src/java.desktop/share/classes/sun/java2d/pisces/Stroker.java
changeset 47216 71c04702a3d5
parent 35667 ed476aba94de
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/java.desktop/share/classes/sun/java2d/pisces/Stroker.java	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,1231 @@
+/*
+ * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.pisces;
+
+import java.util.Arrays;
+import java.util.Iterator;
+import static java.lang.Math.ulp;
+import static java.lang.Math.sqrt;
+
+import sun.awt.geom.PathConsumer2D;
+
+// TODO: some of the arithmetic here is too verbose and prone to hard to
+// debug typos. We should consider making a small Point/Vector class that
+// has methods like plus(Point), minus(Point), dot(Point), cross(Point)and such
+final class Stroker implements PathConsumer2D {
+
+    private static final int MOVE_TO = 0;
+    private static final int DRAWING_OP_TO = 1; // ie. curve, line, or quad
+    private static final int CLOSE = 2;
+
+    /**
+     * Constant value for join style.
+     */
+    public static final int JOIN_MITER = 0;
+
+    /**
+     * Constant value for join style.
+     */
+    public static final int JOIN_ROUND = 1;
+
+    /**
+     * Constant value for join style.
+     */
+    public static final int JOIN_BEVEL = 2;
+
+    /**
+     * Constant value for end cap style.
+     */
+    public static final int CAP_BUTT = 0;
+
+    /**
+     * Constant value for end cap style.
+     */
+    public static final int CAP_ROUND = 1;
+
+    /**
+     * Constant value for end cap style.
+     */
+    public static final int CAP_SQUARE = 2;
+
+    private final PathConsumer2D out;
+
+    private final int capStyle;
+    private final int joinStyle;
+
+    private final float lineWidth2;
+
+    private final float[][] offset = new float[3][2];
+    private final float[] miter = new float[2];
+    private final float miterLimitSq;
+
+    private int prev;
+
+    // The starting point of the path, and the slope there.
+    private float sx0, sy0, sdx, sdy;
+    // the current point and the slope there.
+    private float cx0, cy0, cdx, cdy; // c stands for current
+    // vectors that when added to (sx0,sy0) and (cx0,cy0) respectively yield the
+    // first and last points on the left parallel path. Since this path is
+    // parallel, it's slope at any point is parallel to the slope of the
+    // original path (thought they may have different directions), so these
+    // could be computed from sdx,sdy and cdx,cdy (and vice versa), but that
+    // would be error prone and hard to read, so we keep these anyway.
+    private float smx, smy, cmx, cmy;
+
+    private final PolyStack reverse = new PolyStack();
+
+    /**
+     * Constructs a {@code Stroker}.
+     *
+     * @param pc2d an output {@code PathConsumer2D}.
+     * @param lineWidth the desired line width in pixels
+     * @param capStyle the desired end cap style, one of
+     * {@code CAP_BUTT}, {@code CAP_ROUND} or
+     * {@code CAP_SQUARE}.
+     * @param joinStyle the desired line join style, one of
+     * {@code JOIN_MITER}, {@code JOIN_ROUND} or
+     * {@code JOIN_BEVEL}.
+     * @param miterLimit the desired miter limit
+     */
+    public Stroker(PathConsumer2D pc2d,
+                   float lineWidth,
+                   int capStyle,
+                   int joinStyle,
+                   float miterLimit)
+    {
+        this.out = pc2d;
+
+        this.lineWidth2 = lineWidth / 2;
+        this.capStyle = capStyle;
+        this.joinStyle = joinStyle;
+
+        float limit = miterLimit * lineWidth2;
+        this.miterLimitSq = limit*limit;
+
+        this.prev = CLOSE;
+    }
+
+    private static void computeOffset(final float lx, final float ly,
+                                      final float w, final float[] m)
+    {
+        final float len = (float) sqrt(lx*lx + ly*ly);
+        if (len == 0) {
+            m[0] = m[1] = 0;
+        } else {
+            m[0] = (ly * w)/len;
+            m[1] = -(lx * w)/len;
+        }
+    }
+
+    // Returns true if the vectors (dx1, dy1) and (dx2, dy2) are
+    // clockwise (if dx1,dy1 needs to be rotated clockwise to close
+    // the smallest angle between it and dx2,dy2).
+    // This is equivalent to detecting whether a point q is on the right side
+    // of a line passing through points p1, p2 where p2 = p1+(dx1,dy1) and
+    // q = p2+(dx2,dy2), which is the same as saying p1, p2, q are in a
+    // clockwise order.
+    // NOTE: "clockwise" here assumes coordinates with 0,0 at the bottom left.
+    private static boolean isCW(final float dx1, final float dy1,
+                                final float dx2, final float dy2)
+    {
+        return dx1 * dy2 <= dy1 * dx2;
+    }
+
+    // pisces used to use fixed point arithmetic with 16 decimal digits. I
+    // didn't want to change the values of the constant below when I converted
+    // it to floating point, so that's why the divisions by 2^16 are there.
+    private static final float ROUND_JOIN_THRESHOLD = 1000/65536f;
+
+    private void drawRoundJoin(float x, float y,
+                               float omx, float omy, float mx, float my,
+                               boolean rev,
+                               float threshold)
+    {
+        if ((omx == 0 && omy == 0) || (mx == 0 && my == 0)) {
+            return;
+        }
+
+        float domx = omx - mx;
+        float domy = omy - my;
+        float len = domx*domx + domy*domy;
+        if (len < threshold) {
+            return;
+        }
+
+        if (rev) {
+            omx = -omx;
+            omy = -omy;
+            mx = -mx;
+            my = -my;
+        }
+        drawRoundJoin(x, y, omx, omy, mx, my, rev);
+    }
+
+    private void drawRoundJoin(float cx, float cy,
+                               float omx, float omy,
+                               float mx, float my,
+                               boolean rev)
+    {
+        // The sign of the dot product of mx,my and omx,omy is equal to the
+        // the sign of the cosine of ext
+        // (ext is the angle between omx,omy and mx,my).
+        final float cosext = omx * mx + omy * my;
+        // If it is >=0, we know that abs(ext) is <= 90 degrees, so we only
+        // need 1 curve to approximate the circle section that joins omx,omy
+        // and mx,my.
+        final int numCurves = (cosext >= 0f) ? 1 : 2;
+
+        switch (numCurves) {
+        case 1:
+            drawBezApproxForArc(cx, cy, omx, omy, mx, my, rev);
+            break;
+        case 2:
+            // we need to split the arc into 2 arcs spanning the same angle.
+            // The point we want will be one of the 2 intersections of the
+            // perpendicular bisector of the chord (omx,omy)->(mx,my) and the
+            // circle. We could find this by scaling the vector
+            // (omx+mx, omy+my)/2 so that it has length=lineWidth2 (and thus lies
+            // on the circle), but that can have numerical problems when the angle
+            // between omx,omy and mx,my is close to 180 degrees. So we compute a
+            // normal of (omx,omy)-(mx,my). This will be the direction of the
+            // perpendicular bisector. To get one of the intersections, we just scale
+            // this vector that its length is lineWidth2 (this works because the
+            // perpendicular bisector goes through the origin). This scaling doesn't
+            // have numerical problems because we know that lineWidth2 divided by
+            // this normal's length is at least 0.5 and at most sqrt(2)/2 (because
+            // we know the angle of the arc is > 90 degrees).
+            float nx = my - omy, ny = omx - mx;
+            float nlen = (float) sqrt(nx*nx + ny*ny);
+            float scale = lineWidth2/nlen;
+            float mmx = nx * scale, mmy = ny * scale;
+
+            // if (isCW(omx, omy, mx, my) != isCW(mmx, mmy, mx, my)) then we've
+            // computed the wrong intersection so we get the other one.
+            // The test above is equivalent to if (rev).
+            if (rev) {
+                mmx = -mmx;
+                mmy = -mmy;
+            }
+            drawBezApproxForArc(cx, cy, omx, omy, mmx, mmy, rev);
+            drawBezApproxForArc(cx, cy, mmx, mmy, mx, my, rev);
+            break;
+        }
+    }
+
+    // the input arc defined by omx,omy and mx,my must span <= 90 degrees.
+    private void drawBezApproxForArc(final float cx, final float cy,
+                                     final float omx, final float omy,
+                                     final float mx, final float my,
+                                     boolean rev)
+    {
+        final float cosext2 = (omx * mx + omy * my) / (2f * lineWidth2 * lineWidth2);
+
+        // check round off errors producing cos(ext) > 1 and a NaN below
+        // cos(ext) == 1 implies colinear segments and an empty join anyway
+        if (cosext2 >= 0.5f) {
+            // just return to avoid generating a flat curve:
+            return;
+        }
+
+        // cv is the length of P1-P0 and P2-P3 divided by the radius of the arc
+        // (so, cv assumes the arc has radius 1). P0, P1, P2, P3 are the points that
+        // define the bezier curve we're computing.
+        // It is computed using the constraints that P1-P0 and P3-P2 are parallel
+        // to the arc tangents at the endpoints, and that |P1-P0|=|P3-P2|.
+        float cv = (float) ((4.0 / 3.0) * sqrt(0.5 - cosext2) /
+                            (1.0 + sqrt(cosext2 + 0.5)));
+        // if clockwise, we need to negate cv.
+        if (rev) { // rev is equivalent to isCW(omx, omy, mx, my)
+            cv = -cv;
+        }
+        final float x1 = cx + omx;
+        final float y1 = cy + omy;
+        final float x2 = x1 - cv * omy;
+        final float y2 = y1 + cv * omx;
+
+        final float x4 = cx + mx;
+        final float y4 = cy + my;
+        final float x3 = x4 + cv * my;
+        final float y3 = y4 - cv * mx;
+
+        emitCurveTo(x1, y1, x2, y2, x3, y3, x4, y4, rev);
+    }
+
+    private void drawRoundCap(float cx, float cy, float mx, float my) {
+        final float C = 0.5522847498307933f;
+        // the first and second arguments of the following two calls
+        // are really will be ignored by emitCurveTo (because of the false),
+        // but we put them in anyway, as opposed to just giving it 4 zeroes,
+        // because it's just 4 additions and it's not good to rely on this
+        // sort of assumption (right now it's true, but that may change).
+        emitCurveTo(cx+mx,      cy+my,
+                    cx+mx-C*my, cy+my+C*mx,
+                    cx-my+C*mx, cy+mx+C*my,
+                    cx-my,      cy+mx,
+                    false);
+        emitCurveTo(cx-my,      cy+mx,
+                    cx-my-C*mx, cy+mx-C*my,
+                    cx-mx-C*my, cy-my+C*mx,
+                    cx-mx,      cy-my,
+                    false);
+    }
+
+    // Put the intersection point of the lines (x0, y0) -> (x1, y1)
+    // and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1].
+    // If the lines are parallel, it will put a non finite number in m.
+    private void computeIntersection(final float x0, final float y0,
+                                     final float x1, final float y1,
+                                     final float x0p, final float y0p,
+                                     final float x1p, final float y1p,
+                                     final float[] m, int off)
+    {
+        float x10 = x1 - x0;
+        float y10 = y1 - y0;
+        float x10p = x1p - x0p;
+        float y10p = y1p - y0p;
+
+        float den = x10*y10p - x10p*y10;
+        float t = x10p*(y0-y0p) - y10p*(x0-x0p);
+        t /= den;
+        m[off++] = x0 + t*x10;
+        m[off] = y0 + t*y10;
+    }
+
+    private void drawMiter(final float pdx, final float pdy,
+                           final float x0, final float y0,
+                           final float dx, final float dy,
+                           float omx, float omy, float mx, float my,
+                           boolean rev)
+    {
+        if ((mx == omx && my == omy) ||
+            (pdx == 0 && pdy == 0) ||
+            (dx == 0 && dy == 0))
+        {
+            return;
+        }
+
+        if (rev) {
+            omx = -omx;
+            omy = -omy;
+            mx = -mx;
+            my = -my;
+        }
+
+        computeIntersection((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy,
+                            (dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my,
+                            miter, 0);
+
+        float lenSq = (miter[0]-x0)*(miter[0]-x0) + (miter[1]-y0)*(miter[1]-y0);
+
+        // If the lines are parallel, lenSq will be either NaN or +inf
+        // (actually, I'm not sure if the latter is possible. The important
+        // thing is that -inf is not possible, because lenSq is a square).
+        // For both of those values, the comparison below will fail and
+        // no miter will be drawn, which is correct.
+        if (lenSq < miterLimitSq) {
+            emitLineTo(miter[0], miter[1], rev);
+        }
+    }
+
+    public void moveTo(float x0, float y0) {
+        if (prev == DRAWING_OP_TO) {
+            finish();
+        }
+        this.sx0 = this.cx0 = x0;
+        this.sy0 = this.cy0 = y0;
+        this.cdx = this.sdx = 1;
+        this.cdy = this.sdy = 0;
+        this.prev = MOVE_TO;
+    }
+
+    public void lineTo(float x1, float y1) {
+        float dx = x1 - cx0;
+        float dy = y1 - cy0;
+        if (dx == 0f && dy == 0f) {
+            dx = 1;
+        }
+        computeOffset(dx, dy, lineWidth2, offset[0]);
+        float mx = offset[0][0];
+        float my = offset[0][1];
+
+        drawJoin(cdx, cdy, cx0, cy0, dx, dy, cmx, cmy, mx, my);
+
+        emitLineTo(cx0 + mx, cy0 + my);
+        emitLineTo(x1 + mx, y1 + my);
+
+        emitLineTo(cx0 - mx, cy0 - my, true);
+        emitLineTo(x1 - mx, y1 - my, true);
+
+        this.cmx = mx;
+        this.cmy = my;
+        this.cdx = dx;
+        this.cdy = dy;
+        this.cx0 = x1;
+        this.cy0 = y1;
+        this.prev = DRAWING_OP_TO;
+    }
+
+    public void closePath() {
+        if (prev != DRAWING_OP_TO) {
+            if (prev == CLOSE) {
+                return;
+            }
+            emitMoveTo(cx0, cy0 - lineWidth2);
+            this.cmx = this.smx = 0;
+            this.cmy = this.smy = -lineWidth2;
+            this.cdx = this.sdx = 1;
+            this.cdy = this.sdy = 0;
+            finish();
+            return;
+        }
+
+        if (cx0 != sx0 || cy0 != sy0) {
+            lineTo(sx0, sy0);
+        }
+
+        drawJoin(cdx, cdy, cx0, cy0, sdx, sdy, cmx, cmy, smx, smy);
+
+        emitLineTo(sx0 + smx, sy0 + smy);
+
+        emitMoveTo(sx0 - smx, sy0 - smy);
+        emitReverse();
+
+        this.prev = CLOSE;
+        emitClose();
+    }
+
+    private void emitReverse() {
+        while(!reverse.isEmpty()) {
+            reverse.pop(out);
+        }
+    }
+
+    public void pathDone() {
+        if (prev == DRAWING_OP_TO) {
+            finish();
+        }
+
+        out.pathDone();
+        // this shouldn't matter since this object won't be used
+        // after the call to this method.
+        this.prev = CLOSE;
+    }
+
+    private void finish() {
+        if (capStyle == CAP_ROUND) {
+            drawRoundCap(cx0, cy0, cmx, cmy);
+        } else if (capStyle == CAP_SQUARE) {
+            emitLineTo(cx0 - cmy + cmx, cy0 + cmx + cmy);
+            emitLineTo(cx0 - cmy - cmx, cy0 + cmx - cmy);
+        }
+
+        emitReverse();
+
+        if (capStyle == CAP_ROUND) {
+            drawRoundCap(sx0, sy0, -smx, -smy);
+        } else if (capStyle == CAP_SQUARE) {
+            emitLineTo(sx0 + smy - smx, sy0 - smx - smy);
+            emitLineTo(sx0 + smy + smx, sy0 - smx + smy);
+        }
+
+        emitClose();
+    }
+
+    private void emitMoveTo(final float x0, final float y0) {
+        out.moveTo(x0, y0);
+    }
+
+    private void emitLineTo(final float x1, final float y1) {
+        out.lineTo(x1, y1);
+    }
+
+    private void emitLineTo(final float x1, final float y1,
+                            final boolean rev)
+    {
+        if (rev) {
+            reverse.pushLine(x1, y1);
+        } else {
+            emitLineTo(x1, y1);
+        }
+    }
+
+    private void emitQuadTo(final float x0, final float y0,
+                            final float x1, final float y1,
+                            final float x2, final float y2, final boolean rev)
+    {
+        if (rev) {
+            reverse.pushQuad(x0, y0, x1, y1);
+        } else {
+            out.quadTo(x1, y1, x2, y2);
+        }
+    }
+
+    private void emitCurveTo(final float x0, final float y0,
+                             final float x1, final float y1,
+                             final float x2, final float y2,
+                             final float x3, final float y3, final boolean rev)
+    {
+        if (rev) {
+            reverse.pushCubic(x0, y0, x1, y1, x2, y2);
+        } else {
+            out.curveTo(x1, y1, x2, y2, x3, y3);
+        }
+    }
+
+    private void emitClose() {
+        out.closePath();
+    }
+
+    private void drawJoin(float pdx, float pdy,
+                          float x0, float y0,
+                          float dx, float dy,
+                          float omx, float omy,
+                          float mx, float my)
+    {
+        if (prev != DRAWING_OP_TO) {
+            emitMoveTo(x0 + mx, y0 + my);
+            this.sdx = dx;
+            this.sdy = dy;
+            this.smx = mx;
+            this.smy = my;
+        } else {
+            boolean cw = isCW(pdx, pdy, dx, dy);
+            if (joinStyle == JOIN_MITER) {
+                drawMiter(pdx, pdy, x0, y0, dx, dy, omx, omy, mx, my, cw);
+            } else if (joinStyle == JOIN_ROUND) {
+                drawRoundJoin(x0, y0,
+                              omx, omy,
+                              mx, my, cw,
+                              ROUND_JOIN_THRESHOLD);
+            }
+            emitLineTo(x0, y0, !cw);
+        }
+        prev = DRAWING_OP_TO;
+    }
+
+    private static boolean within(final float x1, final float y1,
+                                  final float x2, final float y2,
+                                  final float ERR)
+    {
+        assert ERR > 0 : "";
+        // compare taxicab distance. ERR will always be small, so using
+        // true distance won't give much benefit
+        return (Helpers.within(x1, x2, ERR) &&  // we want to avoid calling Math.abs
+                Helpers.within(y1, y2, ERR)); // this is just as good.
+    }
+
+    private void getLineOffsets(float x1, float y1,
+                                float x2, float y2,
+                                float[] left, float[] right) {
+        computeOffset(x2 - x1, y2 - y1, lineWidth2, offset[0]);
+        left[0] = x1 + offset[0][0];
+        left[1] = y1 + offset[0][1];
+        left[2] = x2 + offset[0][0];
+        left[3] = y2 + offset[0][1];
+        right[0] = x1 - offset[0][0];
+        right[1] = y1 - offset[0][1];
+        right[2] = x2 - offset[0][0];
+        right[3] = y2 - offset[0][1];
+    }
+
+    private int computeOffsetCubic(float[] pts, final int off,
+                                   float[] leftOff, float[] rightOff)
+    {
+        // if p1=p2 or p3=p4 it means that the derivative at the endpoint
+        // vanishes, which creates problems with computeOffset. Usually
+        // this happens when this stroker object is trying to winden
+        // a curve with a cusp. What happens is that curveTo splits
+        // the input curve at the cusp, and passes it to this function.
+        // because of inaccuracies in the splitting, we consider points
+        // equal if they're very close to each other.
+        final float x1 = pts[off + 0], y1 = pts[off + 1];
+        final float x2 = pts[off + 2], y2 = pts[off + 3];
+        final float x3 = pts[off + 4], y3 = pts[off + 5];
+        final float x4 = pts[off + 6], y4 = pts[off + 7];
+
+        float dx4 = x4 - x3;
+        float dy4 = y4 - y3;
+        float dx1 = x2 - x1;
+        float dy1 = y2 - y1;
+
+        // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4,
+        // in which case ignore if p1 == p2
+        final boolean p1eqp2 = within(x1,y1,x2,y2, 6 * ulp(y2));
+        final boolean p3eqp4 = within(x3,y3,x4,y4, 6 * ulp(y4));
+        if (p1eqp2 && p3eqp4) {
+            getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
+            return 4;
+        } else if (p1eqp2) {
+            dx1 = x3 - x1;
+            dy1 = y3 - y1;
+        } else if (p3eqp4) {
+            dx4 = x4 - x2;
+            dy4 = y4 - y2;
+        }
+
+        // if p2-p1 and p4-p3 are parallel, that must mean this curve is a line
+        float dotsq = (dx1 * dx4 + dy1 * dy4);
+        dotsq = dotsq * dotsq;
+        float l1sq = dx1 * dx1 + dy1 * dy1, l4sq = dx4 * dx4 + dy4 * dy4;
+        if (Helpers.within(dotsq, l1sq * l4sq, 4 * ulp(dotsq))) {
+            getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
+            return 4;
+        }
+
+//      What we're trying to do in this function is to approximate an ideal
+//      offset curve (call it I) of the input curve B using a bezier curve Bp.
+//      The constraints I use to get the equations are:
+//
+//      1. The computed curve Bp should go through I(0) and I(1). These are
+//      x1p, y1p, x4p, y4p, which are p1p and p4p. We still need to find
+//      4 variables: the x and y components of p2p and p3p (i.e. x2p, y2p, x3p, y3p).
+//
+//      2. Bp should have slope equal in absolute value to I at the endpoints. So,
+//      (by the way, the operator || in the comments below means "aligned with".
+//      It is defined on vectors, so when we say I'(0) || Bp'(0) we mean that
+//      vectors I'(0) and Bp'(0) are aligned, which is the same as saying
+//      that the tangent lines of I and Bp at 0 are parallel. Mathematically
+//      this means (I'(t) || Bp'(t)) <==> (I'(t) = c * Bp'(t)) where c is some
+//      nonzero constant.)
+//      I'(0) || Bp'(0) and I'(1) || Bp'(1). Obviously, I'(0) || B'(0) and
+//      I'(1) || B'(1); therefore, Bp'(0) || B'(0) and Bp'(1) || B'(1).
+//      We know that Bp'(0) || (p2p-p1p) and Bp'(1) || (p4p-p3p) and the same
+//      is true for any bezier curve; therefore, we get the equations
+//          (1) p2p = c1 * (p2-p1) + p1p
+//          (2) p3p = c2 * (p4-p3) + p4p
+//      We know p1p, p4p, p2, p1, p3, and p4; therefore, this reduces the number
+//      of unknowns from 4 to 2 (i.e. just c1 and c2).
+//      To eliminate these 2 unknowns we use the following constraint:
+//
+//      3. Bp(0.5) == I(0.5). Bp(0.5)=(x,y) and I(0.5)=(xi,yi), and I should note
+//      that I(0.5) is *the only* reason for computing dxm,dym. This gives us
+//          (3) Bp(0.5) = (p1p + 3 * (p2p + p3p) + p4p)/8, which is equivalent to
+//          (4) p2p + p3p = (Bp(0.5)*8 - p1p - p4p) / 3
+//      We can substitute (1) and (2) from above into (4) and we get:
+//          (5) c1*(p2-p1) + c2*(p4-p3) = (Bp(0.5)*8 - p1p - p4p)/3 - p1p - p4p
+//      which is equivalent to
+//          (6) c1*(p2-p1) + c2*(p4-p3) = (4/3) * (Bp(0.5) * 2 - p1p - p4p)
+//
+//      The right side of this is a 2D vector, and we know I(0.5), which gives us
+//      Bp(0.5), which gives us the value of the right side.
+//      The left side is just a matrix vector multiplication in disguise. It is
+//
+//      [x2-x1, x4-x3][c1]
+//      [y2-y1, y4-y3][c2]
+//      which, is equal to
+//      [dx1, dx4][c1]
+//      [dy1, dy4][c2]
+//      At this point we are left with a simple linear system and we solve it by
+//      getting the inverse of the matrix above. Then we use [c1,c2] to compute
+//      p2p and p3p.
+
+        float x = 0.125f * (x1 + 3 * (x2 + x3) + x4);
+        float y = 0.125f * (y1 + 3 * (y2 + y3) + y4);
+        // (dxm,dym) is some tangent of B at t=0.5. This means it's equal to
+        // c*B'(0.5) for some constant c.
+        float dxm = x3 + x4 - x1 - x2, dym = y3 + y4 - y1 - y2;
+
+        // this computes the offsets at t=0, 0.5, 1, using the property that
+        // for any bezier curve the vectors p2-p1 and p4-p3 are parallel to
+        // the (dx/dt, dy/dt) vectors at the endpoints.
+        computeOffset(dx1, dy1, lineWidth2, offset[0]);
+        computeOffset(dxm, dym, lineWidth2, offset[1]);
+        computeOffset(dx4, dy4, lineWidth2, offset[2]);
+        float x1p = x1 + offset[0][0]; // start
+        float y1p = y1 + offset[0][1]; // point
+        float xi  = x + offset[1][0]; // interpolation
+        float yi  = y + offset[1][1]; // point
+        float x4p = x4 + offset[2][0]; // end
+        float y4p = y4 + offset[2][1]; // point
+
+        float invdet43 = 4f / (3f * (dx1 * dy4 - dy1 * dx4));
+
+        float two_pi_m_p1_m_p4x = 2*xi - x1p - x4p;
+        float two_pi_m_p1_m_p4y = 2*yi - y1p - y4p;
+        float c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y);
+        float c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x);
+
+        float x2p, y2p, x3p, y3p;
+        x2p = x1p + c1*dx1;
+        y2p = y1p + c1*dy1;
+        x3p = x4p + c2*dx4;
+        y3p = y4p + c2*dy4;
+
+        leftOff[0] = x1p; leftOff[1] = y1p;
+        leftOff[2] = x2p; leftOff[3] = y2p;
+        leftOff[4] = x3p; leftOff[5] = y3p;
+        leftOff[6] = x4p; leftOff[7] = y4p;
+
+        x1p = x1 - offset[0][0]; y1p = y1 - offset[0][1];
+        xi = xi - 2 * offset[1][0]; yi = yi - 2 * offset[1][1];
+        x4p = x4 - offset[2][0]; y4p = y4 - offset[2][1];
+
+        two_pi_m_p1_m_p4x = 2*xi - x1p - x4p;
+        two_pi_m_p1_m_p4y = 2*yi - y1p - y4p;
+        c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y);
+        c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x);
+
+        x2p = x1p + c1*dx1;
+        y2p = y1p + c1*dy1;
+        x3p = x4p + c2*dx4;
+        y3p = y4p + c2*dy4;
+
+        rightOff[0] = x1p; rightOff[1] = y1p;
+        rightOff[2] = x2p; rightOff[3] = y2p;
+        rightOff[4] = x3p; rightOff[5] = y3p;
+        rightOff[6] = x4p; rightOff[7] = y4p;
+        return 8;
+    }
+
+    // return the kind of curve in the right and left arrays.
+    private int computeOffsetQuad(float[] pts, final int off,
+                                  float[] leftOff, float[] rightOff)
+    {
+        final float x1 = pts[off + 0], y1 = pts[off + 1];
+        final float x2 = pts[off + 2], y2 = pts[off + 3];
+        final float x3 = pts[off + 4], y3 = pts[off + 5];
+
+        final float dx3 = x3 - x2;
+        final float dy3 = y3 - y2;
+        final float dx1 = x2 - x1;
+        final float dy1 = y2 - y1;
+
+        // this computes the offsets at t = 0, 1
+        computeOffset(dx1, dy1, lineWidth2, offset[0]);
+        computeOffset(dx3, dy3, lineWidth2, offset[1]);
+
+        leftOff[0]  = x1 + offset[0][0];  leftOff[1] = y1 + offset[0][1];
+        leftOff[4]  = x3 + offset[1][0];  leftOff[5] = y3 + offset[1][1];
+        rightOff[0] = x1 - offset[0][0]; rightOff[1] = y1 - offset[0][1];
+        rightOff[4] = x3 - offset[1][0]; rightOff[5] = y3 - offset[1][1];
+
+        float x1p = leftOff[0]; // start
+        float y1p = leftOff[1]; // point
+        float x3p = leftOff[4]; // end
+        float y3p = leftOff[5]; // point
+
+        // Corner cases:
+        // 1. If the two control vectors are parallel, we'll end up with NaN's
+        //    in leftOff (and rightOff in the body of the if below), so we'll
+        //    do getLineOffsets, which is right.
+        // 2. If the first or second two points are equal, then (dx1,dy1)==(0,0)
+        //    or (dx3,dy3)==(0,0), so (x1p, y1p)==(x1p+dx1, y1p+dy1)
+        //    or (x3p, y3p)==(x3p-dx3, y3p-dy3), which means that
+        //    computeIntersection will put NaN's in leftOff and right off, and
+        //    we will do getLineOffsets, which is right.
+        computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2);
+        float cx = leftOff[2];
+        float cy = leftOff[3];
+
+        if (!(isFinite(cx) && isFinite(cy))) {
+            // maybe the right path is not degenerate.
+            x1p = rightOff[0];
+            y1p = rightOff[1];
+            x3p = rightOff[4];
+            y3p = rightOff[5];
+            computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff, 2);
+            cx = rightOff[2];
+            cy = rightOff[3];
+            if (!(isFinite(cx) && isFinite(cy))) {
+                // both are degenerate. This curve is a line.
+                getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
+                return 4;
+            }
+            // {left,right}Off[0,1,4,5] are already set to the correct values.
+            leftOff[2] = 2*x2 - cx;
+            leftOff[3] = 2*y2 - cy;
+            return 6;
+        }
+
+        // rightOff[2,3] = (x2,y2) - ((left_x2, left_y2) - (x2, y2))
+        // == 2*(x2, y2) - (left_x2, left_y2)
+        rightOff[2] = 2*x2 - cx;
+        rightOff[3] = 2*y2 - cy;
+        return 6;
+    }
+
+    private static boolean isFinite(float x) {
+        return (Float.NEGATIVE_INFINITY < x && x < Float.POSITIVE_INFINITY);
+    }
+
+    // This is where the curve to be processed is put. We give it
+    // enough room to store 2 curves: one for the current subdivision, the
+    // other for the rest of the curve.
+    private float[] middle = new float[2*8];
+    private float[] lp = new float[8];
+    private float[] rp = new float[8];
+    private static final int MAX_N_CURVES = 11;
+    private float[] subdivTs = new float[MAX_N_CURVES - 1];
+
+    // If this class is compiled with ecj, then Hotspot crashes when OSR
+    // compiling this function. See bugs 7004570 and 6675699
+    // TODO: until those are fixed, we should work around that by
+    // manually inlining this into curveTo and quadTo.
+/******************************* WORKAROUND **********************************
+    private void somethingTo(final int type) {
+        // need these so we can update the state at the end of this method
+        final float xf = middle[type-2], yf = middle[type-1];
+        float dxs = middle[2] - middle[0];
+        float dys = middle[3] - middle[1];
+        float dxf = middle[type - 2] - middle[type - 4];
+        float dyf = middle[type - 1] - middle[type - 3];
+        switch(type) {
+        case 6:
+            if ((dxs == 0f && dys == 0f) ||
+                (dxf == 0f && dyf == 0f)) {
+               dxs = dxf = middle[4] - middle[0];
+               dys = dyf = middle[5] - middle[1];
+            }
+            break;
+        case 8:
+            boolean p1eqp2 = (dxs == 0f && dys == 0f);
+            boolean p3eqp4 = (dxf == 0f && dyf == 0f);
+            if (p1eqp2) {
+                dxs = middle[4] - middle[0];
+                dys = middle[5] - middle[1];
+                if (dxs == 0f && dys == 0f) {
+                    dxs = middle[6] - middle[0];
+                    dys = middle[7] - middle[1];
+                }
+            }
+            if (p3eqp4) {
+                dxf = middle[6] - middle[2];
+                dyf = middle[7] - middle[3];
+                if (dxf == 0f && dyf == 0f) {
+                    dxf = middle[6] - middle[0];
+                    dyf = middle[7] - middle[1];
+                }
+            }
+        }
+        if (dxs == 0f && dys == 0f) {
+            // this happens iff the "curve" is just a point
+            lineTo(middle[0], middle[1]);
+            return;
+        }
+        // if these vectors are too small, normalize them, to avoid future
+        // precision problems.
+        if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
+            float len = (float) sqrt(dxs*dxs + dys*dys);
+            dxs /= len;
+            dys /= len;
+        }
+        if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
+            float len = (float) sqrt(dxf*dxf + dyf*dyf);
+            dxf /= len;
+            dyf /= len;
+        }
+
+        computeOffset(dxs, dys, lineWidth2, offset[0]);
+        final float mx = offset[0][0];
+        final float my = offset[0][1];
+        drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, mx, my);
+
+        int nSplits = findSubdivPoints(middle, subdivTs, type, lineWidth2);
+
+        int kind = 0;
+        Iterator<Integer> it = Curve.breakPtsAtTs(middle, type, subdivTs, nSplits);
+        while(it.hasNext()) {
+            int curCurveOff = it.next();
+
+            switch (type) {
+            case 8:
+                kind = computeOffsetCubic(middle, curCurveOff, lp, rp);
+                break;
+            case 6:
+                kind = computeOffsetQuad(middle, curCurveOff, lp, rp);
+                break;
+            }
+            emitLineTo(lp[0], lp[1]);
+            switch(kind) {
+            case 8:
+                emitCurveTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], lp[6], lp[7], false);
+                emitCurveTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], rp[6], rp[7], true);
+                break;
+            case 6:
+                emitQuadTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], false);
+                emitQuadTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], true);
+                break;
+            case 4:
+                emitLineTo(lp[2], lp[3]);
+                emitLineTo(rp[0], rp[1], true);
+                break;
+            }
+            emitLineTo(rp[kind - 2], rp[kind - 1], true);
+        }
+
+        this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2;
+        this.cmy = (lp[kind - 1] - rp[kind - 1]) / 2;
+        this.cdx = dxf;
+        this.cdy = dyf;
+        this.cx0 = xf;
+        this.cy0 = yf;
+        this.prev = DRAWING_OP_TO;
+    }
+****************************** END WORKAROUND *******************************/
+
+    // finds values of t where the curve in pts should be subdivided in order
+    // to get good offset curves a distance of w away from the middle curve.
+    // Stores the points in ts, and returns how many of them there were.
+    private static Curve c = new Curve();
+    private static int findSubdivPoints(float[] pts, float[] ts, final int type, final float w)
+    {
+        final float x12 = pts[2] - pts[0];
+        final float y12 = pts[3] - pts[1];
+        // if the curve is already parallel to either axis we gain nothing
+        // from rotating it.
+        if (y12 != 0f && x12 != 0f) {
+            // we rotate it so that the first vector in the control polygon is
+            // parallel to the x-axis. This will ensure that rotated quarter
+            // circles won't be subdivided.
+            final float hypot = (float) sqrt(x12 * x12 + y12 * y12);
+            final float cos = x12 / hypot;
+            final float sin = y12 / hypot;
+            final float x1 = cos * pts[0] + sin * pts[1];
+            final float y1 = cos * pts[1] - sin * pts[0];
+            final float x2 = cos * pts[2] + sin * pts[3];
+            final float y2 = cos * pts[3] - sin * pts[2];
+            final float x3 = cos * pts[4] + sin * pts[5];
+            final float y3 = cos * pts[5] - sin * pts[4];
+            switch(type) {
+            case 8:
+                final float x4 = cos * pts[6] + sin * pts[7];
+                final float y4 = cos * pts[7] - sin * pts[6];
+                c.set(x1, y1, x2, y2, x3, y3, x4, y4);
+                break;
+            case 6:
+                c.set(x1, y1, x2, y2, x3, y3);
+                break;
+            }
+        } else {
+            c.set(pts, type);
+        }
+
+        int ret = 0;
+        // we subdivide at values of t such that the remaining rotated
+        // curves are monotonic in x and y.
+        ret += c.dxRoots(ts, ret);
+        ret += c.dyRoots(ts, ret);
+        // subdivide at inflection points.
+        if (type == 8) {
+            // quadratic curves can't have inflection points
+            ret += c.infPoints(ts, ret);
+        }
+
+        // now we must subdivide at points where one of the offset curves will have
+        // a cusp. This happens at ts where the radius of curvature is equal to w.
+        ret += c.rootsOfROCMinusW(ts, ret, w, 0.0001f);
+
+        ret = Helpers.filterOutNotInAB(ts, 0, ret, 0.0001f, 0.9999f);
+        Helpers.isort(ts, 0, ret);
+        return ret;
+    }
+
+    @Override public void curveTo(float x1, float y1,
+                                  float x2, float y2,
+                                  float x3, float y3)
+    {
+        middle[0] = cx0; middle[1] = cy0;
+        middle[2] = x1;  middle[3] = y1;
+        middle[4] = x2;  middle[5] = y2;
+        middle[6] = x3;  middle[7] = y3;
+
+        // inlined version of somethingTo(8);
+        // See the TODO on somethingTo
+
+        // need these so we can update the state at the end of this method
+        final float xf = middle[6], yf = middle[7];
+        float dxs = middle[2] - middle[0];
+        float dys = middle[3] - middle[1];
+        float dxf = middle[6] - middle[4];
+        float dyf = middle[7] - middle[5];
+
+        boolean p1eqp2 = (dxs == 0f && dys == 0f);
+        boolean p3eqp4 = (dxf == 0f && dyf == 0f);
+        if (p1eqp2) {
+            dxs = middle[4] - middle[0];
+            dys = middle[5] - middle[1];
+            if (dxs == 0f && dys == 0f) {
+                dxs = middle[6] - middle[0];
+                dys = middle[7] - middle[1];
+            }
+        }
+        if (p3eqp4) {
+            dxf = middle[6] - middle[2];
+            dyf = middle[7] - middle[3];
+            if (dxf == 0f && dyf == 0f) {
+                dxf = middle[6] - middle[0];
+                dyf = middle[7] - middle[1];
+            }
+        }
+        if (dxs == 0f && dys == 0f) {
+            // this happens iff the "curve" is just a point
+            lineTo(middle[0], middle[1]);
+            return;
+        }
+
+        // if these vectors are too small, normalize them, to avoid future
+        // precision problems.
+        if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
+            float len = (float) sqrt(dxs*dxs + dys*dys);
+            dxs /= len;
+            dys /= len;
+        }
+        if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
+            float len = (float) sqrt(dxf*dxf + dyf*dyf);
+            dxf /= len;
+            dyf /= len;
+        }
+
+        computeOffset(dxs, dys, lineWidth2, offset[0]);
+        final float mx = offset[0][0];
+        final float my = offset[0][1];
+        drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, mx, my);
+
+        int nSplits = findSubdivPoints(middle, subdivTs, 8, lineWidth2);
+
+        int kind = 0;
+        Iterator<Integer> it = Curve.breakPtsAtTs(middle, 8, subdivTs, nSplits);
+        while(it.hasNext()) {
+            int curCurveOff = it.next();
+
+            kind = computeOffsetCubic(middle, curCurveOff, lp, rp);
+            emitLineTo(lp[0], lp[1]);
+            switch(kind) {
+            case 8:
+                emitCurveTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], lp[6], lp[7], false);
+                emitCurveTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], rp[6], rp[7], true);
+                break;
+            case 4:
+                emitLineTo(lp[2], lp[3]);
+                emitLineTo(rp[0], rp[1], true);
+                break;
+            }
+            emitLineTo(rp[kind - 2], rp[kind - 1], true);
+        }
+
+        this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2;
+        this.cmy = (lp[kind - 1] - rp[kind - 1]) / 2;
+        this.cdx = dxf;
+        this.cdy = dyf;
+        this.cx0 = xf;
+        this.cy0 = yf;
+        this.prev = DRAWING_OP_TO;
+    }
+
+    @Override public void quadTo(float x1, float y1, float x2, float y2) {
+        middle[0] = cx0; middle[1] = cy0;
+        middle[2] = x1;  middle[3] = y1;
+        middle[4] = x2;  middle[5] = y2;
+
+        // inlined version of somethingTo(8);
+        // See the TODO on somethingTo
+
+        // need these so we can update the state at the end of this method
+        final float xf = middle[4], yf = middle[5];
+        float dxs = middle[2] - middle[0];
+        float dys = middle[3] - middle[1];
+        float dxf = middle[4] - middle[2];
+        float dyf = middle[5] - middle[3];
+        if ((dxs == 0f && dys == 0f) || (dxf == 0f && dyf == 0f)) {
+            dxs = dxf = middle[4] - middle[0];
+            dys = dyf = middle[5] - middle[1];
+        }
+        if (dxs == 0f && dys == 0f) {
+            // this happens iff the "curve" is just a point
+            lineTo(middle[0], middle[1]);
+            return;
+        }
+        // if these vectors are too small, normalize them, to avoid future
+        // precision problems.
+        if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
+            float len = (float) sqrt(dxs*dxs + dys*dys);
+            dxs /= len;
+            dys /= len;
+        }
+        if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
+            float len = (float) sqrt(dxf*dxf + dyf*dyf);
+            dxf /= len;
+            dyf /= len;
+        }
+
+        computeOffset(dxs, dys, lineWidth2, offset[0]);
+        final float mx = offset[0][0];
+        final float my = offset[0][1];
+        drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, mx, my);
+
+        int nSplits = findSubdivPoints(middle, subdivTs, 6, lineWidth2);
+
+        int kind = 0;
+        Iterator<Integer> it = Curve.breakPtsAtTs(middle, 6, subdivTs, nSplits);
+        while(it.hasNext()) {
+            int curCurveOff = it.next();
+
+            kind = computeOffsetQuad(middle, curCurveOff, lp, rp);
+            emitLineTo(lp[0], lp[1]);
+            switch(kind) {
+            case 6:
+                emitQuadTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], false);
+                emitQuadTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], true);
+                break;
+            case 4:
+                emitLineTo(lp[2], lp[3]);
+                emitLineTo(rp[0], rp[1], true);
+                break;
+            }
+            emitLineTo(rp[kind - 2], rp[kind - 1], true);
+        }
+
+        this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2;
+        this.cmy = (lp[kind - 1] - rp[kind - 1]) / 2;
+        this.cdx = dxf;
+        this.cdy = dyf;
+        this.cx0 = xf;
+        this.cy0 = yf;
+        this.prev = DRAWING_OP_TO;
+    }
+
+    @Override public long getNativeConsumer() {
+        throw new InternalError("Stroker doesn't use a native consumer");
+    }
+
+    // a stack of polynomial curves where each curve shares endpoints with
+    // adjacent ones.
+    private static final class PolyStack {
+        float[] curves;
+        int end;
+        int[] curveTypes;
+        int numCurves;
+
+        private static final int INIT_SIZE = 50;
+
+        PolyStack() {
+            curves = new float[8 * INIT_SIZE];
+            curveTypes = new int[INIT_SIZE];
+            end = 0;
+            numCurves = 0;
+        }
+
+        public boolean isEmpty() {
+            return numCurves == 0;
+        }
+
+        private void ensureSpace(int n) {
+            if (end + n >= curves.length) {
+                int newSize = (end + n) * 2;
+                curves = Arrays.copyOf(curves, newSize);
+            }
+            if (numCurves >= curveTypes.length) {
+                int newSize = numCurves * 2;
+                curveTypes = Arrays.copyOf(curveTypes, newSize);
+            }
+        }
+
+        public void pushCubic(float x0, float y0,
+                              float x1, float y1,
+                              float x2, float y2)
+        {
+            ensureSpace(6);
+            curveTypes[numCurves++] = 8;
+            // assert(x0 == lastX && y0 == lastY)
+
+            // we reverse the coordinate order to make popping easier
+            curves[end++] = x2;    curves[end++] = y2;
+            curves[end++] = x1;    curves[end++] = y1;
+            curves[end++] = x0;    curves[end++] = y0;
+        }
+
+        public void pushQuad(float x0, float y0,
+                             float x1, float y1)
+        {
+            ensureSpace(4);
+            curveTypes[numCurves++] = 6;
+            // assert(x0 == lastX && y0 == lastY)
+            curves[end++] = x1;    curves[end++] = y1;
+            curves[end++] = x0;    curves[end++] = y0;
+        }
+
+        public void pushLine(float x, float y) {
+            ensureSpace(2);
+            curveTypes[numCurves++] = 4;
+            // assert(x0 == lastX && y0 == lastY)
+            curves[end++] = x;    curves[end++] = y;
+        }
+
+        @SuppressWarnings("unused")
+        public int pop(float[] pts) {
+            int ret = curveTypes[numCurves - 1];
+            numCurves--;
+            end -= (ret - 2);
+            System.arraycopy(curves, end, pts, 0, ret - 2);
+            return ret;
+        }
+
+        public void pop(PathConsumer2D io) {
+            numCurves--;
+            int type = curveTypes[numCurves];
+            end -= (type - 2);
+            switch(type) {
+            case 8:
+                io.curveTo(curves[end+0], curves[end+1],
+                           curves[end+2], curves[end+3],
+                           curves[end+4], curves[end+5]);
+                break;
+            case 6:
+                io.quadTo(curves[end+0], curves[end+1],
+                           curves[end+2], curves[end+3]);
+                 break;
+            case 4:
+                io.lineTo(curves[end], curves[end+1]);
+            }
+        }
+
+        @Override
+        public String toString() {
+            String ret = "";
+            int nc = numCurves;
+            int end = this.end;
+            while (nc > 0) {
+                nc--;
+                int type = curveTypes[numCurves];
+                end -= (type - 2);
+                switch(type) {
+                case 8:
+                    ret += "cubic: ";
+                    break;
+                case 6:
+                    ret += "quad: ";
+                    break;
+                case 4:
+                    ret += "line: ";
+                    break;
+                }
+                ret += Arrays.toString(Arrays.copyOfRange(curves, end, end+type-2)) + "\n";
+            }
+            return ret;
+        }
+    }
+}