src/java.base/share/classes/java/util/concurrent/ConcurrentHashMap.java
changeset 47216 71c04702a3d5
parent 46878 5efde8404604
child 47307 6864969a78ad
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/java.base/share/classes/java/util/concurrent/ConcurrentHashMap.java	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,6398 @@
+/*
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+/*
+ * This file is available under and governed by the GNU General Public
+ * License version 2 only, as published by the Free Software Foundation.
+ * However, the following notice accompanied the original version of this
+ * file:
+ *
+ * Written by Doug Lea with assistance from members of JCP JSR-166
+ * Expert Group and released to the public domain, as explained at
+ * http://creativecommons.org/publicdomain/zero/1.0/
+ */
+
+package java.util.concurrent;
+
+import java.io.ObjectStreamField;
+import java.io.Serializable;
+import java.lang.reflect.ParameterizedType;
+import java.lang.reflect.Type;
+import java.util.AbstractMap;
+import java.util.Arrays;
+import java.util.Collection;
+import java.util.Enumeration;
+import java.util.HashMap;
+import java.util.Hashtable;
+import java.util.Iterator;
+import java.util.Map;
+import java.util.NoSuchElementException;
+import java.util.Set;
+import java.util.Spliterator;
+import java.util.concurrent.atomic.AtomicReference;
+import java.util.concurrent.locks.LockSupport;
+import java.util.concurrent.locks.ReentrantLock;
+import java.util.function.BiConsumer;
+import java.util.function.BiFunction;
+import java.util.function.Consumer;
+import java.util.function.DoubleBinaryOperator;
+import java.util.function.Function;
+import java.util.function.IntBinaryOperator;
+import java.util.function.LongBinaryOperator;
+import java.util.function.Predicate;
+import java.util.function.ToDoubleBiFunction;
+import java.util.function.ToDoubleFunction;
+import java.util.function.ToIntBiFunction;
+import java.util.function.ToIntFunction;
+import java.util.function.ToLongBiFunction;
+import java.util.function.ToLongFunction;
+import java.util.stream.Stream;
+import jdk.internal.misc.Unsafe;
+
+/**
+ * A hash table supporting full concurrency of retrievals and
+ * high expected concurrency for updates. This class obeys the
+ * same functional specification as {@link java.util.Hashtable}, and
+ * includes versions of methods corresponding to each method of
+ * {@code Hashtable}. However, even though all operations are
+ * thread-safe, retrieval operations do <em>not</em> entail locking,
+ * and there is <em>not</em> any support for locking the entire table
+ * in a way that prevents all access.  This class is fully
+ * interoperable with {@code Hashtable} in programs that rely on its
+ * thread safety but not on its synchronization details.
+ *
+ * <p>Retrieval operations (including {@code get}) generally do not
+ * block, so may overlap with update operations (including {@code put}
+ * and {@code remove}). Retrievals reflect the results of the most
+ * recently <em>completed</em> update operations holding upon their
+ * onset. (More formally, an update operation for a given key bears a
+ * <em>happens-before</em> relation with any (non-null) retrieval for
+ * that key reporting the updated value.)  For aggregate operations
+ * such as {@code putAll} and {@code clear}, concurrent retrievals may
+ * reflect insertion or removal of only some entries.  Similarly,
+ * Iterators, Spliterators and Enumerations return elements reflecting the
+ * state of the hash table at some point at or since the creation of the
+ * iterator/enumeration.  They do <em>not</em> throw {@link
+ * java.util.ConcurrentModificationException ConcurrentModificationException}.
+ * However, iterators are designed to be used by only one thread at a time.
+ * Bear in mind that the results of aggregate status methods including
+ * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
+ * useful only when a map is not undergoing concurrent updates in other threads.
+ * Otherwise the results of these methods reflect transient states
+ * that may be adequate for monitoring or estimation purposes, but not
+ * for program control.
+ *
+ * <p>The table is dynamically expanded when there are too many
+ * collisions (i.e., keys that have distinct hash codes but fall into
+ * the same slot modulo the table size), with the expected average
+ * effect of maintaining roughly two bins per mapping (corresponding
+ * to a 0.75 load factor threshold for resizing). There may be much
+ * variance around this average as mappings are added and removed, but
+ * overall, this maintains a commonly accepted time/space tradeoff for
+ * hash tables.  However, resizing this or any other kind of hash
+ * table may be a relatively slow operation. When possible, it is a
+ * good idea to provide a size estimate as an optional {@code
+ * initialCapacity} constructor argument. An additional optional
+ * {@code loadFactor} constructor argument provides a further means of
+ * customizing initial table capacity by specifying the table density
+ * to be used in calculating the amount of space to allocate for the
+ * given number of elements.  Also, for compatibility with previous
+ * versions of this class, constructors may optionally specify an
+ * expected {@code concurrencyLevel} as an additional hint for
+ * internal sizing.  Note that using many keys with exactly the same
+ * {@code hashCode()} is a sure way to slow down performance of any
+ * hash table. To ameliorate impact, when keys are {@link Comparable},
+ * this class may use comparison order among keys to help break ties.
+ *
+ * <p>A {@link Set} projection of a ConcurrentHashMap may be created
+ * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
+ * (using {@link #keySet(Object)} when only keys are of interest, and the
+ * mapped values are (perhaps transiently) not used or all take the
+ * same mapping value.
+ *
+ * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
+ * form of histogram or multiset) by using {@link
+ * java.util.concurrent.atomic.LongAdder} values and initializing via
+ * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
+ * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
+ * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
+ *
+ * <p>This class and its views and iterators implement all of the
+ * <em>optional</em> methods of the {@link Map} and {@link Iterator}
+ * interfaces.
+ *
+ * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
+ * does <em>not</em> allow {@code null} to be used as a key or value.
+ *
+ * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
+ * operations that, unlike most {@link Stream} methods, are designed
+ * to be safely, and often sensibly, applied even with maps that are
+ * being concurrently updated by other threads; for example, when
+ * computing a snapshot summary of the values in a shared registry.
+ * There are three kinds of operation, each with four forms, accepting
+ * functions with keys, values, entries, and (key, value) pairs as
+ * arguments and/or return values. Because the elements of a
+ * ConcurrentHashMap are not ordered in any particular way, and may be
+ * processed in different orders in different parallel executions, the
+ * correctness of supplied functions should not depend on any
+ * ordering, or on any other objects or values that may transiently
+ * change while computation is in progress; and except for forEach
+ * actions, should ideally be side-effect-free. Bulk operations on
+ * {@link Map.Entry} objects do not support method {@code setValue}.
+ *
+ * <ul>
+ * <li>forEach: Performs a given action on each element.
+ * A variant form applies a given transformation on each element
+ * before performing the action.
+ *
+ * <li>search: Returns the first available non-null result of
+ * applying a given function on each element; skipping further
+ * search when a result is found.
+ *
+ * <li>reduce: Accumulates each element.  The supplied reduction
+ * function cannot rely on ordering (more formally, it should be
+ * both associative and commutative).  There are five variants:
+ *
+ * <ul>
+ *
+ * <li>Plain reductions. (There is not a form of this method for
+ * (key, value) function arguments since there is no corresponding
+ * return type.)
+ *
+ * <li>Mapped reductions that accumulate the results of a given
+ * function applied to each element.
+ *
+ * <li>Reductions to scalar doubles, longs, and ints, using a
+ * given basis value.
+ *
+ * </ul>
+ * </ul>
+ *
+ * <p>These bulk operations accept a {@code parallelismThreshold}
+ * argument. Methods proceed sequentially if the current map size is
+ * estimated to be less than the given threshold. Using a value of
+ * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
+ * of {@code 1} results in maximal parallelism by partitioning into
+ * enough subtasks to fully utilize the {@link
+ * ForkJoinPool#commonPool()} that is used for all parallel
+ * computations. Normally, you would initially choose one of these
+ * extreme values, and then measure performance of using in-between
+ * values that trade off overhead versus throughput.
+ *
+ * <p>The concurrency properties of bulk operations follow
+ * from those of ConcurrentHashMap: Any non-null result returned
+ * from {@code get(key)} and related access methods bears a
+ * happens-before relation with the associated insertion or
+ * update.  The result of any bulk operation reflects the
+ * composition of these per-element relations (but is not
+ * necessarily atomic with respect to the map as a whole unless it
+ * is somehow known to be quiescent).  Conversely, because keys
+ * and values in the map are never null, null serves as a reliable
+ * atomic indicator of the current lack of any result.  To
+ * maintain this property, null serves as an implicit basis for
+ * all non-scalar reduction operations. For the double, long, and
+ * int versions, the basis should be one that, when combined with
+ * any other value, returns that other value (more formally, it
+ * should be the identity element for the reduction). Most common
+ * reductions have these properties; for example, computing a sum
+ * with basis 0 or a minimum with basis MAX_VALUE.
+ *
+ * <p>Search and transformation functions provided as arguments
+ * should similarly return null to indicate the lack of any result
+ * (in which case it is not used). In the case of mapped
+ * reductions, this also enables transformations to serve as
+ * filters, returning null (or, in the case of primitive
+ * specializations, the identity basis) if the element should not
+ * be combined. You can create compound transformations and
+ * filterings by composing them yourself under this "null means
+ * there is nothing there now" rule before using them in search or
+ * reduce operations.
+ *
+ * <p>Methods accepting and/or returning Entry arguments maintain
+ * key-value associations. They may be useful for example when
+ * finding the key for the greatest value. Note that "plain" Entry
+ * arguments can be supplied using {@code new
+ * AbstractMap.SimpleEntry(k,v)}.
+ *
+ * <p>Bulk operations may complete abruptly, throwing an
+ * exception encountered in the application of a supplied
+ * function. Bear in mind when handling such exceptions that other
+ * concurrently executing functions could also have thrown
+ * exceptions, or would have done so if the first exception had
+ * not occurred.
+ *
+ * <p>Speedups for parallel compared to sequential forms are common
+ * but not guaranteed.  Parallel operations involving brief functions
+ * on small maps may execute more slowly than sequential forms if the
+ * underlying work to parallelize the computation is more expensive
+ * than the computation itself.  Similarly, parallelization may not
+ * lead to much actual parallelism if all processors are busy
+ * performing unrelated tasks.
+ *
+ * <p>All arguments to all task methods must be non-null.
+ *
+ * <p>This class is a member of the
+ * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
+ * Java Collections Framework</a>.
+ *
+ * @since 1.5
+ * @author Doug Lea
+ * @param <K> the type of keys maintained by this map
+ * @param <V> the type of mapped values
+ */
+public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
+    implements ConcurrentMap<K,V>, Serializable {
+    private static final long serialVersionUID = 7249069246763182397L;
+
+    /*
+     * Overview:
+     *
+     * The primary design goal of this hash table is to maintain
+     * concurrent readability (typically method get(), but also
+     * iterators and related methods) while minimizing update
+     * contention. Secondary goals are to keep space consumption about
+     * the same or better than java.util.HashMap, and to support high
+     * initial insertion rates on an empty table by many threads.
+     *
+     * This map usually acts as a binned (bucketed) hash table.  Each
+     * key-value mapping is held in a Node.  Most nodes are instances
+     * of the basic Node class with hash, key, value, and next
+     * fields. However, various subclasses exist: TreeNodes are
+     * arranged in balanced trees, not lists.  TreeBins hold the roots
+     * of sets of TreeNodes. ForwardingNodes are placed at the heads
+     * of bins during resizing. ReservationNodes are used as
+     * placeholders while establishing values in computeIfAbsent and
+     * related methods.  The types TreeBin, ForwardingNode, and
+     * ReservationNode do not hold normal user keys, values, or
+     * hashes, and are readily distinguishable during search etc
+     * because they have negative hash fields and null key and value
+     * fields. (These special nodes are either uncommon or transient,
+     * so the impact of carrying around some unused fields is
+     * insignificant.)
+     *
+     * The table is lazily initialized to a power-of-two size upon the
+     * first insertion.  Each bin in the table normally contains a
+     * list of Nodes (most often, the list has only zero or one Node).
+     * Table accesses require volatile/atomic reads, writes, and
+     * CASes.  Because there is no other way to arrange this without
+     * adding further indirections, we use intrinsics
+     * (jdk.internal.misc.Unsafe) operations.
+     *
+     * We use the top (sign) bit of Node hash fields for control
+     * purposes -- it is available anyway because of addressing
+     * constraints.  Nodes with negative hash fields are specially
+     * handled or ignored in map methods.
+     *
+     * Insertion (via put or its variants) of the first node in an
+     * empty bin is performed by just CASing it to the bin.  This is
+     * by far the most common case for put operations under most
+     * key/hash distributions.  Other update operations (insert,
+     * delete, and replace) require locks.  We do not want to waste
+     * the space required to associate a distinct lock object with
+     * each bin, so instead use the first node of a bin list itself as
+     * a lock. Locking support for these locks relies on builtin
+     * "synchronized" monitors.
+     *
+     * Using the first node of a list as a lock does not by itself
+     * suffice though: When a node is locked, any update must first
+     * validate that it is still the first node after locking it, and
+     * retry if not. Because new nodes are always appended to lists,
+     * once a node is first in a bin, it remains first until deleted
+     * or the bin becomes invalidated (upon resizing).
+     *
+     * The main disadvantage of per-bin locks is that other update
+     * operations on other nodes in a bin list protected by the same
+     * lock can stall, for example when user equals() or mapping
+     * functions take a long time.  However, statistically, under
+     * random hash codes, this is not a common problem.  Ideally, the
+     * frequency of nodes in bins follows a Poisson distribution
+     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
+     * parameter of about 0.5 on average, given the resizing threshold
+     * of 0.75, although with a large variance because of resizing
+     * granularity. Ignoring variance, the expected occurrences of
+     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
+     * first values are:
+     *
+     * 0:    0.60653066
+     * 1:    0.30326533
+     * 2:    0.07581633
+     * 3:    0.01263606
+     * 4:    0.00157952
+     * 5:    0.00015795
+     * 6:    0.00001316
+     * 7:    0.00000094
+     * 8:    0.00000006
+     * more: less than 1 in ten million
+     *
+     * Lock contention probability for two threads accessing distinct
+     * elements is roughly 1 / (8 * #elements) under random hashes.
+     *
+     * Actual hash code distributions encountered in practice
+     * sometimes deviate significantly from uniform randomness.  This
+     * includes the case when N > (1<<30), so some keys MUST collide.
+     * Similarly for dumb or hostile usages in which multiple keys are
+     * designed to have identical hash codes or ones that differs only
+     * in masked-out high bits. So we use a secondary strategy that
+     * applies when the number of nodes in a bin exceeds a
+     * threshold. These TreeBins use a balanced tree to hold nodes (a
+     * specialized form of red-black trees), bounding search time to
+     * O(log N).  Each search step in a TreeBin is at least twice as
+     * slow as in a regular list, but given that N cannot exceed
+     * (1<<64) (before running out of addresses) this bounds search
+     * steps, lock hold times, etc, to reasonable constants (roughly
+     * 100 nodes inspected per operation worst case) so long as keys
+     * are Comparable (which is very common -- String, Long, etc).
+     * TreeBin nodes (TreeNodes) also maintain the same "next"
+     * traversal pointers as regular nodes, so can be traversed in
+     * iterators in the same way.
+     *
+     * The table is resized when occupancy exceeds a percentage
+     * threshold (nominally, 0.75, but see below).  Any thread
+     * noticing an overfull bin may assist in resizing after the
+     * initiating thread allocates and sets up the replacement array.
+     * However, rather than stalling, these other threads may proceed
+     * with insertions etc.  The use of TreeBins shields us from the
+     * worst case effects of overfilling while resizes are in
+     * progress.  Resizing proceeds by transferring bins, one by one,
+     * from the table to the next table. However, threads claim small
+     * blocks of indices to transfer (via field transferIndex) before
+     * doing so, reducing contention.  A generation stamp in field
+     * sizeCtl ensures that resizings do not overlap. Because we are
+     * using power-of-two expansion, the elements from each bin must
+     * either stay at same index, or move with a power of two
+     * offset. We eliminate unnecessary node creation by catching
+     * cases where old nodes can be reused because their next fields
+     * won't change.  On average, only about one-sixth of them need
+     * cloning when a table doubles. The nodes they replace will be
+     * garbage collectable as soon as they are no longer referenced by
+     * any reader thread that may be in the midst of concurrently
+     * traversing table.  Upon transfer, the old table bin contains
+     * only a special forwarding node (with hash field "MOVED") that
+     * contains the next table as its key. On encountering a
+     * forwarding node, access and update operations restart, using
+     * the new table.
+     *
+     * Each bin transfer requires its bin lock, which can stall
+     * waiting for locks while resizing. However, because other
+     * threads can join in and help resize rather than contend for
+     * locks, average aggregate waits become shorter as resizing
+     * progresses.  The transfer operation must also ensure that all
+     * accessible bins in both the old and new table are usable by any
+     * traversal.  This is arranged in part by proceeding from the
+     * last bin (table.length - 1) up towards the first.  Upon seeing
+     * a forwarding node, traversals (see class Traverser) arrange to
+     * move to the new table without revisiting nodes.  To ensure that
+     * no intervening nodes are skipped even when moved out of order,
+     * a stack (see class TableStack) is created on first encounter of
+     * a forwarding node during a traversal, to maintain its place if
+     * later processing the current table. The need for these
+     * save/restore mechanics is relatively rare, but when one
+     * forwarding node is encountered, typically many more will be.
+     * So Traversers use a simple caching scheme to avoid creating so
+     * many new TableStack nodes. (Thanks to Peter Levart for
+     * suggesting use of a stack here.)
+     *
+     * The traversal scheme also applies to partial traversals of
+     * ranges of bins (via an alternate Traverser constructor)
+     * to support partitioned aggregate operations.  Also, read-only
+     * operations give up if ever forwarded to a null table, which
+     * provides support for shutdown-style clearing, which is also not
+     * currently implemented.
+     *
+     * Lazy table initialization minimizes footprint until first use,
+     * and also avoids resizings when the first operation is from a
+     * putAll, constructor with map argument, or deserialization.
+     * These cases attempt to override the initial capacity settings,
+     * but harmlessly fail to take effect in cases of races.
+     *
+     * The element count is maintained using a specialization of
+     * LongAdder. We need to incorporate a specialization rather than
+     * just use a LongAdder in order to access implicit
+     * contention-sensing that leads to creation of multiple
+     * CounterCells.  The counter mechanics avoid contention on
+     * updates but can encounter cache thrashing if read too
+     * frequently during concurrent access. To avoid reading so often,
+     * resizing under contention is attempted only upon adding to a
+     * bin already holding two or more nodes. Under uniform hash
+     * distributions, the probability of this occurring at threshold
+     * is around 13%, meaning that only about 1 in 8 puts check
+     * threshold (and after resizing, many fewer do so).
+     *
+     * TreeBins use a special form of comparison for search and
+     * related operations (which is the main reason we cannot use
+     * existing collections such as TreeMaps). TreeBins contain
+     * Comparable elements, but may contain others, as well as
+     * elements that are Comparable but not necessarily Comparable for
+     * the same T, so we cannot invoke compareTo among them. To handle
+     * this, the tree is ordered primarily by hash value, then by
+     * Comparable.compareTo order if applicable.  On lookup at a node,
+     * if elements are not comparable or compare as 0 then both left
+     * and right children may need to be searched in the case of tied
+     * hash values. (This corresponds to the full list search that
+     * would be necessary if all elements were non-Comparable and had
+     * tied hashes.) On insertion, to keep a total ordering (or as
+     * close as is required here) across rebalancings, we compare
+     * classes and identityHashCodes as tie-breakers. The red-black
+     * balancing code is updated from pre-jdk-collections
+     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
+     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
+     * Algorithms" (CLR).
+     *
+     * TreeBins also require an additional locking mechanism.  While
+     * list traversal is always possible by readers even during
+     * updates, tree traversal is not, mainly because of tree-rotations
+     * that may change the root node and/or its linkages.  TreeBins
+     * include a simple read-write lock mechanism parasitic on the
+     * main bin-synchronization strategy: Structural adjustments
+     * associated with an insertion or removal are already bin-locked
+     * (and so cannot conflict with other writers) but must wait for
+     * ongoing readers to finish. Since there can be only one such
+     * waiter, we use a simple scheme using a single "waiter" field to
+     * block writers.  However, readers need never block.  If the root
+     * lock is held, they proceed along the slow traversal path (via
+     * next-pointers) until the lock becomes available or the list is
+     * exhausted, whichever comes first. These cases are not fast, but
+     * maximize aggregate expected throughput.
+     *
+     * Maintaining API and serialization compatibility with previous
+     * versions of this class introduces several oddities. Mainly: We
+     * leave untouched but unused constructor arguments referring to
+     * concurrencyLevel. We accept a loadFactor constructor argument,
+     * but apply it only to initial table capacity (which is the only
+     * time that we can guarantee to honor it.) We also declare an
+     * unused "Segment" class that is instantiated in minimal form
+     * only when serializing.
+     *
+     * Also, solely for compatibility with previous versions of this
+     * class, it extends AbstractMap, even though all of its methods
+     * are overridden, so it is just useless baggage.
+     *
+     * This file is organized to make things a little easier to follow
+     * while reading than they might otherwise: First the main static
+     * declarations and utilities, then fields, then main public
+     * methods (with a few factorings of multiple public methods into
+     * internal ones), then sizing methods, trees, traversers, and
+     * bulk operations.
+     */
+
+    /* ---------------- Constants -------------- */
+
+    /**
+     * The largest possible table capacity.  This value must be
+     * exactly 1<<30 to stay within Java array allocation and indexing
+     * bounds for power of two table sizes, and is further required
+     * because the top two bits of 32bit hash fields are used for
+     * control purposes.
+     */
+    private static final int MAXIMUM_CAPACITY = 1 << 30;
+
+    /**
+     * The default initial table capacity.  Must be a power of 2
+     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
+     */
+    private static final int DEFAULT_CAPACITY = 16;
+
+    /**
+     * The largest possible (non-power of two) array size.
+     * Needed by toArray and related methods.
+     */
+    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
+
+    /**
+     * The default concurrency level for this table. Unused but
+     * defined for compatibility with previous versions of this class.
+     */
+    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
+
+    /**
+     * The load factor for this table. Overrides of this value in
+     * constructors affect only the initial table capacity.  The
+     * actual floating point value isn't normally used -- it is
+     * simpler to use expressions such as {@code n - (n >>> 2)} for
+     * the associated resizing threshold.
+     */
+    private static final float LOAD_FACTOR = 0.75f;
+
+    /**
+     * The bin count threshold for using a tree rather than list for a
+     * bin.  Bins are converted to trees when adding an element to a
+     * bin with at least this many nodes. The value must be greater
+     * than 2, and should be at least 8 to mesh with assumptions in
+     * tree removal about conversion back to plain bins upon
+     * shrinkage.
+     */
+    static final int TREEIFY_THRESHOLD = 8;
+
+    /**
+     * The bin count threshold for untreeifying a (split) bin during a
+     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
+     * most 6 to mesh with shrinkage detection under removal.
+     */
+    static final int UNTREEIFY_THRESHOLD = 6;
+
+    /**
+     * The smallest table capacity for which bins may be treeified.
+     * (Otherwise the table is resized if too many nodes in a bin.)
+     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
+     * conflicts between resizing and treeification thresholds.
+     */
+    static final int MIN_TREEIFY_CAPACITY = 64;
+
+    /**
+     * Minimum number of rebinnings per transfer step. Ranges are
+     * subdivided to allow multiple resizer threads.  This value
+     * serves as a lower bound to avoid resizers encountering
+     * excessive memory contention.  The value should be at least
+     * DEFAULT_CAPACITY.
+     */
+    private static final int MIN_TRANSFER_STRIDE = 16;
+
+    /**
+     * The number of bits used for generation stamp in sizeCtl.
+     * Must be at least 6 for 32bit arrays.
+     */
+    private static final int RESIZE_STAMP_BITS = 16;
+
+    /**
+     * The maximum number of threads that can help resize.
+     * Must fit in 32 - RESIZE_STAMP_BITS bits.
+     */
+    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
+
+    /**
+     * The bit shift for recording size stamp in sizeCtl.
+     */
+    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
+
+    /*
+     * Encodings for Node hash fields. See above for explanation.
+     */
+    static final int MOVED     = -1; // hash for forwarding nodes
+    static final int TREEBIN   = -2; // hash for roots of trees
+    static final int RESERVED  = -3; // hash for transient reservations
+    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
+
+    /** Number of CPUS, to place bounds on some sizings */
+    static final int NCPU = Runtime.getRuntime().availableProcessors();
+
+    /**
+     * Serialized pseudo-fields, provided only for jdk7 compatibility.
+     * @serialField segments Segment[]
+     *   The segments, each of which is a specialized hash table.
+     * @serialField segmentMask int
+     *   Mask value for indexing into segments. The upper bits of a
+     *   key's hash code are used to choose the segment.
+     * @serialField segmentShift int
+     *   Shift value for indexing within segments.
+     */
+    private static final ObjectStreamField[] serialPersistentFields = {
+        new ObjectStreamField("segments", Segment[].class),
+        new ObjectStreamField("segmentMask", Integer.TYPE),
+        new ObjectStreamField("segmentShift", Integer.TYPE),
+    };
+
+    /* ---------------- Nodes -------------- */
+
+    /**
+     * Key-value entry.  This class is never exported out as a
+     * user-mutable Map.Entry (i.e., one supporting setValue; see
+     * MapEntry below), but can be used for read-only traversals used
+     * in bulk tasks.  Subclasses of Node with a negative hash field
+     * are special, and contain null keys and values (but are never
+     * exported).  Otherwise, keys and vals are never null.
+     */
+    static class Node<K,V> implements Map.Entry<K,V> {
+        final int hash;
+        final K key;
+        volatile V val;
+        volatile Node<K,V> next;
+
+        Node(int hash, K key, V val) {
+            this.hash = hash;
+            this.key = key;
+            this.val = val;
+        }
+
+        Node(int hash, K key, V val, Node<K,V> next) {
+            this(hash, key, val);
+            this.next = next;
+        }
+
+        public final K getKey()     { return key; }
+        public final V getValue()   { return val; }
+        public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
+        public final String toString() {
+            return Helpers.mapEntryToString(key, val);
+        }
+        public final V setValue(V value) {
+            throw new UnsupportedOperationException();
+        }
+
+        public final boolean equals(Object o) {
+            Object k, v, u; Map.Entry<?,?> e;
+            return ((o instanceof Map.Entry) &&
+                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
+                    (v = e.getValue()) != null &&
+                    (k == key || k.equals(key)) &&
+                    (v == (u = val) || v.equals(u)));
+        }
+
+        /**
+         * Virtualized support for map.get(); overridden in subclasses.
+         */
+        Node<K,V> find(int h, Object k) {
+            Node<K,V> e = this;
+            if (k != null) {
+                do {
+                    K ek;
+                    if (e.hash == h &&
+                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
+                        return e;
+                } while ((e = e.next) != null);
+            }
+            return null;
+        }
+    }
+
+    /* ---------------- Static utilities -------------- */
+
+    /**
+     * Spreads (XORs) higher bits of hash to lower and also forces top
+     * bit to 0. Because the table uses power-of-two masking, sets of
+     * hashes that vary only in bits above the current mask will
+     * always collide. (Among known examples are sets of Float keys
+     * holding consecutive whole numbers in small tables.)  So we
+     * apply a transform that spreads the impact of higher bits
+     * downward. There is a tradeoff between speed, utility, and
+     * quality of bit-spreading. Because many common sets of hashes
+     * are already reasonably distributed (so don't benefit from
+     * spreading), and because we use trees to handle large sets of
+     * collisions in bins, we just XOR some shifted bits in the
+     * cheapest possible way to reduce systematic lossage, as well as
+     * to incorporate impact of the highest bits that would otherwise
+     * never be used in index calculations because of table bounds.
+     */
+    static final int spread(int h) {
+        return (h ^ (h >>> 16)) & HASH_BITS;
+    }
+
+    /**
+     * Returns a power of two table size for the given desired capacity.
+     * See Hackers Delight, sec 3.2
+     */
+    private static final int tableSizeFor(int c) {
+        int n = c - 1;
+        n |= n >>> 1;
+        n |= n >>> 2;
+        n |= n >>> 4;
+        n |= n >>> 8;
+        n |= n >>> 16;
+        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
+    }
+
+    /**
+     * Returns x's Class if it is of the form "class C implements
+     * Comparable<C>", else null.
+     */
+    static Class<?> comparableClassFor(Object x) {
+        if (x instanceof Comparable) {
+            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
+            if ((c = x.getClass()) == String.class) // bypass checks
+                return c;
+            if ((ts = c.getGenericInterfaces()) != null) {
+                for (int i = 0; i < ts.length; ++i) {
+                    if (((t = ts[i]) instanceof ParameterizedType) &&
+                        ((p = (ParameterizedType)t).getRawType() ==
+                         Comparable.class) &&
+                        (as = p.getActualTypeArguments()) != null &&
+                        as.length == 1 && as[0] == c) // type arg is c
+                        return c;
+                }
+            }
+        }
+        return null;
+    }
+
+    /**
+     * Returns k.compareTo(x) if x matches kc (k's screened comparable
+     * class), else 0.
+     */
+    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
+    static int compareComparables(Class<?> kc, Object k, Object x) {
+        return (x == null || x.getClass() != kc ? 0 :
+                ((Comparable)k).compareTo(x));
+    }
+
+    /* ---------------- Table element access -------------- */
+
+    /*
+     * Atomic access methods are used for table elements as well as
+     * elements of in-progress next table while resizing.  All uses of
+     * the tab arguments must be null checked by callers.  All callers
+     * also paranoically precheck that tab's length is not zero (or an
+     * equivalent check), thus ensuring that any index argument taking
+     * the form of a hash value anded with (length - 1) is a valid
+     * index.  Note that, to be correct wrt arbitrary concurrency
+     * errors by users, these checks must operate on local variables,
+     * which accounts for some odd-looking inline assignments below.
+     * Note that calls to setTabAt always occur within locked regions,
+     * and so require only release ordering.
+     */
+
+    @SuppressWarnings("unchecked")
+    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
+        return (Node<K,V>)U.getObjectAcquire(tab, ((long)i << ASHIFT) + ABASE);
+    }
+
+    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
+                                        Node<K,V> c, Node<K,V> v) {
+        return U.compareAndSetObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
+    }
+
+    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
+        U.putObjectRelease(tab, ((long)i << ASHIFT) + ABASE, v);
+    }
+
+    /* ---------------- Fields -------------- */
+
+    /**
+     * The array of bins. Lazily initialized upon first insertion.
+     * Size is always a power of two. Accessed directly by iterators.
+     */
+    transient volatile Node<K,V>[] table;
+
+    /**
+     * The next table to use; non-null only while resizing.
+     */
+    private transient volatile Node<K,V>[] nextTable;
+
+    /**
+     * Base counter value, used mainly when there is no contention,
+     * but also as a fallback during table initialization
+     * races. Updated via CAS.
+     */
+    private transient volatile long baseCount;
+
+    /**
+     * Table initialization and resizing control.  When negative, the
+     * table is being initialized or resized: -1 for initialization,
+     * else -(1 + the number of active resizing threads).  Otherwise,
+     * when table is null, holds the initial table size to use upon
+     * creation, or 0 for default. After initialization, holds the
+     * next element count value upon which to resize the table.
+     */
+    private transient volatile int sizeCtl;
+
+    /**
+     * The next table index (plus one) to split while resizing.
+     */
+    private transient volatile int transferIndex;
+
+    /**
+     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
+     */
+    private transient volatile int cellsBusy;
+
+    /**
+     * Table of counter cells. When non-null, size is a power of 2.
+     */
+    private transient volatile CounterCell[] counterCells;
+
+    // views
+    private transient KeySetView<K,V> keySet;
+    private transient ValuesView<K,V> values;
+    private transient EntrySetView<K,V> entrySet;
+
+
+    /* ---------------- Public operations -------------- */
+
+    /**
+     * Creates a new, empty map with the default initial table size (16).
+     */
+    public ConcurrentHashMap() {
+    }
+
+    /**
+     * Creates a new, empty map with an initial table size
+     * accommodating the specified number of elements without the need
+     * to dynamically resize.
+     *
+     * @param initialCapacity The implementation performs internal
+     * sizing to accommodate this many elements.
+     * @throws IllegalArgumentException if the initial capacity of
+     * elements is negative
+     */
+    public ConcurrentHashMap(int initialCapacity) {
+        if (initialCapacity < 0)
+            throw new IllegalArgumentException();
+        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
+                   MAXIMUM_CAPACITY :
+                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
+        this.sizeCtl = cap;
+    }
+
+    /**
+     * Creates a new map with the same mappings as the given map.
+     *
+     * @param m the map
+     */
+    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
+        this.sizeCtl = DEFAULT_CAPACITY;
+        putAll(m);
+    }
+
+    /**
+     * Creates a new, empty map with an initial table size based on
+     * the given number of elements ({@code initialCapacity}) and
+     * initial table density ({@code loadFactor}).
+     *
+     * @param initialCapacity the initial capacity. The implementation
+     * performs internal sizing to accommodate this many elements,
+     * given the specified load factor.
+     * @param loadFactor the load factor (table density) for
+     * establishing the initial table size
+     * @throws IllegalArgumentException if the initial capacity of
+     * elements is negative or the load factor is nonpositive
+     *
+     * @since 1.6
+     */
+    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
+        this(initialCapacity, loadFactor, 1);
+    }
+
+    /**
+     * Creates a new, empty map with an initial table size based on
+     * the given number of elements ({@code initialCapacity}), table
+     * density ({@code loadFactor}), and number of concurrently
+     * updating threads ({@code concurrencyLevel}).
+     *
+     * @param initialCapacity the initial capacity. The implementation
+     * performs internal sizing to accommodate this many elements,
+     * given the specified load factor.
+     * @param loadFactor the load factor (table density) for
+     * establishing the initial table size
+     * @param concurrencyLevel the estimated number of concurrently
+     * updating threads. The implementation may use this value as
+     * a sizing hint.
+     * @throws IllegalArgumentException if the initial capacity is
+     * negative or the load factor or concurrencyLevel are
+     * nonpositive
+     */
+    public ConcurrentHashMap(int initialCapacity,
+                             float loadFactor, int concurrencyLevel) {
+        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
+            throw new IllegalArgumentException();
+        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
+            initialCapacity = concurrencyLevel;   // as estimated threads
+        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
+        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
+            MAXIMUM_CAPACITY : tableSizeFor((int)size);
+        this.sizeCtl = cap;
+    }
+
+    // Original (since JDK1.2) Map methods
+
+    /**
+     * {@inheritDoc}
+     */
+    public int size() {
+        long n = sumCount();
+        return ((n < 0L) ? 0 :
+                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
+                (int)n);
+    }
+
+    /**
+     * {@inheritDoc}
+     */
+    public boolean isEmpty() {
+        return sumCount() <= 0L; // ignore transient negative values
+    }
+
+    /**
+     * Returns the value to which the specified key is mapped,
+     * or {@code null} if this map contains no mapping for the key.
+     *
+     * <p>More formally, if this map contains a mapping from a key
+     * {@code k} to a value {@code v} such that {@code key.equals(k)},
+     * then this method returns {@code v}; otherwise it returns
+     * {@code null}.  (There can be at most one such mapping.)
+     *
+     * @throws NullPointerException if the specified key is null
+     */
+    public V get(Object key) {
+        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
+        int h = spread(key.hashCode());
+        if ((tab = table) != null && (n = tab.length) > 0 &&
+            (e = tabAt(tab, (n - 1) & h)) != null) {
+            if ((eh = e.hash) == h) {
+                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
+                    return e.val;
+            }
+            else if (eh < 0)
+                return (p = e.find(h, key)) != null ? p.val : null;
+            while ((e = e.next) != null) {
+                if (e.hash == h &&
+                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
+                    return e.val;
+            }
+        }
+        return null;
+    }
+
+    /**
+     * Tests if the specified object is a key in this table.
+     *
+     * @param  key possible key
+     * @return {@code true} if and only if the specified object
+     *         is a key in this table, as determined by the
+     *         {@code equals} method; {@code false} otherwise
+     * @throws NullPointerException if the specified key is null
+     */
+    public boolean containsKey(Object key) {
+        return get(key) != null;
+    }
+
+    /**
+     * Returns {@code true} if this map maps one or more keys to the
+     * specified value. Note: This method may require a full traversal
+     * of the map, and is much slower than method {@code containsKey}.
+     *
+     * @param value value whose presence in this map is to be tested
+     * @return {@code true} if this map maps one or more keys to the
+     *         specified value
+     * @throws NullPointerException if the specified value is null
+     */
+    public boolean containsValue(Object value) {
+        if (value == null)
+            throw new NullPointerException();
+        Node<K,V>[] t;
+        if ((t = table) != null) {
+            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
+            for (Node<K,V> p; (p = it.advance()) != null; ) {
+                V v;
+                if ((v = p.val) == value || (v != null && value.equals(v)))
+                    return true;
+            }
+        }
+        return false;
+    }
+
+    /**
+     * Maps the specified key to the specified value in this table.
+     * Neither the key nor the value can be null.
+     *
+     * <p>The value can be retrieved by calling the {@code get} method
+     * with a key that is equal to the original key.
+     *
+     * @param key key with which the specified value is to be associated
+     * @param value value to be associated with the specified key
+     * @return the previous value associated with {@code key}, or
+     *         {@code null} if there was no mapping for {@code key}
+     * @throws NullPointerException if the specified key or value is null
+     */
+    public V put(K key, V value) {
+        return putVal(key, value, false);
+    }
+
+    /** Implementation for put and putIfAbsent */
+    final V putVal(K key, V value, boolean onlyIfAbsent) {
+        if (key == null || value == null) throw new NullPointerException();
+        int hash = spread(key.hashCode());
+        int binCount = 0;
+        for (Node<K,V>[] tab = table;;) {
+            Node<K,V> f; int n, i, fh; K fk; V fv;
+            if (tab == null || (n = tab.length) == 0)
+                tab = initTable();
+            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
+                if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
+                    break;                   // no lock when adding to empty bin
+            }
+            else if ((fh = f.hash) == MOVED)
+                tab = helpTransfer(tab, f);
+            else if (onlyIfAbsent // check first node without acquiring lock
+                     && fh == hash
+                     && ((fk = f.key) == key || (fk != null && key.equals(fk)))
+                     && (fv = f.val) != null)
+                return fv;
+            else {
+                V oldVal = null;
+                synchronized (f) {
+                    if (tabAt(tab, i) == f) {
+                        if (fh >= 0) {
+                            binCount = 1;
+                            for (Node<K,V> e = f;; ++binCount) {
+                                K ek;
+                                if (e.hash == hash &&
+                                    ((ek = e.key) == key ||
+                                     (ek != null && key.equals(ek)))) {
+                                    oldVal = e.val;
+                                    if (!onlyIfAbsent)
+                                        e.val = value;
+                                    break;
+                                }
+                                Node<K,V> pred = e;
+                                if ((e = e.next) == null) {
+                                    pred.next = new Node<K,V>(hash, key, value);
+                                    break;
+                                }
+                            }
+                        }
+                        else if (f instanceof TreeBin) {
+                            Node<K,V> p;
+                            binCount = 2;
+                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
+                                                           value)) != null) {
+                                oldVal = p.val;
+                                if (!onlyIfAbsent)
+                                    p.val = value;
+                            }
+                        }
+                        else if (f instanceof ReservationNode)
+                            throw new IllegalStateException("Recursive update");
+                    }
+                }
+                if (binCount != 0) {
+                    if (binCount >= TREEIFY_THRESHOLD)
+                        treeifyBin(tab, i);
+                    if (oldVal != null)
+                        return oldVal;
+                    break;
+                }
+            }
+        }
+        addCount(1L, binCount);
+        return null;
+    }
+
+    /**
+     * Copies all of the mappings from the specified map to this one.
+     * These mappings replace any mappings that this map had for any of the
+     * keys currently in the specified map.
+     *
+     * @param m mappings to be stored in this map
+     */
+    public void putAll(Map<? extends K, ? extends V> m) {
+        tryPresize(m.size());
+        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
+            putVal(e.getKey(), e.getValue(), false);
+    }
+
+    /**
+     * Removes the key (and its corresponding value) from this map.
+     * This method does nothing if the key is not in the map.
+     *
+     * @param  key the key that needs to be removed
+     * @return the previous value associated with {@code key}, or
+     *         {@code null} if there was no mapping for {@code key}
+     * @throws NullPointerException if the specified key is null
+     */
+    public V remove(Object key) {
+        return replaceNode(key, null, null);
+    }
+
+    /**
+     * Implementation for the four public remove/replace methods:
+     * Replaces node value with v, conditional upon match of cv if
+     * non-null.  If resulting value is null, delete.
+     */
+    final V replaceNode(Object key, V value, Object cv) {
+        int hash = spread(key.hashCode());
+        for (Node<K,V>[] tab = table;;) {
+            Node<K,V> f; int n, i, fh;
+            if (tab == null || (n = tab.length) == 0 ||
+                (f = tabAt(tab, i = (n - 1) & hash)) == null)
+                break;
+            else if ((fh = f.hash) == MOVED)
+                tab = helpTransfer(tab, f);
+            else {
+                V oldVal = null;
+                boolean validated = false;
+                synchronized (f) {
+                    if (tabAt(tab, i) == f) {
+                        if (fh >= 0) {
+                            validated = true;
+                            for (Node<K,V> e = f, pred = null;;) {
+                                K ek;
+                                if (e.hash == hash &&
+                                    ((ek = e.key) == key ||
+                                     (ek != null && key.equals(ek)))) {
+                                    V ev = e.val;
+                                    if (cv == null || cv == ev ||
+                                        (ev != null && cv.equals(ev))) {
+                                        oldVal = ev;
+                                        if (value != null)
+                                            e.val = value;
+                                        else if (pred != null)
+                                            pred.next = e.next;
+                                        else
+                                            setTabAt(tab, i, e.next);
+                                    }
+                                    break;
+                                }
+                                pred = e;
+                                if ((e = e.next) == null)
+                                    break;
+                            }
+                        }
+                        else if (f instanceof TreeBin) {
+                            validated = true;
+                            TreeBin<K,V> t = (TreeBin<K,V>)f;
+                            TreeNode<K,V> r, p;
+                            if ((r = t.root) != null &&
+                                (p = r.findTreeNode(hash, key, null)) != null) {
+                                V pv = p.val;
+                                if (cv == null || cv == pv ||
+                                    (pv != null && cv.equals(pv))) {
+                                    oldVal = pv;
+                                    if (value != null)
+                                        p.val = value;
+                                    else if (t.removeTreeNode(p))
+                                        setTabAt(tab, i, untreeify(t.first));
+                                }
+                            }
+                        }
+                        else if (f instanceof ReservationNode)
+                            throw new IllegalStateException("Recursive update");
+                    }
+                }
+                if (validated) {
+                    if (oldVal != null) {
+                        if (value == null)
+                            addCount(-1L, -1);
+                        return oldVal;
+                    }
+                    break;
+                }
+            }
+        }
+        return null;
+    }
+
+    /**
+     * Removes all of the mappings from this map.
+     */
+    public void clear() {
+        long delta = 0L; // negative number of deletions
+        int i = 0;
+        Node<K,V>[] tab = table;
+        while (tab != null && i < tab.length) {
+            int fh;
+            Node<K,V> f = tabAt(tab, i);
+            if (f == null)
+                ++i;
+            else if ((fh = f.hash) == MOVED) {
+                tab = helpTransfer(tab, f);
+                i = 0; // restart
+            }
+            else {
+                synchronized (f) {
+                    if (tabAt(tab, i) == f) {
+                        Node<K,V> p = (fh >= 0 ? f :
+                                       (f instanceof TreeBin) ?
+                                       ((TreeBin<K,V>)f).first : null);
+                        while (p != null) {
+                            --delta;
+                            p = p.next;
+                        }
+                        setTabAt(tab, i++, null);
+                    }
+                }
+            }
+        }
+        if (delta != 0L)
+            addCount(delta, -1);
+    }
+
+    /**
+     * Returns a {@link Set} view of the keys contained in this map.
+     * The set is backed by the map, so changes to the map are
+     * reflected in the set, and vice-versa. The set supports element
+     * removal, which removes the corresponding mapping from this map,
+     * via the {@code Iterator.remove}, {@code Set.remove},
+     * {@code removeAll}, {@code retainAll}, and {@code clear}
+     * operations.  It does not support the {@code add} or
+     * {@code addAll} operations.
+     *
+     * <p>The view's iterators and spliterators are
+     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
+     *
+     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
+     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
+     *
+     * @return the set view
+     */
+    public KeySetView<K,V> keySet() {
+        KeySetView<K,V> ks;
+        if ((ks = keySet) != null) return ks;
+        return keySet = new KeySetView<K,V>(this, null);
+    }
+
+    /**
+     * Returns a {@link Collection} view of the values contained in this map.
+     * The collection is backed by the map, so changes to the map are
+     * reflected in the collection, and vice-versa.  The collection
+     * supports element removal, which removes the corresponding
+     * mapping from this map, via the {@code Iterator.remove},
+     * {@code Collection.remove}, {@code removeAll},
+     * {@code retainAll}, and {@code clear} operations.  It does not
+     * support the {@code add} or {@code addAll} operations.
+     *
+     * <p>The view's iterators and spliterators are
+     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
+     *
+     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
+     * and {@link Spliterator#NONNULL}.
+     *
+     * @return the collection view
+     */
+    public Collection<V> values() {
+        ValuesView<K,V> vs;
+        if ((vs = values) != null) return vs;
+        return values = new ValuesView<K,V>(this);
+    }
+
+    /**
+     * Returns a {@link Set} view of the mappings contained in this map.
+     * The set is backed by the map, so changes to the map are
+     * reflected in the set, and vice-versa.  The set supports element
+     * removal, which removes the corresponding mapping from the map,
+     * via the {@code Iterator.remove}, {@code Set.remove},
+     * {@code removeAll}, {@code retainAll}, and {@code clear}
+     * operations.
+     *
+     * <p>The view's iterators and spliterators are
+     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
+     *
+     * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
+     * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
+     *
+     * @return the set view
+     */
+    public Set<Map.Entry<K,V>> entrySet() {
+        EntrySetView<K,V> es;
+        if ((es = entrySet) != null) return es;
+        return entrySet = new EntrySetView<K,V>(this);
+    }
+
+    /**
+     * Returns the hash code value for this {@link Map}, i.e.,
+     * the sum of, for each key-value pair in the map,
+     * {@code key.hashCode() ^ value.hashCode()}.
+     *
+     * @return the hash code value for this map
+     */
+    public int hashCode() {
+        int h = 0;
+        Node<K,V>[] t;
+        if ((t = table) != null) {
+            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
+            for (Node<K,V> p; (p = it.advance()) != null; )
+                h += p.key.hashCode() ^ p.val.hashCode();
+        }
+        return h;
+    }
+
+    /**
+     * Returns a string representation of this map.  The string
+     * representation consists of a list of key-value mappings (in no
+     * particular order) enclosed in braces ("{@code {}}").  Adjacent
+     * mappings are separated by the characters {@code ", "} (comma
+     * and space).  Each key-value mapping is rendered as the key
+     * followed by an equals sign ("{@code =}") followed by the
+     * associated value.
+     *
+     * @return a string representation of this map
+     */
+    public String toString() {
+        Node<K,V>[] t;
+        int f = (t = table) == null ? 0 : t.length;
+        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
+        StringBuilder sb = new StringBuilder();
+        sb.append('{');
+        Node<K,V> p;
+        if ((p = it.advance()) != null) {
+            for (;;) {
+                K k = p.key;
+                V v = p.val;
+                sb.append(k == this ? "(this Map)" : k);
+                sb.append('=');
+                sb.append(v == this ? "(this Map)" : v);
+                if ((p = it.advance()) == null)
+                    break;
+                sb.append(',').append(' ');
+            }
+        }
+        return sb.append('}').toString();
+    }
+
+    /**
+     * Compares the specified object with this map for equality.
+     * Returns {@code true} if the given object is a map with the same
+     * mappings as this map.  This operation may return misleading
+     * results if either map is concurrently modified during execution
+     * of this method.
+     *
+     * @param o object to be compared for equality with this map
+     * @return {@code true} if the specified object is equal to this map
+     */
+    public boolean equals(Object o) {
+        if (o != this) {
+            if (!(o instanceof Map))
+                return false;
+            Map<?,?> m = (Map<?,?>) o;
+            Node<K,V>[] t;
+            int f = (t = table) == null ? 0 : t.length;
+            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
+            for (Node<K,V> p; (p = it.advance()) != null; ) {
+                V val = p.val;
+                Object v = m.get(p.key);
+                if (v == null || (v != val && !v.equals(val)))
+                    return false;
+            }
+            for (Map.Entry<?,?> e : m.entrySet()) {
+                Object mk, mv, v;
+                if ((mk = e.getKey()) == null ||
+                    (mv = e.getValue()) == null ||
+                    (v = get(mk)) == null ||
+                    (mv != v && !mv.equals(v)))
+                    return false;
+            }
+        }
+        return true;
+    }
+
+    /**
+     * Stripped-down version of helper class used in previous version,
+     * declared for the sake of serialization compatibility.
+     */
+    static class Segment<K,V> extends ReentrantLock implements Serializable {
+        private static final long serialVersionUID = 2249069246763182397L;
+        final float loadFactor;
+        Segment(float lf) { this.loadFactor = lf; }
+    }
+
+    /**
+     * Saves the state of the {@code ConcurrentHashMap} instance to a
+     * stream (i.e., serializes it).
+     * @param s the stream
+     * @throws java.io.IOException if an I/O error occurs
+     * @serialData
+     * the serialized fields, followed by the key (Object) and value
+     * (Object) for each key-value mapping, followed by a null pair.
+     * The key-value mappings are emitted in no particular order.
+     */
+    private void writeObject(java.io.ObjectOutputStream s)
+        throws java.io.IOException {
+        // For serialization compatibility
+        // Emulate segment calculation from previous version of this class
+        int sshift = 0;
+        int ssize = 1;
+        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
+            ++sshift;
+            ssize <<= 1;
+        }
+        int segmentShift = 32 - sshift;
+        int segmentMask = ssize - 1;
+        @SuppressWarnings("unchecked")
+        Segment<K,V>[] segments = (Segment<K,V>[])
+            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
+        for (int i = 0; i < segments.length; ++i)
+            segments[i] = new Segment<K,V>(LOAD_FACTOR);
+        java.io.ObjectOutputStream.PutField streamFields = s.putFields();
+        streamFields.put("segments", segments);
+        streamFields.put("segmentShift", segmentShift);
+        streamFields.put("segmentMask", segmentMask);
+        s.writeFields();
+
+        Node<K,V>[] t;
+        if ((t = table) != null) {
+            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
+            for (Node<K,V> p; (p = it.advance()) != null; ) {
+                s.writeObject(p.key);
+                s.writeObject(p.val);
+            }
+        }
+        s.writeObject(null);
+        s.writeObject(null);
+    }
+
+    /**
+     * Reconstitutes the instance from a stream (that is, deserializes it).
+     * @param s the stream
+     * @throws ClassNotFoundException if the class of a serialized object
+     *         could not be found
+     * @throws java.io.IOException if an I/O error occurs
+     */
+    private void readObject(java.io.ObjectInputStream s)
+        throws java.io.IOException, ClassNotFoundException {
+        /*
+         * To improve performance in typical cases, we create nodes
+         * while reading, then place in table once size is known.
+         * However, we must also validate uniqueness and deal with
+         * overpopulated bins while doing so, which requires
+         * specialized versions of putVal mechanics.
+         */
+        sizeCtl = -1; // force exclusion for table construction
+        s.defaultReadObject();
+        long size = 0L;
+        Node<K,V> p = null;
+        for (;;) {
+            @SuppressWarnings("unchecked")
+            K k = (K) s.readObject();
+            @SuppressWarnings("unchecked")
+            V v = (V) s.readObject();
+            if (k != null && v != null) {
+                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
+                ++size;
+            }
+            else
+                break;
+        }
+        if (size == 0L)
+            sizeCtl = 0;
+        else {
+            int n;
+            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
+                n = MAXIMUM_CAPACITY;
+            else {
+                int sz = (int)size;
+                n = tableSizeFor(sz + (sz >>> 1) + 1);
+            }
+            @SuppressWarnings("unchecked")
+            Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
+            int mask = n - 1;
+            long added = 0L;
+            while (p != null) {
+                boolean insertAtFront;
+                Node<K,V> next = p.next, first;
+                int h = p.hash, j = h & mask;
+                if ((first = tabAt(tab, j)) == null)
+                    insertAtFront = true;
+                else {
+                    K k = p.key;
+                    if (first.hash < 0) {
+                        TreeBin<K,V> t = (TreeBin<K,V>)first;
+                        if (t.putTreeVal(h, k, p.val) == null)
+                            ++added;
+                        insertAtFront = false;
+                    }
+                    else {
+                        int binCount = 0;
+                        insertAtFront = true;
+                        Node<K,V> q; K qk;
+                        for (q = first; q != null; q = q.next) {
+                            if (q.hash == h &&
+                                ((qk = q.key) == k ||
+                                 (qk != null && k.equals(qk)))) {
+                                insertAtFront = false;
+                                break;
+                            }
+                            ++binCount;
+                        }
+                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
+                            insertAtFront = false;
+                            ++added;
+                            p.next = first;
+                            TreeNode<K,V> hd = null, tl = null;
+                            for (q = p; q != null; q = q.next) {
+                                TreeNode<K,V> t = new TreeNode<K,V>
+                                    (q.hash, q.key, q.val, null, null);
+                                if ((t.prev = tl) == null)
+                                    hd = t;
+                                else
+                                    tl.next = t;
+                                tl = t;
+                            }
+                            setTabAt(tab, j, new TreeBin<K,V>(hd));
+                        }
+                    }
+                }
+                if (insertAtFront) {
+                    ++added;
+                    p.next = first;
+                    setTabAt(tab, j, p);
+                }
+                p = next;
+            }
+            table = tab;
+            sizeCtl = n - (n >>> 2);
+            baseCount = added;
+        }
+    }
+
+    // ConcurrentMap methods
+
+    /**
+     * {@inheritDoc}
+     *
+     * @return the previous value associated with the specified key,
+     *         or {@code null} if there was no mapping for the key
+     * @throws NullPointerException if the specified key or value is null
+     */
+    public V putIfAbsent(K key, V value) {
+        return putVal(key, value, true);
+    }
+
+    /**
+     * {@inheritDoc}
+     *
+     * @throws NullPointerException if the specified key is null
+     */
+    public boolean remove(Object key, Object value) {
+        if (key == null)
+            throw new NullPointerException();
+        return value != null && replaceNode(key, null, value) != null;
+    }
+
+    /**
+     * {@inheritDoc}
+     *
+     * @throws NullPointerException if any of the arguments are null
+     */
+    public boolean replace(K key, V oldValue, V newValue) {
+        if (key == null || oldValue == null || newValue == null)
+            throw new NullPointerException();
+        return replaceNode(key, newValue, oldValue) != null;
+    }
+
+    /**
+     * {@inheritDoc}
+     *
+     * @return the previous value associated with the specified key,
+     *         or {@code null} if there was no mapping for the key
+     * @throws NullPointerException if the specified key or value is null
+     */
+    public V replace(K key, V value) {
+        if (key == null || value == null)
+            throw new NullPointerException();
+        return replaceNode(key, value, null);
+    }
+
+    // Overrides of JDK8+ Map extension method defaults
+
+    /**
+     * Returns the value to which the specified key is mapped, or the
+     * given default value if this map contains no mapping for the
+     * key.
+     *
+     * @param key the key whose associated value is to be returned
+     * @param defaultValue the value to return if this map contains
+     * no mapping for the given key
+     * @return the mapping for the key, if present; else the default value
+     * @throws NullPointerException if the specified key is null
+     */
+    public V getOrDefault(Object key, V defaultValue) {
+        V v;
+        return (v = get(key)) == null ? defaultValue : v;
+    }
+
+    public void forEach(BiConsumer<? super K, ? super V> action) {
+        if (action == null) throw new NullPointerException();
+        Node<K,V>[] t;
+        if ((t = table) != null) {
+            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
+            for (Node<K,V> p; (p = it.advance()) != null; ) {
+                action.accept(p.key, p.val);
+            }
+        }
+    }
+
+    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
+        if (function == null) throw new NullPointerException();
+        Node<K,V>[] t;
+        if ((t = table) != null) {
+            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
+            for (Node<K,V> p; (p = it.advance()) != null; ) {
+                V oldValue = p.val;
+                for (K key = p.key;;) {
+                    V newValue = function.apply(key, oldValue);
+                    if (newValue == null)
+                        throw new NullPointerException();
+                    if (replaceNode(key, newValue, oldValue) != null ||
+                        (oldValue = get(key)) == null)
+                        break;
+                }
+            }
+        }
+    }
+
+    /**
+     * Helper method for EntrySetView.removeIf.
+     */
+    boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
+        if (function == null) throw new NullPointerException();
+        Node<K,V>[] t;
+        boolean removed = false;
+        if ((t = table) != null) {
+            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
+            for (Node<K,V> p; (p = it.advance()) != null; ) {
+                K k = p.key;
+                V v = p.val;
+                Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
+                if (function.test(e) && replaceNode(k, null, v) != null)
+                    removed = true;
+            }
+        }
+        return removed;
+    }
+
+    /**
+     * Helper method for ValuesView.removeIf.
+     */
+    boolean removeValueIf(Predicate<? super V> function) {
+        if (function == null) throw new NullPointerException();
+        Node<K,V>[] t;
+        boolean removed = false;
+        if ((t = table) != null) {
+            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
+            for (Node<K,V> p; (p = it.advance()) != null; ) {
+                K k = p.key;
+                V v = p.val;
+                if (function.test(v) && replaceNode(k, null, v) != null)
+                    removed = true;
+            }
+        }
+        return removed;
+    }
+
+    /**
+     * If the specified key is not already associated with a value,
+     * attempts to compute its value using the given mapping function
+     * and enters it into this map unless {@code null}.  The entire
+     * method invocation is performed atomically, so the function is
+     * applied at most once per key.  Some attempted update operations
+     * on this map by other threads may be blocked while computation
+     * is in progress, so the computation should be short and simple,
+     * and must not attempt to update any other mappings of this map.
+     *
+     * @param key key with which the specified value is to be associated
+     * @param mappingFunction the function to compute a value
+     * @return the current (existing or computed) value associated with
+     *         the specified key, or null if the computed value is null
+     * @throws NullPointerException if the specified key or mappingFunction
+     *         is null
+     * @throws IllegalStateException if the computation detectably
+     *         attempts a recursive update to this map that would
+     *         otherwise never complete
+     * @throws RuntimeException or Error if the mappingFunction does so,
+     *         in which case the mapping is left unestablished
+     */
+    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
+        if (key == null || mappingFunction == null)
+            throw new NullPointerException();
+        int h = spread(key.hashCode());
+        V val = null;
+        int binCount = 0;
+        for (Node<K,V>[] tab = table;;) {
+            Node<K,V> f; int n, i, fh; K fk; V fv;
+            if (tab == null || (n = tab.length) == 0)
+                tab = initTable();
+            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
+                Node<K,V> r = new ReservationNode<K,V>();
+                synchronized (r) {
+                    if (casTabAt(tab, i, null, r)) {
+                        binCount = 1;
+                        Node<K,V> node = null;
+                        try {
+                            if ((val = mappingFunction.apply(key)) != null)
+                                node = new Node<K,V>(h, key, val);
+                        } finally {
+                            setTabAt(tab, i, node);
+                        }
+                    }
+                }
+                if (binCount != 0)
+                    break;
+            }
+            else if ((fh = f.hash) == MOVED)
+                tab = helpTransfer(tab, f);
+            else if (fh == h    // check first node without acquiring lock
+                     && ((fk = f.key) == key || (fk != null && key.equals(fk)))
+                     && (fv = f.val) != null)
+                return fv;
+            else {
+                boolean added = false;
+                synchronized (f) {
+                    if (tabAt(tab, i) == f) {
+                        if (fh >= 0) {
+                            binCount = 1;
+                            for (Node<K,V> e = f;; ++binCount) {
+                                K ek;
+                                if (e.hash == h &&
+                                    ((ek = e.key) == key ||
+                                     (ek != null && key.equals(ek)))) {
+                                    val = e.val;
+                                    break;
+                                }
+                                Node<K,V> pred = e;
+                                if ((e = e.next) == null) {
+                                    if ((val = mappingFunction.apply(key)) != null) {
+                                        if (pred.next != null)
+                                            throw new IllegalStateException("Recursive update");
+                                        added = true;
+                                        pred.next = new Node<K,V>(h, key, val);
+                                    }
+                                    break;
+                                }
+                            }
+                        }
+                        else if (f instanceof TreeBin) {
+                            binCount = 2;
+                            TreeBin<K,V> t = (TreeBin<K,V>)f;
+                            TreeNode<K,V> r, p;
+                            if ((r = t.root) != null &&
+                                (p = r.findTreeNode(h, key, null)) != null)
+                                val = p.val;
+                            else if ((val = mappingFunction.apply(key)) != null) {
+                                added = true;
+                                t.putTreeVal(h, key, val);
+                            }
+                        }
+                        else if (f instanceof ReservationNode)
+                            throw new IllegalStateException("Recursive update");
+                    }
+                }
+                if (binCount != 0) {
+                    if (binCount >= TREEIFY_THRESHOLD)
+                        treeifyBin(tab, i);
+                    if (!added)
+                        return val;
+                    break;
+                }
+            }
+        }
+        if (val != null)
+            addCount(1L, binCount);
+        return val;
+    }
+
+    /**
+     * If the value for the specified key is present, attempts to
+     * compute a new mapping given the key and its current mapped
+     * value.  The entire method invocation is performed atomically.
+     * Some attempted update operations on this map by other threads
+     * may be blocked while computation is in progress, so the
+     * computation should be short and simple, and must not attempt to
+     * update any other mappings of this map.
+     *
+     * @param key key with which a value may be associated
+     * @param remappingFunction the function to compute a value
+     * @return the new value associated with the specified key, or null if none
+     * @throws NullPointerException if the specified key or remappingFunction
+     *         is null
+     * @throws IllegalStateException if the computation detectably
+     *         attempts a recursive update to this map that would
+     *         otherwise never complete
+     * @throws RuntimeException or Error if the remappingFunction does so,
+     *         in which case the mapping is unchanged
+     */
+    public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
+        if (key == null || remappingFunction == null)
+            throw new NullPointerException();
+        int h = spread(key.hashCode());
+        V val = null;
+        int delta = 0;
+        int binCount = 0;
+        for (Node<K,V>[] tab = table;;) {
+            Node<K,V> f; int n, i, fh;
+            if (tab == null || (n = tab.length) == 0)
+                tab = initTable();
+            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
+                break;
+            else if ((fh = f.hash) == MOVED)
+                tab = helpTransfer(tab, f);
+            else {
+                synchronized (f) {
+                    if (tabAt(tab, i) == f) {
+                        if (fh >= 0) {
+                            binCount = 1;
+                            for (Node<K,V> e = f, pred = null;; ++binCount) {
+                                K ek;
+                                if (e.hash == h &&
+                                    ((ek = e.key) == key ||
+                                     (ek != null && key.equals(ek)))) {
+                                    val = remappingFunction.apply(key, e.val);
+                                    if (val != null)
+                                        e.val = val;
+                                    else {
+                                        delta = -1;
+                                        Node<K,V> en = e.next;
+                                        if (pred != null)
+                                            pred.next = en;
+                                        else
+                                            setTabAt(tab, i, en);
+                                    }
+                                    break;
+                                }
+                                pred = e;
+                                if ((e = e.next) == null)
+                                    break;
+                            }
+                        }
+                        else if (f instanceof TreeBin) {
+                            binCount = 2;
+                            TreeBin<K,V> t = (TreeBin<K,V>)f;
+                            TreeNode<K,V> r, p;
+                            if ((r = t.root) != null &&
+                                (p = r.findTreeNode(h, key, null)) != null) {
+                                val = remappingFunction.apply(key, p.val);
+                                if (val != null)
+                                    p.val = val;
+                                else {
+                                    delta = -1;
+                                    if (t.removeTreeNode(p))
+                                        setTabAt(tab, i, untreeify(t.first));
+                                }
+                            }
+                        }
+                        else if (f instanceof ReservationNode)
+                            throw new IllegalStateException("Recursive update");
+                    }
+                }
+                if (binCount != 0)
+                    break;
+            }
+        }
+        if (delta != 0)
+            addCount((long)delta, binCount);
+        return val;
+    }
+
+    /**
+     * Attempts to compute a mapping for the specified key and its
+     * current mapped value (or {@code null} if there is no current
+     * mapping). The entire method invocation is performed atomically.
+     * Some attempted update operations on this map by other threads
+     * may be blocked while computation is in progress, so the
+     * computation should be short and simple, and must not attempt to
+     * update any other mappings of this Map.
+     *
+     * @param key key with which the specified value is to be associated
+     * @param remappingFunction the function to compute a value
+     * @return the new value associated with the specified key, or null if none
+     * @throws NullPointerException if the specified key or remappingFunction
+     *         is null
+     * @throws IllegalStateException if the computation detectably
+     *         attempts a recursive update to this map that would
+     *         otherwise never complete
+     * @throws RuntimeException or Error if the remappingFunction does so,
+     *         in which case the mapping is unchanged
+     */
+    public V compute(K key,
+                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
+        if (key == null || remappingFunction == null)
+            throw new NullPointerException();
+        int h = spread(key.hashCode());
+        V val = null;
+        int delta = 0;
+        int binCount = 0;
+        for (Node<K,V>[] tab = table;;) {
+            Node<K,V> f; int n, i, fh;
+            if (tab == null || (n = tab.length) == 0)
+                tab = initTable();
+            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
+                Node<K,V> r = new ReservationNode<K,V>();
+                synchronized (r) {
+                    if (casTabAt(tab, i, null, r)) {
+                        binCount = 1;
+                        Node<K,V> node = null;
+                        try {
+                            if ((val = remappingFunction.apply(key, null)) != null) {
+                                delta = 1;
+                                node = new Node<K,V>(h, key, val);
+                            }
+                        } finally {
+                            setTabAt(tab, i, node);
+                        }
+                    }
+                }
+                if (binCount != 0)
+                    break;
+            }
+            else if ((fh = f.hash) == MOVED)
+                tab = helpTransfer(tab, f);
+            else {
+                synchronized (f) {
+                    if (tabAt(tab, i) == f) {
+                        if (fh >= 0) {
+                            binCount = 1;
+                            for (Node<K,V> e = f, pred = null;; ++binCount) {
+                                K ek;
+                                if (e.hash == h &&
+                                    ((ek = e.key) == key ||
+                                     (ek != null && key.equals(ek)))) {
+                                    val = remappingFunction.apply(key, e.val);
+                                    if (val != null)
+                                        e.val = val;
+                                    else {
+                                        delta = -1;
+                                        Node<K,V> en = e.next;
+                                        if (pred != null)
+                                            pred.next = en;
+                                        else
+                                            setTabAt(tab, i, en);
+                                    }
+                                    break;
+                                }
+                                pred = e;
+                                if ((e = e.next) == null) {
+                                    val = remappingFunction.apply(key, null);
+                                    if (val != null) {
+                                        if (pred.next != null)
+                                            throw new IllegalStateException("Recursive update");
+                                        delta = 1;
+                                        pred.next = new Node<K,V>(h, key, val);
+                                    }
+                                    break;
+                                }
+                            }
+                        }
+                        else if (f instanceof TreeBin) {
+                            binCount = 1;
+                            TreeBin<K,V> t = (TreeBin<K,V>)f;
+                            TreeNode<K,V> r, p;
+                            if ((r = t.root) != null)
+                                p = r.findTreeNode(h, key, null);
+                            else
+                                p = null;
+                            V pv = (p == null) ? null : p.val;
+                            val = remappingFunction.apply(key, pv);
+                            if (val != null) {
+                                if (p != null)
+                                    p.val = val;
+                                else {
+                                    delta = 1;
+                                    t.putTreeVal(h, key, val);
+                                }
+                            }
+                            else if (p != null) {
+                                delta = -1;
+                                if (t.removeTreeNode(p))
+                                    setTabAt(tab, i, untreeify(t.first));
+                            }
+                        }
+                        else if (f instanceof ReservationNode)
+                            throw new IllegalStateException("Recursive update");
+                    }
+                }
+                if (binCount != 0) {
+                    if (binCount >= TREEIFY_THRESHOLD)
+                        treeifyBin(tab, i);
+                    break;
+                }
+            }
+        }
+        if (delta != 0)
+            addCount((long)delta, binCount);
+        return val;
+    }
+
+    /**
+     * If the specified key is not already associated with a
+     * (non-null) value, associates it with the given value.
+     * Otherwise, replaces the value with the results of the given
+     * remapping function, or removes if {@code null}. The entire
+     * method invocation is performed atomically.  Some attempted
+     * update operations on this map by other threads may be blocked
+     * while computation is in progress, so the computation should be
+     * short and simple, and must not attempt to update any other
+     * mappings of this Map.
+     *
+     * @param key key with which the specified value is to be associated
+     * @param value the value to use if absent
+     * @param remappingFunction the function to recompute a value if present
+     * @return the new value associated with the specified key, or null if none
+     * @throws NullPointerException if the specified key or the
+     *         remappingFunction is null
+     * @throws RuntimeException or Error if the remappingFunction does so,
+     *         in which case the mapping is unchanged
+     */
+    public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
+        if (key == null || value == null || remappingFunction == null)
+            throw new NullPointerException();
+        int h = spread(key.hashCode());
+        V val = null;
+        int delta = 0;
+        int binCount = 0;
+        for (Node<K,V>[] tab = table;;) {
+            Node<K,V> f; int n, i, fh;
+            if (tab == null || (n = tab.length) == 0)
+                tab = initTable();
+            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
+                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
+                    delta = 1;
+                    val = value;
+                    break;
+                }
+            }
+            else if ((fh = f.hash) == MOVED)
+                tab = helpTransfer(tab, f);
+            else {
+                synchronized (f) {
+                    if (tabAt(tab, i) == f) {
+                        if (fh >= 0) {
+                            binCount = 1;
+                            for (Node<K,V> e = f, pred = null;; ++binCount) {
+                                K ek;
+                                if (e.hash == h &&
+                                    ((ek = e.key) == key ||
+                                     (ek != null && key.equals(ek)))) {
+                                    val = remappingFunction.apply(e.val, value);
+                                    if (val != null)
+                                        e.val = val;
+                                    else {
+                                        delta = -1;
+                                        Node<K,V> en = e.next;
+                                        if (pred != null)
+                                            pred.next = en;
+                                        else
+                                            setTabAt(tab, i, en);
+                                    }
+                                    break;
+                                }
+                                pred = e;
+                                if ((e = e.next) == null) {
+                                    delta = 1;
+                                    val = value;
+                                    pred.next = new Node<K,V>(h, key, val);
+                                    break;
+                                }
+                            }
+                        }
+                        else if (f instanceof TreeBin) {
+                            binCount = 2;
+                            TreeBin<K,V> t = (TreeBin<K,V>)f;
+                            TreeNode<K,V> r = t.root;
+                            TreeNode<K,V> p = (r == null) ? null :
+                                r.findTreeNode(h, key, null);
+                            val = (p == null) ? value :
+                                remappingFunction.apply(p.val, value);
+                            if (val != null) {
+                                if (p != null)
+                                    p.val = val;
+                                else {
+                                    delta = 1;
+                                    t.putTreeVal(h, key, val);
+                                }
+                            }
+                            else if (p != null) {
+                                delta = -1;
+                                if (t.removeTreeNode(p))
+                                    setTabAt(tab, i, untreeify(t.first));
+                            }
+                        }
+                        else if (f instanceof ReservationNode)
+                            throw new IllegalStateException("Recursive update");
+                    }
+                }
+                if (binCount != 0) {
+                    if (binCount >= TREEIFY_THRESHOLD)
+                        treeifyBin(tab, i);
+                    break;
+                }
+            }
+        }
+        if (delta != 0)
+            addCount((long)delta, binCount);
+        return val;
+    }
+
+    // Hashtable legacy methods
+
+    /**
+     * Tests if some key maps into the specified value in this table.
+     *
+     * <p>Note that this method is identical in functionality to
+     * {@link #containsValue(Object)}, and exists solely to ensure
+     * full compatibility with class {@link java.util.Hashtable},
+     * which supported this method prior to introduction of the
+     * Java Collections Framework.
+     *
+     * @param  value a value to search for
+     * @return {@code true} if and only if some key maps to the
+     *         {@code value} argument in this table as
+     *         determined by the {@code equals} method;
+     *         {@code false} otherwise
+     * @throws NullPointerException if the specified value is null
+     */
+    public boolean contains(Object value) {
+        return containsValue(value);
+    }
+
+    /**
+     * Returns an enumeration of the keys in this table.
+     *
+     * @return an enumeration of the keys in this table
+     * @see #keySet()
+     */
+    public Enumeration<K> keys() {
+        Node<K,V>[] t;
+        int f = (t = table) == null ? 0 : t.length;
+        return new KeyIterator<K,V>(t, f, 0, f, this);
+    }
+
+    /**
+     * Returns an enumeration of the values in this table.
+     *
+     * @return an enumeration of the values in this table
+     * @see #values()
+     */
+    public Enumeration<V> elements() {
+        Node<K,V>[] t;
+        int f = (t = table) == null ? 0 : t.length;
+        return new ValueIterator<K,V>(t, f, 0, f, this);
+    }
+
+    // ConcurrentHashMap-only methods
+
+    /**
+     * Returns the number of mappings. This method should be used
+     * instead of {@link #size} because a ConcurrentHashMap may
+     * contain more mappings than can be represented as an int. The
+     * value returned is an estimate; the actual count may differ if
+     * there are concurrent insertions or removals.
+     *
+     * @return the number of mappings
+     * @since 1.8
+     */
+    public long mappingCount() {
+        long n = sumCount();
+        return (n < 0L) ? 0L : n; // ignore transient negative values
+    }
+
+    /**
+     * Creates a new {@link Set} backed by a ConcurrentHashMap
+     * from the given type to {@code Boolean.TRUE}.
+     *
+     * @param <K> the element type of the returned set
+     * @return the new set
+     * @since 1.8
+     */
+    public static <K> KeySetView<K,Boolean> newKeySet() {
+        return new KeySetView<K,Boolean>
+            (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
+    }
+
+    /**
+     * Creates a new {@link Set} backed by a ConcurrentHashMap
+     * from the given type to {@code Boolean.TRUE}.
+     *
+     * @param initialCapacity The implementation performs internal
+     * sizing to accommodate this many elements.
+     * @param <K> the element type of the returned set
+     * @return the new set
+     * @throws IllegalArgumentException if the initial capacity of
+     * elements is negative
+     * @since 1.8
+     */
+    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
+        return new KeySetView<K,Boolean>
+            (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
+    }
+
+    /**
+     * Returns a {@link Set} view of the keys in this map, using the
+     * given common mapped value for any additions (i.e., {@link
+     * Collection#add} and {@link Collection#addAll(Collection)}).
+     * This is of course only appropriate if it is acceptable to use
+     * the same value for all additions from this view.
+     *
+     * @param mappedValue the mapped value to use for any additions
+     * @return the set view
+     * @throws NullPointerException if the mappedValue is null
+     */
+    public KeySetView<K,V> keySet(V mappedValue) {
+        if (mappedValue == null)
+            throw new NullPointerException();
+        return new KeySetView<K,V>(this, mappedValue);
+    }
+
+    /* ---------------- Special Nodes -------------- */
+
+    /**
+     * A node inserted at head of bins during transfer operations.
+     */
+    static final class ForwardingNode<K,V> extends Node<K,V> {
+        final Node<K,V>[] nextTable;
+        ForwardingNode(Node<K,V>[] tab) {
+            super(MOVED, null, null);
+            this.nextTable = tab;
+        }
+
+        Node<K,V> find(int h, Object k) {
+            // loop to avoid arbitrarily deep recursion on forwarding nodes
+            outer: for (Node<K,V>[] tab = nextTable;;) {
+                Node<K,V> e; int n;
+                if (k == null || tab == null || (n = tab.length) == 0 ||
+                    (e = tabAt(tab, (n - 1) & h)) == null)
+                    return null;
+                for (;;) {
+                    int eh; K ek;
+                    if ((eh = e.hash) == h &&
+                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
+                        return e;
+                    if (eh < 0) {
+                        if (e instanceof ForwardingNode) {
+                            tab = ((ForwardingNode<K,V>)e).nextTable;
+                            continue outer;
+                        }
+                        else
+                            return e.find(h, k);
+                    }
+                    if ((e = e.next) == null)
+                        return null;
+                }
+            }
+        }
+    }
+
+    /**
+     * A place-holder node used in computeIfAbsent and compute.
+     */
+    static final class ReservationNode<K,V> extends Node<K,V> {
+        ReservationNode() {
+            super(RESERVED, null, null);
+        }
+
+        Node<K,V> find(int h, Object k) {
+            return null;
+        }
+    }
+
+    /* ---------------- Table Initialization and Resizing -------------- */
+
+    /**
+     * Returns the stamp bits for resizing a table of size n.
+     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
+     */
+    static final int resizeStamp(int n) {
+        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
+    }
+
+    /**
+     * Initializes table, using the size recorded in sizeCtl.
+     */
+    private final Node<K,V>[] initTable() {
+        Node<K,V>[] tab; int sc;
+        while ((tab = table) == null || tab.length == 0) {
+            if ((sc = sizeCtl) < 0)
+                Thread.yield(); // lost initialization race; just spin
+            else if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
+                try {
+                    if ((tab = table) == null || tab.length == 0) {
+                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
+                        @SuppressWarnings("unchecked")
+                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
+                        table = tab = nt;
+                        sc = n - (n >>> 2);
+                    }
+                } finally {
+                    sizeCtl = sc;
+                }
+                break;
+            }
+        }
+        return tab;
+    }
+
+    /**
+     * Adds to count, and if table is too small and not already
+     * resizing, initiates transfer. If already resizing, helps
+     * perform transfer if work is available.  Rechecks occupancy
+     * after a transfer to see if another resize is already needed
+     * because resizings are lagging additions.
+     *
+     * @param x the count to add
+     * @param check if <0, don't check resize, if <= 1 only check if uncontended
+     */
+    private final void addCount(long x, int check) {
+        CounterCell[] as; long b, s;
+        if ((as = counterCells) != null ||
+            !U.compareAndSetLong(this, BASECOUNT, b = baseCount, s = b + x)) {
+            CounterCell a; long v; int m;
+            boolean uncontended = true;
+            if (as == null || (m = as.length - 1) < 0 ||
+                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
+                !(uncontended =
+                  U.compareAndSetLong(a, CELLVALUE, v = a.value, v + x))) {
+                fullAddCount(x, uncontended);
+                return;
+            }
+            if (check <= 1)
+                return;
+            s = sumCount();
+        }
+        if (check >= 0) {
+            Node<K,V>[] tab, nt; int n, sc;
+            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
+                   (n = tab.length) < MAXIMUM_CAPACITY) {
+                int rs = resizeStamp(n);
+                if (sc < 0) {
+                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
+                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
+                        transferIndex <= 0)
+                        break;
+                    if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1))
+                        transfer(tab, nt);
+                }
+                else if (U.compareAndSetInt(this, SIZECTL, sc,
+                                             (rs << RESIZE_STAMP_SHIFT) + 2))
+                    transfer(tab, null);
+                s = sumCount();
+            }
+        }
+    }
+
+    /**
+     * Helps transfer if a resize is in progress.
+     */
+    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
+        Node<K,V>[] nextTab; int sc;
+        if (tab != null && (f instanceof ForwardingNode) &&
+            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
+            int rs = resizeStamp(tab.length);
+            while (nextTab == nextTable && table == tab &&
+                   (sc = sizeCtl) < 0) {
+                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
+                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
+                    break;
+                if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1)) {
+                    transfer(tab, nextTab);
+                    break;
+                }
+            }
+            return nextTab;
+        }
+        return table;
+    }
+
+    /**
+     * Tries to presize table to accommodate the given number of elements.
+     *
+     * @param size number of elements (doesn't need to be perfectly accurate)
+     */
+    private final void tryPresize(int size) {
+        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
+            tableSizeFor(size + (size >>> 1) + 1);
+        int sc;
+        while ((sc = sizeCtl) >= 0) {
+            Node<K,V>[] tab = table; int n;
+            if (tab == null || (n = tab.length) == 0) {
+                n = (sc > c) ? sc : c;
+                if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
+                    try {
+                        if (table == tab) {
+                            @SuppressWarnings("unchecked")
+                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
+                            table = nt;
+                            sc = n - (n >>> 2);
+                        }
+                    } finally {
+                        sizeCtl = sc;
+                    }
+                }
+            }
+            else if (c <= sc || n >= MAXIMUM_CAPACITY)
+                break;
+            else if (tab == table) {
+                int rs = resizeStamp(n);
+                if (U.compareAndSetInt(this, SIZECTL, sc,
+                                        (rs << RESIZE_STAMP_SHIFT) + 2))
+                    transfer(tab, null);
+            }
+        }
+    }
+
+    /**
+     * Moves and/or copies the nodes in each bin to new table. See
+     * above for explanation.
+     */
+    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
+        int n = tab.length, stride;
+        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
+            stride = MIN_TRANSFER_STRIDE; // subdivide range
+        if (nextTab == null) {            // initiating
+            try {
+                @SuppressWarnings("unchecked")
+                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
+                nextTab = nt;
+            } catch (Throwable ex) {      // try to cope with OOME
+                sizeCtl = Integer.MAX_VALUE;
+                return;
+            }
+            nextTable = nextTab;
+            transferIndex = n;
+        }
+        int nextn = nextTab.length;
+        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
+        boolean advance = true;
+        boolean finishing = false; // to ensure sweep before committing nextTab
+        for (int i = 0, bound = 0;;) {
+            Node<K,V> f; int fh;
+            while (advance) {
+                int nextIndex, nextBound;
+                if (--i >= bound || finishing)
+                    advance = false;
+                else if ((nextIndex = transferIndex) <= 0) {
+                    i = -1;
+                    advance = false;
+                }
+                else if (U.compareAndSetInt
+                         (this, TRANSFERINDEX, nextIndex,
+                          nextBound = (nextIndex > stride ?
+                                       nextIndex - stride : 0))) {
+                    bound = nextBound;
+                    i = nextIndex - 1;
+                    advance = false;
+                }
+            }
+            if (i < 0 || i >= n || i + n >= nextn) {
+                int sc;
+                if (finishing) {
+                    nextTable = null;
+                    table = nextTab;
+                    sizeCtl = (n << 1) - (n >>> 1);
+                    return;
+                }
+                if (U.compareAndSetInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
+                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
+                        return;
+                    finishing = advance = true;
+                    i = n; // recheck before commit
+                }
+            }
+            else if ((f = tabAt(tab, i)) == null)
+                advance = casTabAt(tab, i, null, fwd);
+            else if ((fh = f.hash) == MOVED)
+                advance = true; // already processed
+            else {
+                synchronized (f) {
+                    if (tabAt(tab, i) == f) {
+                        Node<K,V> ln, hn;
+                        if (fh >= 0) {
+                            int runBit = fh & n;
+                            Node<K,V> lastRun = f;
+                            for (Node<K,V> p = f.next; p != null; p = p.next) {
+                                int b = p.hash & n;
+                                if (b != runBit) {
+                                    runBit = b;
+                                    lastRun = p;
+                                }
+                            }
+                            if (runBit == 0) {
+                                ln = lastRun;
+                                hn = null;
+                            }
+                            else {
+                                hn = lastRun;
+                                ln = null;
+                            }
+                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
+                                int ph = p.hash; K pk = p.key; V pv = p.val;
+                                if ((ph & n) == 0)
+                                    ln = new Node<K,V>(ph, pk, pv, ln);
+                                else
+                                    hn = new Node<K,V>(ph, pk, pv, hn);
+                            }
+                            setTabAt(nextTab, i, ln);
+                            setTabAt(nextTab, i + n, hn);
+                            setTabAt(tab, i, fwd);
+                            advance = true;
+                        }
+                        else if (f instanceof TreeBin) {
+                            TreeBin<K,V> t = (TreeBin<K,V>)f;
+                            TreeNode<K,V> lo = null, loTail = null;
+                            TreeNode<K,V> hi = null, hiTail = null;
+                            int lc = 0, hc = 0;
+                            for (Node<K,V> e = t.first; e != null; e = e.next) {
+                                int h = e.hash;
+                                TreeNode<K,V> p = new TreeNode<K,V>
+                                    (h, e.key, e.val, null, null);
+                                if ((h & n) == 0) {
+                                    if ((p.prev = loTail) == null)
+                                        lo = p;
+                                    else
+                                        loTail.next = p;
+                                    loTail = p;
+                                    ++lc;
+                                }
+                                else {
+                                    if ((p.prev = hiTail) == null)
+                                        hi = p;
+                                    else
+                                        hiTail.next = p;
+                                    hiTail = p;
+                                    ++hc;
+                                }
+                            }
+                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
+                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
+                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
+                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
+                            setTabAt(nextTab, i, ln);
+                            setTabAt(nextTab, i + n, hn);
+                            setTabAt(tab, i, fwd);
+                            advance = true;
+                        }
+                    }
+                }
+            }
+        }
+    }
+
+    /* ---------------- Counter support -------------- */
+
+    /**
+     * A padded cell for distributing counts.  Adapted from LongAdder
+     * and Striped64.  See their internal docs for explanation.
+     */
+    @jdk.internal.vm.annotation.Contended static final class CounterCell {
+        volatile long value;
+        CounterCell(long x) { value = x; }
+    }
+
+    final long sumCount() {
+        CounterCell[] as = counterCells; CounterCell a;
+        long sum = baseCount;
+        if (as != null) {
+            for (int i = 0; i < as.length; ++i) {
+                if ((a = as[i]) != null)
+                    sum += a.value;
+            }
+        }
+        return sum;
+    }
+
+    // See LongAdder version for explanation
+    private final void fullAddCount(long x, boolean wasUncontended) {
+        int h;
+        if ((h = ThreadLocalRandom.getProbe()) == 0) {
+            ThreadLocalRandom.localInit();      // force initialization
+            h = ThreadLocalRandom.getProbe();
+            wasUncontended = true;
+        }
+        boolean collide = false;                // True if last slot nonempty
+        for (;;) {
+            CounterCell[] as; CounterCell a; int n; long v;
+            if ((as = counterCells) != null && (n = as.length) > 0) {
+                if ((a = as[(n - 1) & h]) == null) {
+                    if (cellsBusy == 0) {            // Try to attach new Cell
+                        CounterCell r = new CounterCell(x); // Optimistic create
+                        if (cellsBusy == 0 &&
+                            U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
+                            boolean created = false;
+                            try {               // Recheck under lock
+                                CounterCell[] rs; int m, j;
+                                if ((rs = counterCells) != null &&
+                                    (m = rs.length) > 0 &&
+                                    rs[j = (m - 1) & h] == null) {
+                                    rs[j] = r;
+                                    created = true;
+                                }
+                            } finally {
+                                cellsBusy = 0;
+                            }
+                            if (created)
+                                break;
+                            continue;           // Slot is now non-empty
+                        }
+                    }
+                    collide = false;
+                }
+                else if (!wasUncontended)       // CAS already known to fail
+                    wasUncontended = true;      // Continue after rehash
+                else if (U.compareAndSetLong(a, CELLVALUE, v = a.value, v + x))
+                    break;
+                else if (counterCells != as || n >= NCPU)
+                    collide = false;            // At max size or stale
+                else if (!collide)
+                    collide = true;
+                else if (cellsBusy == 0 &&
+                         U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
+                    try {
+                        if (counterCells == as) {// Expand table unless stale
+                            CounterCell[] rs = new CounterCell[n << 1];
+                            for (int i = 0; i < n; ++i)
+                                rs[i] = as[i];
+                            counterCells = rs;
+                        }
+                    } finally {
+                        cellsBusy = 0;
+                    }
+                    collide = false;
+                    continue;                   // Retry with expanded table
+                }
+                h = ThreadLocalRandom.advanceProbe(h);
+            }
+            else if (cellsBusy == 0 && counterCells == as &&
+                     U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
+                boolean init = false;
+                try {                           // Initialize table
+                    if (counterCells == as) {
+                        CounterCell[] rs = new CounterCell[2];
+                        rs[h & 1] = new CounterCell(x);
+                        counterCells = rs;
+                        init = true;
+                    }
+                } finally {
+                    cellsBusy = 0;
+                }
+                if (init)
+                    break;
+            }
+            else if (U.compareAndSetLong(this, BASECOUNT, v = baseCount, v + x))
+                break;                          // Fall back on using base
+        }
+    }
+
+    /* ---------------- Conversion from/to TreeBins -------------- */
+
+    /**
+     * Replaces all linked nodes in bin at given index unless table is
+     * too small, in which case resizes instead.
+     */
+    private final void treeifyBin(Node<K,V>[] tab, int index) {
+        Node<K,V> b; int n;
+        if (tab != null) {
+            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
+                tryPresize(n << 1);
+            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
+                synchronized (b) {
+                    if (tabAt(tab, index) == b) {
+                        TreeNode<K,V> hd = null, tl = null;
+                        for (Node<K,V> e = b; e != null; e = e.next) {
+                            TreeNode<K,V> p =
+                                new TreeNode<K,V>(e.hash, e.key, e.val,
+                                                  null, null);
+                            if ((p.prev = tl) == null)
+                                hd = p;
+                            else
+                                tl.next = p;
+                            tl = p;
+                        }
+                        setTabAt(tab, index, new TreeBin<K,V>(hd));
+                    }
+                }
+            }
+        }
+    }
+
+    /**
+     * Returns a list of non-TreeNodes replacing those in given list.
+     */
+    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
+        Node<K,V> hd = null, tl = null;
+        for (Node<K,V> q = b; q != null; q = q.next) {
+            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
+            if (tl == null)
+                hd = p;
+            else
+                tl.next = p;
+            tl = p;
+        }
+        return hd;
+    }
+
+    /* ---------------- TreeNodes -------------- */
+
+    /**
+     * Nodes for use in TreeBins.
+     */
+    static final class TreeNode<K,V> extends Node<K,V> {
+        TreeNode<K,V> parent;  // red-black tree links
+        TreeNode<K,V> left;
+        TreeNode<K,V> right;
+        TreeNode<K,V> prev;    // needed to unlink next upon deletion
+        boolean red;
+
+        TreeNode(int hash, K key, V val, Node<K,V> next,
+                 TreeNode<K,V> parent) {
+            super(hash, key, val, next);
+            this.parent = parent;
+        }
+
+        Node<K,V> find(int h, Object k) {
+            return findTreeNode(h, k, null);
+        }
+
+        /**
+         * Returns the TreeNode (or null if not found) for the given key
+         * starting at given root.
+         */
+        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
+            if (k != null) {
+                TreeNode<K,V> p = this;
+                do {
+                    int ph, dir; K pk; TreeNode<K,V> q;
+                    TreeNode<K,V> pl = p.left, pr = p.right;
+                    if ((ph = p.hash) > h)
+                        p = pl;
+                    else if (ph < h)
+                        p = pr;
+                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
+                        return p;
+                    else if (pl == null)
+                        p = pr;
+                    else if (pr == null)
+                        p = pl;
+                    else if ((kc != null ||
+                              (kc = comparableClassFor(k)) != null) &&
+                             (dir = compareComparables(kc, k, pk)) != 0)
+                        p = (dir < 0) ? pl : pr;
+                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
+                        return q;
+                    else
+                        p = pl;
+                } while (p != null);
+            }
+            return null;
+        }
+    }
+
+    /* ---------------- TreeBins -------------- */
+
+    /**
+     * TreeNodes used at the heads of bins. TreeBins do not hold user
+     * keys or values, but instead point to list of TreeNodes and
+     * their root. They also maintain a parasitic read-write lock
+     * forcing writers (who hold bin lock) to wait for readers (who do
+     * not) to complete before tree restructuring operations.
+     */
+    static final class TreeBin<K,V> extends Node<K,V> {
+        TreeNode<K,V> root;
+        volatile TreeNode<K,V> first;
+        volatile Thread waiter;
+        volatile int lockState;
+        // values for lockState
+        static final int WRITER = 1; // set while holding write lock
+        static final int WAITER = 2; // set when waiting for write lock
+        static final int READER = 4; // increment value for setting read lock
+
+        /**
+         * Tie-breaking utility for ordering insertions when equal
+         * hashCodes and non-comparable. We don't require a total
+         * order, just a consistent insertion rule to maintain
+         * equivalence across rebalancings. Tie-breaking further than
+         * necessary simplifies testing a bit.
+         */
+        static int tieBreakOrder(Object a, Object b) {
+            int d;
+            if (a == null || b == null ||
+                (d = a.getClass().getName().
+                 compareTo(b.getClass().getName())) == 0)
+                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
+                     -1 : 1);
+            return d;
+        }
+
+        /**
+         * Creates bin with initial set of nodes headed by b.
+         */
+        TreeBin(TreeNode<K,V> b) {
+            super(TREEBIN, null, null);
+            this.first = b;
+            TreeNode<K,V> r = null;
+            for (TreeNode<K,V> x = b, next; x != null; x = next) {
+                next = (TreeNode<K,V>)x.next;
+                x.left = x.right = null;
+                if (r == null) {
+                    x.parent = null;
+                    x.red = false;
+                    r = x;
+                }
+                else {
+                    K k = x.key;
+                    int h = x.hash;
+                    Class<?> kc = null;
+                    for (TreeNode<K,V> p = r;;) {
+                        int dir, ph;
+                        K pk = p.key;
+                        if ((ph = p.hash) > h)
+                            dir = -1;
+                        else if (ph < h)
+                            dir = 1;
+                        else if ((kc == null &&
+                                  (kc = comparableClassFor(k)) == null) ||
+                                 (dir = compareComparables(kc, k, pk)) == 0)
+                            dir = tieBreakOrder(k, pk);
+                        TreeNode<K,V> xp = p;
+                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
+                            x.parent = xp;
+                            if (dir <= 0)
+                                xp.left = x;
+                            else
+                                xp.right = x;
+                            r = balanceInsertion(r, x);
+                            break;
+                        }
+                    }
+                }
+            }
+            this.root = r;
+            assert checkInvariants(root);
+        }
+
+        /**
+         * Acquires write lock for tree restructuring.
+         */
+        private final void lockRoot() {
+            if (!U.compareAndSetInt(this, LOCKSTATE, 0, WRITER))
+                contendedLock(); // offload to separate method
+        }
+
+        /**
+         * Releases write lock for tree restructuring.
+         */
+        private final void unlockRoot() {
+            lockState = 0;
+        }
+
+        /**
+         * Possibly blocks awaiting root lock.
+         */
+        private final void contendedLock() {
+            boolean waiting = false;
+            for (int s;;) {
+                if (((s = lockState) & ~WAITER) == 0) {
+                    if (U.compareAndSetInt(this, LOCKSTATE, s, WRITER)) {
+                        if (waiting)
+                            waiter = null;
+                        return;
+                    }
+                }
+                else if ((s & WAITER) == 0) {
+                    if (U.compareAndSetInt(this, LOCKSTATE, s, s | WAITER)) {
+                        waiting = true;
+                        waiter = Thread.currentThread();
+                    }
+                }
+                else if (waiting)
+                    LockSupport.park(this);
+            }
+        }
+
+        /**
+         * Returns matching node or null if none. Tries to search
+         * using tree comparisons from root, but continues linear
+         * search when lock not available.
+         */
+        final Node<K,V> find(int h, Object k) {
+            if (k != null) {
+                for (Node<K,V> e = first; e != null; ) {
+                    int s; K ek;
+                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
+                        if (e.hash == h &&
+                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
+                            return e;
+                        e = e.next;
+                    }
+                    else if (U.compareAndSetInt(this, LOCKSTATE, s,
+                                                 s + READER)) {
+                        TreeNode<K,V> r, p;
+                        try {
+                            p = ((r = root) == null ? null :
+                                 r.findTreeNode(h, k, null));
+                        } finally {
+                            Thread w;
+                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
+                                (READER|WAITER) && (w = waiter) != null)
+                                LockSupport.unpark(w);
+                        }
+                        return p;
+                    }
+                }
+            }
+            return null;
+        }
+
+        /**
+         * Finds or adds a node.
+         * @return null if added
+         */
+        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
+            Class<?> kc = null;
+            boolean searched = false;
+            for (TreeNode<K,V> p = root;;) {
+                int dir, ph; K pk;
+                if (p == null) {
+                    first = root = new TreeNode<K,V>(h, k, v, null, null);
+                    break;
+                }
+                else if ((ph = p.hash) > h)
+                    dir = -1;
+                else if (ph < h)
+                    dir = 1;
+                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
+                    return p;
+                else if ((kc == null &&
+                          (kc = comparableClassFor(k)) == null) ||
+                         (dir = compareComparables(kc, k, pk)) == 0) {
+                    if (!searched) {
+                        TreeNode<K,V> q, ch;
+                        searched = true;
+                        if (((ch = p.left) != null &&
+                             (q = ch.findTreeNode(h, k, kc)) != null) ||
+                            ((ch = p.right) != null &&
+                             (q = ch.findTreeNode(h, k, kc)) != null))
+                            return q;
+                    }
+                    dir = tieBreakOrder(k, pk);
+                }
+
+                TreeNode<K,V> xp = p;
+                if ((p = (dir <= 0) ? p.left : p.right) == null) {
+                    TreeNode<K,V> x, f = first;
+                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
+                    if (f != null)
+                        f.prev = x;
+                    if (dir <= 0)
+                        xp.left = x;
+                    else
+                        xp.right = x;
+                    if (!xp.red)
+                        x.red = true;
+                    else {
+                        lockRoot();
+                        try {
+                            root = balanceInsertion(root, x);
+                        } finally {
+                            unlockRoot();
+                        }
+                    }
+                    break;
+                }
+            }
+            assert checkInvariants(root);
+            return null;
+        }
+
+        /**
+         * Removes the given node, that must be present before this
+         * call.  This is messier than typical red-black deletion code
+         * because we cannot swap the contents of an interior node
+         * with a leaf successor that is pinned by "next" pointers
+         * that are accessible independently of lock. So instead we
+         * swap the tree linkages.
+         *
+         * @return true if now too small, so should be untreeified
+         */
+        final boolean removeTreeNode(TreeNode<K,V> p) {
+            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
+            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
+            TreeNode<K,V> r, rl;
+            if (pred == null)
+                first = next;
+            else
+                pred.next = next;
+            if (next != null)
+                next.prev = pred;
+            if (first == null) {
+                root = null;
+                return true;
+            }
+            if ((r = root) == null || r.right == null || // too small
+                (rl = r.left) == null || rl.left == null)
+                return true;
+            lockRoot();
+            try {
+                TreeNode<K,V> replacement;
+                TreeNode<K,V> pl = p.left;
+                TreeNode<K,V> pr = p.right;
+                if (pl != null && pr != null) {
+                    TreeNode<K,V> s = pr, sl;
+                    while ((sl = s.left) != null) // find successor
+                        s = sl;
+                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
+                    TreeNode<K,V> sr = s.right;
+                    TreeNode<K,V> pp = p.parent;
+                    if (s == pr) { // p was s's direct parent
+                        p.parent = s;
+                        s.right = p;
+                    }
+                    else {
+                        TreeNode<K,V> sp = s.parent;
+                        if ((p.parent = sp) != null) {
+                            if (s == sp.left)
+                                sp.left = p;
+                            else
+                                sp.right = p;
+                        }
+                        if ((s.right = pr) != null)
+                            pr.parent = s;
+                    }
+                    p.left = null;
+                    if ((p.right = sr) != null)
+                        sr.parent = p;
+                    if ((s.left = pl) != null)
+                        pl.parent = s;
+                    if ((s.parent = pp) == null)
+                        r = s;
+                    else if (p == pp.left)
+                        pp.left = s;
+                    else
+                        pp.right = s;
+                    if (sr != null)
+                        replacement = sr;
+                    else
+                        replacement = p;
+                }
+                else if (pl != null)
+                    replacement = pl;
+                else if (pr != null)
+                    replacement = pr;
+                else
+                    replacement = p;
+                if (replacement != p) {
+                    TreeNode<K,V> pp = replacement.parent = p.parent;
+                    if (pp == null)
+                        r = replacement;
+                    else if (p == pp.left)
+                        pp.left = replacement;
+                    else
+                        pp.right = replacement;
+                    p.left = p.right = p.parent = null;
+                }
+
+                root = (p.red) ? r : balanceDeletion(r, replacement);
+
+                if (p == replacement) {  // detach pointers
+                    TreeNode<K,V> pp;
+                    if ((pp = p.parent) != null) {
+                        if (p == pp.left)
+                            pp.left = null;
+                        else if (p == pp.right)
+                            pp.right = null;
+                        p.parent = null;
+                    }
+                }
+            } finally {
+                unlockRoot();
+            }
+            assert checkInvariants(root);
+            return false;
+        }
+
+        /* ------------------------------------------------------------ */
+        // Red-black tree methods, all adapted from CLR
+
+        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
+                                              TreeNode<K,V> p) {
+            TreeNode<K,V> r, pp, rl;
+            if (p != null && (r = p.right) != null) {
+                if ((rl = p.right = r.left) != null)
+                    rl.parent = p;
+                if ((pp = r.parent = p.parent) == null)
+                    (root = r).red = false;
+                else if (pp.left == p)
+                    pp.left = r;
+                else
+                    pp.right = r;
+                r.left = p;
+                p.parent = r;
+            }
+            return root;
+        }
+
+        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
+                                               TreeNode<K,V> p) {
+            TreeNode<K,V> l, pp, lr;
+            if (p != null && (l = p.left) != null) {
+                if ((lr = p.left = l.right) != null)
+                    lr.parent = p;
+                if ((pp = l.parent = p.parent) == null)
+                    (root = l).red = false;
+                else if (pp.right == p)
+                    pp.right = l;
+                else
+                    pp.left = l;
+                l.right = p;
+                p.parent = l;
+            }
+            return root;
+        }
+
+        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
+                                                    TreeNode<K,V> x) {
+            x.red = true;
+            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
+                if ((xp = x.parent) == null) {
+                    x.red = false;
+                    return x;
+                }
+                else if (!xp.red || (xpp = xp.parent) == null)
+                    return root;
+                if (xp == (xppl = xpp.left)) {
+                    if ((xppr = xpp.right) != null && xppr.red) {
+                        xppr.red = false;
+                        xp.red = false;
+                        xpp.red = true;
+                        x = xpp;
+                    }
+                    else {
+                        if (x == xp.right) {
+                            root = rotateLeft(root, x = xp);
+                            xpp = (xp = x.parent) == null ? null : xp.parent;
+                        }
+                        if (xp != null) {
+                            xp.red = false;
+                            if (xpp != null) {
+                                xpp.red = true;
+                                root = rotateRight(root, xpp);
+                            }
+                        }
+                    }
+                }
+                else {
+                    if (xppl != null && xppl.red) {
+                        xppl.red = false;
+                        xp.red = false;
+                        xpp.red = true;
+                        x = xpp;
+                    }
+                    else {
+                        if (x == xp.left) {
+                            root = rotateRight(root, x = xp);
+                            xpp = (xp = x.parent) == null ? null : xp.parent;
+                        }
+                        if (xp != null) {
+                            xp.red = false;
+                            if (xpp != null) {
+                                xpp.red = true;
+                                root = rotateLeft(root, xpp);
+                            }
+                        }
+                    }
+                }
+            }
+        }
+
+        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
+                                                   TreeNode<K,V> x) {
+            for (TreeNode<K,V> xp, xpl, xpr;;) {
+                if (x == null || x == root)
+                    return root;
+                else if ((xp = x.parent) == null) {
+                    x.red = false;
+                    return x;
+                }
+                else if (x.red) {
+                    x.red = false;
+                    return root;
+                }
+                else if ((xpl = xp.left) == x) {
+                    if ((xpr = xp.right) != null && xpr.red) {
+                        xpr.red = false;
+                        xp.red = true;
+                        root = rotateLeft(root, xp);
+                        xpr = (xp = x.parent) == null ? null : xp.right;
+                    }
+                    if (xpr == null)
+                        x = xp;
+                    else {
+                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
+                        if ((sr == null || !sr.red) &&
+                            (sl == null || !sl.red)) {
+                            xpr.red = true;
+                            x = xp;
+                        }
+                        else {
+                            if (sr == null || !sr.red) {
+                                if (sl != null)
+                                    sl.red = false;
+                                xpr.red = true;
+                                root = rotateRight(root, xpr);
+                                xpr = (xp = x.parent) == null ?
+                                    null : xp.right;
+                            }
+                            if (xpr != null) {
+                                xpr.red = (xp == null) ? false : xp.red;
+                                if ((sr = xpr.right) != null)
+                                    sr.red = false;
+                            }
+                            if (xp != null) {
+                                xp.red = false;
+                                root = rotateLeft(root, xp);
+                            }
+                            x = root;
+                        }
+                    }
+                }
+                else { // symmetric
+                    if (xpl != null && xpl.red) {
+                        xpl.red = false;
+                        xp.red = true;
+                        root = rotateRight(root, xp);
+                        xpl = (xp = x.parent) == null ? null : xp.left;
+                    }
+                    if (xpl == null)
+                        x = xp;
+                    else {
+                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
+                        if ((sl == null || !sl.red) &&
+                            (sr == null || !sr.red)) {
+                            xpl.red = true;
+                            x = xp;
+                        }
+                        else {
+                            if (sl == null || !sl.red) {
+                                if (sr != null)
+                                    sr.red = false;
+                                xpl.red = true;
+                                root = rotateLeft(root, xpl);
+                                xpl = (xp = x.parent) == null ?
+                                    null : xp.left;
+                            }
+                            if (xpl != null) {
+                                xpl.red = (xp == null) ? false : xp.red;
+                                if ((sl = xpl.left) != null)
+                                    sl.red = false;
+                            }
+                            if (xp != null) {
+                                xp.red = false;
+                                root = rotateRight(root, xp);
+                            }
+                            x = root;
+                        }
+                    }
+                }
+            }
+        }
+
+        /**
+         * Checks invariants recursively for the tree of Nodes rooted at t.
+         */
+        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
+            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
+                tb = t.prev, tn = (TreeNode<K,V>)t.next;
+            if (tb != null && tb.next != t)
+                return false;
+            if (tn != null && tn.prev != t)
+                return false;
+            if (tp != null && t != tp.left && t != tp.right)
+                return false;
+            if (tl != null && (tl.parent != t || tl.hash > t.hash))
+                return false;
+            if (tr != null && (tr.parent != t || tr.hash < t.hash))
+                return false;
+            if (t.red && tl != null && tl.red && tr != null && tr.red)
+                return false;
+            if (tl != null && !checkInvariants(tl))
+                return false;
+            if (tr != null && !checkInvariants(tr))
+                return false;
+            return true;
+        }
+
+        private static final Unsafe U = Unsafe.getUnsafe();
+        private static final long LOCKSTATE
+                = U.objectFieldOffset(TreeBin.class, "lockState");
+    }
+
+    /* ----------------Table Traversal -------------- */
+
+    /**
+     * Records the table, its length, and current traversal index for a
+     * traverser that must process a region of a forwarded table before
+     * proceeding with current table.
+     */
+    static final class TableStack<K,V> {
+        int length;
+        int index;
+        Node<K,V>[] tab;
+        TableStack<K,V> next;
+    }
+
+    /**
+     * Encapsulates traversal for methods such as containsValue; also
+     * serves as a base class for other iterators and spliterators.
+     *
+     * Method advance visits once each still-valid node that was
+     * reachable upon iterator construction. It might miss some that
+     * were added to a bin after the bin was visited, which is OK wrt
+     * consistency guarantees. Maintaining this property in the face
+     * of possible ongoing resizes requires a fair amount of
+     * bookkeeping state that is difficult to optimize away amidst
+     * volatile accesses.  Even so, traversal maintains reasonable
+     * throughput.
+     *
+     * Normally, iteration proceeds bin-by-bin traversing lists.
+     * However, if the table has been resized, then all future steps
+     * must traverse both the bin at the current index as well as at
+     * (index + baseSize); and so on for further resizings. To
+     * paranoically cope with potential sharing by users of iterators
+     * across threads, iteration terminates if a bounds checks fails
+     * for a table read.
+     */
+    static class Traverser<K,V> {
+        Node<K,V>[] tab;        // current table; updated if resized
+        Node<K,V> next;         // the next entry to use
+        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
+        int index;              // index of bin to use next
+        int baseIndex;          // current index of initial table
+        int baseLimit;          // index bound for initial table
+        final int baseSize;     // initial table size
+
+        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
+            this.tab = tab;
+            this.baseSize = size;
+            this.baseIndex = this.index = index;
+            this.baseLimit = limit;
+            this.next = null;
+        }
+
+        /**
+         * Advances if possible, returning next valid node, or null if none.
+         */
+        final Node<K,V> advance() {
+            Node<K,V> e;
+            if ((e = next) != null)
+                e = e.next;
+            for (;;) {
+                Node<K,V>[] t; int i, n;  // must use locals in checks
+                if (e != null)
+                    return next = e;
+                if (baseIndex >= baseLimit || (t = tab) == null ||
+                    (n = t.length) <= (i = index) || i < 0)
+                    return next = null;
+                if ((e = tabAt(t, i)) != null && e.hash < 0) {
+                    if (e instanceof ForwardingNode) {
+                        tab = ((ForwardingNode<K,V>)e).nextTable;
+                        e = null;
+                        pushState(t, i, n);
+                        continue;
+                    }
+                    else if (e instanceof TreeBin)
+                        e = ((TreeBin<K,V>)e).first;
+                    else
+                        e = null;
+                }
+                if (stack != null)
+                    recoverState(n);
+                else if ((index = i + baseSize) >= n)
+                    index = ++baseIndex; // visit upper slots if present
+            }
+        }
+
+        /**
+         * Saves traversal state upon encountering a forwarding node.
+         */
+        private void pushState(Node<K,V>[] t, int i, int n) {
+            TableStack<K,V> s = spare;  // reuse if possible
+            if (s != null)
+                spare = s.next;
+            else
+                s = new TableStack<K,V>();
+            s.tab = t;
+            s.length = n;
+            s.index = i;
+            s.next = stack;
+            stack = s;
+        }
+
+        /**
+         * Possibly pops traversal state.
+         *
+         * @param n length of current table
+         */
+        private void recoverState(int n) {
+            TableStack<K,V> s; int len;
+            while ((s = stack) != null && (index += (len = s.length)) >= n) {
+                n = len;
+                index = s.index;
+                tab = s.tab;
+                s.tab = null;
+                TableStack<K,V> next = s.next;
+                s.next = spare; // save for reuse
+                stack = next;
+                spare = s;
+            }
+            if (s == null && (index += baseSize) >= n)
+                index = ++baseIndex;
+        }
+    }
+
+    /**
+     * Base of key, value, and entry Iterators. Adds fields to
+     * Traverser to support iterator.remove.
+     */
+    static class BaseIterator<K,V> extends Traverser<K,V> {
+        final ConcurrentHashMap<K,V> map;
+        Node<K,V> lastReturned;
+        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
+                    ConcurrentHashMap<K,V> map) {
+            super(tab, size, index, limit);
+            this.map = map;
+            advance();
+        }
+
+        public final boolean hasNext() { return next != null; }
+        public final boolean hasMoreElements() { return next != null; }
+
+        public final void remove() {
+            Node<K,V> p;
+            if ((p = lastReturned) == null)
+                throw new IllegalStateException();
+            lastReturned = null;
+            map.replaceNode(p.key, null, null);
+        }
+    }
+
+    static final class KeyIterator<K,V> extends BaseIterator<K,V>
+        implements Iterator<K>, Enumeration<K> {
+        KeyIterator(Node<K,V>[] tab, int size, int index, int limit,
+                    ConcurrentHashMap<K,V> map) {
+            super(tab, size, index, limit, map);
+        }
+
+        public final K next() {
+            Node<K,V> p;
+            if ((p = next) == null)
+                throw new NoSuchElementException();
+            K k = p.key;
+            lastReturned = p;
+            advance();
+            return k;
+        }
+
+        public final K nextElement() { return next(); }
+    }
+
+    static final class ValueIterator<K,V> extends BaseIterator<K,V>
+        implements Iterator<V>, Enumeration<V> {
+        ValueIterator(Node<K,V>[] tab, int size, int index, int limit,
+                      ConcurrentHashMap<K,V> map) {
+            super(tab, size, index, limit, map);
+        }
+
+        public final V next() {
+            Node<K,V> p;
+            if ((p = next) == null)
+                throw new NoSuchElementException();
+            V v = p.val;
+            lastReturned = p;
+            advance();
+            return v;
+        }
+
+        public final V nextElement() { return next(); }
+    }
+
+    static final class EntryIterator<K,V> extends BaseIterator<K,V>
+        implements Iterator<Map.Entry<K,V>> {
+        EntryIterator(Node<K,V>[] tab, int size, int index, int limit,
+                      ConcurrentHashMap<K,V> map) {
+            super(tab, size, index, limit, map);
+        }
+
+        public final Map.Entry<K,V> next() {
+            Node<K,V> p;
+            if ((p = next) == null)
+                throw new NoSuchElementException();
+            K k = p.key;
+            V v = p.val;
+            lastReturned = p;
+            advance();
+            return new MapEntry<K,V>(k, v, map);
+        }
+    }
+
+    /**
+     * Exported Entry for EntryIterator.
+     */
+    static final class MapEntry<K,V> implements Map.Entry<K,V> {
+        final K key; // non-null
+        V val;       // non-null
+        final ConcurrentHashMap<K,V> map;
+        MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
+            this.key = key;
+            this.val = val;
+            this.map = map;
+        }
+        public K getKey()        { return key; }
+        public V getValue()      { return val; }
+        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
+        public String toString() {
+            return Helpers.mapEntryToString(key, val);
+        }
+
+        public boolean equals(Object o) {
+            Object k, v; Map.Entry<?,?> e;
+            return ((o instanceof Map.Entry) &&
+                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
+                    (v = e.getValue()) != null &&
+                    (k == key || k.equals(key)) &&
+                    (v == val || v.equals(val)));
+        }
+
+        /**
+         * Sets our entry's value and writes through to the map. The
+         * value to return is somewhat arbitrary here. Since we do not
+         * necessarily track asynchronous changes, the most recent
+         * "previous" value could be different from what we return (or
+         * could even have been removed, in which case the put will
+         * re-establish). We do not and cannot guarantee more.
+         */
+        public V setValue(V value) {
+            if (value == null) throw new NullPointerException();
+            V v = val;
+            val = value;
+            map.put(key, value);
+            return v;
+        }
+    }
+
+    static final class KeySpliterator<K,V> extends Traverser<K,V>
+        implements Spliterator<K> {
+        long est;               // size estimate
+        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
+                       long est) {
+            super(tab, size, index, limit);
+            this.est = est;
+        }
+
+        public KeySpliterator<K,V> trySplit() {
+            int i, f, h;
+            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
+                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
+                                        f, est >>>= 1);
+        }
+
+        public void forEachRemaining(Consumer<? super K> action) {
+            if (action == null) throw new NullPointerException();
+            for (Node<K,V> p; (p = advance()) != null;)
+                action.accept(p.key);
+        }
+
+        public boolean tryAdvance(Consumer<? super K> action) {
+            if (action == null) throw new NullPointerException();
+            Node<K,V> p;
+            if ((p = advance()) == null)
+                return false;
+            action.accept(p.key);
+            return true;
+        }
+
+        public long estimateSize() { return est; }
+
+        public int characteristics() {
+            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
+                Spliterator.NONNULL;
+        }
+    }
+
+    static final class ValueSpliterator<K,V> extends Traverser<K,V>
+        implements Spliterator<V> {
+        long est;               // size estimate
+        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
+                         long est) {
+            super(tab, size, index, limit);
+            this.est = est;
+        }
+
+        public ValueSpliterator<K,V> trySplit() {
+            int i, f, h;
+            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
+                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
+                                          f, est >>>= 1);
+        }
+
+        public void forEachRemaining(Consumer<? super V> action) {
+            if (action == null) throw new NullPointerException();
+            for (Node<K,V> p; (p = advance()) != null;)
+                action.accept(p.val);
+        }
+
+        public boolean tryAdvance(Consumer<? super V> action) {
+            if (action == null) throw new NullPointerException();
+            Node<K,V> p;
+            if ((p = advance()) == null)
+                return false;
+            action.accept(p.val);
+            return true;
+        }
+
+        public long estimateSize() { return est; }
+
+        public int characteristics() {
+            return Spliterator.CONCURRENT | Spliterator.NONNULL;
+        }
+    }
+
+    static final class EntrySpliterator<K,V> extends Traverser<K,V>
+        implements Spliterator<Map.Entry<K,V>> {
+        final ConcurrentHashMap<K,V> map; // To export MapEntry
+        long est;               // size estimate
+        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
+                         long est, ConcurrentHashMap<K,V> map) {
+            super(tab, size, index, limit);
+            this.map = map;
+            this.est = est;
+        }
+
+        public EntrySpliterator<K,V> trySplit() {
+            int i, f, h;
+            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
+                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
+                                          f, est >>>= 1, map);
+        }
+
+        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
+            if (action == null) throw new NullPointerException();
+            for (Node<K,V> p; (p = advance()) != null; )
+                action.accept(new MapEntry<K,V>(p.key, p.val, map));
+        }
+
+        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
+            if (action == null) throw new NullPointerException();
+            Node<K,V> p;
+            if ((p = advance()) == null)
+                return false;
+            action.accept(new MapEntry<K,V>(p.key, p.val, map));
+            return true;
+        }
+
+        public long estimateSize() { return est; }
+
+        public int characteristics() {
+            return Spliterator.DISTINCT | Spliterator.CONCURRENT |
+                Spliterator.NONNULL;
+        }
+    }
+
+    // Parallel bulk operations
+
+    /**
+     * Computes initial batch value for bulk tasks. The returned value
+     * is approximately exp2 of the number of times (minus one) to
+     * split task by two before executing leaf action. This value is
+     * faster to compute and more convenient to use as a guide to
+     * splitting than is the depth, since it is used while dividing by
+     * two anyway.
+     */
+    final int batchFor(long b) {
+        long n;
+        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
+            return 0;
+        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
+        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
+    }
+
+    /**
+     * Performs the given action for each (key, value).
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param action the action
+     * @since 1.8
+     */
+    public void forEach(long parallelismThreshold,
+                        BiConsumer<? super K,? super V> action) {
+        if (action == null) throw new NullPointerException();
+        new ForEachMappingTask<K,V>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             action).invoke();
+    }
+
+    /**
+     * Performs the given action for each non-null transformation
+     * of each (key, value).
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param transformer a function returning the transformation
+     * for an element, or null if there is no transformation (in
+     * which case the action is not applied)
+     * @param action the action
+     * @param <U> the return type of the transformer
+     * @since 1.8
+     */
+    public <U> void forEach(long parallelismThreshold,
+                            BiFunction<? super K, ? super V, ? extends U> transformer,
+                            Consumer<? super U> action) {
+        if (transformer == null || action == null)
+            throw new NullPointerException();
+        new ForEachTransformedMappingTask<K,V,U>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             transformer, action).invoke();
+    }
+
+    /**
+     * Returns a non-null result from applying the given search
+     * function on each (key, value), or null if none.  Upon
+     * success, further element processing is suppressed and the
+     * results of any other parallel invocations of the search
+     * function are ignored.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param searchFunction a function returning a non-null
+     * result on success, else null
+     * @param <U> the return type of the search function
+     * @return a non-null result from applying the given search
+     * function on each (key, value), or null if none
+     * @since 1.8
+     */
+    public <U> U search(long parallelismThreshold,
+                        BiFunction<? super K, ? super V, ? extends U> searchFunction) {
+        if (searchFunction == null) throw new NullPointerException();
+        return new SearchMappingsTask<K,V,U>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             searchFunction, new AtomicReference<U>()).invoke();
+    }
+
+    /**
+     * Returns the result of accumulating the given transformation
+     * of all (key, value) pairs using the given reducer to
+     * combine values, or null if none.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param transformer a function returning the transformation
+     * for an element, or null if there is no transformation (in
+     * which case it is not combined)
+     * @param reducer a commutative associative combining function
+     * @param <U> the return type of the transformer
+     * @return the result of accumulating the given transformation
+     * of all (key, value) pairs
+     * @since 1.8
+     */
+    public <U> U reduce(long parallelismThreshold,
+                        BiFunction<? super K, ? super V, ? extends U> transformer,
+                        BiFunction<? super U, ? super U, ? extends U> reducer) {
+        if (transformer == null || reducer == null)
+            throw new NullPointerException();
+        return new MapReduceMappingsTask<K,V,U>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             null, transformer, reducer).invoke();
+    }
+
+    /**
+     * Returns the result of accumulating the given transformation
+     * of all (key, value) pairs using the given reducer to
+     * combine values, and the given basis as an identity value.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param transformer a function returning the transformation
+     * for an element
+     * @param basis the identity (initial default value) for the reduction
+     * @param reducer a commutative associative combining function
+     * @return the result of accumulating the given transformation
+     * of all (key, value) pairs
+     * @since 1.8
+     */
+    public double reduceToDouble(long parallelismThreshold,
+                                 ToDoubleBiFunction<? super K, ? super V> transformer,
+                                 double basis,
+                                 DoubleBinaryOperator reducer) {
+        if (transformer == null || reducer == null)
+            throw new NullPointerException();
+        return new MapReduceMappingsToDoubleTask<K,V>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             null, transformer, basis, reducer).invoke();
+    }
+
+    /**
+     * Returns the result of accumulating the given transformation
+     * of all (key, value) pairs using the given reducer to
+     * combine values, and the given basis as an identity value.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param transformer a function returning the transformation
+     * for an element
+     * @param basis the identity (initial default value) for the reduction
+     * @param reducer a commutative associative combining function
+     * @return the result of accumulating the given transformation
+     * of all (key, value) pairs
+     * @since 1.8
+     */
+    public long reduceToLong(long parallelismThreshold,
+                             ToLongBiFunction<? super K, ? super V> transformer,
+                             long basis,
+                             LongBinaryOperator reducer) {
+        if (transformer == null || reducer == null)
+            throw new NullPointerException();
+        return new MapReduceMappingsToLongTask<K,V>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             null, transformer, basis, reducer).invoke();
+    }
+
+    /**
+     * Returns the result of accumulating the given transformation
+     * of all (key, value) pairs using the given reducer to
+     * combine values, and the given basis as an identity value.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param transformer a function returning the transformation
+     * for an element
+     * @param basis the identity (initial default value) for the reduction
+     * @param reducer a commutative associative combining function
+     * @return the result of accumulating the given transformation
+     * of all (key, value) pairs
+     * @since 1.8
+     */
+    public int reduceToInt(long parallelismThreshold,
+                           ToIntBiFunction<? super K, ? super V> transformer,
+                           int basis,
+                           IntBinaryOperator reducer) {
+        if (transformer == null || reducer == null)
+            throw new NullPointerException();
+        return new MapReduceMappingsToIntTask<K,V>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             null, transformer, basis, reducer).invoke();
+    }
+
+    /**
+     * Performs the given action for each key.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param action the action
+     * @since 1.8
+     */
+    public void forEachKey(long parallelismThreshold,
+                           Consumer<? super K> action) {
+        if (action == null) throw new NullPointerException();
+        new ForEachKeyTask<K,V>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             action).invoke();
+    }
+
+    /**
+     * Performs the given action for each non-null transformation
+     * of each key.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param transformer a function returning the transformation
+     * for an element, or null if there is no transformation (in
+     * which case the action is not applied)
+     * @param action the action
+     * @param <U> the return type of the transformer
+     * @since 1.8
+     */
+    public <U> void forEachKey(long parallelismThreshold,
+                               Function<? super K, ? extends U> transformer,
+                               Consumer<? super U> action) {
+        if (transformer == null || action == null)
+            throw new NullPointerException();
+        new ForEachTransformedKeyTask<K,V,U>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             transformer, action).invoke();
+    }
+
+    /**
+     * Returns a non-null result from applying the given search
+     * function on each key, or null if none. Upon success,
+     * further element processing is suppressed and the results of
+     * any other parallel invocations of the search function are
+     * ignored.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param searchFunction a function returning a non-null
+     * result on success, else null
+     * @param <U> the return type of the search function
+     * @return a non-null result from applying the given search
+     * function on each key, or null if none
+     * @since 1.8
+     */
+    public <U> U searchKeys(long parallelismThreshold,
+                            Function<? super K, ? extends U> searchFunction) {
+        if (searchFunction == null) throw new NullPointerException();
+        return new SearchKeysTask<K,V,U>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             searchFunction, new AtomicReference<U>()).invoke();
+    }
+
+    /**
+     * Returns the result of accumulating all keys using the given
+     * reducer to combine values, or null if none.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param reducer a commutative associative combining function
+     * @return the result of accumulating all keys using the given
+     * reducer to combine values, or null if none
+     * @since 1.8
+     */
+    public K reduceKeys(long parallelismThreshold,
+                        BiFunction<? super K, ? super K, ? extends K> reducer) {
+        if (reducer == null) throw new NullPointerException();
+        return new ReduceKeysTask<K,V>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             null, reducer).invoke();
+    }
+
+    /**
+     * Returns the result of accumulating the given transformation
+     * of all keys using the given reducer to combine values, or
+     * null if none.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param transformer a function returning the transformation
+     * for an element, or null if there is no transformation (in
+     * which case it is not combined)
+     * @param reducer a commutative associative combining function
+     * @param <U> the return type of the transformer
+     * @return the result of accumulating the given transformation
+     * of all keys
+     * @since 1.8
+     */
+    public <U> U reduceKeys(long parallelismThreshold,
+                            Function<? super K, ? extends U> transformer,
+         BiFunction<? super U, ? super U, ? extends U> reducer) {
+        if (transformer == null || reducer == null)
+            throw new NullPointerException();
+        return new MapReduceKeysTask<K,V,U>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             null, transformer, reducer).invoke();
+    }
+
+    /**
+     * Returns the result of accumulating the given transformation
+     * of all keys using the given reducer to combine values, and
+     * the given basis as an identity value.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param transformer a function returning the transformation
+     * for an element
+     * @param basis the identity (initial default value) for the reduction
+     * @param reducer a commutative associative combining function
+     * @return the result of accumulating the given transformation
+     * of all keys
+     * @since 1.8
+     */
+    public double reduceKeysToDouble(long parallelismThreshold,
+                                     ToDoubleFunction<? super K> transformer,
+                                     double basis,
+                                     DoubleBinaryOperator reducer) {
+        if (transformer == null || reducer == null)
+            throw new NullPointerException();
+        return new MapReduceKeysToDoubleTask<K,V>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             null, transformer, basis, reducer).invoke();
+    }
+
+    /**
+     * Returns the result of accumulating the given transformation
+     * of all keys using the given reducer to combine values, and
+     * the given basis as an identity value.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param transformer a function returning the transformation
+     * for an element
+     * @param basis the identity (initial default value) for the reduction
+     * @param reducer a commutative associative combining function
+     * @return the result of accumulating the given transformation
+     * of all keys
+     * @since 1.8
+     */
+    public long reduceKeysToLong(long parallelismThreshold,
+                                 ToLongFunction<? super K> transformer,
+                                 long basis,
+                                 LongBinaryOperator reducer) {
+        if (transformer == null || reducer == null)
+            throw new NullPointerException();
+        return new MapReduceKeysToLongTask<K,V>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             null, transformer, basis, reducer).invoke();
+    }
+
+    /**
+     * Returns the result of accumulating the given transformation
+     * of all keys using the given reducer to combine values, and
+     * the given basis as an identity value.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param transformer a function returning the transformation
+     * for an element
+     * @param basis the identity (initial default value) for the reduction
+     * @param reducer a commutative associative combining function
+     * @return the result of accumulating the given transformation
+     * of all keys
+     * @since 1.8
+     */
+    public int reduceKeysToInt(long parallelismThreshold,
+                               ToIntFunction<? super K> transformer,
+                               int basis,
+                               IntBinaryOperator reducer) {
+        if (transformer == null || reducer == null)
+            throw new NullPointerException();
+        return new MapReduceKeysToIntTask<K,V>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             null, transformer, basis, reducer).invoke();
+    }
+
+    /**
+     * Performs the given action for each value.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param action the action
+     * @since 1.8
+     */
+    public void forEachValue(long parallelismThreshold,
+                             Consumer<? super V> action) {
+        if (action == null)
+            throw new NullPointerException();
+        new ForEachValueTask<K,V>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             action).invoke();
+    }
+
+    /**
+     * Performs the given action for each non-null transformation
+     * of each value.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param transformer a function returning the transformation
+     * for an element, or null if there is no transformation (in
+     * which case the action is not applied)
+     * @param action the action
+     * @param <U> the return type of the transformer
+     * @since 1.8
+     */
+    public <U> void forEachValue(long parallelismThreshold,
+                                 Function<? super V, ? extends U> transformer,
+                                 Consumer<? super U> action) {
+        if (transformer == null || action == null)
+            throw new NullPointerException();
+        new ForEachTransformedValueTask<K,V,U>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             transformer, action).invoke();
+    }
+
+    /**
+     * Returns a non-null result from applying the given search
+     * function on each value, or null if none.  Upon success,
+     * further element processing is suppressed and the results of
+     * any other parallel invocations of the search function are
+     * ignored.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param searchFunction a function returning a non-null
+     * result on success, else null
+     * @param <U> the return type of the search function
+     * @return a non-null result from applying the given search
+     * function on each value, or null if none
+     * @since 1.8
+     */
+    public <U> U searchValues(long parallelismThreshold,
+                              Function<? super V, ? extends U> searchFunction) {
+        if (searchFunction == null) throw new NullPointerException();
+        return new SearchValuesTask<K,V,U>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             searchFunction, new AtomicReference<U>()).invoke();
+    }
+
+    /**
+     * Returns the result of accumulating all values using the
+     * given reducer to combine values, or null if none.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param reducer a commutative associative combining function
+     * @return the result of accumulating all values
+     * @since 1.8
+     */
+    public V reduceValues(long parallelismThreshold,
+                          BiFunction<? super V, ? super V, ? extends V> reducer) {
+        if (reducer == null) throw new NullPointerException();
+        return new ReduceValuesTask<K,V>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             null, reducer).invoke();
+    }
+
+    /**
+     * Returns the result of accumulating the given transformation
+     * of all values using the given reducer to combine values, or
+     * null if none.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param transformer a function returning the transformation
+     * for an element, or null if there is no transformation (in
+     * which case it is not combined)
+     * @param reducer a commutative associative combining function
+     * @param <U> the return type of the transformer
+     * @return the result of accumulating the given transformation
+     * of all values
+     * @since 1.8
+     */
+    public <U> U reduceValues(long parallelismThreshold,
+                              Function<? super V, ? extends U> transformer,
+                              BiFunction<? super U, ? super U, ? extends U> reducer) {
+        if (transformer == null || reducer == null)
+            throw new NullPointerException();
+        return new MapReduceValuesTask<K,V,U>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             null, transformer, reducer).invoke();
+    }
+
+    /**
+     * Returns the result of accumulating the given transformation
+     * of all values using the given reducer to combine values,
+     * and the given basis as an identity value.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param transformer a function returning the transformation
+     * for an element
+     * @param basis the identity (initial default value) for the reduction
+     * @param reducer a commutative associative combining function
+     * @return the result of accumulating the given transformation
+     * of all values
+     * @since 1.8
+     */
+    public double reduceValuesToDouble(long parallelismThreshold,
+                                       ToDoubleFunction<? super V> transformer,
+                                       double basis,
+                                       DoubleBinaryOperator reducer) {
+        if (transformer == null || reducer == null)
+            throw new NullPointerException();
+        return new MapReduceValuesToDoubleTask<K,V>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             null, transformer, basis, reducer).invoke();
+    }
+
+    /**
+     * Returns the result of accumulating the given transformation
+     * of all values using the given reducer to combine values,
+     * and the given basis as an identity value.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param transformer a function returning the transformation
+     * for an element
+     * @param basis the identity (initial default value) for the reduction
+     * @param reducer a commutative associative combining function
+     * @return the result of accumulating the given transformation
+     * of all values
+     * @since 1.8
+     */
+    public long reduceValuesToLong(long parallelismThreshold,
+                                   ToLongFunction<? super V> transformer,
+                                   long basis,
+                                   LongBinaryOperator reducer) {
+        if (transformer == null || reducer == null)
+            throw new NullPointerException();
+        return new MapReduceValuesToLongTask<K,V>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             null, transformer, basis, reducer).invoke();
+    }
+
+    /**
+     * Returns the result of accumulating the given transformation
+     * of all values using the given reducer to combine values,
+     * and the given basis as an identity value.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param transformer a function returning the transformation
+     * for an element
+     * @param basis the identity (initial default value) for the reduction
+     * @param reducer a commutative associative combining function
+     * @return the result of accumulating the given transformation
+     * of all values
+     * @since 1.8
+     */
+    public int reduceValuesToInt(long parallelismThreshold,
+                                 ToIntFunction<? super V> transformer,
+                                 int basis,
+                                 IntBinaryOperator reducer) {
+        if (transformer == null || reducer == null)
+            throw new NullPointerException();
+        return new MapReduceValuesToIntTask<K,V>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             null, transformer, basis, reducer).invoke();
+    }
+
+    /**
+     * Performs the given action for each entry.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param action the action
+     * @since 1.8
+     */
+    public void forEachEntry(long parallelismThreshold,
+                             Consumer<? super Map.Entry<K,V>> action) {
+        if (action == null) throw new NullPointerException();
+        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
+                                  action).invoke();
+    }
+
+    /**
+     * Performs the given action for each non-null transformation
+     * of each entry.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param transformer a function returning the transformation
+     * for an element, or null if there is no transformation (in
+     * which case the action is not applied)
+     * @param action the action
+     * @param <U> the return type of the transformer
+     * @since 1.8
+     */
+    public <U> void forEachEntry(long parallelismThreshold,
+                                 Function<Map.Entry<K,V>, ? extends U> transformer,
+                                 Consumer<? super U> action) {
+        if (transformer == null || action == null)
+            throw new NullPointerException();
+        new ForEachTransformedEntryTask<K,V,U>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             transformer, action).invoke();
+    }
+
+    /**
+     * Returns a non-null result from applying the given search
+     * function on each entry, or null if none.  Upon success,
+     * further element processing is suppressed and the results of
+     * any other parallel invocations of the search function are
+     * ignored.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param searchFunction a function returning a non-null
+     * result on success, else null
+     * @param <U> the return type of the search function
+     * @return a non-null result from applying the given search
+     * function on each entry, or null if none
+     * @since 1.8
+     */
+    public <U> U searchEntries(long parallelismThreshold,
+                               Function<Map.Entry<K,V>, ? extends U> searchFunction) {
+        if (searchFunction == null) throw new NullPointerException();
+        return new SearchEntriesTask<K,V,U>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             searchFunction, new AtomicReference<U>()).invoke();
+    }
+
+    /**
+     * Returns the result of accumulating all entries using the
+     * given reducer to combine values, or null if none.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param reducer a commutative associative combining function
+     * @return the result of accumulating all entries
+     * @since 1.8
+     */
+    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
+                                        BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
+        if (reducer == null) throw new NullPointerException();
+        return new ReduceEntriesTask<K,V>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             null, reducer).invoke();
+    }
+
+    /**
+     * Returns the result of accumulating the given transformation
+     * of all entries using the given reducer to combine values,
+     * or null if none.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param transformer a function returning the transformation
+     * for an element, or null if there is no transformation (in
+     * which case it is not combined)
+     * @param reducer a commutative associative combining function
+     * @param <U> the return type of the transformer
+     * @return the result of accumulating the given transformation
+     * of all entries
+     * @since 1.8
+     */
+    public <U> U reduceEntries(long parallelismThreshold,
+                               Function<Map.Entry<K,V>, ? extends U> transformer,
+                               BiFunction<? super U, ? super U, ? extends U> reducer) {
+        if (transformer == null || reducer == null)
+            throw new NullPointerException();
+        return new MapReduceEntriesTask<K,V,U>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             null, transformer, reducer).invoke();
+    }
+
+    /**
+     * Returns the result of accumulating the given transformation
+     * of all entries using the given reducer to combine values,
+     * and the given basis as an identity value.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param transformer a function returning the transformation
+     * for an element
+     * @param basis the identity (initial default value) for the reduction
+     * @param reducer a commutative associative combining function
+     * @return the result of accumulating the given transformation
+     * of all entries
+     * @since 1.8
+     */
+    public double reduceEntriesToDouble(long parallelismThreshold,
+                                        ToDoubleFunction<Map.Entry<K,V>> transformer,
+                                        double basis,
+                                        DoubleBinaryOperator reducer) {
+        if (transformer == null || reducer == null)
+            throw new NullPointerException();
+        return new MapReduceEntriesToDoubleTask<K,V>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             null, transformer, basis, reducer).invoke();
+    }
+
+    /**
+     * Returns the result of accumulating the given transformation
+     * of all entries using the given reducer to combine values,
+     * and the given basis as an identity value.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param transformer a function returning the transformation
+     * for an element
+     * @param basis the identity (initial default value) for the reduction
+     * @param reducer a commutative associative combining function
+     * @return the result of accumulating the given transformation
+     * of all entries
+     * @since 1.8
+     */
+    public long reduceEntriesToLong(long parallelismThreshold,
+                                    ToLongFunction<Map.Entry<K,V>> transformer,
+                                    long basis,
+                                    LongBinaryOperator reducer) {
+        if (transformer == null || reducer == null)
+            throw new NullPointerException();
+        return new MapReduceEntriesToLongTask<K,V>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             null, transformer, basis, reducer).invoke();
+    }
+
+    /**
+     * Returns the result of accumulating the given transformation
+     * of all entries using the given reducer to combine values,
+     * and the given basis as an identity value.
+     *
+     * @param parallelismThreshold the (estimated) number of elements
+     * needed for this operation to be executed in parallel
+     * @param transformer a function returning the transformation
+     * for an element
+     * @param basis the identity (initial default value) for the reduction
+     * @param reducer a commutative associative combining function
+     * @return the result of accumulating the given transformation
+     * of all entries
+     * @since 1.8
+     */
+    public int reduceEntriesToInt(long parallelismThreshold,
+                                  ToIntFunction<Map.Entry<K,V>> transformer,
+                                  int basis,
+                                  IntBinaryOperator reducer) {
+        if (transformer == null || reducer == null)
+            throw new NullPointerException();
+        return new MapReduceEntriesToIntTask<K,V>
+            (null, batchFor(parallelismThreshold), 0, 0, table,
+             null, transformer, basis, reducer).invoke();
+    }
+
+
+    /* ----------------Views -------------- */
+
+    /**
+     * Base class for views.
+     */
+    abstract static class CollectionView<K,V,E>
+        implements Collection<E>, java.io.Serializable {
+        private static final long serialVersionUID = 7249069246763182397L;
+        final ConcurrentHashMap<K,V> map;
+        CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
+
+        /**
+         * Returns the map backing this view.
+         *
+         * @return the map backing this view
+         */
+        public ConcurrentHashMap<K,V> getMap() { return map; }
+
+        /**
+         * Removes all of the elements from this view, by removing all
+         * the mappings from the map backing this view.
+         */
+        public final void clear()      { map.clear(); }
+        public final int size()        { return map.size(); }
+        public final boolean isEmpty() { return map.isEmpty(); }
+
+        // implementations below rely on concrete classes supplying these
+        // abstract methods
+        /**
+         * Returns an iterator over the elements in this collection.
+         *
+         * <p>The returned iterator is
+         * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
+         *
+         * @return an iterator over the elements in this collection
+         */
+        public abstract Iterator<E> iterator();
+        public abstract boolean contains(Object o);
+        public abstract boolean remove(Object o);
+
+        private static final String OOME_MSG = "Required array size too large";
+
+        public final Object[] toArray() {
+            long sz = map.mappingCount();
+            if (sz > MAX_ARRAY_SIZE)
+                throw new OutOfMemoryError(OOME_MSG);
+            int n = (int)sz;
+            Object[] r = new Object[n];
+            int i = 0;
+            for (E e : this) {
+                if (i == n) {
+                    if (n >= MAX_ARRAY_SIZE)
+                        throw new OutOfMemoryError(OOME_MSG);
+                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
+                        n = MAX_ARRAY_SIZE;
+                    else
+                        n += (n >>> 1) + 1;
+                    r = Arrays.copyOf(r, n);
+                }
+                r[i++] = e;
+            }
+            return (i == n) ? r : Arrays.copyOf(r, i);
+        }
+
+        @SuppressWarnings("unchecked")
+        public final <T> T[] toArray(T[] a) {
+            long sz = map.mappingCount();
+            if (sz > MAX_ARRAY_SIZE)
+                throw new OutOfMemoryError(OOME_MSG);
+            int m = (int)sz;
+            T[] r = (a.length >= m) ? a :
+                (T[])java.lang.reflect.Array
+                .newInstance(a.getClass().getComponentType(), m);
+            int n = r.length;
+            int i = 0;
+            for (E e : this) {
+                if (i == n) {
+                    if (n >= MAX_ARRAY_SIZE)
+                        throw new OutOfMemoryError(OOME_MSG);
+                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
+                        n = MAX_ARRAY_SIZE;
+                    else
+                        n += (n >>> 1) + 1;
+                    r = Arrays.copyOf(r, n);
+                }
+                r[i++] = (T)e;
+            }
+            if (a == r && i < n) {
+                r[i] = null; // null-terminate
+                return r;
+            }
+            return (i == n) ? r : Arrays.copyOf(r, i);
+        }
+
+        /**
+         * Returns a string representation of this collection.
+         * The string representation consists of the string representations
+         * of the collection's elements in the order they are returned by
+         * its iterator, enclosed in square brackets ({@code "[]"}).
+         * Adjacent elements are separated by the characters {@code ", "}
+         * (comma and space).  Elements are converted to strings as by
+         * {@link String#valueOf(Object)}.
+         *
+         * @return a string representation of this collection
+         */
+        public final String toString() {
+            StringBuilder sb = new StringBuilder();
+            sb.append('[');
+            Iterator<E> it = iterator();
+            if (it.hasNext()) {
+                for (;;) {
+                    Object e = it.next();
+                    sb.append(e == this ? "(this Collection)" : e);
+                    if (!it.hasNext())
+                        break;
+                    sb.append(',').append(' ');
+                }
+            }
+            return sb.append(']').toString();
+        }
+
+        public final boolean containsAll(Collection<?> c) {
+            if (c != this) {
+                for (Object e : c) {
+                    if (e == null || !contains(e))
+                        return false;
+                }
+            }
+            return true;
+        }
+
+        public boolean removeAll(Collection<?> c) {
+            if (c == null) throw new NullPointerException();
+            boolean modified = false;
+            // Use (c instanceof Set) as a hint that lookup in c is as
+            // efficient as this view
+            Node<K,V>[] t;
+            if ((t = map.table) == null) {
+                return false;
+            } else if (c instanceof Set<?> && c.size() > t.length) {
+                for (Iterator<?> it = iterator(); it.hasNext(); ) {
+                    if (c.contains(it.next())) {
+                        it.remove();
+                        modified = true;
+                    }
+                }
+            } else {
+                for (Object e : c)
+                    modified |= remove(e);
+            }
+            return modified;
+        }
+
+        public final boolean retainAll(Collection<?> c) {
+            if (c == null) throw new NullPointerException();
+            boolean modified = false;
+            for (Iterator<E> it = iterator(); it.hasNext();) {
+                if (!c.contains(it.next())) {
+                    it.remove();
+                    modified = true;
+                }
+            }
+            return modified;
+        }
+
+    }
+
+    /**
+     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
+     * which additions may optionally be enabled by mapping to a
+     * common value.  This class cannot be directly instantiated.
+     * See {@link #keySet() keySet()},
+     * {@link #keySet(Object) keySet(V)},
+     * {@link #newKeySet() newKeySet()},
+     * {@link #newKeySet(int) newKeySet(int)}.
+     *
+     * @since 1.8
+     */
+    public static class KeySetView<K,V> extends CollectionView<K,V,K>
+        implements Set<K>, java.io.Serializable {
+        private static final long serialVersionUID = 7249069246763182397L;
+        private final V value;
+        KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
+            super(map);
+            this.value = value;
+        }
+
+        /**
+         * Returns the default mapped value for additions,
+         * or {@code null} if additions are not supported.
+         *
+         * @return the default mapped value for additions, or {@code null}
+         * if not supported
+         */
+        public V getMappedValue() { return value; }
+
+        /**
+         * {@inheritDoc}
+         * @throws NullPointerException if the specified key is null
+         */
+        public boolean contains(Object o) { return map.containsKey(o); }
+
+        /**
+         * Removes the key from this map view, by removing the key (and its
+         * corresponding value) from the backing map.  This method does
+         * nothing if the key is not in the map.
+         *
+         * @param  o the key to be removed from the backing map
+         * @return {@code true} if the backing map contained the specified key
+         * @throws NullPointerException if the specified key is null
+         */
+        public boolean remove(Object o) { return map.remove(o) != null; }
+
+        /**
+         * @return an iterator over the keys of the backing map
+         */
+        public Iterator<K> iterator() {
+            Node<K,V>[] t;
+            ConcurrentHashMap<K,V> m = map;
+            int f = (t = m.table) == null ? 0 : t.length;
+            return new KeyIterator<K,V>(t, f, 0, f, m);
+        }
+
+        /**
+         * Adds the specified key to this set view by mapping the key to
+         * the default mapped value in the backing map, if defined.
+         *
+         * @param e key to be added
+         * @return {@code true} if this set changed as a result of the call
+         * @throws NullPointerException if the specified key is null
+         * @throws UnsupportedOperationException if no default mapped value
+         * for additions was provided
+         */
+        public boolean add(K e) {
+            V v;
+            if ((v = value) == null)
+                throw new UnsupportedOperationException();
+            return map.putVal(e, v, true) == null;
+        }
+
+        /**
+         * Adds all of the elements in the specified collection to this set,
+         * as if by calling {@link #add} on each one.
+         *
+         * @param c the elements to be inserted into this set
+         * @return {@code true} if this set changed as a result of the call
+         * @throws NullPointerException if the collection or any of its
+         * elements are {@code null}
+         * @throws UnsupportedOperationException if no default mapped value
+         * for additions was provided
+         */
+        public boolean addAll(Collection<? extends K> c) {
+            boolean added = false;
+            V v;
+            if ((v = value) == null)
+                throw new UnsupportedOperationException();
+            for (K e : c) {
+                if (map.putVal(e, v, true) == null)
+                    added = true;
+            }
+            return added;
+        }
+
+        public int hashCode() {
+            int h = 0;
+            for (K e : this)
+                h += e.hashCode();
+            return h;
+        }
+
+        public boolean equals(Object o) {
+            Set<?> c;
+            return ((o instanceof Set) &&
+                    ((c = (Set<?>)o) == this ||
+                     (containsAll(c) && c.containsAll(this))));
+        }
+
+        public Spliterator<K> spliterator() {
+            Node<K,V>[] t;
+            ConcurrentHashMap<K,V> m = map;
+            long n = m.sumCount();
+            int f = (t = m.table) == null ? 0 : t.length;
+            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
+        }
+
+        public void forEach(Consumer<? super K> action) {
+            if (action == null) throw new NullPointerException();
+            Node<K,V>[] t;
+            if ((t = map.table) != null) {
+                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
+                for (Node<K,V> p; (p = it.advance()) != null; )
+                    action.accept(p.key);
+            }
+        }
+    }
+
+    /**
+     * A view of a ConcurrentHashMap as a {@link Collection} of
+     * values, in which additions are disabled. This class cannot be
+     * directly instantiated. See {@link #values()}.
+     */
+    static final class ValuesView<K,V> extends CollectionView<K,V,V>
+        implements Collection<V>, java.io.Serializable {
+        private static final long serialVersionUID = 2249069246763182397L;
+        ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
+        public final boolean contains(Object o) {
+            return map.containsValue(o);
+        }
+
+        public final boolean remove(Object o) {
+            if (o != null) {
+                for (Iterator<V> it = iterator(); it.hasNext();) {
+                    if (o.equals(it.next())) {
+                        it.remove();
+                        return true;
+                    }
+                }
+            }
+            return false;
+        }
+
+        public final Iterator<V> iterator() {
+            ConcurrentHashMap<K,V> m = map;
+            Node<K,V>[] t;
+            int f = (t = m.table) == null ? 0 : t.length;
+            return new ValueIterator<K,V>(t, f, 0, f, m);
+        }
+
+        public final boolean add(V e) {
+            throw new UnsupportedOperationException();
+        }
+        public final boolean addAll(Collection<? extends V> c) {
+            throw new UnsupportedOperationException();
+        }
+
+        @Override public boolean removeAll(Collection<?> c) {
+            if (c == null) throw new NullPointerException();
+            boolean modified = false;
+            for (Iterator<V> it = iterator(); it.hasNext();) {
+                if (c.contains(it.next())) {
+                    it.remove();
+                    modified = true;
+                }
+            }
+            return modified;
+        }
+
+        public boolean removeIf(Predicate<? super V> filter) {
+            return map.removeValueIf(filter);
+        }
+
+        public Spliterator<V> spliterator() {
+            Node<K,V>[] t;
+            ConcurrentHashMap<K,V> m = map;
+            long n = m.sumCount();
+            int f = (t = m.table) == null ? 0 : t.length;
+            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
+        }
+
+        public void forEach(Consumer<? super V> action) {
+            if (action == null) throw new NullPointerException();
+            Node<K,V>[] t;
+            if ((t = map.table) != null) {
+                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
+                for (Node<K,V> p; (p = it.advance()) != null; )
+                    action.accept(p.val);
+            }
+        }
+    }
+
+    /**
+     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
+     * entries.  This class cannot be directly instantiated. See
+     * {@link #entrySet()}.
+     */
+    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
+        implements Set<Map.Entry<K,V>>, java.io.Serializable {
+        private static final long serialVersionUID = 2249069246763182397L;
+        EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
+
+        public boolean contains(Object o) {
+            Object k, v, r; Map.Entry<?,?> e;
+            return ((o instanceof Map.Entry) &&
+                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
+                    (r = map.get(k)) != null &&
+                    (v = e.getValue()) != null &&
+                    (v == r || v.equals(r)));
+        }
+
+        public boolean remove(Object o) {
+            Object k, v; Map.Entry<?,?> e;
+            return ((o instanceof Map.Entry) &&
+                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
+                    (v = e.getValue()) != null &&
+                    map.remove(k, v));
+        }
+
+        /**
+         * @return an iterator over the entries of the backing map
+         */
+        public Iterator<Map.Entry<K,V>> iterator() {
+            ConcurrentHashMap<K,V> m = map;
+            Node<K,V>[] t;
+            int f = (t = m.table) == null ? 0 : t.length;
+            return new EntryIterator<K,V>(t, f, 0, f, m);
+        }
+
+        public boolean add(Entry<K,V> e) {
+            return map.putVal(e.getKey(), e.getValue(), false) == null;
+        }
+
+        public boolean addAll(Collection<? extends Entry<K,V>> c) {
+            boolean added = false;
+            for (Entry<K,V> e : c) {
+                if (add(e))
+                    added = true;
+            }
+            return added;
+        }
+
+        public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
+            return map.removeEntryIf(filter);
+        }
+
+        public final int hashCode() {
+            int h = 0;
+            Node<K,V>[] t;
+            if ((t = map.table) != null) {
+                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
+                for (Node<K,V> p; (p = it.advance()) != null; ) {
+                    h += p.hashCode();
+                }
+            }
+            return h;
+        }
+
+        public final boolean equals(Object o) {
+            Set<?> c;
+            return ((o instanceof Set) &&
+                    ((c = (Set<?>)o) == this ||
+                     (containsAll(c) && c.containsAll(this))));
+        }
+
+        public Spliterator<Map.Entry<K,V>> spliterator() {
+            Node<K,V>[] t;
+            ConcurrentHashMap<K,V> m = map;
+            long n = m.sumCount();
+            int f = (t = m.table) == null ? 0 : t.length;
+            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
+        }
+
+        public void forEach(Consumer<? super Map.Entry<K,V>> action) {
+            if (action == null) throw new NullPointerException();
+            Node<K,V>[] t;
+            if ((t = map.table) != null) {
+                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
+                for (Node<K,V> p; (p = it.advance()) != null; )
+                    action.accept(new MapEntry<K,V>(p.key, p.val, map));
+            }
+        }
+
+    }
+
+    // -------------------------------------------------------
+
+    /**
+     * Base class for bulk tasks. Repeats some fields and code from
+     * class Traverser, because we need to subclass CountedCompleter.
+     */
+    @SuppressWarnings("serial")
+    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
+        Node<K,V>[] tab;        // same as Traverser
+        Node<K,V> next;
+        TableStack<K,V> stack, spare;
+        int index;
+        int baseIndex;
+        int baseLimit;
+        final int baseSize;
+        int batch;              // split control
+
+        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
+            super(par);
+            this.batch = b;
+            this.index = this.baseIndex = i;
+            if ((this.tab = t) == null)
+                this.baseSize = this.baseLimit = 0;
+            else if (par == null)
+                this.baseSize = this.baseLimit = t.length;
+            else {
+                this.baseLimit = f;
+                this.baseSize = par.baseSize;
+            }
+        }
+
+        /**
+         * Same as Traverser version.
+         */
+        final Node<K,V> advance() {
+            Node<K,V> e;
+            if ((e = next) != null)
+                e = e.next;
+            for (;;) {
+                Node<K,V>[] t; int i, n;
+                if (e != null)
+                    return next = e;
+                if (baseIndex >= baseLimit || (t = tab) == null ||
+                    (n = t.length) <= (i = index) || i < 0)
+                    return next = null;
+                if ((e = tabAt(t, i)) != null && e.hash < 0) {
+                    if (e instanceof ForwardingNode) {
+                        tab = ((ForwardingNode<K,V>)e).nextTable;
+                        e = null;
+                        pushState(t, i, n);
+                        continue;
+                    }
+                    else if (e instanceof TreeBin)
+                        e = ((TreeBin<K,V>)e).first;
+                    else
+                        e = null;
+                }
+                if (stack != null)
+                    recoverState(n);
+                else if ((index = i + baseSize) >= n)
+                    index = ++baseIndex;
+            }
+        }
+
+        private void pushState(Node<K,V>[] t, int i, int n) {
+            TableStack<K,V> s = spare;
+            if (s != null)
+                spare = s.next;
+            else
+                s = new TableStack<K,V>();
+            s.tab = t;
+            s.length = n;
+            s.index = i;
+            s.next = stack;
+            stack = s;
+        }
+
+        private void recoverState(int n) {
+            TableStack<K,V> s; int len;
+            while ((s = stack) != null && (index += (len = s.length)) >= n) {
+                n = len;
+                index = s.index;
+                tab = s.tab;
+                s.tab = null;
+                TableStack<K,V> next = s.next;
+                s.next = spare; // save for reuse
+                stack = next;
+                spare = s;
+            }
+            if (s == null && (index += baseSize) >= n)
+                index = ++baseIndex;
+        }
+    }
+
+    /*
+     * Task classes. Coded in a regular but ugly format/style to
+     * simplify checks that each variant differs in the right way from
+     * others. The null screenings exist because compilers cannot tell
+     * that we've already null-checked task arguments, so we force
+     * simplest hoisted bypass to help avoid convoluted traps.
+     */
+    @SuppressWarnings("serial")
+    static final class ForEachKeyTask<K,V>
+        extends BulkTask<K,V,Void> {
+        final Consumer<? super K> action;
+        ForEachKeyTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             Consumer<? super K> action) {
+            super(p, b, i, f, t);
+            this.action = action;
+        }
+        public final void compute() {
+            final Consumer<? super K> action;
+            if ((action = this.action) != null) {
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    new ForEachKeyTask<K,V>
+                        (this, batch >>>= 1, baseLimit = h, f, tab,
+                         action).fork();
+                }
+                for (Node<K,V> p; (p = advance()) != null;)
+                    action.accept(p.key);
+                propagateCompletion();
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class ForEachValueTask<K,V>
+        extends BulkTask<K,V,Void> {
+        final Consumer<? super V> action;
+        ForEachValueTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             Consumer<? super V> action) {
+            super(p, b, i, f, t);
+            this.action = action;
+        }
+        public final void compute() {
+            final Consumer<? super V> action;
+            if ((action = this.action) != null) {
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    new ForEachValueTask<K,V>
+                        (this, batch >>>= 1, baseLimit = h, f, tab,
+                         action).fork();
+                }
+                for (Node<K,V> p; (p = advance()) != null;)
+                    action.accept(p.val);
+                propagateCompletion();
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class ForEachEntryTask<K,V>
+        extends BulkTask<K,V,Void> {
+        final Consumer<? super Entry<K,V>> action;
+        ForEachEntryTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             Consumer<? super Entry<K,V>> action) {
+            super(p, b, i, f, t);
+            this.action = action;
+        }
+        public final void compute() {
+            final Consumer<? super Entry<K,V>> action;
+            if ((action = this.action) != null) {
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    new ForEachEntryTask<K,V>
+                        (this, batch >>>= 1, baseLimit = h, f, tab,
+                         action).fork();
+                }
+                for (Node<K,V> p; (p = advance()) != null; )
+                    action.accept(p);
+                propagateCompletion();
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class ForEachMappingTask<K,V>
+        extends BulkTask<K,V,Void> {
+        final BiConsumer<? super K, ? super V> action;
+        ForEachMappingTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             BiConsumer<? super K,? super V> action) {
+            super(p, b, i, f, t);
+            this.action = action;
+        }
+        public final void compute() {
+            final BiConsumer<? super K, ? super V> action;
+            if ((action = this.action) != null) {
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    new ForEachMappingTask<K,V>
+                        (this, batch >>>= 1, baseLimit = h, f, tab,
+                         action).fork();
+                }
+                for (Node<K,V> p; (p = advance()) != null; )
+                    action.accept(p.key, p.val);
+                propagateCompletion();
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class ForEachTransformedKeyTask<K,V,U>
+        extends BulkTask<K,V,Void> {
+        final Function<? super K, ? extends U> transformer;
+        final Consumer<? super U> action;
+        ForEachTransformedKeyTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
+            super(p, b, i, f, t);
+            this.transformer = transformer; this.action = action;
+        }
+        public final void compute() {
+            final Function<? super K, ? extends U> transformer;
+            final Consumer<? super U> action;
+            if ((transformer = this.transformer) != null &&
+                (action = this.action) != null) {
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    new ForEachTransformedKeyTask<K,V,U>
+                        (this, batch >>>= 1, baseLimit = h, f, tab,
+                         transformer, action).fork();
+                }
+                for (Node<K,V> p; (p = advance()) != null; ) {
+                    U u;
+                    if ((u = transformer.apply(p.key)) != null)
+                        action.accept(u);
+                }
+                propagateCompletion();
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class ForEachTransformedValueTask<K,V,U>
+        extends BulkTask<K,V,Void> {
+        final Function<? super V, ? extends U> transformer;
+        final Consumer<? super U> action;
+        ForEachTransformedValueTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
+            super(p, b, i, f, t);
+            this.transformer = transformer; this.action = action;
+        }
+        public final void compute() {
+            final Function<? super V, ? extends U> transformer;
+            final Consumer<? super U> action;
+            if ((transformer = this.transformer) != null &&
+                (action = this.action) != null) {
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    new ForEachTransformedValueTask<K,V,U>
+                        (this, batch >>>= 1, baseLimit = h, f, tab,
+                         transformer, action).fork();
+                }
+                for (Node<K,V> p; (p = advance()) != null; ) {
+                    U u;
+                    if ((u = transformer.apply(p.val)) != null)
+                        action.accept(u);
+                }
+                propagateCompletion();
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class ForEachTransformedEntryTask<K,V,U>
+        extends BulkTask<K,V,Void> {
+        final Function<Map.Entry<K,V>, ? extends U> transformer;
+        final Consumer<? super U> action;
+        ForEachTransformedEntryTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
+            super(p, b, i, f, t);
+            this.transformer = transformer; this.action = action;
+        }
+        public final void compute() {
+            final Function<Map.Entry<K,V>, ? extends U> transformer;
+            final Consumer<? super U> action;
+            if ((transformer = this.transformer) != null &&
+                (action = this.action) != null) {
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    new ForEachTransformedEntryTask<K,V,U>
+                        (this, batch >>>= 1, baseLimit = h, f, tab,
+                         transformer, action).fork();
+                }
+                for (Node<K,V> p; (p = advance()) != null; ) {
+                    U u;
+                    if ((u = transformer.apply(p)) != null)
+                        action.accept(u);
+                }
+                propagateCompletion();
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class ForEachTransformedMappingTask<K,V,U>
+        extends BulkTask<K,V,Void> {
+        final BiFunction<? super K, ? super V, ? extends U> transformer;
+        final Consumer<? super U> action;
+        ForEachTransformedMappingTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             BiFunction<? super K, ? super V, ? extends U> transformer,
+             Consumer<? super U> action) {
+            super(p, b, i, f, t);
+            this.transformer = transformer; this.action = action;
+        }
+        public final void compute() {
+            final BiFunction<? super K, ? super V, ? extends U> transformer;
+            final Consumer<? super U> action;
+            if ((transformer = this.transformer) != null &&
+                (action = this.action) != null) {
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    new ForEachTransformedMappingTask<K,V,U>
+                        (this, batch >>>= 1, baseLimit = h, f, tab,
+                         transformer, action).fork();
+                }
+                for (Node<K,V> p; (p = advance()) != null; ) {
+                    U u;
+                    if ((u = transformer.apply(p.key, p.val)) != null)
+                        action.accept(u);
+                }
+                propagateCompletion();
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class SearchKeysTask<K,V,U>
+        extends BulkTask<K,V,U> {
+        final Function<? super K, ? extends U> searchFunction;
+        final AtomicReference<U> result;
+        SearchKeysTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             Function<? super K, ? extends U> searchFunction,
+             AtomicReference<U> result) {
+            super(p, b, i, f, t);
+            this.searchFunction = searchFunction; this.result = result;
+        }
+        public final U getRawResult() { return result.get(); }
+        public final void compute() {
+            final Function<? super K, ? extends U> searchFunction;
+            final AtomicReference<U> result;
+            if ((searchFunction = this.searchFunction) != null &&
+                (result = this.result) != null) {
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    if (result.get() != null)
+                        return;
+                    addToPendingCount(1);
+                    new SearchKeysTask<K,V,U>
+                        (this, batch >>>= 1, baseLimit = h, f, tab,
+                         searchFunction, result).fork();
+                }
+                while (result.get() == null) {
+                    U u;
+                    Node<K,V> p;
+                    if ((p = advance()) == null) {
+                        propagateCompletion();
+                        break;
+                    }
+                    if ((u = searchFunction.apply(p.key)) != null) {
+                        if (result.compareAndSet(null, u))
+                            quietlyCompleteRoot();
+                        break;
+                    }
+                }
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class SearchValuesTask<K,V,U>
+        extends BulkTask<K,V,U> {
+        final Function<? super V, ? extends U> searchFunction;
+        final AtomicReference<U> result;
+        SearchValuesTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             Function<? super V, ? extends U> searchFunction,
+             AtomicReference<U> result) {
+            super(p, b, i, f, t);
+            this.searchFunction = searchFunction; this.result = result;
+        }
+        public final U getRawResult() { return result.get(); }
+        public final void compute() {
+            final Function<? super V, ? extends U> searchFunction;
+            final AtomicReference<U> result;
+            if ((searchFunction = this.searchFunction) != null &&
+                (result = this.result) != null) {
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    if (result.get() != null)
+                        return;
+                    addToPendingCount(1);
+                    new SearchValuesTask<K,V,U>
+                        (this, batch >>>= 1, baseLimit = h, f, tab,
+                         searchFunction, result).fork();
+                }
+                while (result.get() == null) {
+                    U u;
+                    Node<K,V> p;
+                    if ((p = advance()) == null) {
+                        propagateCompletion();
+                        break;
+                    }
+                    if ((u = searchFunction.apply(p.val)) != null) {
+                        if (result.compareAndSet(null, u))
+                            quietlyCompleteRoot();
+                        break;
+                    }
+                }
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class SearchEntriesTask<K,V,U>
+        extends BulkTask<K,V,U> {
+        final Function<Entry<K,V>, ? extends U> searchFunction;
+        final AtomicReference<U> result;
+        SearchEntriesTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             Function<Entry<K,V>, ? extends U> searchFunction,
+             AtomicReference<U> result) {
+            super(p, b, i, f, t);
+            this.searchFunction = searchFunction; this.result = result;
+        }
+        public final U getRawResult() { return result.get(); }
+        public final void compute() {
+            final Function<Entry<K,V>, ? extends U> searchFunction;
+            final AtomicReference<U> result;
+            if ((searchFunction = this.searchFunction) != null &&
+                (result = this.result) != null) {
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    if (result.get() != null)
+                        return;
+                    addToPendingCount(1);
+                    new SearchEntriesTask<K,V,U>
+                        (this, batch >>>= 1, baseLimit = h, f, tab,
+                         searchFunction, result).fork();
+                }
+                while (result.get() == null) {
+                    U u;
+                    Node<K,V> p;
+                    if ((p = advance()) == null) {
+                        propagateCompletion();
+                        break;
+                    }
+                    if ((u = searchFunction.apply(p)) != null) {
+                        if (result.compareAndSet(null, u))
+                            quietlyCompleteRoot();
+                        return;
+                    }
+                }
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class SearchMappingsTask<K,V,U>
+        extends BulkTask<K,V,U> {
+        final BiFunction<? super K, ? super V, ? extends U> searchFunction;
+        final AtomicReference<U> result;
+        SearchMappingsTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             BiFunction<? super K, ? super V, ? extends U> searchFunction,
+             AtomicReference<U> result) {
+            super(p, b, i, f, t);
+            this.searchFunction = searchFunction; this.result = result;
+        }
+        public final U getRawResult() { return result.get(); }
+        public final void compute() {
+            final BiFunction<? super K, ? super V, ? extends U> searchFunction;
+            final AtomicReference<U> result;
+            if ((searchFunction = this.searchFunction) != null &&
+                (result = this.result) != null) {
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    if (result.get() != null)
+                        return;
+                    addToPendingCount(1);
+                    new SearchMappingsTask<K,V,U>
+                        (this, batch >>>= 1, baseLimit = h, f, tab,
+                         searchFunction, result).fork();
+                }
+                while (result.get() == null) {
+                    U u;
+                    Node<K,V> p;
+                    if ((p = advance()) == null) {
+                        propagateCompletion();
+                        break;
+                    }
+                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
+                        if (result.compareAndSet(null, u))
+                            quietlyCompleteRoot();
+                        break;
+                    }
+                }
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class ReduceKeysTask<K,V>
+        extends BulkTask<K,V,K> {
+        final BiFunction<? super K, ? super K, ? extends K> reducer;
+        K result;
+        ReduceKeysTask<K,V> rights, nextRight;
+        ReduceKeysTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             ReduceKeysTask<K,V> nextRight,
+             BiFunction<? super K, ? super K, ? extends K> reducer) {
+            super(p, b, i, f, t); this.nextRight = nextRight;
+            this.reducer = reducer;
+        }
+        public final K getRawResult() { return result; }
+        public final void compute() {
+            final BiFunction<? super K, ? super K, ? extends K> reducer;
+            if ((reducer = this.reducer) != null) {
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    (rights = new ReduceKeysTask<K,V>
+                     (this, batch >>>= 1, baseLimit = h, f, tab,
+                      rights, reducer)).fork();
+                }
+                K r = null;
+                for (Node<K,V> p; (p = advance()) != null; ) {
+                    K u = p.key;
+                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
+                }
+                result = r;
+                CountedCompleter<?> c;
+                for (c = firstComplete(); c != null; c = c.nextComplete()) {
+                    @SuppressWarnings("unchecked")
+                    ReduceKeysTask<K,V>
+                        t = (ReduceKeysTask<K,V>)c,
+                        s = t.rights;
+                    while (s != null) {
+                        K tr, sr;
+                        if ((sr = s.result) != null)
+                            t.result = (((tr = t.result) == null) ? sr :
+                                        reducer.apply(tr, sr));
+                        s = t.rights = s.nextRight;
+                    }
+                }
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class ReduceValuesTask<K,V>
+        extends BulkTask<K,V,V> {
+        final BiFunction<? super V, ? super V, ? extends V> reducer;
+        V result;
+        ReduceValuesTask<K,V> rights, nextRight;
+        ReduceValuesTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             ReduceValuesTask<K,V> nextRight,
+             BiFunction<? super V, ? super V, ? extends V> reducer) {
+            super(p, b, i, f, t); this.nextRight = nextRight;
+            this.reducer = reducer;
+        }
+        public final V getRawResult() { return result; }
+        public final void compute() {
+            final BiFunction<? super V, ? super V, ? extends V> reducer;
+            if ((reducer = this.reducer) != null) {
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    (rights = new ReduceValuesTask<K,V>
+                     (this, batch >>>= 1, baseLimit = h, f, tab,
+                      rights, reducer)).fork();
+                }
+                V r = null;
+                for (Node<K,V> p; (p = advance()) != null; ) {
+                    V v = p.val;
+                    r = (r == null) ? v : reducer.apply(r, v);
+                }
+                result = r;
+                CountedCompleter<?> c;
+                for (c = firstComplete(); c != null; c = c.nextComplete()) {
+                    @SuppressWarnings("unchecked")
+                    ReduceValuesTask<K,V>
+                        t = (ReduceValuesTask<K,V>)c,
+                        s = t.rights;
+                    while (s != null) {
+                        V tr, sr;
+                        if ((sr = s.result) != null)
+                            t.result = (((tr = t.result) == null) ? sr :
+                                        reducer.apply(tr, sr));
+                        s = t.rights = s.nextRight;
+                    }
+                }
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class ReduceEntriesTask<K,V>
+        extends BulkTask<K,V,Map.Entry<K,V>> {
+        final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
+        Map.Entry<K,V> result;
+        ReduceEntriesTask<K,V> rights, nextRight;
+        ReduceEntriesTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             ReduceEntriesTask<K,V> nextRight,
+             BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
+            super(p, b, i, f, t); this.nextRight = nextRight;
+            this.reducer = reducer;
+        }
+        public final Map.Entry<K,V> getRawResult() { return result; }
+        public final void compute() {
+            final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
+            if ((reducer = this.reducer) != null) {
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    (rights = new ReduceEntriesTask<K,V>
+                     (this, batch >>>= 1, baseLimit = h, f, tab,
+                      rights, reducer)).fork();
+                }
+                Map.Entry<K,V> r = null;
+                for (Node<K,V> p; (p = advance()) != null; )
+                    r = (r == null) ? p : reducer.apply(r, p);
+                result = r;
+                CountedCompleter<?> c;
+                for (c = firstComplete(); c != null; c = c.nextComplete()) {
+                    @SuppressWarnings("unchecked")
+                    ReduceEntriesTask<K,V>
+                        t = (ReduceEntriesTask<K,V>)c,
+                        s = t.rights;
+                    while (s != null) {
+                        Map.Entry<K,V> tr, sr;
+                        if ((sr = s.result) != null)
+                            t.result = (((tr = t.result) == null) ? sr :
+                                        reducer.apply(tr, sr));
+                        s = t.rights = s.nextRight;
+                    }
+                }
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class MapReduceKeysTask<K,V,U>
+        extends BulkTask<K,V,U> {
+        final Function<? super K, ? extends U> transformer;
+        final BiFunction<? super U, ? super U, ? extends U> reducer;
+        U result;
+        MapReduceKeysTask<K,V,U> rights, nextRight;
+        MapReduceKeysTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             MapReduceKeysTask<K,V,U> nextRight,
+             Function<? super K, ? extends U> transformer,
+             BiFunction<? super U, ? super U, ? extends U> reducer) {
+            super(p, b, i, f, t); this.nextRight = nextRight;
+            this.transformer = transformer;
+            this.reducer = reducer;
+        }
+        public final U getRawResult() { return result; }
+        public final void compute() {
+            final Function<? super K, ? extends U> transformer;
+            final BiFunction<? super U, ? super U, ? extends U> reducer;
+            if ((transformer = this.transformer) != null &&
+                (reducer = this.reducer) != null) {
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    (rights = new MapReduceKeysTask<K,V,U>
+                     (this, batch >>>= 1, baseLimit = h, f, tab,
+                      rights, transformer, reducer)).fork();
+                }
+                U r = null;
+                for (Node<K,V> p; (p = advance()) != null; ) {
+                    U u;
+                    if ((u = transformer.apply(p.key)) != null)
+                        r = (r == null) ? u : reducer.apply(r, u);
+                }
+                result = r;
+                CountedCompleter<?> c;
+                for (c = firstComplete(); c != null; c = c.nextComplete()) {
+                    @SuppressWarnings("unchecked")
+                    MapReduceKeysTask<K,V,U>
+                        t = (MapReduceKeysTask<K,V,U>)c,
+                        s = t.rights;
+                    while (s != null) {
+                        U tr, sr;
+                        if ((sr = s.result) != null)
+                            t.result = (((tr = t.result) == null) ? sr :
+                                        reducer.apply(tr, sr));
+                        s = t.rights = s.nextRight;
+                    }
+                }
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class MapReduceValuesTask<K,V,U>
+        extends BulkTask<K,V,U> {
+        final Function<? super V, ? extends U> transformer;
+        final BiFunction<? super U, ? super U, ? extends U> reducer;
+        U result;
+        MapReduceValuesTask<K,V,U> rights, nextRight;
+        MapReduceValuesTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             MapReduceValuesTask<K,V,U> nextRight,
+             Function<? super V, ? extends U> transformer,
+             BiFunction<? super U, ? super U, ? extends U> reducer) {
+            super(p, b, i, f, t); this.nextRight = nextRight;
+            this.transformer = transformer;
+            this.reducer = reducer;
+        }
+        public final U getRawResult() { return result; }
+        public final void compute() {
+            final Function<? super V, ? extends U> transformer;
+            final BiFunction<? super U, ? super U, ? extends U> reducer;
+            if ((transformer = this.transformer) != null &&
+                (reducer = this.reducer) != null) {
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    (rights = new MapReduceValuesTask<K,V,U>
+                     (this, batch >>>= 1, baseLimit = h, f, tab,
+                      rights, transformer, reducer)).fork();
+                }
+                U r = null;
+                for (Node<K,V> p; (p = advance()) != null; ) {
+                    U u;
+                    if ((u = transformer.apply(p.val)) != null)
+                        r = (r == null) ? u : reducer.apply(r, u);
+                }
+                result = r;
+                CountedCompleter<?> c;
+                for (c = firstComplete(); c != null; c = c.nextComplete()) {
+                    @SuppressWarnings("unchecked")
+                    MapReduceValuesTask<K,V,U>
+                        t = (MapReduceValuesTask<K,V,U>)c,
+                        s = t.rights;
+                    while (s != null) {
+                        U tr, sr;
+                        if ((sr = s.result) != null)
+                            t.result = (((tr = t.result) == null) ? sr :
+                                        reducer.apply(tr, sr));
+                        s = t.rights = s.nextRight;
+                    }
+                }
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class MapReduceEntriesTask<K,V,U>
+        extends BulkTask<K,V,U> {
+        final Function<Map.Entry<K,V>, ? extends U> transformer;
+        final BiFunction<? super U, ? super U, ? extends U> reducer;
+        U result;
+        MapReduceEntriesTask<K,V,U> rights, nextRight;
+        MapReduceEntriesTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             MapReduceEntriesTask<K,V,U> nextRight,
+             Function<Map.Entry<K,V>, ? extends U> transformer,
+             BiFunction<? super U, ? super U, ? extends U> reducer) {
+            super(p, b, i, f, t); this.nextRight = nextRight;
+            this.transformer = transformer;
+            this.reducer = reducer;
+        }
+        public final U getRawResult() { return result; }
+        public final void compute() {
+            final Function<Map.Entry<K,V>, ? extends U> transformer;
+            final BiFunction<? super U, ? super U, ? extends U> reducer;
+            if ((transformer = this.transformer) != null &&
+                (reducer = this.reducer) != null) {
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    (rights = new MapReduceEntriesTask<K,V,U>
+                     (this, batch >>>= 1, baseLimit = h, f, tab,
+                      rights, transformer, reducer)).fork();
+                }
+                U r = null;
+                for (Node<K,V> p; (p = advance()) != null; ) {
+                    U u;
+                    if ((u = transformer.apply(p)) != null)
+                        r = (r == null) ? u : reducer.apply(r, u);
+                }
+                result = r;
+                CountedCompleter<?> c;
+                for (c = firstComplete(); c != null; c = c.nextComplete()) {
+                    @SuppressWarnings("unchecked")
+                    MapReduceEntriesTask<K,V,U>
+                        t = (MapReduceEntriesTask<K,V,U>)c,
+                        s = t.rights;
+                    while (s != null) {
+                        U tr, sr;
+                        if ((sr = s.result) != null)
+                            t.result = (((tr = t.result) == null) ? sr :
+                                        reducer.apply(tr, sr));
+                        s = t.rights = s.nextRight;
+                    }
+                }
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class MapReduceMappingsTask<K,V,U>
+        extends BulkTask<K,V,U> {
+        final BiFunction<? super K, ? super V, ? extends U> transformer;
+        final BiFunction<? super U, ? super U, ? extends U> reducer;
+        U result;
+        MapReduceMappingsTask<K,V,U> rights, nextRight;
+        MapReduceMappingsTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             MapReduceMappingsTask<K,V,U> nextRight,
+             BiFunction<? super K, ? super V, ? extends U> transformer,
+             BiFunction<? super U, ? super U, ? extends U> reducer) {
+            super(p, b, i, f, t); this.nextRight = nextRight;
+            this.transformer = transformer;
+            this.reducer = reducer;
+        }
+        public final U getRawResult() { return result; }
+        public final void compute() {
+            final BiFunction<? super K, ? super V, ? extends U> transformer;
+            final BiFunction<? super U, ? super U, ? extends U> reducer;
+            if ((transformer = this.transformer) != null &&
+                (reducer = this.reducer) != null) {
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    (rights = new MapReduceMappingsTask<K,V,U>
+                     (this, batch >>>= 1, baseLimit = h, f, tab,
+                      rights, transformer, reducer)).fork();
+                }
+                U r = null;
+                for (Node<K,V> p; (p = advance()) != null; ) {
+                    U u;
+                    if ((u = transformer.apply(p.key, p.val)) != null)
+                        r = (r == null) ? u : reducer.apply(r, u);
+                }
+                result = r;
+                CountedCompleter<?> c;
+                for (c = firstComplete(); c != null; c = c.nextComplete()) {
+                    @SuppressWarnings("unchecked")
+                    MapReduceMappingsTask<K,V,U>
+                        t = (MapReduceMappingsTask<K,V,U>)c,
+                        s = t.rights;
+                    while (s != null) {
+                        U tr, sr;
+                        if ((sr = s.result) != null)
+                            t.result = (((tr = t.result) == null) ? sr :
+                                        reducer.apply(tr, sr));
+                        s = t.rights = s.nextRight;
+                    }
+                }
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class MapReduceKeysToDoubleTask<K,V>
+        extends BulkTask<K,V,Double> {
+        final ToDoubleFunction<? super K> transformer;
+        final DoubleBinaryOperator reducer;
+        final double basis;
+        double result;
+        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
+        MapReduceKeysToDoubleTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             MapReduceKeysToDoubleTask<K,V> nextRight,
+             ToDoubleFunction<? super K> transformer,
+             double basis,
+             DoubleBinaryOperator reducer) {
+            super(p, b, i, f, t); this.nextRight = nextRight;
+            this.transformer = transformer;
+            this.basis = basis; this.reducer = reducer;
+        }
+        public final Double getRawResult() { return result; }
+        public final void compute() {
+            final ToDoubleFunction<? super K> transformer;
+            final DoubleBinaryOperator reducer;
+            if ((transformer = this.transformer) != null &&
+                (reducer = this.reducer) != null) {
+                double r = this.basis;
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    (rights = new MapReduceKeysToDoubleTask<K,V>
+                     (this, batch >>>= 1, baseLimit = h, f, tab,
+                      rights, transformer, r, reducer)).fork();
+                }
+                for (Node<K,V> p; (p = advance()) != null; )
+                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
+                result = r;
+                CountedCompleter<?> c;
+                for (c = firstComplete(); c != null; c = c.nextComplete()) {
+                    @SuppressWarnings("unchecked")
+                    MapReduceKeysToDoubleTask<K,V>
+                        t = (MapReduceKeysToDoubleTask<K,V>)c,
+                        s = t.rights;
+                    while (s != null) {
+                        t.result = reducer.applyAsDouble(t.result, s.result);
+                        s = t.rights = s.nextRight;
+                    }
+                }
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class MapReduceValuesToDoubleTask<K,V>
+        extends BulkTask<K,V,Double> {
+        final ToDoubleFunction<? super V> transformer;
+        final DoubleBinaryOperator reducer;
+        final double basis;
+        double result;
+        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
+        MapReduceValuesToDoubleTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             MapReduceValuesToDoubleTask<K,V> nextRight,
+             ToDoubleFunction<? super V> transformer,
+             double basis,
+             DoubleBinaryOperator reducer) {
+            super(p, b, i, f, t); this.nextRight = nextRight;
+            this.transformer = transformer;
+            this.basis = basis; this.reducer = reducer;
+        }
+        public final Double getRawResult() { return result; }
+        public final void compute() {
+            final ToDoubleFunction<? super V> transformer;
+            final DoubleBinaryOperator reducer;
+            if ((transformer = this.transformer) != null &&
+                (reducer = this.reducer) != null) {
+                double r = this.basis;
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    (rights = new MapReduceValuesToDoubleTask<K,V>
+                     (this, batch >>>= 1, baseLimit = h, f, tab,
+                      rights, transformer, r, reducer)).fork();
+                }
+                for (Node<K,V> p; (p = advance()) != null; )
+                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
+                result = r;
+                CountedCompleter<?> c;
+                for (c = firstComplete(); c != null; c = c.nextComplete()) {
+                    @SuppressWarnings("unchecked")
+                    MapReduceValuesToDoubleTask<K,V>
+                        t = (MapReduceValuesToDoubleTask<K,V>)c,
+                        s = t.rights;
+                    while (s != null) {
+                        t.result = reducer.applyAsDouble(t.result, s.result);
+                        s = t.rights = s.nextRight;
+                    }
+                }
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class MapReduceEntriesToDoubleTask<K,V>
+        extends BulkTask<K,V,Double> {
+        final ToDoubleFunction<Map.Entry<K,V>> transformer;
+        final DoubleBinaryOperator reducer;
+        final double basis;
+        double result;
+        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
+        MapReduceEntriesToDoubleTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             MapReduceEntriesToDoubleTask<K,V> nextRight,
+             ToDoubleFunction<Map.Entry<K,V>> transformer,
+             double basis,
+             DoubleBinaryOperator reducer) {
+            super(p, b, i, f, t); this.nextRight = nextRight;
+            this.transformer = transformer;
+            this.basis = basis; this.reducer = reducer;
+        }
+        public final Double getRawResult() { return result; }
+        public final void compute() {
+            final ToDoubleFunction<Map.Entry<K,V>> transformer;
+            final DoubleBinaryOperator reducer;
+            if ((transformer = this.transformer) != null &&
+                (reducer = this.reducer) != null) {
+                double r = this.basis;
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    (rights = new MapReduceEntriesToDoubleTask<K,V>
+                     (this, batch >>>= 1, baseLimit = h, f, tab,
+                      rights, transformer, r, reducer)).fork();
+                }
+                for (Node<K,V> p; (p = advance()) != null; )
+                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
+                result = r;
+                CountedCompleter<?> c;
+                for (c = firstComplete(); c != null; c = c.nextComplete()) {
+                    @SuppressWarnings("unchecked")
+                    MapReduceEntriesToDoubleTask<K,V>
+                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
+                        s = t.rights;
+                    while (s != null) {
+                        t.result = reducer.applyAsDouble(t.result, s.result);
+                        s = t.rights = s.nextRight;
+                    }
+                }
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class MapReduceMappingsToDoubleTask<K,V>
+        extends BulkTask<K,V,Double> {
+        final ToDoubleBiFunction<? super K, ? super V> transformer;
+        final DoubleBinaryOperator reducer;
+        final double basis;
+        double result;
+        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
+        MapReduceMappingsToDoubleTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             MapReduceMappingsToDoubleTask<K,V> nextRight,
+             ToDoubleBiFunction<? super K, ? super V> transformer,
+             double basis,
+             DoubleBinaryOperator reducer) {
+            super(p, b, i, f, t); this.nextRight = nextRight;
+            this.transformer = transformer;
+            this.basis = basis; this.reducer = reducer;
+        }
+        public final Double getRawResult() { return result; }
+        public final void compute() {
+            final ToDoubleBiFunction<? super K, ? super V> transformer;
+            final DoubleBinaryOperator reducer;
+            if ((transformer = this.transformer) != null &&
+                (reducer = this.reducer) != null) {
+                double r = this.basis;
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    (rights = new MapReduceMappingsToDoubleTask<K,V>
+                     (this, batch >>>= 1, baseLimit = h, f, tab,
+                      rights, transformer, r, reducer)).fork();
+                }
+                for (Node<K,V> p; (p = advance()) != null; )
+                    r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
+                result = r;
+                CountedCompleter<?> c;
+                for (c = firstComplete(); c != null; c = c.nextComplete()) {
+                    @SuppressWarnings("unchecked")
+                    MapReduceMappingsToDoubleTask<K,V>
+                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
+                        s = t.rights;
+                    while (s != null) {
+                        t.result = reducer.applyAsDouble(t.result, s.result);
+                        s = t.rights = s.nextRight;
+                    }
+                }
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class MapReduceKeysToLongTask<K,V>
+        extends BulkTask<K,V,Long> {
+        final ToLongFunction<? super K> transformer;
+        final LongBinaryOperator reducer;
+        final long basis;
+        long result;
+        MapReduceKeysToLongTask<K,V> rights, nextRight;
+        MapReduceKeysToLongTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             MapReduceKeysToLongTask<K,V> nextRight,
+             ToLongFunction<? super K> transformer,
+             long basis,
+             LongBinaryOperator reducer) {
+            super(p, b, i, f, t); this.nextRight = nextRight;
+            this.transformer = transformer;
+            this.basis = basis; this.reducer = reducer;
+        }
+        public final Long getRawResult() { return result; }
+        public final void compute() {
+            final ToLongFunction<? super K> transformer;
+            final LongBinaryOperator reducer;
+            if ((transformer = this.transformer) != null &&
+                (reducer = this.reducer) != null) {
+                long r = this.basis;
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    (rights = new MapReduceKeysToLongTask<K,V>
+                     (this, batch >>>= 1, baseLimit = h, f, tab,
+                      rights, transformer, r, reducer)).fork();
+                }
+                for (Node<K,V> p; (p = advance()) != null; )
+                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
+                result = r;
+                CountedCompleter<?> c;
+                for (c = firstComplete(); c != null; c = c.nextComplete()) {
+                    @SuppressWarnings("unchecked")
+                    MapReduceKeysToLongTask<K,V>
+                        t = (MapReduceKeysToLongTask<K,V>)c,
+                        s = t.rights;
+                    while (s != null) {
+                        t.result = reducer.applyAsLong(t.result, s.result);
+                        s = t.rights = s.nextRight;
+                    }
+                }
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class MapReduceValuesToLongTask<K,V>
+        extends BulkTask<K,V,Long> {
+        final ToLongFunction<? super V> transformer;
+        final LongBinaryOperator reducer;
+        final long basis;
+        long result;
+        MapReduceValuesToLongTask<K,V> rights, nextRight;
+        MapReduceValuesToLongTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             MapReduceValuesToLongTask<K,V> nextRight,
+             ToLongFunction<? super V> transformer,
+             long basis,
+             LongBinaryOperator reducer) {
+            super(p, b, i, f, t); this.nextRight = nextRight;
+            this.transformer = transformer;
+            this.basis = basis; this.reducer = reducer;
+        }
+        public final Long getRawResult() { return result; }
+        public final void compute() {
+            final ToLongFunction<? super V> transformer;
+            final LongBinaryOperator reducer;
+            if ((transformer = this.transformer) != null &&
+                (reducer = this.reducer) != null) {
+                long r = this.basis;
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    (rights = new MapReduceValuesToLongTask<K,V>
+                     (this, batch >>>= 1, baseLimit = h, f, tab,
+                      rights, transformer, r, reducer)).fork();
+                }
+                for (Node<K,V> p; (p = advance()) != null; )
+                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
+                result = r;
+                CountedCompleter<?> c;
+                for (c = firstComplete(); c != null; c = c.nextComplete()) {
+                    @SuppressWarnings("unchecked")
+                    MapReduceValuesToLongTask<K,V>
+                        t = (MapReduceValuesToLongTask<K,V>)c,
+                        s = t.rights;
+                    while (s != null) {
+                        t.result = reducer.applyAsLong(t.result, s.result);
+                        s = t.rights = s.nextRight;
+                    }
+                }
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class MapReduceEntriesToLongTask<K,V>
+        extends BulkTask<K,V,Long> {
+        final ToLongFunction<Map.Entry<K,V>> transformer;
+        final LongBinaryOperator reducer;
+        final long basis;
+        long result;
+        MapReduceEntriesToLongTask<K,V> rights, nextRight;
+        MapReduceEntriesToLongTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             MapReduceEntriesToLongTask<K,V> nextRight,
+             ToLongFunction<Map.Entry<K,V>> transformer,
+             long basis,
+             LongBinaryOperator reducer) {
+            super(p, b, i, f, t); this.nextRight = nextRight;
+            this.transformer = transformer;
+            this.basis = basis; this.reducer = reducer;
+        }
+        public final Long getRawResult() { return result; }
+        public final void compute() {
+            final ToLongFunction<Map.Entry<K,V>> transformer;
+            final LongBinaryOperator reducer;
+            if ((transformer = this.transformer) != null &&
+                (reducer = this.reducer) != null) {
+                long r = this.basis;
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    (rights = new MapReduceEntriesToLongTask<K,V>
+                     (this, batch >>>= 1, baseLimit = h, f, tab,
+                      rights, transformer, r, reducer)).fork();
+                }
+                for (Node<K,V> p; (p = advance()) != null; )
+                    r = reducer.applyAsLong(r, transformer.applyAsLong(p));
+                result = r;
+                CountedCompleter<?> c;
+                for (c = firstComplete(); c != null; c = c.nextComplete()) {
+                    @SuppressWarnings("unchecked")
+                    MapReduceEntriesToLongTask<K,V>
+                        t = (MapReduceEntriesToLongTask<K,V>)c,
+                        s = t.rights;
+                    while (s != null) {
+                        t.result = reducer.applyAsLong(t.result, s.result);
+                        s = t.rights = s.nextRight;
+                    }
+                }
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class MapReduceMappingsToLongTask<K,V>
+        extends BulkTask<K,V,Long> {
+        final ToLongBiFunction<? super K, ? super V> transformer;
+        final LongBinaryOperator reducer;
+        final long basis;
+        long result;
+        MapReduceMappingsToLongTask<K,V> rights, nextRight;
+        MapReduceMappingsToLongTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             MapReduceMappingsToLongTask<K,V> nextRight,
+             ToLongBiFunction<? super K, ? super V> transformer,
+             long basis,
+             LongBinaryOperator reducer) {
+            super(p, b, i, f, t); this.nextRight = nextRight;
+            this.transformer = transformer;
+            this.basis = basis; this.reducer = reducer;
+        }
+        public final Long getRawResult() { return result; }
+        public final void compute() {
+            final ToLongBiFunction<? super K, ? super V> transformer;
+            final LongBinaryOperator reducer;
+            if ((transformer = this.transformer) != null &&
+                (reducer = this.reducer) != null) {
+                long r = this.basis;
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    (rights = new MapReduceMappingsToLongTask<K,V>
+                     (this, batch >>>= 1, baseLimit = h, f, tab,
+                      rights, transformer, r, reducer)).fork();
+                }
+                for (Node<K,V> p; (p = advance()) != null; )
+                    r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
+                result = r;
+                CountedCompleter<?> c;
+                for (c = firstComplete(); c != null; c = c.nextComplete()) {
+                    @SuppressWarnings("unchecked")
+                    MapReduceMappingsToLongTask<K,V>
+                        t = (MapReduceMappingsToLongTask<K,V>)c,
+                        s = t.rights;
+                    while (s != null) {
+                        t.result = reducer.applyAsLong(t.result, s.result);
+                        s = t.rights = s.nextRight;
+                    }
+                }
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class MapReduceKeysToIntTask<K,V>
+        extends BulkTask<K,V,Integer> {
+        final ToIntFunction<? super K> transformer;
+        final IntBinaryOperator reducer;
+        final int basis;
+        int result;
+        MapReduceKeysToIntTask<K,V> rights, nextRight;
+        MapReduceKeysToIntTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             MapReduceKeysToIntTask<K,V> nextRight,
+             ToIntFunction<? super K> transformer,
+             int basis,
+             IntBinaryOperator reducer) {
+            super(p, b, i, f, t); this.nextRight = nextRight;
+            this.transformer = transformer;
+            this.basis = basis; this.reducer = reducer;
+        }
+        public final Integer getRawResult() { return result; }
+        public final void compute() {
+            final ToIntFunction<? super K> transformer;
+            final IntBinaryOperator reducer;
+            if ((transformer = this.transformer) != null &&
+                (reducer = this.reducer) != null) {
+                int r = this.basis;
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    (rights = new MapReduceKeysToIntTask<K,V>
+                     (this, batch >>>= 1, baseLimit = h, f, tab,
+                      rights, transformer, r, reducer)).fork();
+                }
+                for (Node<K,V> p; (p = advance()) != null; )
+                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
+                result = r;
+                CountedCompleter<?> c;
+                for (c = firstComplete(); c != null; c = c.nextComplete()) {
+                    @SuppressWarnings("unchecked")
+                    MapReduceKeysToIntTask<K,V>
+                        t = (MapReduceKeysToIntTask<K,V>)c,
+                        s = t.rights;
+                    while (s != null) {
+                        t.result = reducer.applyAsInt(t.result, s.result);
+                        s = t.rights = s.nextRight;
+                    }
+                }
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class MapReduceValuesToIntTask<K,V>
+        extends BulkTask<K,V,Integer> {
+        final ToIntFunction<? super V> transformer;
+        final IntBinaryOperator reducer;
+        final int basis;
+        int result;
+        MapReduceValuesToIntTask<K,V> rights, nextRight;
+        MapReduceValuesToIntTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             MapReduceValuesToIntTask<K,V> nextRight,
+             ToIntFunction<? super V> transformer,
+             int basis,
+             IntBinaryOperator reducer) {
+            super(p, b, i, f, t); this.nextRight = nextRight;
+            this.transformer = transformer;
+            this.basis = basis; this.reducer = reducer;
+        }
+        public final Integer getRawResult() { return result; }
+        public final void compute() {
+            final ToIntFunction<? super V> transformer;
+            final IntBinaryOperator reducer;
+            if ((transformer = this.transformer) != null &&
+                (reducer = this.reducer) != null) {
+                int r = this.basis;
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    (rights = new MapReduceValuesToIntTask<K,V>
+                     (this, batch >>>= 1, baseLimit = h, f, tab,
+                      rights, transformer, r, reducer)).fork();
+                }
+                for (Node<K,V> p; (p = advance()) != null; )
+                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
+                result = r;
+                CountedCompleter<?> c;
+                for (c = firstComplete(); c != null; c = c.nextComplete()) {
+                    @SuppressWarnings("unchecked")
+                    MapReduceValuesToIntTask<K,V>
+                        t = (MapReduceValuesToIntTask<K,V>)c,
+                        s = t.rights;
+                    while (s != null) {
+                        t.result = reducer.applyAsInt(t.result, s.result);
+                        s = t.rights = s.nextRight;
+                    }
+                }
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class MapReduceEntriesToIntTask<K,V>
+        extends BulkTask<K,V,Integer> {
+        final ToIntFunction<Map.Entry<K,V>> transformer;
+        final IntBinaryOperator reducer;
+        final int basis;
+        int result;
+        MapReduceEntriesToIntTask<K,V> rights, nextRight;
+        MapReduceEntriesToIntTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             MapReduceEntriesToIntTask<K,V> nextRight,
+             ToIntFunction<Map.Entry<K,V>> transformer,
+             int basis,
+             IntBinaryOperator reducer) {
+            super(p, b, i, f, t); this.nextRight = nextRight;
+            this.transformer = transformer;
+            this.basis = basis; this.reducer = reducer;
+        }
+        public final Integer getRawResult() { return result; }
+        public final void compute() {
+            final ToIntFunction<Map.Entry<K,V>> transformer;
+            final IntBinaryOperator reducer;
+            if ((transformer = this.transformer) != null &&
+                (reducer = this.reducer) != null) {
+                int r = this.basis;
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    (rights = new MapReduceEntriesToIntTask<K,V>
+                     (this, batch >>>= 1, baseLimit = h, f, tab,
+                      rights, transformer, r, reducer)).fork();
+                }
+                for (Node<K,V> p; (p = advance()) != null; )
+                    r = reducer.applyAsInt(r, transformer.applyAsInt(p));
+                result = r;
+                CountedCompleter<?> c;
+                for (c = firstComplete(); c != null; c = c.nextComplete()) {
+                    @SuppressWarnings("unchecked")
+                    MapReduceEntriesToIntTask<K,V>
+                        t = (MapReduceEntriesToIntTask<K,V>)c,
+                        s = t.rights;
+                    while (s != null) {
+                        t.result = reducer.applyAsInt(t.result, s.result);
+                        s = t.rights = s.nextRight;
+                    }
+                }
+            }
+        }
+    }
+
+    @SuppressWarnings("serial")
+    static final class MapReduceMappingsToIntTask<K,V>
+        extends BulkTask<K,V,Integer> {
+        final ToIntBiFunction<? super K, ? super V> transformer;
+        final IntBinaryOperator reducer;
+        final int basis;
+        int result;
+        MapReduceMappingsToIntTask<K,V> rights, nextRight;
+        MapReduceMappingsToIntTask
+            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
+             MapReduceMappingsToIntTask<K,V> nextRight,
+             ToIntBiFunction<? super K, ? super V> transformer,
+             int basis,
+             IntBinaryOperator reducer) {
+            super(p, b, i, f, t); this.nextRight = nextRight;
+            this.transformer = transformer;
+            this.basis = basis; this.reducer = reducer;
+        }
+        public final Integer getRawResult() { return result; }
+        public final void compute() {
+            final ToIntBiFunction<? super K, ? super V> transformer;
+            final IntBinaryOperator reducer;
+            if ((transformer = this.transformer) != null &&
+                (reducer = this.reducer) != null) {
+                int r = this.basis;
+                for (int i = baseIndex, f, h; batch > 0 &&
+                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
+                    addToPendingCount(1);
+                    (rights = new MapReduceMappingsToIntTask<K,V>
+                     (this, batch >>>= 1, baseLimit = h, f, tab,
+                      rights, transformer, r, reducer)).fork();
+                }
+                for (Node<K,V> p; (p = advance()) != null; )
+                    r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
+                result = r;
+                CountedCompleter<?> c;
+                for (c = firstComplete(); c != null; c = c.nextComplete()) {
+                    @SuppressWarnings("unchecked")
+                    MapReduceMappingsToIntTask<K,V>
+                        t = (MapReduceMappingsToIntTask<K,V>)c,
+                        s = t.rights;
+                    while (s != null) {
+                        t.result = reducer.applyAsInt(t.result, s.result);
+                        s = t.rights = s.nextRight;
+                    }
+                }
+            }
+        }
+    }
+
+    // Unsafe mechanics
+    private static final Unsafe U = Unsafe.getUnsafe();
+    private static final long SIZECTL;
+    private static final long TRANSFERINDEX;
+    private static final long BASECOUNT;
+    private static final long CELLSBUSY;
+    private static final long CELLVALUE;
+    private static final int ABASE;
+    private static final int ASHIFT;
+
+    static {
+        SIZECTL = U.objectFieldOffset
+            (ConcurrentHashMap.class, "sizeCtl");
+        TRANSFERINDEX = U.objectFieldOffset
+            (ConcurrentHashMap.class, "transferIndex");
+        BASECOUNT = U.objectFieldOffset
+            (ConcurrentHashMap.class, "baseCount");
+        CELLSBUSY = U.objectFieldOffset
+            (ConcurrentHashMap.class, "cellsBusy");
+
+        CELLVALUE = U.objectFieldOffset
+            (CounterCell.class, "value");
+
+        ABASE = U.arrayBaseOffset(Node[].class);
+        int scale = U.arrayIndexScale(Node[].class);
+        if ((scale & (scale - 1)) != 0)
+            throw new Error("array index scale not a power of two");
+        ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
+
+        // Reduce the risk of rare disastrous classloading in first call to
+        // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
+        Class<?> ensureLoaded = LockSupport.class;
+    }
+}