.length() == 1 &&
+               argtypes.head.hasTag(TypeTag.ARRAY) &&
+               ((ArrayType)argtypes.head).elemtype.tsym == syms.objectType.tsym;
+   }
+
+    /**
+     * Is t the same type as s?
+     */
+    public boolean isSameType(Type t, Type s) {
+        return isSameType(t, s, false);
+    }
+    public boolean isSameType(Type t, Type s, boolean strict) {
+        return strict ?
+                isSameTypeStrict.visit(t, s) :
+                isSameTypeLoose.visit(t, s);
+    }
+    // where
+        abstract class SameTypeVisitor extends TypeRelation {
+
+            public Boolean visitType(Type t, Type s) {
+                if (t.equalsIgnoreMetadata(s))
+                    return true;
+
+                if (s.isPartial())
+                    return visit(s, t);
+
+                switch (t.getTag()) {
+                case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
+                case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
+                    return t.hasTag(s.getTag());
+                case TYPEVAR: {
+                    if (s.hasTag(TYPEVAR)) {
+                        //type-substitution does not preserve type-var types
+                        //check that type var symbols and bounds are indeed the same
+                        return sameTypeVars((TypeVar)t, (TypeVar)s);
+                    }
+                    else {
+                        //special case for s == ? super X, where upper(s) = u
+                        //check that u == t, where u has been set by Type.withTypeVar
+                        return s.isSuperBound() &&
+                                !s.isExtendsBound() &&
+                                visit(t, wildUpperBound(s));
+                    }
+                }
+                default:
+                    throw new AssertionError("isSameType " + t.getTag());
+                }
+            }
+
+            abstract boolean sameTypeVars(TypeVar tv1, TypeVar tv2);
+
+            @Override
+            public Boolean visitWildcardType(WildcardType t, Type s) {
+                if (!s.hasTag(WILDCARD)) {
+                    return false;
+                } else {
+                    WildcardType t2 = (WildcardType)s;
+                    return (t.kind == t2.kind || (t.isExtendsBound() && s.isExtendsBound())) &&
+                            isSameType(t.type, t2.type, true);
+                }
+            }
+
+            @Override
+            public Boolean visitClassType(ClassType t, Type s) {
+                if (t == s)
+                    return true;
+
+                if (s.isPartial())
+                    return visit(s, t);
+
+                if (s.isSuperBound() && !s.isExtendsBound())
+                    return visit(t, wildUpperBound(s)) && visit(t, wildLowerBound(s));
+
+                if (t.isCompound() && s.isCompound()) {
+                    if (!visit(supertype(t), supertype(s)))
+                        return false;
+
+                    Map<Symbol,Type> tMap = new HashMap<>();
+                    for (Type ti : interfaces(t)) {
+                        if (tMap.containsKey(ti)) {
+                            throw new AssertionError("Malformed intersection");
+                        }
+                        tMap.put(ti.tsym, ti);
+                    }
+                    for (Type si : interfaces(s)) {
+                        if (!tMap.containsKey(si.tsym))
+                            return false;
+                        Type ti = tMap.remove(si.tsym);
+                        if (!visit(ti, si))
+                            return false;
+                    }
+                    return tMap.isEmpty();
+                }
+                return t.tsym == s.tsym
+                    && visit(t.getEnclosingType(), s.getEnclosingType())
+                    && containsTypes(t.getTypeArguments(), s.getTypeArguments());
+            }
+
+            abstract protected boolean containsTypes(List<Type> ts1, List<Type> ts2);
+
+            @Override
+            public Boolean visitArrayType(ArrayType t, Type s) {
+                if (t == s)
+                    return true;
+
+                if (s.isPartial())
+                    return visit(s, t);
+
+                return s.hasTag(ARRAY)
+                    && containsTypeEquivalent(t.elemtype, elemtype(s));
+            }
+
+            @Override
+            public Boolean visitMethodType(MethodType t, Type s) {
+                // isSameType for methods does not take thrown
+                // exceptions into account!
+                return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
+            }
+
+            @Override
+            public Boolean visitPackageType(PackageType t, Type s) {
+                return t == s;
+            }
+
+            @Override
+            public Boolean visitForAll(ForAll t, Type s) {
+                if (!s.hasTag(FORALL)) {
+                    return false;
+                }
+
+                ForAll forAll = (ForAll)s;
+                return hasSameBounds(t, forAll)
+                    && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
+            }
+
+            @Override
+            public Boolean visitUndetVar(UndetVar t, Type s) {
+                if (s.hasTag(WILDCARD)) {
+                    // FIXME, this might be leftovers from before capture conversion
+                    return false;
+                }
+
+                if (t == s || t.qtype == s || s.hasTag(ERROR) || s.hasTag(UNKNOWN)) {
+                    return true;
+                }
+
+                t.addBound(InferenceBound.EQ, s, Types.this);
+
+                return true;
+            }
+
+            @Override
+            public Boolean visitErrorType(ErrorType t, Type s) {
+                return true;
+            }
+        }
+
+        /**
+         * Standard type-equality relation - type variables are considered
+         * equals if they share the same type symbol.
+         */
+        TypeRelation isSameTypeLoose = new LooseSameTypeVisitor();
+
+        private class LooseSameTypeVisitor extends SameTypeVisitor {
+
+            /** cache of the type-variable pairs being (recursively) tested. */
+            private Set<TypePair> cache = new HashSet<>();
+
+            @Override
+            boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
+                return tv1.tsym == tv2.tsym && checkSameBounds(tv1, tv2);
+            }
+            @Override
+            protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
+                return containsTypeEquivalent(ts1, ts2);
+            }
+
+            /**
+             * Since type-variable bounds can be recursive, we need to protect against
+             * infinite loops - where the same bounds are checked over and over recursively.
+             */
+            private boolean checkSameBounds(TypeVar tv1, TypeVar tv2) {
+                TypePair p = new TypePair(tv1, tv2, true);
+                if (cache.add(p)) {
+                    try {
+                        return visit(tv1.getUpperBound(), tv2.getUpperBound());
+                    } finally {
+                        cache.remove(p);
+                    }
+                } else {
+                    return false;
+                }
+            }
+        };
+
+        /**
+         * Strict type-equality relation - type variables are considered
+         * equals if they share the same object identity.
+         */
+        TypeRelation isSameTypeStrict = new SameTypeVisitor() {
+            @Override
+            boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
+                return tv1 == tv2;
+            }
+            @Override
+            protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
+                return isSameTypes(ts1, ts2, true);
+            }
+
+            @Override
+            public Boolean visitWildcardType(WildcardType t, Type s) {
+                if (!s.hasTag(WILDCARD)) {
+                    return false;
+                } else {
+                    WildcardType t2 = (WildcardType)s;
+                    return t.kind == t2.kind &&
+                            isSameType(t.type, t2.type, true);
+                }
+            }
+        };
+
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="Contains Type">
+    public boolean containedBy(Type t, Type s) {
+        switch (t.getTag()) {
+        case UNDETVAR:
+            if (s.hasTag(WILDCARD)) {
+                UndetVar undetvar = (UndetVar)t;
+                WildcardType wt = (WildcardType)s;
+                switch(wt.kind) {
+                    case UNBOUND:
+                        break;
+                    case EXTENDS: {
+                        Type bound = wildUpperBound(s);
+                        undetvar.addBound(InferenceBound.UPPER, bound, this);
+                        break;
+                    }
+                    case SUPER: {
+                        Type bound = wildLowerBound(s);
+                        undetvar.addBound(InferenceBound.LOWER, bound, this);
+                        break;
+                    }
+                }
+                return true;
+            } else {
+                return isSameType(t, s);
+            }
+        case ERROR:
+            return true;
+        default:
+            return containsType(s, t);
+        }
+    }
+
+    boolean containsType(List<Type> ts, List<Type> ss) {
+        while (ts.nonEmpty() && ss.nonEmpty()
+               && containsType(ts.head, ss.head)) {
+            ts = ts.tail;
+            ss = ss.tail;
+        }
+        return ts.isEmpty() && ss.isEmpty();
+    }
+
+    /**
+     * Check if t contains s.
+     *
+     * <p>T contains S if:
+     *
+     * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
+     *
+     * <p>This relation is only used by ClassType.isSubtype(), that
+     * is,
+     *
+     * <p>{@code C<S> <: C<T> if T contains S.}
+     *
+     * <p>Because of F-bounds, this relation can lead to infinite
+     * recursion.  Thus we must somehow break that recursion.  Notice
+     * that containsType() is only called from ClassType.isSubtype().
+     * Since the arguments have already been checked against their
+     * bounds, we know:
+     *
+     * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
+     *
+     * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
+     *
+     * @param t a type
+     * @param s a type
+     */
+    public boolean containsType(Type t, Type s) {
+        return containsType.visit(t, s);
+    }
+    // where
+        private TypeRelation containsType = new TypeRelation() {
+
+            public Boolean visitType(Type t, Type s) {
+                if (s.isPartial())
+                    return containedBy(s, t);
+                else
+                    return isSameType(t, s);
+            }
+
+//            void debugContainsType(WildcardType t, Type s) {
+//                System.err.println();
+//                System.err.format(" does %s contain %s?%n", t, s);
+//                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
+//                                  wildUpperBound(s), s, t, wildUpperBound(t),
+//                                  t.isSuperBound()
+//                                  || isSubtypeNoCapture(wildUpperBound(s), wildUpperBound(t)));
+//                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
+//                                  wildLowerBound(t), t, s, wildLowerBound(s),
+//                                  t.isExtendsBound()
+//                                  || isSubtypeNoCapture(wildLowerBound(t), wildLowerBound(s)));
+//                System.err.println();
+//            }
+
+            @Override
+            public Boolean visitWildcardType(WildcardType t, Type s) {
+                if (s.isPartial())
+                    return containedBy(s, t);
+                else {
+//                    debugContainsType(t, s);
+                    return isSameWildcard(t, s)
+                        || isCaptureOf(s, t)
+                        || ((t.isExtendsBound() || isSubtypeNoCapture(wildLowerBound(t), wildLowerBound(s))) &&
+                            (t.isSuperBound() || isSubtypeNoCapture(wildUpperBound(s), wildUpperBound(t))));
+                }
+            }
+
+            @Override
+            public Boolean visitUndetVar(UndetVar t, Type s) {
+                if (!s.hasTag(WILDCARD)) {
+                    return isSameType(t, s);
+                } else {
+                    return false;
+                }
+            }
+
+            @Override
+            public Boolean visitErrorType(ErrorType t, Type s) {
+                return true;
+            }
+        };
+
+    public boolean isCaptureOf(Type s, WildcardType t) {
+        if (!s.hasTag(TYPEVAR) || !((TypeVar)s).isCaptured())
+            return false;
+        return isSameWildcard(t, ((CapturedType)s).wildcard);
+    }
+
+    public boolean isSameWildcard(WildcardType t, Type s) {
+        if (!s.hasTag(WILDCARD))
+            return false;
+        WildcardType w = (WildcardType)s;
+        return w.kind == t.kind && w.type == t.type;
+    }
+
+    public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
+        while (ts.nonEmpty() && ss.nonEmpty()
+               && containsTypeEquivalent(ts.head, ss.head)) {
+            ts = ts.tail;
+            ss = ss.tail;
+        }
+        return ts.isEmpty() && ss.isEmpty();
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="isCastable">
+    public boolean isCastable(Type t, Type s) {
+        return isCastable(t, s, noWarnings);
+    }
+
+    /**
+     * Is t is castable to s?<br>
+     * s is assumed to be an erased type.<br>
+     * (not defined for Method and ForAll types).
+     */
+    public boolean isCastable(Type t, Type s, Warner warn) {
+        if (t == s)
+            return true;
+        if (t.isPrimitive() != s.isPrimitive()) {
+            t = skipTypeVars(t, false);
+            return (isConvertible(t, s, warn)
+                    || (allowObjectToPrimitiveCast &&
+                        s.isPrimitive() &&
+                        isSubtype(boxedClass(s).type, t)));
+        }
+        if (warn != warnStack.head) {
+            try {
+                warnStack = warnStack.prepend(warn);
+                checkUnsafeVarargsConversion(t, s, warn);
+                return isCastable.visit(t,s);
+            } finally {
+                warnStack = warnStack.tail;
+            }
+        } else {
+            return isCastable.visit(t,s);
+        }
+    }
+    // where
+        private TypeRelation isCastable = new TypeRelation() {
+
+            public Boolean visitType(Type t, Type s) {
+                if (s.hasTag(ERROR))
+                    return true;
+
+                switch (t.getTag()) {
+                case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
+                case DOUBLE:
+                    return s.isNumeric();
+                case BOOLEAN:
+                    return s.hasTag(BOOLEAN);
+                case VOID:
+                    return false;
+                case BOT:
+                    return isSubtype(t, s);
+                default:
+                    throw new AssertionError();
+                }
+            }
+
+            @Override
+            public Boolean visitWildcardType(WildcardType t, Type s) {
+                return isCastable(wildUpperBound(t), s, warnStack.head);
+            }
+
+            @Override
+            public Boolean visitClassType(ClassType t, Type s) {
+                if (s.hasTag(ERROR) || s.hasTag(BOT))
+                    return true;
+
+                if (s.hasTag(TYPEVAR)) {
+                    if (isCastable(t, s.getUpperBound(), noWarnings)) {
+                        warnStack.head.warn(LintCategory.UNCHECKED);
+                        return true;
+                    } else {
+                        return false;
+                    }
+                }
+
+                if (t.isCompound() || s.isCompound()) {
+                    return !t.isCompound() ?
+                            visitCompoundType((ClassType)s, t, true) :
+                            visitCompoundType(t, s, false);
+                }
+
+                if (s.hasTag(CLASS) || s.hasTag(ARRAY)) {
+                    boolean upcast;
+                    if ((upcast = isSubtype(erasure(t), erasure(s)))
+                        || isSubtype(erasure(s), erasure(t))) {
+                        if (!upcast && s.hasTag(ARRAY)) {
+                            if (!isReifiable(s))
+                                warnStack.head.warn(LintCategory.UNCHECKED);
+                            return true;
+                        } else if (s.isRaw()) {
+                            return true;
+                        } else if (t.isRaw()) {
+                            if (!isUnbounded(s))
+                                warnStack.head.warn(LintCategory.UNCHECKED);
+                            return true;
+                        }
+                        // Assume |a| <: |b|
+                        final Type a = upcast ? t : s;
+                        final Type b = upcast ? s : t;
+                        final boolean HIGH = true;
+                        final boolean LOW = false;
+                        final boolean DONT_REWRITE_TYPEVARS = false;
+                        Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
+                        Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
+                        Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
+                        Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
+                        Type lowSub = asSub(bLow, aLow.tsym);
+                        Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
+                        if (highSub == null) {
+                            final boolean REWRITE_TYPEVARS = true;
+                            aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
+                            aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
+                            bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
+                            bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
+                            lowSub = asSub(bLow, aLow.tsym);
+                            highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
+                        }
+                        if (highSub != null) {
+                            if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
+                                Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
+                            }
+                            if (!disjointTypes(aHigh.allparams(), highSub.allparams())
+                                && !disjointTypes(aHigh.allparams(), lowSub.allparams())
+                                && !disjointTypes(aLow.allparams(), highSub.allparams())
+                                && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
+                                if (upcast ? giveWarning(a, b) :
+                                    giveWarning(b, a))
+                                    warnStack.head.warn(LintCategory.UNCHECKED);
+                                return true;
+                            }
+                        }
+                        if (isReifiable(s))
+                            return isSubtypeUnchecked(a, b);
+                        else
+                            return isSubtypeUnchecked(a, b, warnStack.head);
+                    }
+
+                    // Sidecast
+                    if (s.hasTag(CLASS)) {
+                        if ((s.tsym.flags() & INTERFACE) != 0) {
+                            return ((t.tsym.flags() & FINAL) == 0)
+                                ? sideCast(t, s, warnStack.head)
+                                : sideCastFinal(t, s, warnStack.head);
+                        } else if ((t.tsym.flags() & INTERFACE) != 0) {
+                            return ((s.tsym.flags() & FINAL) == 0)
+                                ? sideCast(t, s, warnStack.head)
+                                : sideCastFinal(t, s, warnStack.head);
+                        } else {
+                            // unrelated class types
+                            return false;
+                        }
+                    }
+                }
+                return false;
+            }
+
+            boolean visitCompoundType(ClassType ct, Type s, boolean reverse) {
+                Warner warn = noWarnings;
+                for (Type c : directSupertypes(ct)) {
+                    warn.clear();
+                    if (reverse ? !isCastable(s, c, warn) : !isCastable(c, s, warn))
+                        return false;
+                }
+                if (warn.hasLint(LintCategory.UNCHECKED))
+                    warnStack.head.warn(LintCategory.UNCHECKED);
+                return true;
+            }
+
+            @Override
+            public Boolean visitArrayType(ArrayType t, Type s) {
+                switch (s.getTag()) {
+                case ERROR:
+                case BOT:
+                    return true;
+                case TYPEVAR:
+                    if (isCastable(s, t, noWarnings)) {
+                        warnStack.head.warn(LintCategory.UNCHECKED);
+                        return true;
+                    } else {
+                        return false;
+                    }
+                case CLASS:
+                    return isSubtype(t, s);
+                case ARRAY:
+                    if (elemtype(t).isPrimitive() || elemtype(s).isPrimitive()) {
+                        return elemtype(t).hasTag(elemtype(s).getTag());
+                    } else {
+                        return visit(elemtype(t), elemtype(s));
+                    }
+                default:
+                    return false;
+                }
+            }
+
+            @Override
+            public Boolean visitTypeVar(TypeVar t, Type s) {
+                switch (s.getTag()) {
+                case ERROR:
+                case BOT:
+                    return true;
+                case TYPEVAR:
+                    if (isSubtype(t, s)) {
+                        return true;
+                    } else if (isCastable(t.bound, s, noWarnings)) {
+                        warnStack.head.warn(LintCategory.UNCHECKED);
+                        return true;
+                    } else {
+                        return false;
+                    }
+                default:
+                    return isCastable(t.bound, s, warnStack.head);
+                }
+            }
+
+            @Override
+            public Boolean visitErrorType(ErrorType t, Type s) {
+                return true;
+            }
+        };
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="disjointTypes">
+    public boolean disjointTypes(List<Type> ts, List<Type> ss) {
+        while (ts.tail != null && ss.tail != null) {
+            if (disjointType(ts.head, ss.head)) return true;
+            ts = ts.tail;
+            ss = ss.tail;
+        }
+        return false;
+    }
+
+    /**
+     * Two types or wildcards are considered disjoint if it can be
+     * proven that no type can be contained in both. It is
+     * conservative in that it is allowed to say that two types are
+     * not disjoint, even though they actually are.
+     *
+     * The type {@code C<X>} is castable to {@code C<Y>} exactly if
+     * {@code X} and {@code Y} are not disjoint.
+     */
+    public boolean disjointType(Type t, Type s) {
+        return disjointType.visit(t, s);
+    }
+    // where
+        private TypeRelation disjointType = new TypeRelation() {
+
+            private Set<TypePair> cache = new HashSet<>();
+
+            @Override
+            public Boolean visitType(Type t, Type s) {
+                if (s.hasTag(WILDCARD))
+                    return visit(s, t);
+                else
+                    return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
+            }
+
+            private boolean isCastableRecursive(Type t, Type s) {
+                TypePair pair = new TypePair(t, s);
+                if (cache.add(pair)) {
+                    try {
+                        return Types.this.isCastable(t, s);
+                    } finally {
+                        cache.remove(pair);
+                    }
+                } else {
+                    return true;
+                }
+            }
+
+            private boolean notSoftSubtypeRecursive(Type t, Type s) {
+                TypePair pair = new TypePair(t, s);
+                if (cache.add(pair)) {
+                    try {
+                        return Types.this.notSoftSubtype(t, s);
+                    } finally {
+                        cache.remove(pair);
+                    }
+                } else {
+                    return false;
+                }
+            }
+
+            @Override
+            public Boolean visitWildcardType(WildcardType t, Type s) {
+                if (t.isUnbound())
+                    return false;
+
+                if (!s.hasTag(WILDCARD)) {
+                    if (t.isExtendsBound())
+                        return notSoftSubtypeRecursive(s, t.type);
+                    else
+                        return notSoftSubtypeRecursive(t.type, s);
+                }
+
+                if (s.isUnbound())
+                    return false;
+
+                if (t.isExtendsBound()) {
+                    if (s.isExtendsBound())
+                        return !isCastableRecursive(t.type, wildUpperBound(s));
+                    else if (s.isSuperBound())
+                        return notSoftSubtypeRecursive(wildLowerBound(s), t.type);
+                } else if (t.isSuperBound()) {
+                    if (s.isExtendsBound())
+                        return notSoftSubtypeRecursive(t.type, wildUpperBound(s));
+                }
+                return false;
+            }
+        };
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="cvarLowerBounds">
+    public List<Type> cvarLowerBounds(List<Type> ts) {
+        return ts.map(cvarLowerBoundMapping);
+    }
+        private final TypeMapping<Void> cvarLowerBoundMapping = new TypeMapping<Void>() {
+            @Override
+            public Type visitCapturedType(CapturedType t, Void _unused) {
+                return cvarLowerBound(t);
+            }
+        };
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
+    /**
+     * This relation answers the question: is impossible that
+     * something of type `t' can be a subtype of `s'? This is
+     * different from the question "is `t' not a subtype of `s'?"
+     * when type variables are involved: Integer is not a subtype of T
+     * where {@code <T extends Number>} but it is not true that Integer cannot
+     * possibly be a subtype of T.
+     */
+    public boolean notSoftSubtype(Type t, Type s) {
+        if (t == s) return false;
+        if (t.hasTag(TYPEVAR)) {
+            TypeVar tv = (TypeVar) t;
+            return !isCastable(tv.bound,
+                               relaxBound(s),
+                               noWarnings);
+        }
+        if (!s.hasTag(WILDCARD))
+            s = cvarUpperBound(s);
+
+        return !isSubtype(t, relaxBound(s));
+    }
+
+    private Type relaxBound(Type t) {
+        return (t.hasTag(TYPEVAR)) ?
+                rewriteQuantifiers(skipTypeVars(t, false), true, true) :
+                t;
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="isReifiable">
+    public boolean isReifiable(Type t) {
+        return isReifiable.visit(t);
+    }
+    // where
+        private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
+
+            public Boolean visitType(Type t, Void ignored) {
+                return true;
+            }
+
+            @Override
+            public Boolean visitClassType(ClassType t, Void ignored) {
+                if (t.isCompound())
+                    return false;
+                else {
+                    if (!t.isParameterized())
+                        return true;
+
+                    for (Type param : t.allparams()) {
+                        if (!param.isUnbound())
+                            return false;
+                    }
+                    return true;
+                }
+            }
+
+            @Override
+            public Boolean visitArrayType(ArrayType t, Void ignored) {
+                return visit(t.elemtype);
+            }
+
+            @Override
+            public Boolean visitTypeVar(TypeVar t, Void ignored) {
+                return false;
+            }
+        };
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="Array Utils">
+    public boolean isArray(Type t) {
+        while (t.hasTag(WILDCARD))
+            t = wildUpperBound(t);
+        return t.hasTag(ARRAY);
+    }
+
+    /**
+     * The element type of an array.
+     */
+    public Type elemtype(Type t) {
+        switch (t.getTag()) {
+        case WILDCARD:
+            return elemtype(wildUpperBound(t));
+        case ARRAY:
+            return ((ArrayType)t).elemtype;
+        case FORALL:
+            return elemtype(((ForAll)t).qtype);
+        case ERROR:
+            return t;
+        default:
+            return null;
+        }
+    }
+
+    public Type elemtypeOrType(Type t) {
+        Type elemtype = elemtype(t);
+        return elemtype != null ?
+            elemtype :
+            t;
+    }
+
+    /**
+     * Mapping to take element type of an arraytype
+     */
+    private TypeMapping<Void> elemTypeFun = new TypeMapping<Void>() {
+        @Override
+        public Type visitArrayType(ArrayType t, Void _unused) {
+            return t.elemtype;
+        }
+
+        @Override
+        public Type visitTypeVar(TypeVar t, Void _unused) {
+            return visit(skipTypeVars(t, false));
+        }
+    };
+
+    /**
+     * The number of dimensions of an array type.
+     */
+    public int dimensions(Type t) {
+        int result = 0;
+        while (t.hasTag(ARRAY)) {
+            result++;
+            t = elemtype(t);
+        }
+        return result;
+    }
+
+    /**
+     * Returns an ArrayType with the component type t
+     *
+     * @param t The component type of the ArrayType
+     * @return the ArrayType for the given component
+     */
+    public ArrayType makeArrayType(Type t) {
+        if (t.hasTag(VOID) || t.hasTag(PACKAGE)) {
+            Assert.error("Type t must not be a VOID or PACKAGE type, " + t.toString());
+        }
+        return new ArrayType(t, syms.arrayClass);
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="asSuper">
+    /**
+     * Return the (most specific) base type of t that starts with the
+     * given symbol.  If none exists, return null.
+     *
+     * Caveat Emptor: Since javac represents the class of all arrays with a singleton
+     * symbol Symtab.arrayClass, which by being a singleton cannot hold any discriminant,
+     * this method could yield surprising answers when invoked on arrays. For example when
+     * invoked with t being byte [] and sym being t.sym itself, asSuper would answer null.
+     *
+     * @param t a type
+     * @param sym a symbol
+     */
+    public Type asSuper(Type t, Symbol sym) {
+        /* Some examples:
+         *
+         * (Enum<E>, Comparable) => Comparable<E>
+         * (c.s.s.d.AttributeTree.ValueKind, Enum) => Enum<c.s.s.d.AttributeTree.ValueKind>
+         * (c.s.s.t.ExpressionTree, c.s.s.t.Tree) => c.s.s.t.Tree
+         * (j.u.List<capture#160 of ? extends c.s.s.d.DocTree>, Iterable) =>
+         *     Iterable<capture#160 of ? extends c.s.s.d.DocTree>
+         */
+        if (sym.type == syms.objectType) { //optimization
+            return syms.objectType;
+        }
+        return asSuper.visit(t, sym);
+    }
+    // where
+        private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
+
+            public Type visitType(Type t, Symbol sym) {
+                return null;
+            }
+
+            @Override
+            public Type visitClassType(ClassType t, Symbol sym) {
+                if (t.tsym == sym)
+                    return t;
+
+                Type st = supertype(t);
+                if (st.hasTag(CLASS) || st.hasTag(TYPEVAR)) {
+                    Type x = asSuper(st, sym);
+                    if (x != null)
+                        return x;
+                }
+                if ((sym.flags() & INTERFACE) != 0) {
+                    for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
+                        if (!l.head.hasTag(ERROR)) {
+                            Type x = asSuper(l.head, sym);
+                            if (x != null)
+                                return x;
+                        }
+                    }
+                }
+                return null;
+            }
+
+            @Override
+            public Type visitArrayType(ArrayType t, Symbol sym) {
+                return isSubtype(t, sym.type) ? sym.type : null;
+            }
+
+            @Override
+            public Type visitTypeVar(TypeVar t, Symbol sym) {
+                if (t.tsym == sym)
+                    return t;
+                else
+                    return asSuper(t.bound, sym);
+            }
+
+            @Override
+            public Type visitErrorType(ErrorType t, Symbol sym) {
+                return t;
+            }
+        };
+
+    /**
+     * Return the base type of t or any of its outer types that starts
+     * with the given symbol.  If none exists, return null.
+     *
+     * @param t a type
+     * @param sym a symbol
+     */
+    public Type asOuterSuper(Type t, Symbol sym) {
+        switch (t.getTag()) {
+        case CLASS:
+            do {
+                Type s = asSuper(t, sym);
+                if (s != null) return s;
+                t = t.getEnclosingType();
+            } while (t.hasTag(CLASS));
+            return null;
+        case ARRAY:
+            return isSubtype(t, sym.type) ? sym.type : null;
+        case TYPEVAR:
+            return asSuper(t, sym);
+        case ERROR:
+            return t;
+        default:
+            return null;
+        }
+    }
+
+    /**
+     * Return the base type of t or any of its enclosing types that
+     * starts with the given symbol.  If none exists, return null.
+     *
+     * @param t a type
+     * @param sym a symbol
+     */
+    public Type asEnclosingSuper(Type t, Symbol sym) {
+        switch (t.getTag()) {
+        case CLASS:
+            do {
+                Type s = asSuper(t, sym);
+                if (s != null) return s;
+                Type outer = t.getEnclosingType();
+                t = (outer.hasTag(CLASS)) ? outer :
+                    (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
+                    Type.noType;
+            } while (t.hasTag(CLASS));
+            return null;
+        case ARRAY:
+            return isSubtype(t, sym.type) ? sym.type : null;
+        case TYPEVAR:
+            return asSuper(t, sym);
+        case ERROR:
+            return t;
+        default:
+            return null;
+        }
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="memberType">
+    /**
+     * The type of given symbol, seen as a member of t.
+     *
+     * @param t a type
+     * @param sym a symbol
+     */
+    public Type memberType(Type t, Symbol sym) {
+        return (sym.flags() & STATIC) != 0
+            ? sym.type
+            : memberType.visit(t, sym);
+        }
+    // where
+        private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
+
+            public Type visitType(Type t, Symbol sym) {
+                return sym.type;
+            }
+
+            @Override
+            public Type visitWildcardType(WildcardType t, Symbol sym) {
+                return memberType(wildUpperBound(t), sym);
+            }
+
+            @Override
+            public Type visitClassType(ClassType t, Symbol sym) {
+                Symbol owner = sym.owner;
+                long flags = sym.flags();
+                if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
+                    Type base = asOuterSuper(t, owner);
+                    //if t is an intersection type T = CT & I1 & I2 ... & In
+                    //its supertypes CT, I1, ... In might contain wildcards
+                    //so we need to go through capture conversion
+                    base = t.isCompound() ? capture(base) : base;
+                    if (base != null) {
+                        List<Type> ownerParams = owner.type.allparams();
+                        List<Type> baseParams = base.allparams();
+                        if (ownerParams.nonEmpty()) {
+                            if (baseParams.isEmpty()) {
+                                // then base is a raw type
+                                return erasure(sym.type);
+                            } else {
+                                return subst(sym.type, ownerParams, baseParams);
+                            }
+                        }
+                    }
+                }
+                return sym.type;
+            }
+
+            @Override
+            public Type visitTypeVar(TypeVar t, Symbol sym) {
+                return memberType(t.bound, sym);
+            }
+
+            @Override
+            public Type visitErrorType(ErrorType t, Symbol sym) {
+                return t;
+            }
+        };
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="isAssignable">
+    public boolean isAssignable(Type t, Type s) {
+        return isAssignable(t, s, noWarnings);
+    }
+
+    /**
+     * Is t assignable to s?<br>
+     * Equivalent to subtype except for constant values and raw
+     * types.<br>
+     * (not defined for Method and ForAll types)
+     */
+    public boolean isAssignable(Type t, Type s, Warner warn) {
+        if (t.hasTag(ERROR))
+            return true;
+        if (t.getTag().isSubRangeOf(INT) && t.constValue() != null) {
+            int value = ((Number)t.constValue()).intValue();
+            switch (s.getTag()) {
+            case BYTE:
+            case CHAR:
+            case SHORT:
+            case INT:
+                if (s.getTag().checkRange(value))
+                    return true;
+                break;
+            case CLASS:
+                switch (unboxedType(s).getTag()) {
+                case BYTE:
+                case CHAR:
+                case SHORT:
+                    return isAssignable(t, unboxedType(s), warn);
+                }
+                break;
+            }
+        }
+        return isConvertible(t, s, warn);
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="erasure">
+    /**
+     * The erasure of t {@code |t|} -- the type that results when all
+     * type parameters in t are deleted.
+     */
+    public Type erasure(Type t) {
+        return eraseNotNeeded(t) ? t : erasure(t, false);
+    }
+    //where
+    private boolean eraseNotNeeded(Type t) {
+        // We don't want to erase primitive types and String type as that
+        // operation is idempotent. Also, erasing these could result in loss
+        // of information such as constant values attached to such types.
+        return (t.isPrimitive()) || (syms.stringType.tsym == t.tsym);
+    }
+
+    private Type erasure(Type t, boolean recurse) {
+        if (t.isPrimitive()) {
+            return t; /* fast special case */
+        } else {
+            Type out = erasure.visit(t, recurse);
+            return out;
+        }
+    }
+    // where
+        private TypeMapping<Boolean> erasure = new StructuralTypeMapping<Boolean>() {
+            private Type combineMetadata(final Type s,
+                                         final Type t) {
+                if (t.getMetadata() != TypeMetadata.EMPTY) {
+                    switch (s.getKind()) {
+                        case OTHER:
+                        case UNION:
+                        case INTERSECTION:
+                        case PACKAGE:
+                        case EXECUTABLE:
+                        case NONE:
+                        case VOID:
+                        case ERROR:
+                            return s;
+                        default: return s.cloneWithMetadata(s.getMetadata().without(Kind.ANNOTATIONS));
+                    }
+                } else {
+                    return s;
+                }
+            }
+
+            public Type visitType(Type t, Boolean recurse) {
+                if (t.isPrimitive())
+                    return t; /*fast special case*/
+                else {
+                    //other cases already handled
+                    return combineMetadata(t, t);
+                }
+            }
+
+            @Override
+            public Type visitWildcardType(WildcardType t, Boolean recurse) {
+                Type erased = erasure(wildUpperBound(t), recurse);
+                return combineMetadata(erased, t);
+            }
+
+            @Override
+            public Type visitClassType(ClassType t, Boolean recurse) {
+                Type erased = t.tsym.erasure(Types.this);
+                if (recurse) {
+                    erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym,
+                            t.getMetadata().without(Kind.ANNOTATIONS));
+                    return erased;
+                } else {
+                    return combineMetadata(erased, t);
+                }
+            }
+
+            @Override
+            public Type visitTypeVar(TypeVar t, Boolean recurse) {
+                Type erased = erasure(t.bound, recurse);
+                return combineMetadata(erased, t);
+            }
+        };
+
+    public List<Type> erasure(List<Type> ts) {
+        return erasure.visit(ts, false);
+    }
+
+    public Type erasureRecursive(Type t) {
+        return erasure(t, true);
+    }
+
+    public List<Type> erasureRecursive(List<Type> ts) {
+        return erasure.visit(ts, true);
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="makeIntersectionType">
+    /**
+     * Make an intersection type from non-empty list of types.  The list should be ordered according to
+     * {@link TypeSymbol#precedes(TypeSymbol, Types)}. Note that this might cause a symbol completion.
+     * Hence, this version of makeIntersectionType may not be called during a classfile read.
+     *
+     * @param bounds    the types from which the intersection type is formed
+     */
+    public IntersectionClassType makeIntersectionType(List<Type> bounds) {
+        return makeIntersectionType(bounds, bounds.head.tsym.isInterface());
+    }
+
+    /**
+     * Make an intersection type from non-empty list of types.  The list should be ordered according to
+     * {@link TypeSymbol#precedes(TypeSymbol, Types)}. This does not cause symbol completion as
+     * an extra parameter indicates as to whether all bounds are interfaces - in which case the
+     * supertype is implicitly assumed to be 'Object'.
+     *
+     * @param bounds        the types from which the intersection type is formed
+     * @param allInterfaces are all bounds interface types?
+     */
+    public IntersectionClassType makeIntersectionType(List<Type> bounds, boolean allInterfaces) {
+        Assert.check(bounds.nonEmpty());
+        Type firstExplicitBound = bounds.head;
+        if (allInterfaces) {
+            bounds = bounds.prepend(syms.objectType);
+        }
+        ClassSymbol bc =
+            new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
+                            Type.moreInfo
+                                ? names.fromString(bounds.toString())
+                                : names.empty,
+                            null,
+                            syms.noSymbol);
+        IntersectionClassType intersectionType = new IntersectionClassType(bounds, bc, allInterfaces);
+        bc.type = intersectionType;
+        bc.erasure_field = (bounds.head.hasTag(TYPEVAR)) ?
+                syms.objectType : // error condition, recover
+                erasure(firstExplicitBound);
+        bc.members_field = WriteableScope.create(bc);
+        return intersectionType;
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="supertype">
+    public Type supertype(Type t) {
+        return supertype.visit(t);
+    }
+    // where
+        private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
+
+            public Type visitType(Type t, Void ignored) {
+                // A note on wildcards: there is no good way to
+                // determine a supertype for a super bounded wildcard.
+                return Type.noType;
+            }
+
+            @Override
+            public Type visitClassType(ClassType t, Void ignored) {
+                if (t.supertype_field == null) {
+                    Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
+                    // An interface has no superclass; its supertype is Object.
+                    if (t.isInterface())
+                        supertype = ((ClassType)t.tsym.type).supertype_field;
+                    if (t.supertype_field == null) {
+                        List<Type> actuals = classBound(t).allparams();
+                        List<Type> formals = t.tsym.type.allparams();
+                        if (t.hasErasedSupertypes()) {
+                            t.supertype_field = erasureRecursive(supertype);
+                        } else if (formals.nonEmpty()) {
+                            t.supertype_field = subst(supertype, formals, actuals);
+                        }
+                        else {
+                            t.supertype_field = supertype;
+                        }
+                    }
+                }
+                return t.supertype_field;
+            }
+
+            /**
+             * The supertype is always a class type. If the type
+             * variable's bounds start with a class type, this is also
+             * the supertype.  Otherwise, the supertype is
+             * java.lang.Object.
+             */
+            @Override
+            public Type visitTypeVar(TypeVar t, Void ignored) {
+                if (t.bound.hasTag(TYPEVAR) ||
+                    (!t.bound.isCompound() && !t.bound.isInterface())) {
+                    return t.bound;
+                } else {
+                    return supertype(t.bound);
+                }
+            }
+
+            @Override
+            public Type visitArrayType(ArrayType t, Void ignored) {
+                if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
+                    return arraySuperType();
+                else
+                    return new ArrayType(supertype(t.elemtype), t.tsym);
+            }
+
+            @Override
+            public Type visitErrorType(ErrorType t, Void ignored) {
+                return Type.noType;
+            }
+        };
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="interfaces">
+    /**
+     * Return the interfaces implemented by this class.
+     */
+    public List<Type> interfaces(Type t) {
+        return interfaces.visit(t);
+    }
+    // where
+        private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
+
+            public List<Type> visitType(Type t, Void ignored) {
+                return List.nil();
+            }
+
+            @Override
+            public List<Type> visitClassType(ClassType t, Void ignored) {
+                if (t.interfaces_field == null) {
+                    List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
+                    if (t.interfaces_field == null) {
+                        // If t.interfaces_field is null, then t must
+                        // be a parameterized type (not to be confused
+                        // with a generic type declaration).
+                        // Terminology:
+                        //    Parameterized type: List<String>
+                        //    Generic type declaration: class List<E> { ... }
+                        // So t corresponds to List<String> and
+                        // t.tsym.type corresponds to List<E>.
+                        // The reason t must be parameterized type is
+                        // that completion will happen as a side
+                        // effect of calling
+                        // ClassSymbol.getInterfaces.  Since
+                        // t.interfaces_field is null after
+                        // completion, we can assume that t is not the
+                        // type of a class/interface declaration.
+                        Assert.check(t != t.tsym.type, t);
+                        List<Type> actuals = t.allparams();
+                        List<Type> formals = t.tsym.type.allparams();
+                        if (t.hasErasedSupertypes()) {
+                            t.interfaces_field = erasureRecursive(interfaces);
+                        } else if (formals.nonEmpty()) {
+                            t.interfaces_field = subst(interfaces, formals, actuals);
+                        }
+                        else {
+                            t.interfaces_field = interfaces;
+                        }
+                    }
+                }
+                return t.interfaces_field;
+            }
+
+            @Override
+            public List<Type> visitTypeVar(TypeVar t, Void ignored) {
+                if (t.bound.isCompound())
+                    return interfaces(t.bound);
+
+                if (t.bound.isInterface())
+                    return List.of(t.bound);
+
+                return List.nil();
+            }
+        };
+
+    public List<Type> directSupertypes(Type t) {
+        return directSupertypes.visit(t);
+    }
+    // where
+        private final UnaryVisitor<List<Type>> directSupertypes = new UnaryVisitor<List<Type>>() {
+
+            public List<Type> visitType(final Type type, final Void ignored) {
+                if (!type.isIntersection()) {
+                    final Type sup = supertype(type);
+                    return (sup == Type.noType || sup == type || sup == null)
+                        ? interfaces(type)
+                        : interfaces(type).prepend(sup);
+                } else {
+                    return ((IntersectionClassType)type).getExplicitComponents();
+                }
+            }
+        };
+
+    public boolean isDirectSuperInterface(TypeSymbol isym, TypeSymbol origin) {
+        for (Type i2 : interfaces(origin.type)) {
+            if (isym == i2.tsym) return true;
+        }
+        return false;
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
+    Map<Type,Boolean> isDerivedRawCache = new HashMap<>();
+
+    public boolean isDerivedRaw(Type t) {
+        Boolean result = isDerivedRawCache.get(t);
+        if (result == null) {
+            result = isDerivedRawInternal(t);
+            isDerivedRawCache.put(t, result);
+        }
+        return result;
+    }
+
+    public boolean isDerivedRawInternal(Type t) {
+        if (t.isErroneous())
+            return false;
+        return
+            t.isRaw() ||
+            supertype(t) != Type.noType && isDerivedRaw(supertype(t)) ||
+            isDerivedRaw(interfaces(t));
+    }
+
+    public boolean isDerivedRaw(List<Type> ts) {
+        List<Type> l = ts;
+        while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
+        return l.nonEmpty();
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="setBounds">
+    /**
+     * Same as {@link Types#setBounds(TypeVar, List, boolean)}, except that third parameter is computed directly,
+     * as follows: if all all bounds are interface types, the computed supertype is Object,otherwise
+     * the supertype is simply left null (in this case, the supertype is assumed to be the head of
+     * the bound list passed as second argument). Note that this check might cause a symbol completion.
+     * Hence, this version of setBounds may not be called during a classfile read.
+     *
+     * @param t         a type variable
+     * @param bounds    the bounds, must be nonempty
+     */
+    public void setBounds(TypeVar t, List<Type> bounds) {
+        setBounds(t, bounds, bounds.head.tsym.isInterface());
+    }
+
+    /**
+     * Set the bounds field of the given type variable to reflect a (possibly multiple) list of bounds.
+     * This does not cause symbol completion as an extra parameter indicates as to whether all bounds
+     * are interfaces - in which case the supertype is implicitly assumed to be 'Object'.
+     *
+     * @param t             a type variable
+     * @param bounds        the bounds, must be nonempty
+     * @param allInterfaces are all bounds interface types?
+     */
+    public void setBounds(TypeVar t, List<Type> bounds, boolean allInterfaces) {
+        t.bound = bounds.tail.isEmpty() ?
+                bounds.head :
+                makeIntersectionType(bounds, allInterfaces);
+        t.rank_field = -1;
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="getBounds">
+    /**
+     * Return list of bounds of the given type variable.
+     */
+    public List<Type> getBounds(TypeVar t) {
+        if (t.bound.hasTag(NONE))
+            return List.nil();
+        else if (t.bound.isErroneous() || !t.bound.isCompound())
+            return List.of(t.bound);
+        else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
+            return interfaces(t).prepend(supertype(t));
+        else
+            // No superclass was given in bounds.
+            // In this case, supertype is Object, erasure is first interface.
+            return interfaces(t);
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="classBound">
+    /**
+     * If the given type is a (possibly selected) type variable,
+     * return the bounding class of this type, otherwise return the
+     * type itself.
+     */
+    public Type classBound(Type t) {
+        return classBound.visit(t);
+    }
+    // where
+        private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
+
+            public Type visitType(Type t, Void ignored) {
+                return t;
+            }
+
+            @Override
+            public Type visitClassType(ClassType t, Void ignored) {
+                Type outer1 = classBound(t.getEnclosingType());
+                if (outer1 != t.getEnclosingType())
+                    return new ClassType(outer1, t.getTypeArguments(), t.tsym,
+                                         t.getMetadata());
+                else
+                    return t;
+            }
+
+            @Override
+            public Type visitTypeVar(TypeVar t, Void ignored) {
+                return classBound(supertype(t));
+            }
+
+            @Override
+            public Type visitErrorType(ErrorType t, Void ignored) {
+                return t;
+            }
+        };
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
+    /**
+     * Returns true iff the first signature is a <em>sub
+     * signature</em> of the other.  This is <b>not</b> an equivalence
+     * relation.
+     *
+     * @jls section 8.4.2.
+     * @see #overrideEquivalent(Type t, Type s)
+     * @param t first signature (possibly raw).
+     * @param s second signature (could be subjected to erasure).
+     * @return true if t is a sub signature of s.
+     */
+    public boolean isSubSignature(Type t, Type s) {
+        return isSubSignature(t, s, true);
+    }
+
+    public boolean isSubSignature(Type t, Type s, boolean strict) {
+        return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
+    }
+
+    /**
+     * Returns true iff these signatures are related by <em>override
+     * equivalence</em>.  This is the natural extension of
+     * isSubSignature to an equivalence relation.
+     *
+     * @jls section 8.4.2.
+     * @see #isSubSignature(Type t, Type s)
+     * @param t a signature (possible raw, could be subjected to
+     * erasure).
+     * @param s a signature (possible raw, could be subjected to
+     * erasure).
+     * @return true if either argument is a sub signature of the other.
+     */
+    public boolean overrideEquivalent(Type t, Type s) {
+        return hasSameArgs(t, s) ||
+            hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
+    }
+
+    public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
+        for (Symbol sym : syms.objectType.tsym.members().getSymbolsByName(msym.name)) {
+            if (msym.overrides(sym, origin, Types.this, true)) {
+                return true;
+            }
+        }
+        return false;
+    }
+
+    /**
+     * This enum defines the strategy for implementing most specific return type check
+     * during the most specific and functional interface checks.
+     */
+    public enum MostSpecificReturnCheck {
+        /**
+         * Return r1 is more specific than r2 if {@code r1 <: r2}. Extra care required for (i) handling
+         * method type variables (if either method is generic) and (ii) subtyping should be replaced
+         * by type-equivalence for primitives. This is essentially an inlined version of
+         * {@link Types#resultSubtype(Type, Type, Warner)}, where the assignability check has been
+         * replaced with a strict subtyping check.
+         */
+        BASIC() {
+            @Override
+            public boolean test(Type mt1, Type mt2, Types types) {
+                List<Type> tvars = mt1.getTypeArguments();
+                List<Type> svars = mt2.getTypeArguments();
+                Type t = mt1.getReturnType();
+                Type s = types.subst(mt2.getReturnType(), svars, tvars);
+                return types.isSameType(t, s) ||
+                    !t.isPrimitive() &&
+                    !s.isPrimitive() &&
+                    types.isSubtype(t, s);
+            }
+        },
+        /**
+         * Return r1 is more specific than r2 if r1 is return-type-substitutable for r2.
+         */
+        RTS() {
+            @Override
+            public boolean test(Type mt1, Type mt2, Types types) {
+                return types.returnTypeSubstitutable(mt1, mt2);
+            }
+        };
+
+        public abstract boolean test(Type mt1, Type mt2, Types types);
+    }
+
+    /**
+     * Merge multiple abstract methods. The preferred method is a method that is a subsignature
+     * of all the other signatures and whose return type is more specific {@see MostSpecificReturnCheck}.
+     * The resulting preferred method has a thrown clause that is the intersection of the merged
+     * methods' clauses.
+     */
+    public Optional<Symbol> mergeAbstracts(List<Symbol> ambiguousInOrder, Type site, boolean sigCheck) {
+        //first check for preconditions
+        boolean shouldErase = false;
+        List<Type> erasedParams = ambiguousInOrder.head.erasure(this).getParameterTypes();
+        for (Symbol s : ambiguousInOrder) {
+            if ((s.flags() & ABSTRACT) == 0 ||
+                    (sigCheck && !isSameTypes(erasedParams, s.erasure(this).getParameterTypes()))) {
+                return Optional.empty();
+            } else if (s.type.hasTag(FORALL)) {
+                shouldErase = true;
+            }
+        }
+        //then merge abstracts
+        for (MostSpecificReturnCheck mostSpecificReturnCheck : MostSpecificReturnCheck.values()) {
+            outer: for (Symbol s : ambiguousInOrder) {
+                Type mt = memberType(site, s);
+                List<Type> allThrown = mt.getThrownTypes();
+                for (Symbol s2 : ambiguousInOrder) {
+                    if (s != s2) {
+                        Type mt2 = memberType(site, s2);
+                        if (!isSubSignature(mt, mt2) ||
+                                !mostSpecificReturnCheck.test(mt, mt2, this)) {
+                            //ambiguity cannot be resolved
+                            continue outer;
+                        } else {
+                            List<Type> thrownTypes2 = mt2.getThrownTypes();
+                            if (!mt.hasTag(FORALL) && shouldErase) {
+                                thrownTypes2 = erasure(thrownTypes2);
+                            } else if (mt.hasTag(FORALL)) {
+                                //subsignature implies that if most specific is generic, then all other
+                                //methods are too
+                                Assert.check(mt2.hasTag(FORALL));
+                                // if both are generic methods, adjust thrown types ahead of intersection computation
+                                thrownTypes2 = subst(thrownTypes2, mt2.getTypeArguments(), mt.getTypeArguments());
+                            }
+                            allThrown = chk.intersect(allThrown, thrownTypes2);
+                        }
+                    }
+                }
+                return (allThrown == mt.getThrownTypes()) ?
+                        Optional.of(s) :
+                        Optional.of(new MethodSymbol(
+                                s.flags(),
+                                s.name,
+                                createMethodTypeWithThrown(s.type, allThrown),
+                                s.owner) {
+                            @Override
+                            public Symbol baseSymbol() {
+                                return s;
+                            }
+                        });
+            }
+        }
+        return Optional.empty();
+    }
+
+    // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
+    class ImplementationCache {
+
+        private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map = new WeakHashMap<>();
+
+        class Entry {
+            final MethodSymbol cachedImpl;
+            final Filter<Symbol> implFilter;
+            final boolean checkResult;
+            final int prevMark;
+
+            public Entry(MethodSymbol cachedImpl,
+                    Filter<Symbol> scopeFilter,
+                    boolean checkResult,
+                    int prevMark) {
+                this.cachedImpl = cachedImpl;
+                this.implFilter = scopeFilter;
+                this.checkResult = checkResult;
+                this.prevMark = prevMark;
+            }
+
+            boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
+                return this.implFilter == scopeFilter &&
+                        this.checkResult == checkResult &&
+                        this.prevMark == mark;
+            }
+        }
+
+        MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
+            SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
+            Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
+            if (cache == null) {
+                cache = new HashMap<>();
+                _map.put(ms, new SoftReference<>(cache));
+            }
+            Entry e = cache.get(origin);
+            CompoundScope members = membersClosure(origin.type, true);
+            if (e == null ||
+                    !e.matches(implFilter, checkResult, members.getMark())) {
+                MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
+                cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
+                return impl;
+            }
+            else {
+                return e.cachedImpl;
+            }
+        }
+
+        private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
+            for (Type t = origin.type; t.hasTag(CLASS) || t.hasTag(TYPEVAR); t = supertype(t)) {
+                t = skipTypeVars(t, false);
+                TypeSymbol c = t.tsym;
+                Symbol bestSoFar = null;
+                for (Symbol sym : c.members().getSymbolsByName(ms.name, implFilter)) {
+                    if (sym != null && sym.overrides(ms, origin, Types.this, checkResult)) {
+                        bestSoFar = sym;
+                        if ((sym.flags() & ABSTRACT) == 0) {
+                            //if concrete impl is found, exit immediately
+                            break;
+                        }
+                    }
+                }
+                if (bestSoFar != null) {
+                    //return either the (only) concrete implementation or the first abstract one
+                    return (MethodSymbol)bestSoFar;
+                }
+            }
+            return null;
+        }
+    }
+
+    private ImplementationCache implCache = new ImplementationCache();
+
+    public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
+        return implCache.get(ms, origin, checkResult, implFilter);
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
+    class MembersClosureCache extends SimpleVisitor<Scope.CompoundScope, Void> {
+
+        private Map<TypeSymbol, CompoundScope> _map = new HashMap<>();
+
+        Set<TypeSymbol> seenTypes = new HashSet<>();
+
+        class MembersScope extends CompoundScope {
+
+            CompoundScope scope;
+
+            public MembersScope(CompoundScope scope) {
+                super(scope.owner);
+                this.scope = scope;
+            }
+
+            Filter<Symbol> combine(Filter<Symbol> sf) {
+                return s -> !s.owner.isInterface() && (sf == null || sf.accepts(s));
+            }
+
+            @Override
+            public Iterable<Symbol> getSymbols(Filter<Symbol> sf, LookupKind lookupKind) {
+                return scope.getSymbols(combine(sf), lookupKind);
+            }
+
+            @Override
+            public Iterable<Symbol> getSymbolsByName(Name name, Filter<Symbol> sf, LookupKind lookupKind) {
+                return scope.getSymbolsByName(name, combine(sf), lookupKind);
+            }
+
+            @Override
+            public int getMark() {
+                return scope.getMark();
+            }
+        }
+
+        CompoundScope nilScope;
+
+        /** members closure visitor methods **/
+
+        public CompoundScope visitType(Type t, Void _unused) {
+            if (nilScope == null) {
+                nilScope = new CompoundScope(syms.noSymbol);
+            }
+            return nilScope;
+        }
+
+        @Override
+        public CompoundScope visitClassType(ClassType t, Void _unused) {
+            if (!seenTypes.add(t.tsym)) {
+                //this is possible when an interface is implemented in multiple
+                //superclasses, or when a class hierarchy is circular - in such
+                //cases we don't need to recurse (empty scope is returned)
+                return new CompoundScope(t.tsym);
+            }
+            try {
+                seenTypes.add(t.tsym);
+                ClassSymbol csym = (ClassSymbol)t.tsym;
+                CompoundScope membersClosure = _map.get(csym);
+                if (membersClosure == null) {
+                    membersClosure = new CompoundScope(csym);
+                    for (Type i : interfaces(t)) {
+                        membersClosure.prependSubScope(visit(i, null));
+                    }
+                    membersClosure.prependSubScope(visit(supertype(t), null));
+                    membersClosure.prependSubScope(csym.members());
+                    _map.put(csym, membersClosure);
+                }
+                return membersClosure;
+            }
+            finally {
+                seenTypes.remove(t.tsym);
+            }
+        }
+
+        @Override
+        public CompoundScope visitTypeVar(TypeVar t, Void _unused) {
+            return visit(t.getUpperBound(), null);
+        }
+    }
+
+    private MembersClosureCache membersCache = new MembersClosureCache();
+
+    public CompoundScope membersClosure(Type site, boolean skipInterface) {
+        CompoundScope cs = membersCache.visit(site, null);
+        Assert.checkNonNull(cs, () -> "type " + site);
+        return skipInterface ? membersCache.new MembersScope(cs) : cs;
+    }
+    // </editor-fold>
+
+
+    /** Return first abstract member of class `sym'.
+     */
+    public MethodSymbol firstUnimplementedAbstract(ClassSymbol sym) {
+        try {
+            return firstUnimplementedAbstractImpl(sym, sym);
+        } catch (CompletionFailure ex) {
+            chk.completionError(enter.getEnv(sym).tree.pos(), ex);
+            return null;
+        }
+    }
+        //where:
+        private MethodSymbol firstUnimplementedAbstractImpl(ClassSymbol impl, ClassSymbol c) {
+            MethodSymbol undef = null;
+            // Do not bother to search in classes that are not abstract,
+            // since they cannot have abstract members.
+            if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
+                Scope s = c.members();
+                for (Symbol sym : s.getSymbols(NON_RECURSIVE)) {
+                    if (sym.kind == MTH &&
+                        (sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
+                        MethodSymbol absmeth = (MethodSymbol)sym;
+                        MethodSymbol implmeth = absmeth.implementation(impl, this, true);
+                        if (implmeth == null || implmeth == absmeth) {
+                            //look for default implementations
+                            if (allowDefaultMethods) {
+                                MethodSymbol prov = interfaceCandidates(impl.type, absmeth).head;
+                                if (prov != null && prov.overrides(absmeth, impl, this, true)) {
+                                    implmeth = prov;
+                                }
+                            }
+                        }
+                        if (implmeth == null || implmeth == absmeth) {
+                            undef = absmeth;
+                            break;
+                        }
+                    }
+                }
+                if (undef == null) {
+                    Type st = supertype(c.type);
+                    if (st.hasTag(CLASS))
+                        undef = firstUnimplementedAbstractImpl(impl, (ClassSymbol)st.tsym);
+                }
+                for (List<Type> l = interfaces(c.type);
+                     undef == null && l.nonEmpty();
+                     l = l.tail) {
+                    undef = firstUnimplementedAbstractImpl(impl, (ClassSymbol)l.head.tsym);
+                }
+            }
+            return undef;
+        }
+
+    public class CandidatesCache {
+        public Map<Entry, List<MethodSymbol>> cache = new WeakHashMap<>();
+
+        class Entry {
+            Type site;
+            MethodSymbol msym;
+
+            Entry(Type site, MethodSymbol msym) {
+                this.site = site;
+                this.msym = msym;
+            }
+
+            @Override
+            public boolean equals(Object obj) {
+                if (obj instanceof Entry) {
+                    Entry e = (Entry)obj;
+                    return e.msym == msym && isSameType(site, e.site);
+                } else {
+                    return false;
+                }
+            }
+
+            @Override
+            public int hashCode() {
+                return Types.this.hashCode(site) & ~msym.hashCode();
+            }
+        }
+
+        public List<MethodSymbol> get(Entry e) {
+            return cache.get(e);
+        }
+
+        public void put(Entry e, List<MethodSymbol> msymbols) {
+            cache.put(e, msymbols);
+        }
+    }
+
+    public CandidatesCache candidatesCache = new CandidatesCache();
+
+    //where
+    public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms) {
+        CandidatesCache.Entry e = candidatesCache.new Entry(site, ms);
+        List<MethodSymbol> candidates = candidatesCache.get(e);
+        if (candidates == null) {
+            Filter<Symbol> filter = new MethodFilter(ms, site);
+            List<MethodSymbol> candidates2 = List.nil();
+            for (Symbol s : membersClosure(site, false).getSymbols(filter)) {
+                if (!site.tsym.isInterface() && !s.owner.isInterface()) {
+                    return List.of((MethodSymbol)s);
+                } else if (!candidates2.contains(s)) {
+                    candidates2 = candidates2.prepend((MethodSymbol)s);
+                }
+            }
+            candidates = prune(candidates2);
+            candidatesCache.put(e, candidates);
+        }
+        return candidates;
+    }
+
+    public List<MethodSymbol> prune(List<MethodSymbol> methods) {
+        ListBuffer<MethodSymbol> methodsMin = new ListBuffer<>();
+        for (MethodSymbol m1 : methods) {
+            boolean isMin_m1 = true;
+            for (MethodSymbol m2 : methods) {
+                if (m1 == m2) continue;
+                if (m2.owner != m1.owner &&
+                        asSuper(m2.owner.type, m1.owner) != null) {
+                    isMin_m1 = false;
+                    break;
+                }
+            }
+            if (isMin_m1)
+                methodsMin.append(m1);
+        }
+        return methodsMin.toList();
+    }
+    // where
+            private class MethodFilter implements Filter<Symbol> {
+
+                Symbol msym;
+                Type site;
+
+                MethodFilter(Symbol msym, Type site) {
+                    this.msym = msym;
+                    this.site = site;
+                }
+
+                public boolean accepts(Symbol s) {
+                    return s.kind == MTH &&
+                            s.name == msym.name &&
+                            (s.flags() & SYNTHETIC) == 0 &&
+                            s.isInheritedIn(site.tsym, Types.this) &&
+                            overrideEquivalent(memberType(site, s), memberType(site, msym));
+                }
+            }
+    // </editor-fold>
+
+    /**
+     * Does t have the same arguments as s?  It is assumed that both
+     * types are (possibly polymorphic) method types.  Monomorphic
+     * method types "have the same arguments", if their argument lists
+     * are equal.  Polymorphic method types "have the same arguments",
+     * if they have the same arguments after renaming all type
+     * variables of one to corresponding type variables in the other,
+     * where correspondence is by position in the type parameter list.
+     */
+    public boolean hasSameArgs(Type t, Type s) {
+        return hasSameArgs(t, s, true);
+    }
+
+    public boolean hasSameArgs(Type t, Type s, boolean strict) {
+        return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
+    }
+
+    private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
+        return hasSameArgs.visit(t, s);
+    }
+    // where
+        private class HasSameArgs extends TypeRelation {
+
+            boolean strict;
+
+            public HasSameArgs(boolean strict) {
+                this.strict = strict;
+            }
+
+            public Boolean visitType(Type t, Type s) {
+                throw new AssertionError();
+            }
+
+            @Override
+            public Boolean visitMethodType(MethodType t, Type s) {
+                return s.hasTag(METHOD)
+                    && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
+            }
+
+            @Override
+            public Boolean visitForAll(ForAll t, Type s) {
+                if (!s.hasTag(FORALL))
+                    return strict ? false : visitMethodType(t.asMethodType(), s);
+
+                ForAll forAll = (ForAll)s;
+                return hasSameBounds(t, forAll)
+                    && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
+            }
+
+            @Override
+            public Boolean visitErrorType(ErrorType t, Type s) {
+                return false;
+            }
+        }
+
+    TypeRelation hasSameArgs_strict = new HasSameArgs(true);
+        TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
+
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="subst">
+    public List<Type> subst(List<Type> ts,
+                            List<Type> from,
+                            List<Type> to) {
+        return ts.map(new Subst(from, to));
+    }
+
+    /**
+     * Substitute all occurrences of a type in `from' with the
+     * corresponding type in `to' in 't'. Match lists `from' and `to'
+     * from the right: If lists have different length, discard leading
+     * elements of the longer list.
+     */
+    public Type subst(Type t, List<Type> from, List<Type> to) {
+        return t.map(new Subst(from, to));
+    }
+
+    private class Subst extends StructuralTypeMapping<Void> {
+        List<Type> from;
+        List<Type> to;
+
+        public Subst(List<Type> from, List<Type> to) {
+            int fromLength = from.length();
+            int toLength = to.length();
+            while (fromLength > toLength) {
+                fromLength--;
+                from = from.tail;
+            }
+            while (fromLength < toLength) {
+                toLength--;
+                to = to.tail;
+            }
+            this.from = from;
+            this.to = to;
+        }
+
+        @Override
+        public Type visitTypeVar(TypeVar t, Void ignored) {
+            for (List<Type> from = this.from, to = this.to;
+                 from.nonEmpty();
+                 from = from.tail, to = to.tail) {
+                if (t.equalsIgnoreMetadata(from.head)) {
+                    return to.head.withTypeVar(t);
+                }
+            }
+            return t;
+        }
+
+        @Override
+        public Type visitClassType(ClassType t, Void ignored) {
+            if (!t.isCompound()) {
+                return super.visitClassType(t, ignored);
+            } else {
+                Type st = visit(supertype(t));
+                List<Type> is = visit(interfaces(t), ignored);
+                if (st == supertype(t) && is == interfaces(t))
+                    return t;
+                else
+                    return makeIntersectionType(is.prepend(st));
+            }
+        }
+
+        @Override
+        public Type visitWildcardType(WildcardType t, Void ignored) {
+            WildcardType t2 = (WildcardType)super.visitWildcardType(t, ignored);
+            if (t2 != t && t.isExtendsBound() && t2.type.isExtendsBound()) {
+                t2.type = wildUpperBound(t2.type);
+            }
+            return t2;
+        }
+
+        @Override
+        public Type visitForAll(ForAll t, Void ignored) {
+            if (Type.containsAny(to, t.tvars)) {
+                //perform alpha-renaming of free-variables in 't'
+                //if 'to' types contain variables that are free in 't'
+                List<Type> freevars = newInstances(t.tvars);
+                t = new ForAll(freevars,
+                               Types.this.subst(t.qtype, t.tvars, freevars));
+            }
+            List<Type> tvars1 = substBounds(t.tvars, from, to);
+            Type qtype1 = visit(t.qtype);
+            if (tvars1 == t.tvars && qtype1 == t.qtype) {
+                return t;
+            } else if (tvars1 == t.tvars) {
+                return new ForAll(tvars1, qtype1) {
+                    @Override
+                    public boolean needsStripping() {
+                        return true;
+                    }
+                };
+            } else {
+                return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1)) {
+                    @Override
+                    public boolean needsStripping() {
+                        return true;
+                    }
+                };
+            }
+        }
+    }
+
+    public List<Type> substBounds(List<Type> tvars,
+                                  List<Type> from,
+                                  List<Type> to) {
+        if (tvars.isEmpty())
+            return tvars;
+        ListBuffer<Type> newBoundsBuf = new ListBuffer<>();
+        boolean changed = false;
+        // calculate new bounds
+        for (Type t : tvars) {
+            TypeVar tv = (TypeVar) t;
+            Type bound = subst(tv.bound, from, to);
+            if (bound != tv.bound)
+                changed = true;
+            newBoundsBuf.append(bound);
+        }
+        if (!changed)
+            return tvars;
+        ListBuffer<Type> newTvars = new ListBuffer<>();
+        // create new type variables without bounds
+        for (Type t : tvars) {
+            newTvars.append(new TypeVar(t.tsym, null, syms.botType,
+                                        t.getMetadata()));
+        }
+        // the new bounds should use the new type variables in place
+        // of the old
+        List<Type> newBounds = newBoundsBuf.toList();
+        from = tvars;
+        to = newTvars.toList();
+        for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
+            newBounds.head = subst(newBounds.head, from, to);
+        }
+        newBounds = newBoundsBuf.toList();
+        // set the bounds of new type variables to the new bounds
+        for (Type t : newTvars.toList()) {
+            TypeVar tv = (TypeVar) t;
+            tv.bound = newBounds.head;
+            newBounds = newBounds.tail;
+        }
+        return newTvars.toList();
+    }
+
+    public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
+        Type bound1 = subst(t.bound, from, to);
+        if (bound1 == t.bound)
+            return t;
+        else {
+            // create new type variable without bounds
+            TypeVar tv = new TypeVar(t.tsym, null, syms.botType,
+                                     t.getMetadata());
+            // the new bound should use the new type variable in place
+            // of the old
+            tv.bound = subst(bound1, List.of(t), List.of(tv));
+            return tv;
+        }
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
+    /**
+     * Does t have the same bounds for quantified variables as s?
+     */
+    public boolean hasSameBounds(ForAll t, ForAll s) {
+        List<Type> l1 = t.tvars;
+        List<Type> l2 = s.tvars;
+        while (l1.nonEmpty() && l2.nonEmpty() &&
+               isSameType(l1.head.getUpperBound(),
+                          subst(l2.head.getUpperBound(),
+                                s.tvars,
+                                t.tvars))) {
+            l1 = l1.tail;
+            l2 = l2.tail;
+        }
+        return l1.isEmpty() && l2.isEmpty();
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="newInstances">
+    /** Create new vector of type variables from list of variables
+     *  changing all recursive bounds from old to new list.
+     */
+    public List<Type> newInstances(List<Type> tvars) {
+        List<Type> tvars1 = tvars.map(newInstanceFun);
+        for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
+            TypeVar tv = (TypeVar) l.head;
+            tv.bound = subst(tv.bound, tvars, tvars1);
+        }
+        return tvars1;
+    }
+        private static final TypeMapping<Void> newInstanceFun = new TypeMapping<Void>() {
+            @Override
+            public TypeVar visitTypeVar(TypeVar t, Void _unused) {
+                return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound(), t.getMetadata());
+            }
+        };
+    // </editor-fold>
+
+    public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
+        return original.accept(methodWithParameters, newParams);
+    }
+    // where
+        private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
+            public Type visitType(Type t, List<Type> newParams) {
+                throw new IllegalArgumentException("Not a method type: " + t);
+            }
+            public Type visitMethodType(MethodType t, List<Type> newParams) {
+                return new MethodType(newParams, t.restype, t.thrown, t.tsym);
+            }
+            public Type visitForAll(ForAll t, List<Type> newParams) {
+                return new ForAll(t.tvars, t.qtype.accept(this, newParams));
+            }
+        };
+
+    public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
+        return original.accept(methodWithThrown, newThrown);
+    }
+    // where
+        private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
+            public Type visitType(Type t, List<Type> newThrown) {
+                throw new IllegalArgumentException("Not a method type: " + t);
+            }
+            public Type visitMethodType(MethodType t, List<Type> newThrown) {
+                return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
+            }
+            public Type visitForAll(ForAll t, List<Type> newThrown) {
+                return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
+            }
+        };
+
+    public Type createMethodTypeWithReturn(Type original, Type newReturn) {
+        return original.accept(methodWithReturn, newReturn);
+    }
+    // where
+        private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
+            public Type visitType(Type t, Type newReturn) {
+                throw new IllegalArgumentException("Not a method type: " + t);
+            }
+            public Type visitMethodType(MethodType t, Type newReturn) {
+                return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym) {
+                    @Override
+                    public Type baseType() {
+                        return t;
+                    }
+                };
+            }
+            public Type visitForAll(ForAll t, Type newReturn) {
+                return new ForAll(t.tvars, t.qtype.accept(this, newReturn)) {
+                    @Override
+                    public Type baseType() {
+                        return t;
+                    }
+                };
+            }
+        };
+
+    // <editor-fold defaultstate="collapsed" desc="createErrorType">
+    public Type createErrorType(Type originalType) {
+        return new ErrorType(originalType, syms.errSymbol);
+    }
+
+    public Type createErrorType(ClassSymbol c, Type originalType) {
+        return new ErrorType(c, originalType);
+    }
+
+    public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
+        return new ErrorType(name, container, originalType);
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="rank">
+    /**
+     * The rank of a class is the length of the longest path between
+     * the class and java.lang.Object in the class inheritance
+     * graph. Undefined for all but reference types.
+     */
+    public int rank(Type t) {
+        switch(t.getTag()) {
+        case CLASS: {
+            ClassType cls = (ClassType)t;
+            if (cls.rank_field < 0) {
+                Name fullname = cls.tsym.getQualifiedName();
+                if (fullname == names.java_lang_Object)
+                    cls.rank_field = 0;
+                else {
+                    int r = rank(supertype(cls));
+                    for (List<Type> l = interfaces(cls);
+                         l.nonEmpty();
+                         l = l.tail) {
+                        if (rank(l.head) > r)
+                            r = rank(l.head);
+                    }
+                    cls.rank_field = r + 1;
+                }
+            }
+            return cls.rank_field;
+        }
+        case TYPEVAR: {
+            TypeVar tvar = (TypeVar)t;
+            if (tvar.rank_field < 0) {
+                int r = rank(supertype(tvar));
+                for (List<Type> l = interfaces(tvar);
+                     l.nonEmpty();
+                     l = l.tail) {
+                    if (rank(l.head) > r) r = rank(l.head);
+                }
+                tvar.rank_field = r + 1;
+            }
+            return tvar.rank_field;
+        }
+        case ERROR:
+        case NONE:
+            return 0;
+        default:
+            throw new AssertionError();
+        }
+    }
+    // </editor-fold>
+
+    /**
+     * Helper method for generating a string representation of a given type
+     * accordingly to a given locale
+     */
+    public String toString(Type t, Locale locale) {
+        return Printer.createStandardPrinter(messages).visit(t, locale);
+    }
+
+    /**
+     * Helper method for generating a string representation of a given type
+     * accordingly to a given locale
+     */
+    public String toString(Symbol t, Locale locale) {
+        return Printer.createStandardPrinter(messages).visit(t, locale);
+    }
+
+    // <editor-fold defaultstate="collapsed" desc="toString">
+    /**
+     * This toString is slightly more descriptive than the one on Type.
+     *
+     * @deprecated Types.toString(Type t, Locale l) provides better support
+     * for localization
+     */
+    @Deprecated
+    public String toString(Type t) {
+        if (t.hasTag(FORALL)) {
+            ForAll forAll = (ForAll)t;
+            return typaramsString(forAll.tvars) + forAll.qtype;
+        }
+        return "" + t;
+    }
+    // where
+        private String typaramsString(List<Type> tvars) {
+            StringBuilder s = new StringBuilder();
+            s.append('<');
+            boolean first = true;
+            for (Type t : tvars) {
+                if (!first) s.append(", ");
+                first = false;
+                appendTyparamString(((TypeVar)t), s);
+            }
+            s.append('>');
+            return s.toString();
+        }
+        private void appendTyparamString(TypeVar t, StringBuilder buf) {
+            buf.append(t);
+            if (t.bound == null ||
+                t.bound.tsym.getQualifiedName() == names.java_lang_Object)
+                return;
+            buf.append(" extends "); // Java syntax; no need for i18n
+            Type bound = t.bound;
+            if (!bound.isCompound()) {
+                buf.append(bound);
+            } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
+                buf.append(supertype(t));
+                for (Type intf : interfaces(t)) {
+                    buf.append('&');
+                    buf.append(intf);
+                }
+            } else {
+                // No superclass was given in bounds.
+                // In this case, supertype is Object, erasure is first interface.
+                boolean first = true;
+                for (Type intf : interfaces(t)) {
+                    if (!first) buf.append('&');
+                    first = false;
+                    buf.append(intf);
+                }
+            }
+        }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
+    /**
+     * A cache for closures.
+     *
+     * <p>A closure is a list of all the supertypes and interfaces of
+     * a class or interface type, ordered by ClassSymbol.precedes
+     * (that is, subclasses come first, arbitrary but fixed
+     * otherwise).
+     */
+    private Map<Type,List<Type>> closureCache = new HashMap<>();
+
+    /**
+     * Returns the closure of a class or interface type.
+     */
+    public List<Type> closure(Type t) {
+        List<Type> cl = closureCache.get(t);
+        if (cl == null) {
+            Type st = supertype(t);
+            if (!t.isCompound()) {
+                if (st.hasTag(CLASS)) {
+                    cl = insert(closure(st), t);
+                } else if (st.hasTag(TYPEVAR)) {
+                    cl = closure(st).prepend(t);
+                } else {
+                    cl = List.of(t);
+                }
+            } else {
+                cl = closure(supertype(t));
+            }
+            for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
+                cl = union(cl, closure(l.head));
+            closureCache.put(t, cl);
+        }
+        return cl;
+    }
+
+    /**
+     * Collect types into a new closure (using a @code{ClosureHolder})
+     */
+    public Collector<Type, ClosureHolder, List<Type>> closureCollector(boolean minClosure, BiPredicate<Type, Type> shouldSkip) {
+        return Collector.of(() -> new ClosureHolder(minClosure, shouldSkip),
+                ClosureHolder::add,
+                ClosureHolder::merge,
+                ClosureHolder::closure);
+    }
+    //where
+        class ClosureHolder {
+            List<Type> closure;
+            final boolean minClosure;
+            final BiPredicate<Type, Type> shouldSkip;
+
+            ClosureHolder(boolean minClosure, BiPredicate<Type, Type> shouldSkip) {
+                this.closure = List.nil();
+                this.minClosure = minClosure;
+                this.shouldSkip = shouldSkip;
+            }
+
+            void add(Type type) {
+                closure = insert(closure, type, shouldSkip);
+            }
+
+            ClosureHolder merge(ClosureHolder other) {
+                closure = union(closure, other.closure, shouldSkip);
+                return this;
+            }
+
+            List<Type> closure() {
+                return minClosure ? closureMin(closure) : closure;
+            }
+        }
+
+    BiPredicate<Type, Type> basicClosureSkip = (t1, t2) -> t1.tsym == t2.tsym;
+
+    /**
+     * Insert a type in a closure
+     */
+    public List<Type> insert(List<Type> cl, Type t, BiPredicate<Type, Type> shouldSkip) {
+        if (cl.isEmpty()) {
+            return cl.prepend(t);
+        } else if (shouldSkip.test(t, cl.head)) {
+            return cl;
+        } else if (t.tsym.precedes(cl.head.tsym, this)) {
+            return cl.prepend(t);
+        } else {
+            // t comes after head, or the two are unrelated
+            return insert(cl.tail, t, shouldSkip).prepend(cl.head);
+        }
+    }
+
+    public List<Type> insert(List<Type> cl, Type t) {
+        return insert(cl, t, basicClosureSkip);
+    }
+
+    /**
+     * Form the union of two closures
+     */
+    public List<Type> union(List<Type> cl1, List<Type> cl2, BiPredicate<Type, Type> shouldSkip) {
+        if (cl1.isEmpty()) {
+            return cl2;
+        } else if (cl2.isEmpty()) {
+            return cl1;
+        } else if (shouldSkip.test(cl1.head, cl2.head)) {
+            return union(cl1.tail, cl2.tail, shouldSkip).prepend(cl1.head);
+        } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
+            return union(cl1.tail, cl2, shouldSkip).prepend(cl1.head);
+        } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
+            return union(cl1, cl2.tail, shouldSkip).prepend(cl2.head);
+        } else {
+            // unrelated types
+            return union(cl1.tail, cl2, shouldSkip).prepend(cl1.head);
+        }
+    }
+
+    public List<Type> union(List<Type> cl1, List<Type> cl2) {
+        return union(cl1, cl2, basicClosureSkip);
+    }
+
+    /**
+     * Intersect two closures
+     */
+    public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
+        if (cl1 == cl2)
+            return cl1;
+        if (cl1.isEmpty() || cl2.isEmpty())
+            return List.nil();
+        if (cl1.head.tsym.precedes(cl2.head.tsym, this))
+            return intersect(cl1.tail, cl2);
+        if (cl2.head.tsym.precedes(cl1.head.tsym, this))
+            return intersect(cl1, cl2.tail);
+        if (isSameType(cl1.head, cl2.head))
+            return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
+        if (cl1.head.tsym == cl2.head.tsym &&
+            cl1.head.hasTag(CLASS) && cl2.head.hasTag(CLASS)) {
+            if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
+                Type merge = merge(cl1.head,cl2.head);
+                return intersect(cl1.tail, cl2.tail).prepend(merge);
+            }
+            if (cl1.head.isRaw() || cl2.head.isRaw())
+                return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
+        }
+        return intersect(cl1.tail, cl2.tail);
+    }
+    // where
+        class TypePair {
+            final Type t1;
+            final Type t2;
+            boolean strict;
+
+            TypePair(Type t1, Type t2) {
+                this(t1, t2, false);
+            }
+
+            TypePair(Type t1, Type t2, boolean strict) {
+                this.t1 = t1;
+                this.t2 = t2;
+                this.strict = strict;
+            }
+            @Override
+            public int hashCode() {
+                return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
+            }
+            @Override
+            public boolean equals(Object obj) {
+                if (!(obj instanceof TypePair))
+                    return false;
+                TypePair typePair = (TypePair)obj;
+                return isSameType(t1, typePair.t1, strict)
+                    && isSameType(t2, typePair.t2, strict);
+            }
+        }
+        Set<TypePair> mergeCache = new HashSet<>();
+        private Type merge(Type c1, Type c2) {
+            ClassType class1 = (ClassType) c1;
+            List<Type> act1 = class1.getTypeArguments();
+            ClassType class2 = (ClassType) c2;
+            List<Type> act2 = class2.getTypeArguments();
+            ListBuffer<Type> merged = new ListBuffer<>();
+            List<Type> typarams = class1.tsym.type.getTypeArguments();
+
+            while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
+                if (containsType(act1.head, act2.head)) {
+                    merged.append(act1.head);
+                } else if (containsType(act2.head, act1.head)) {
+                    merged.append(act2.head);
+                } else {
+                    TypePair pair = new TypePair(c1, c2);
+                    Type m;
+                    if (mergeCache.add(pair)) {
+                        m = new WildcardType(lub(wildUpperBound(act1.head),
+                                                 wildUpperBound(act2.head)),
+                                             BoundKind.EXTENDS,
+                                             syms.boundClass);
+                        mergeCache.remove(pair);
+                    } else {
+                        m = new WildcardType(syms.objectType,
+                                             BoundKind.UNBOUND,
+                                             syms.boundClass);
+                    }
+                    merged.append(m.withTypeVar(typarams.head));
+                }
+                act1 = act1.tail;
+                act2 = act2.tail;
+                typarams = typarams.tail;
+            }
+            Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
+            // There is no spec detailing how type annotations are to
+            // be inherited.  So set it to noAnnotations for now
+            return new ClassType(class1.getEnclosingType(), merged.toList(),
+                                 class1.tsym);
+        }
+
+    /**
+     * Return the minimum type of a closure, a compound type if no
+     * unique minimum exists.
+     */
+    private Type compoundMin(List<Type> cl) {
+        if (cl.isEmpty()) return syms.objectType;
+        List<Type> compound = closureMin(cl);
+        if (compound.isEmpty())
+            return null;
+        else if (compound.tail.isEmpty())
+            return compound.head;
+        else
+            return makeIntersectionType(compound);
+    }
+
+    /**
+     * Return the minimum types of a closure, suitable for computing
+     * compoundMin or glb.
+     */
+    private List<Type> closureMin(List<Type> cl) {
+        ListBuffer<Type> classes = new ListBuffer<>();
+        ListBuffer<Type> interfaces = new ListBuffer<>();
+        Set<Type> toSkip = new HashSet<>();
+        while (!cl.isEmpty()) {
+            Type current = cl.head;
+            boolean keep = !toSkip.contains(current);
+            if (keep && current.hasTag(TYPEVAR)) {
+                // skip lower-bounded variables with a subtype in cl.tail
+                for (Type t : cl.tail) {
+                    if (isSubtypeNoCapture(t, current)) {
+                        keep = false;
+                        break;
+                    }
+                }
+            }
+            if (keep) {
+                if (current.isInterface())
+                    interfaces.append(current);
+                else
+                    classes.append(current);
+                for (Type t : cl.tail) {
+                    // skip supertypes of 'current' in cl.tail
+                    if (isSubtypeNoCapture(current, t))
+                        toSkip.add(t);
+                }
+            }
+            cl = cl.tail;
+        }
+        return classes.appendList(interfaces).toList();
+    }
+
+    /**
+     * Return the least upper bound of list of types.  if the lub does
+     * not exist return null.
+     */
+    public Type lub(List<Type> ts) {
+        return lub(ts.toArray(new Type[ts.length()]));
+    }
+
+    /**
+     * Return the least upper bound (lub) of set of types.  If the lub
+     * does not exist return the type of null (bottom).
+     */
+    public Type lub(Type... ts) {
+        final int UNKNOWN_BOUND = 0;
+        final int ARRAY_BOUND = 1;
+        final int CLASS_BOUND = 2;
+
+        int[] kinds = new int[ts.length];
+
+        int boundkind = UNKNOWN_BOUND;
+        for (int i = 0 ; i < ts.length ; i++) {
+            Type t = ts[i];
+            switch (t.getTag()) {
+            case CLASS:
+                boundkind |= kinds[i] = CLASS_BOUND;
+                break;
+            case ARRAY:
+                boundkind |= kinds[i] = ARRAY_BOUND;
+                break;
+            case  TYPEVAR:
+                do {
+                    t = t.getUpperBound();
+                } while (t.hasTag(TYPEVAR));
+                if (t.hasTag(ARRAY)) {
+                    boundkind |= kinds[i] = ARRAY_BOUND;
+                } else {
+                    boundkind |= kinds[i] = CLASS_BOUND;
+                }
+                break;
+            default:
+                kinds[i] = UNKNOWN_BOUND;
+                if (t.isPrimitive())
+                    return syms.errType;
+            }
+        }
+        switch (boundkind) {
+        case 0:
+            return syms.botType;
+
+        case ARRAY_BOUND:
+            // calculate lub(A[], B[])
+            Type[] elements = new Type[ts.length];
+            for (int i = 0 ; i < ts.length ; i++) {
+                Type elem = elements[i] = elemTypeFun.apply(ts[i]);
+                if (elem.isPrimitive()) {
+                    // if a primitive type is found, then return
+                    // arraySuperType unless all the types are the
+                    // same
+                    Type first = ts[0];
+                    for (int j = 1 ; j < ts.length ; j++) {
+                        if (!isSameType(first, ts[j])) {
+                             // lub(int[], B[]) is Cloneable & Serializable
+                            return arraySuperType();
+                        }
+                    }
+                    // all the array types are the same, return one
+                    // lub(int[], int[]) is int[]
+                    return first;
+                }
+            }
+            // lub(A[], B[]) is lub(A, B)[]
+            return new ArrayType(lub(elements), syms.arrayClass);
+
+        case CLASS_BOUND:
+            // calculate lub(A, B)
+            int startIdx = 0;
+            for (int i = 0; i < ts.length ; i++) {
+                Type t = ts[i];
+                if (t.hasTag(CLASS) || t.hasTag(TYPEVAR)) {
+                    break;
+                } else {
+                    startIdx++;
+                }
+            }
+            Assert.check(startIdx < ts.length);
+            //step 1 - compute erased candidate set (EC)
+            List<Type> cl = erasedSupertypes(ts[startIdx]);
+            for (int i = startIdx + 1 ; i < ts.length ; i++) {
+                Type t = ts[i];
+                if (t.hasTag(CLASS) || t.hasTag(TYPEVAR))
+                    cl = intersect(cl, erasedSupertypes(t));
+            }
+            //step 2 - compute minimal erased candidate set (MEC)
+            List<Type> mec = closureMin(cl);
+            //step 3 - for each element G in MEC, compute lci(Inv(G))
+            List<Type> candidates = List.nil();
+            for (Type erasedSupertype : mec) {
+                List<Type> lci = List.of(asSuper(ts[startIdx], erasedSupertype.tsym));
+                for (int i = startIdx + 1 ; i < ts.length ; i++) {
+                    Type superType = asSuper(ts[i], erasedSupertype.tsym);
+                    lci = intersect(lci, superType != null ? List.of(superType) : List.nil());
+                }
+                candidates = candidates.appendList(lci);
+            }
+            //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
+            //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
+            return compoundMin(candidates);
+
+        default:
+            // calculate lub(A, B[])
+            List<Type> classes = List.of(arraySuperType());
+            for (int i = 0 ; i < ts.length ; i++) {
+                if (kinds[i] != ARRAY_BOUND) // Filter out any arrays
+                    classes = classes.prepend(ts[i]);
+            }
+            // lub(A, B[]) is lub(A, arraySuperType)
+            return lub(classes);
+        }
+    }
+    // where
+        List<Type> erasedSupertypes(Type t) {
+            ListBuffer<Type> buf = new ListBuffer<>();
+            for (Type sup : closure(t)) {
+                if (sup.hasTag(TYPEVAR)) {
+                    buf.append(sup);
+                } else {
+                    buf.append(erasure(sup));
+                }
+            }
+            return buf.toList();
+        }
+
+        private Type arraySuperType = null;
+        private Type arraySuperType() {
+            // initialized lazily to avoid problems during compiler startup
+            if (arraySuperType == null) {
+                synchronized (this) {
+                    if (arraySuperType == null) {
+                        // JLS 10.8: all arrays implement Cloneable and Serializable.
+                        arraySuperType = makeIntersectionType(List.of(syms.serializableType,
+                                syms.cloneableType), true);
+                    }
+                }
+            }
+            return arraySuperType;
+        }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
+    public Type glb(List<Type> ts) {
+        Type t1 = ts.head;
+        for (Type t2 : ts.tail) {
+            if (t1.isErroneous())
+                return t1;
+            t1 = glb(t1, t2);
+        }
+        return t1;
+    }
+    //where
+    public Type glb(Type t, Type s) {
+        if (s == null)
+            return t;
+        else if (t.isPrimitive() || s.isPrimitive())
+            return syms.errType;
+        else if (isSubtypeNoCapture(t, s))
+            return t;
+        else if (isSubtypeNoCapture(s, t))
+            return s;
+
+        List<Type> closure = union(closure(t), closure(s));
+        return glbFlattened(closure, t);
+    }
+    //where
+    /**
+     * Perform glb for a list of non-primitive, non-error, non-compound types;
+     * redundant elements are removed.  Bounds should be ordered according to
+     * {@link Symbol#precedes(TypeSymbol,Types)}.
+     *
+     * @param flatBounds List of type to glb
+     * @param errT Original type to use if the result is an error type
+     */
+    private Type glbFlattened(List<Type> flatBounds, Type errT) {
+        List<Type> bounds = closureMin(flatBounds);
+
+        if (bounds.isEmpty()) {             // length == 0
+            return syms.objectType;
+        } else if (bounds.tail.isEmpty()) { // length == 1
+            return bounds.head;
+        } else {                            // length > 1
+            int classCount = 0;
+            List<Type> cvars = List.nil();
+            List<Type> lowers = List.nil();
+            for (Type bound : bounds) {
+                if (!bound.isInterface()) {
+                    classCount++;
+                    Type lower = cvarLowerBound(bound);
+                    if (bound != lower && !lower.hasTag(BOT)) {
+                        cvars = cvars.append(bound);
+                        lowers = lowers.append(lower);
+                    }
+                }
+            }
+            if (classCount > 1) {
+                if (lowers.isEmpty()) {
+                    return createErrorType(errT);
+                } else {
+                    // try again with lower bounds included instead of capture variables
+                    List<Type> newBounds = bounds.diff(cvars).appendList(lowers);
+                    return glb(newBounds);
+                }
+            }
+        }
+        return makeIntersectionType(bounds);
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="hashCode">
+    /**
+     * Compute a hash code on a type.
+     */
+    public int hashCode(Type t) {
+        return hashCode(t, false);
+    }
+
+    public int hashCode(Type t, boolean strict) {
+        return strict ?
+                hashCodeStrictVisitor.visit(t) :
+                hashCodeVisitor.visit(t);
+    }
+    // where
+        private static final HashCodeVisitor hashCodeVisitor = new HashCodeVisitor();
+        private static final HashCodeVisitor hashCodeStrictVisitor = new HashCodeVisitor() {
+            @Override
+            public Integer visitTypeVar(TypeVar t, Void ignored) {
+                return System.identityHashCode(t);
+            }
+        };
+
+        private static class HashCodeVisitor extends UnaryVisitor<Integer> {
+            public Integer visitType(Type t, Void ignored) {
+                return t.getTag().ordinal();
+            }
+
+            @Override
+            public Integer visitClassType(ClassType t, Void ignored) {
+                int result = visit(t.getEnclosingType());
+                result *= 127;
+                result += t.tsym.flatName().hashCode();
+                for (Type s : t.getTypeArguments()) {
+                    result *= 127;
+                    result += visit(s);
+                }
+                return result;
+            }
+
+            @Override
+            public Integer visitMethodType(MethodType t, Void ignored) {
+                int h = METHOD.ordinal();
+                for (List<Type> thisargs = t.argtypes;
+                     thisargs.tail != null;
+                     thisargs = thisargs.tail)
+                    h = (h << 5) + visit(thisargs.head);
+                return (h << 5) + visit(t.restype);
+            }
+
+            @Override
+            public Integer visitWildcardType(WildcardType t, Void ignored) {
+                int result = t.kind.hashCode();
+                if (t.type != null) {
+                    result *= 127;
+                    result += visit(t.type);
+                }
+                return result;
+            }
+
+            @Override
+            public Integer visitArrayType(ArrayType t, Void ignored) {
+                return visit(t.elemtype) + 12;
+            }
+
+            @Override
+            public Integer visitTypeVar(TypeVar t, Void ignored) {
+                return System.identityHashCode(t);
+            }
+
+            @Override
+            public Integer visitUndetVar(UndetVar t, Void ignored) {
+                return System.identityHashCode(t);
+            }
+
+            @Override
+            public Integer visitErrorType(ErrorType t, Void ignored) {
+                return 0;
+            }
+        }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
+    /**
+     * Does t have a result that is a subtype of the result type of s,
+     * suitable for covariant returns?  It is assumed that both types
+     * are (possibly polymorphic) method types.  Monomorphic method
+     * types are handled in the obvious way.  Polymorphic method types
+     * require renaming all type variables of one to corresponding
+     * type variables in the other, where correspondence is by
+     * position in the type parameter list. */
+    public boolean resultSubtype(Type t, Type s, Warner warner) {
+        List<Type> tvars = t.getTypeArguments();
+        List<Type> svars = s.getTypeArguments();
+        Type tres = t.getReturnType();
+        Type sres = subst(s.getReturnType(), svars, tvars);
+        return covariantReturnType(tres, sres, warner);
+    }
+
+    /**
+     * Return-Type-Substitutable.
+     * @jls section 8.4.5
+     */
+    public boolean returnTypeSubstitutable(Type r1, Type r2) {
+        if (hasSameArgs(r1, r2))
+            return resultSubtype(r1, r2, noWarnings);
+        else
+            return covariantReturnType(r1.getReturnType(),
+                                       erasure(r2.getReturnType()),
+                                       noWarnings);
+    }
+
+    public boolean returnTypeSubstitutable(Type r1,
+                                           Type r2, Type r2res,
+                                           Warner warner) {
+        if (isSameType(r1.getReturnType(), r2res))
+            return true;
+        if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
+            return false;
+
+        if (hasSameArgs(r1, r2))
+            return covariantReturnType(r1.getReturnType(), r2res, warner);
+        if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
+            return true;
+        if (!isSubtype(r1.getReturnType(), erasure(r2res)))
+            return false;
+        warner.warn(LintCategory.UNCHECKED);
+        return true;
+    }
+
+    /**
+     * Is t an appropriate return type in an overrider for a
+     * method that returns s?
+     */
+    public boolean covariantReturnType(Type t, Type s, Warner warner) {
+        return
+            isSameType(t, s) ||
+            !t.isPrimitive() &&
+            !s.isPrimitive() &&
+            isAssignable(t, s, warner);
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
+    /**
+     * Return the class that boxes the given primitive.
+     */
+    public ClassSymbol boxedClass(Type t) {
+        return syms.enterClass(syms.java_base, syms.boxedName[t.getTag().ordinal()]);
+    }
+
+    /**
+     * Return the boxed type if 't' is primitive, otherwise return 't' itself.
+     */
+    public Type boxedTypeOrType(Type t) {
+        return t.isPrimitive() ?
+            boxedClass(t).type :
+            t;
+    }
+
+    /**
+     * Return the primitive type corresponding to a boxed type.
+     */
+    public Type unboxedType(Type t) {
+        for (int i=0; i<syms.boxedName.length; i++) {
+            Name box = syms.boxedName[i];
+            if (box != null &&
+                asSuper(t, syms.enterClass(syms.java_base, box)) != null)
+                return syms.typeOfTag[i];
+        }
+        return Type.noType;
+    }
+
+    /**
+     * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
+     */
+    public Type unboxedTypeOrType(Type t) {
+        Type unboxedType = unboxedType(t);
+        return unboxedType.hasTag(NONE) ? t : unboxedType;
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="Capture conversion">
+    /*
+     * JLS 5.1.10 Capture Conversion:
+     *
+     * Let G name a generic type declaration with n formal type
+     * parameters A1 ... An with corresponding bounds U1 ... Un. There
+     * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
+     * where, for 1 <= i <= n:
+     *
+     * + If Ti is a wildcard type argument (4.5.1) of the form ? then
+     *   Si is a fresh type variable whose upper bound is
+     *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
+     *   type.
+     *
+     * + If Ti is a wildcard type argument of the form ? extends Bi,
+     *   then Si is a fresh type variable whose upper bound is
+     *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
+     *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
+     *   a compile-time error if for any two classes (not interfaces)
+     *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
+     *
+     * + If Ti is a wildcard type argument of the form ? super Bi,
+     *   then Si is a fresh type variable whose upper bound is
+     *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
+     *
+     * + Otherwise, Si = Ti.
+     *
+     * Capture conversion on any type other than a parameterized type
+     * (4.5) acts as an identity conversion (5.1.1). Capture
+     * conversions never require a special action at run time and
+     * therefore never throw an exception at run time.
+     *
+     * Capture conversion is not applied recursively.
+     */
+    /**
+     * Capture conversion as specified by the JLS.
+     */
+
+    public List<Type> capture(List<Type> ts) {
+        List<Type> buf = List.nil();
+        for (Type t : ts) {
+            buf = buf.prepend(capture(t));
+        }
+        return buf.reverse();
+    }
+
+    public Type capture(Type t) {
+        if (!t.hasTag(CLASS)) {
+            return t;
+        }
+        if (t.getEnclosingType() != Type.noType) {
+            Type capturedEncl = capture(t.getEnclosingType());
+            if (capturedEncl != t.getEnclosingType()) {
+                Type type1 = memberType(capturedEncl, t.tsym);
+                t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
+            }
+        }
+        ClassType cls = (ClassType)t;
+        if (cls.isRaw() || !cls.isParameterized())
+            return cls;
+
+        ClassType G = (ClassType)cls.asElement().asType();
+        List<Type> A = G.getTypeArguments();
+        List<Type> T = cls.getTypeArguments();
+        List<Type> S = freshTypeVariables(T);
+
+        List<Type> currentA = A;
+        List<Type> currentT = T;
+        List<Type> currentS = S;
+        boolean captured = false;
+        while (!currentA.isEmpty() &&
+               !currentT.isEmpty() &&
+               !currentS.isEmpty()) {
+            if (currentS.head != currentT.head) {
+                captured = true;
+                WildcardType Ti = (WildcardType)currentT.head;
+                Type Ui = currentA.head.getUpperBound();
+                CapturedType Si = (CapturedType)currentS.head;
+                if (Ui == null)
+                    Ui = syms.objectType;
+                switch (Ti.kind) {
+                case UNBOUND:
+                    Si.bound = subst(Ui, A, S);
+                    Si.lower = syms.botType;
+                    break;
+                case EXTENDS:
+                    Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
+                    Si.lower = syms.botType;
+                    break;
+                case SUPER:
+                    Si.bound = subst(Ui, A, S);
+                    Si.lower = Ti.getSuperBound();
+                    break;
+                }
+                Type tmpBound = Si.bound.hasTag(UNDETVAR) ? ((UndetVar)Si.bound).qtype : Si.bound;
+                Type tmpLower = Si.lower.hasTag(UNDETVAR) ? ((UndetVar)Si.lower).qtype : Si.lower;
+                if (!Si.bound.hasTag(ERROR) &&
+                    !Si.lower.hasTag(ERROR) &&
+                    isSameType(tmpBound, tmpLower, false)) {
+                    currentS.head = Si.bound;
+                }
+            }
+            currentA = currentA.tail;
+            currentT = currentT.tail;
+            currentS = currentS.tail;
+        }
+        if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
+            return erasure(t); // some "rare" type involved
+
+        if (captured)
+            return new ClassType(cls.getEnclosingType(), S, cls.tsym,
+                                 cls.getMetadata());
+        else
+            return t;
+    }
+    // where
+        public List<Type> freshTypeVariables(List<Type> types) {
+            ListBuffer<Type> result = new ListBuffer<>();
+            for (Type t : types) {
+                if (t.hasTag(WILDCARD)) {
+                    Type bound = ((WildcardType)t).getExtendsBound();
+                    if (bound == null)
+                        bound = syms.objectType;
+                    result.append(new CapturedType(capturedName,
+                                                   syms.noSymbol,
+                                                   bound,
+                                                   syms.botType,
+                                                   (WildcardType)t));
+                } else {
+                    result.append(t);
+                }
+            }
+            return result.toList();
+        }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
+    private boolean sideCast(Type from, Type to, Warner warn) {
+        // We are casting from type $from$ to type $to$, which are
+        // non-final unrelated types.  This method
+        // tries to reject a cast by transferring type parameters
+        // from $to$ to $from$ by common superinterfaces.
+        boolean reverse = false;
+        Type target = to;
+        if ((to.tsym.flags() & INTERFACE) == 0) {
+            Assert.check((from.tsym.flags() & INTERFACE) != 0);
+            reverse = true;
+            to = from;
+            from = target;
+        }
+        List<Type> commonSupers = superClosure(to, erasure(from));
+        boolean giveWarning = commonSupers.isEmpty();
+        // The arguments to the supers could be unified here to
+        // get a more accurate analysis
+        while (commonSupers.nonEmpty()) {
+            Type t1 = asSuper(from, commonSupers.head.tsym);
+            Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
+            if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
+                return false;
+            giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
+            commonSupers = commonSupers.tail;
+        }
+        if (giveWarning && !isReifiable(reverse ? from : to))
+            warn.warn(LintCategory.UNCHECKED);
+        return true;
+    }
+
+    private boolean sideCastFinal(Type from, Type to, Warner warn) {
+        // We are casting from type $from$ to type $to$, which are
+        // unrelated types one of which is final and the other of
+        // which is an interface.  This method
+        // tries to reject a cast by transferring type parameters
+        // from the final class to the interface.
+        boolean reverse = false;
+        Type target = to;
+        if ((to.tsym.flags() & INTERFACE) == 0) {
+            Assert.check((from.tsym.flags() & INTERFACE) != 0);
+            reverse = true;
+            to = from;
+            from = target;
+        }
+        Assert.check((from.tsym.flags() & FINAL) != 0);
+        Type t1 = asSuper(from, to.tsym);
+        if (t1 == null) return false;
+        Type t2 = to;
+        if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
+            return false;
+        if (!isReifiable(target) &&
+            (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
+            warn.warn(LintCategory.UNCHECKED);
+        return true;
+    }
+
+    private boolean giveWarning(Type from, Type to) {
+        List<Type> bounds = to.isCompound() ?
+                directSupertypes(to) : List.of(to);
+        for (Type b : bounds) {
+            Type subFrom = asSub(from, b.tsym);
+            if (b.isParameterized() &&
+                    (!(isUnbounded(b) ||
+                    isSubtype(from, b) ||
+                    ((subFrom != null) && containsType(b.allparams(), subFrom.allparams()))))) {
+                return true;
+            }
+        }
+        return false;
+    }
+
+    private List<Type> superClosure(Type t, Type s) {
+        List<Type> cl = List.nil();
+        for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
+            if (isSubtype(s, erasure(l.head))) {
+                cl = insert(cl, l.head);
+            } else {
+                cl = union(cl, superClosure(l.head, s));
+            }
+        }
+        return cl;
+    }
+
+    private boolean containsTypeEquivalent(Type t, Type s) {
+        return isSameType(t, s) || // shortcut
+            containsType(t, s) && containsType(s, t);
+    }
+
+    // <editor-fold defaultstate="collapsed" desc="adapt">
+    /**
+     * Adapt a type by computing a substitution which maps a source
+     * type to a target type.
+     *
+     * @param source    the source type
+     * @param target    the target type
+     * @param from      the type variables of the computed substitution
+     * @param to        the types of the computed substitution.
+     */
+    public void adapt(Type source,
+                       Type target,
+                       ListBuffer<Type> from,
+                       ListBuffer<Type> to) throws AdaptFailure {
+        new Adapter(from, to).adapt(source, target);
+    }
+
+    class Adapter extends SimpleVisitor<Void, Type> {
+
+        ListBuffer<Type> from;
+        ListBuffer<Type> to;
+        Map<Symbol,Type> mapping;
+
+        Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
+            this.from = from;
+            this.to = to;
+            mapping = new HashMap<>();
+        }
+
+        public void adapt(Type source, Type target) throws AdaptFailure {
+            visit(source, target);
+            List<Type> fromList = from.toList();
+            List<Type> toList = to.toList();
+            while (!fromList.isEmpty()) {
+                Type val = mapping.get(fromList.head.tsym);
+                if (toList.head != val)
+                    toList.head = val;
+                fromList = fromList.tail;
+                toList = toList.tail;
+            }
+        }
+
+        @Override
+        public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
+            if (target.hasTag(CLASS))
+                adaptRecursive(source.allparams(), target.allparams());
+            return null;
+        }
+
+        @Override
+        public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
+            if (target.hasTag(ARRAY))
+                adaptRecursive(elemtype(source), elemtype(target));
+            return null;
+        }
+
+        @Override
+        public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
+            if (source.isExtendsBound())
+                adaptRecursive(wildUpperBound(source), wildUpperBound(target));
+            else if (source.isSuperBound())
+                adaptRecursive(wildLowerBound(source), wildLowerBound(target));
+            return null;
+        }
+
+        @Override
+        public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
+            // Check to see if there is
+            // already a mapping for $source$, in which case
+            // the old mapping will be merged with the new
+            Type val = mapping.get(source.tsym);
+            if (val != null) {
+                if (val.isSuperBound() && target.isSuperBound()) {
+                    val = isSubtype(wildLowerBound(val), wildLowerBound(target))
+                        ? target : val;
+                } else if (val.isExtendsBound() && target.isExtendsBound()) {
+                    val = isSubtype(wildUpperBound(val), wildUpperBound(target))
+                        ? val : target;
+                } else if (!isSameType(val, target)) {
+                    throw new AdaptFailure();
+                }
+            } else {
+                val = target;
+                from.append(source);
+                to.append(target);
+            }
+            mapping.put(source.tsym, val);
+            return null;
+        }
+
+        @Override
+        public Void visitType(Type source, Type target) {
+            return null;
+        }
+
+        private Set<TypePair> cache = new HashSet<>();
+
+        private void adaptRecursive(Type source, Type target) {
+            TypePair pair = new TypePair(source, target);
+            if (cache.add(pair)) {
+                try {
+                    visit(source, target);
+                } finally {
+                    cache.remove(pair);
+                }
+            }
+        }
+
+        private void adaptRecursive(List<Type> source, List<Type> target) {
+            if (source.length() == target.length()) {
+                while (source.nonEmpty()) {
+                    adaptRecursive(source.head, target.head);
+                    source = source.tail;
+                    target = target.tail;
+                }
+            }
+        }
+    }
+
+    public static class AdaptFailure extends RuntimeException {
+        static final long serialVersionUID = -7490231548272701566L;
+    }
+
+    private void adaptSelf(Type t,
+                           ListBuffer<Type> from,
+                           ListBuffer<Type> to) {
+        try {
+            //if (t.tsym.type != t)
+                adapt(t.tsym.type, t, from, to);
+        } catch (AdaptFailure ex) {
+            // Adapt should never fail calculating a mapping from
+            // t.tsym.type to t as there can be no merge problem.
+            throw new AssertionError(ex);
+        }
+    }
+    // </editor-fold>
+
+    /**
+     * Rewrite all type variables (universal quantifiers) in the given
+     * type to wildcards (existential quantifiers).  This is used to
+     * determine if a cast is allowed.  For example, if high is true
+     * and {@code T <: Number}, then {@code List<T>} is rewritten to
+     * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
+     * List<? extends Number>} a {@code List<T>} can be cast to {@code
+     * List<Integer>} with a warning.
+     * @param t a type
+     * @param high if true return an upper bound; otherwise a lower
+     * bound
+     * @param rewriteTypeVars only rewrite captured wildcards if false;
+     * otherwise rewrite all type variables
+     * @return the type rewritten with wildcards (existential
+     * quantifiers) only
+     */
+    private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
+        return new Rewriter(high, rewriteTypeVars).visit(t);
+    }
+
+    class Rewriter extends UnaryVisitor<Type> {
+
+        boolean high;
+        boolean rewriteTypeVars;
+
+        Rewriter(boolean high, boolean rewriteTypeVars) {
+            this.high = high;
+            this.rewriteTypeVars = rewriteTypeVars;
+        }
+
+        @Override
+        public Type visitClassType(ClassType t, Void s) {
+            ListBuffer<Type> rewritten = new ListBuffer<>();
+            boolean changed = false;
+            for (Type arg : t.allparams()) {
+                Type bound = visit(arg);
+                if (arg != bound) {
+                    changed = true;
+                }
+                rewritten.append(bound);
+            }
+            if (changed)
+                return subst(t.tsym.type,
+                        t.tsym.type.allparams(),
+                        rewritten.toList());
+            else
+                return t;
+        }
+
+        public Type visitType(Type t, Void s) {
+            return t;
+        }
+
+        @Override
+        public Type visitCapturedType(CapturedType t, Void s) {
+            Type w_bound = t.wildcard.type;
+            Type bound = w_bound.contains(t) ?
+                        erasure(w_bound) :
+                        visit(w_bound);
+            return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
+        }
+
+        @Override
+        public Type visitTypeVar(TypeVar t, Void s) {
+            if (rewriteTypeVars) {
+                Type bound = t.bound.contains(t) ?
+                        erasure(t.bound) :
+                        visit(t.bound);
+                return rewriteAsWildcardType(bound, t, EXTENDS);
+            } else {
+                return t;
+            }
+        }
+
+        @Override
+        public Type visitWildcardType(WildcardType t, Void s) {
+            Type bound2 = visit(t.type);
+            return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
+        }
+
+        private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
+            switch (bk) {
+               case EXTENDS: return high ?
+                       makeExtendsWildcard(B(bound), formal) :
+                       makeExtendsWildcard(syms.objectType, formal);
+               case SUPER: return high ?
+                       makeSuperWildcard(syms.botType, formal) :
+                       makeSuperWildcard(B(bound), formal);
+               case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
+               default:
+                   Assert.error("Invalid bound kind " + bk);
+                   return null;
+            }
+        }
+
+        Type B(Type t) {
+            while (t.hasTag(WILDCARD)) {
+                WildcardType w = (WildcardType)t;
+                t = high ?
+                    w.getExtendsBound() :
+                    w.getSuperBound();
+                if (t == null) {
+                    t = high ? syms.objectType : syms.botType;
+                }
+            }
+            return t;
+        }
+    }
+
+
+    /**
+     * Create a wildcard with the given upper (extends) bound; create
+     * an unbounded wildcard if bound is Object.
+     *
+     * @param bound the upper bound
+     * @param formal the formal type parameter that will be
+     * substituted by the wildcard
+     */
+    private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
+        if (bound == syms.objectType) {
+            return new WildcardType(syms.objectType,
+                                    BoundKind.UNBOUND,
+                                    syms.boundClass,
+                                    formal);
+        } else {
+            return new WildcardType(bound,
+                                    BoundKind.EXTENDS,
+                                    syms.boundClass,
+                                    formal);
+        }
+    }
+
+    /**
+     * Create a wildcard with the given lower (super) bound; create an
+     * unbounded wildcard if bound is bottom (type of {@code null}).
+     *
+     * @param bound the lower bound
+     * @param formal the formal type parameter that will be
+     * substituted by the wildcard
+     */
+    private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
+        if (bound.hasTag(BOT)) {
+            return new WildcardType(syms.objectType,
+                                    BoundKind.UNBOUND,
+                                    syms.boundClass,
+                                    formal);
+        } else {
+            return new WildcardType(bound,
+                                    BoundKind.SUPER,
+                                    syms.boundClass,
+                                    formal);
+        }
+    }
+
+    /**
+     * A wrapper for a type that allows use in sets.
+     */
+    public static class UniqueType {
+        public final Type type;
+        final Types types;
+
+        public UniqueType(Type type, Types types) {
+            this.type = type;
+            this.types = types;
+        }
+
+        public int hashCode() {
+            return types.hashCode(type);
+        }
+
+        public boolean equals(Object obj) {
+            return (obj instanceof UniqueType) &&
+                types.isSameType(type, ((UniqueType)obj).type);
+        }
+
+        public String toString() {
+            return type.toString();
+        }
+
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="Visitors">
+    /**
+     * A default visitor for types.  All visitor methods except
+     * visitType are implemented by delegating to visitType.  Concrete
+     * subclasses must provide an implementation of visitType and can
+     * override other methods as needed.
+     *
+     * @param <R> the return type of the operation implemented by this
+     * visitor; use Void if no return type is needed.
+     * @param <S> the type of the second argument (the first being the
+     * type itself) of the operation implemented by this visitor; use
+     * Void if a second argument is not needed.
+     */
+    public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
+        final public R visit(Type t, S s)               { return t.accept(this, s); }
+        public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
+        public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
+        public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
+        public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
+        public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
+        public R visitModuleType(ModuleType t, S s)     { return visitType(t, s); }
+        public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
+        public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
+        public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
+        public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
+        public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
+    }
+
+    /**
+     * A default visitor for symbols.  All visitor methods except
+     * visitSymbol are implemented by delegating to visitSymbol.  Concrete
+     * subclasses must provide an implementation of visitSymbol and can
+     * override other methods as needed.
+     *
+     * @param <R> the return type of the operation implemented by this
+     * visitor; use Void if no return type is needed.
+     * @param <S> the type of the second argument (the first being the
+     * symbol itself) of the operation implemented by this visitor; use
+     * Void if a second argument is not needed.
+     */
+    public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
+        final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
+        public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
+        public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
+        public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
+        public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
+        public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
+        public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
+    }
+
+    /**
+     * A <em>simple</em> visitor for types.  This visitor is simple as
+     * captured wildcards, for-all types (generic methods), and
+     * undetermined type variables (part of inference) are hidden.
+     * Captured wildcards are hidden by treating them as type
+     * variables and the rest are hidden by visiting their qtypes.
+     *
+     * @param <R> the return type of the operation implemented by this
+     * visitor; use Void if no return type is needed.
+     * @param <S> the type of the second argument (the first being the
+     * type itself) of the operation implemented by this visitor; use
+     * Void if a second argument is not needed.
+     */
+    public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
+        @Override
+        public R visitCapturedType(CapturedType t, S s) {
+            return visitTypeVar(t, s);
+        }
+        @Override
+        public R visitForAll(ForAll t, S s) {
+            return visit(t.qtype, s);
+        }
+        @Override
+        public R visitUndetVar(UndetVar t, S s) {
+            return visit(t.qtype, s);
+        }
+    }
+
+    /**
+     * A plain relation on types.  That is a 2-ary function on the
+     * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
+     * <!-- In plain text: Type x Type -> Boolean -->
+     */
+    public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
+
+    /**
+     * A convenience visitor for implementing operations that only
+     * require one argument (the type itself), that is, unary
+     * operations.
+     *
+     * @param <R> the return type of the operation implemented by this
+     * visitor; use Void if no return type is needed.
+     */
+    public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
+        final public R visit(Type t) { return t.accept(this, null); }
+    }
+
+    /**
+     * A visitor for implementing a mapping from types to types.  The
+     * default behavior of this class is to implement the identity
+     * mapping (mapping a type to itself).  This can be overridden in
+     * subclasses.
+     *
+     * @param <S> the type of the second argument (the first being the
+     * type itself) of this mapping; use Void if a second argument is
+     * not needed.
+     */
+    public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
+        final public Type visit(Type t) { return t.accept(this, null); }
+        public Type visitType(Type t, S s) { return t; }
+    }
+
+    /**
+     * An abstract class for mappings from types to types (see {@link Type#map(TypeMapping)}.
+     * This class implements the functional interface {@code Function}, that allows it to be used
+     * fluently in stream-like processing.
+     */
+    public static class TypeMapping<S> extends MapVisitor<S> implements Function<Type, Type> {
+        @Override
+        public Type apply(Type type) { return visit(type); }
+
+        List<Type> visit(List<Type> ts, S s) {
+            return ts.map(t -> visit(t, s));
+        }
+
+        @Override
+        public Type visitCapturedType(CapturedType t, S s) {
+            return visitTypeVar(t, s);
+        }
+    }
+    // </editor-fold>
+
+
+    // <editor-fold defaultstate="collapsed" desc="Annotation support">
+
+    public RetentionPolicy getRetention(Attribute.Compound a) {
+        return getRetention(a.type.tsym);
+    }
+
+    public RetentionPolicy getRetention(TypeSymbol sym) {
+        RetentionPolicy vis = RetentionPolicy.CLASS; // the default
+        Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
+        if (c != null) {
+            Attribute value = c.member(names.value);
+            if (value != null && value instanceof Attribute.Enum) {
+                Name levelName = ((Attribute.Enum)value).value.name;
+                if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
+                else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
+                else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
+                else ;// /* fail soft */ throw new AssertionError(levelName);
+            }
+        }
+        return vis;
+    }
+    // </editor-fold>
+
+    // <editor-fold defaultstate="collapsed" desc="Signature Generation">
+
+    public static abstract class SignatureGenerator {
+
+        private final Types types;
+
+        protected abstract void append(char ch);
+        protected abstract void append(byte[] ba);
+        protected abstract void append(Name name);
+        protected void classReference(ClassSymbol c) { /* by default: no-op */ }
+
+        protected SignatureGenerator(Types types) {
+            this.types = types;
+        }
+
+        /**
+         * Assemble signature of given type in string buffer.
+         */
+        public void assembleSig(Type type) {
+            switch (type.getTag()) {
+                case BYTE:
+                    append('B');
+                    break;
+                case SHORT:
+                    append('S');
+                    break;
+                case CHAR:
+                    append('C');
+                    break;
+                case INT:
+                    append('I');
+                    break;
+                case LONG:
+                    append('J');
+                    break;
+                case FLOAT:
+                    append('F');
+                    break;
+                case DOUBLE:
+                    append('D');
+                    break;
+                case BOOLEAN:
+                    append('Z');
+                    break;
+                case VOID:
+                    append('V');
+                    break;
+                case CLASS:
+                    append('L');
+                    assembleClassSig(type);
+                    append(';');
+                    break;
+                case ARRAY:
+                    ArrayType at = (ArrayType) type;
+                    append('[');
+                    assembleSig(at.elemtype);
+                    break;
+                case METHOD:
+                    MethodType mt = (MethodType) type;
+                    append('(');
+                    assembleSig(mt.argtypes);
+                    append(')');
+                    assembleSig(mt.restype);
+                    if (hasTypeVar(mt.thrown)) {
+                        for (List<Type> l = mt.thrown; l.nonEmpty(); l = l.tail) {
+                            append('^');
+                            assembleSig(l.head);
+                        }
+                    }
+                    break;
+                case WILDCARD: {
+                    Type.WildcardType ta = (Type.WildcardType) type;
+                    switch (ta.kind) {
+                        case SUPER:
+                            append('-');
+                            assembleSig(ta.type);
+                            break;
+                        case EXTENDS:
+                            append('+');
+                            assembleSig(ta.type);
+                            break;
+                        case UNBOUND:
+                            append('*');
+                            break;
+                        default:
+                            throw new AssertionError(ta.kind);
+                    }
+                    break;
+                }
+                case TYPEVAR:
+                    append('T');
+                    append(type.tsym.name);
+                    append(';');
+                    break;
+                case FORALL:
+                    Type.ForAll ft = (Type.ForAll) type;
+                    assembleParamsSig(ft.tvars);
+                    assembleSig(ft.qtype);
+                    break;
+                default:
+                    throw new AssertionError("typeSig " + type.getTag());
+            }
+        }
+
+        public boolean hasTypeVar(List<Type> l) {
+            while (l.nonEmpty()) {
+                if (l.head.hasTag(TypeTag.TYPEVAR)) {
+                    return true;
+                }
+                l = l.tail;
+            }
+            return false;
+        }
+
+        public void assembleClassSig(Type type) {
+            ClassType ct = (ClassType) type;
+            ClassSymbol c = (ClassSymbol) ct.tsym;
+            classReference(c);
+            Type outer = ct.getEnclosingType();
+            if (outer.allparams().nonEmpty()) {
+                boolean rawOuter =
+                        c.owner.kind == MTH || // either a local class
+                        c.name == types.names.empty; // or anonymous
+                assembleClassSig(rawOuter
+                        ? types.erasure(outer)
+                        : outer);
+                append(rawOuter ? '$' : '.');
+                Assert.check(c.flatname.startsWith(c.owner.enclClass().flatname));
+                append(rawOuter
+                        ? c.flatname.subName(c.owner.enclClass().flatname.getByteLength() + 1, c.flatname.getByteLength())
+                        : c.name);
+            } else {
+                append(externalize(c.flatname));
+            }
+            if (ct.getTypeArguments().nonEmpty()) {
+                append('<');
+                assembleSig(ct.getTypeArguments());
+                append('>');
+            }
+        }
+
+        public void assembleParamsSig(List<Type> typarams) {
+            append('<');
+            for (List<Type> ts = typarams; ts.nonEmpty(); ts = ts.tail) {
+                Type.TypeVar tvar = (Type.TypeVar) ts.head;
+                append(tvar.tsym.name);
+                List<Type> bounds = types.getBounds(tvar);
+                if ((bounds.head.tsym.flags() & INTERFACE) != 0) {
+                    append(':');
+                }
+                for (List<Type> l = bounds; l.nonEmpty(); l = l.tail) {
+                    append(':');
+                    assembleSig(l.head);
+                }
+            }
+            append('>');
+        }
+
+        private void assembleSig(List<Type> types) {
+            for (List<Type> ts = types; ts.nonEmpty(); ts = ts.tail) {
+                assembleSig(ts.head);
+            }
+        }
+    }
+    // </editor-fold>
+
+    public void newRound() {
+        descCache._map.clear();
+        isDerivedRawCache.clear();
+        implCache._map.clear();
+        membersCache._map.clear();
+        closureCache.clear();
+    }
+}