src/java.base/share/classes/java/util/Random.java
changeset 47216 71c04702a3d5
parent 43003 b1c1a42602d6
child 49954 deefa2120bc4
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/java.base/share/classes/java/util/Random.java	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,1227 @@
+/*
+ * Copyright (c) 1995, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.util;
+import java.io.*;
+import java.util.concurrent.atomic.AtomicLong;
+import java.util.function.DoubleConsumer;
+import java.util.function.IntConsumer;
+import java.util.function.LongConsumer;
+import java.util.stream.DoubleStream;
+import java.util.stream.IntStream;
+import java.util.stream.LongStream;
+import java.util.stream.StreamSupport;
+
+import jdk.internal.misc.Unsafe;
+
+/**
+ * An instance of this class is used to generate a stream of
+ * pseudorandom numbers. The class uses a 48-bit seed, which is
+ * modified using a linear congruential formula. (See Donald Knuth,
+ * <i>The Art of Computer Programming, Volume 2</i>, Section 3.2.1.)
+ * <p>
+ * If two instances of {@code Random} are created with the same
+ * seed, and the same sequence of method calls is made for each, they
+ * will generate and return identical sequences of numbers. In order to
+ * guarantee this property, particular algorithms are specified for the
+ * class {@code Random}. Java implementations must use all the algorithms
+ * shown here for the class {@code Random}, for the sake of absolute
+ * portability of Java code. However, subclasses of class {@code Random}
+ * are permitted to use other algorithms, so long as they adhere to the
+ * general contracts for all the methods.
+ * <p>
+ * The algorithms implemented by class {@code Random} use a
+ * {@code protected} utility method that on each invocation can supply
+ * up to 32 pseudorandomly generated bits.
+ * <p>
+ * Many applications will find the method {@link Math#random} simpler to use.
+ *
+ * <p>Instances of {@code java.util.Random} are threadsafe.
+ * However, the concurrent use of the same {@code java.util.Random}
+ * instance across threads may encounter contention and consequent
+ * poor performance. Consider instead using
+ * {@link java.util.concurrent.ThreadLocalRandom} in multithreaded
+ * designs.
+ *
+ * <p>Instances of {@code java.util.Random} are not cryptographically
+ * secure.  Consider instead using {@link java.security.SecureRandom} to
+ * get a cryptographically secure pseudo-random number generator for use
+ * by security-sensitive applications.
+ *
+ * @author  Frank Yellin
+ * @since   1.0
+ */
+public
+class Random implements java.io.Serializable {
+    /** use serialVersionUID from JDK 1.1 for interoperability */
+    static final long serialVersionUID = 3905348978240129619L;
+
+    /**
+     * The internal state associated with this pseudorandom number generator.
+     * (The specs for the methods in this class describe the ongoing
+     * computation of this value.)
+     */
+    private final AtomicLong seed;
+
+    private static final long multiplier = 0x5DEECE66DL;
+    private static final long addend = 0xBL;
+    private static final long mask = (1L << 48) - 1;
+
+    private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53)
+
+    // IllegalArgumentException messages
+    static final String BadBound = "bound must be positive";
+    static final String BadRange = "bound must be greater than origin";
+    static final String BadSize  = "size must be non-negative";
+
+    /**
+     * Creates a new random number generator. This constructor sets
+     * the seed of the random number generator to a value very likely
+     * to be distinct from any other invocation of this constructor.
+     */
+    public Random() {
+        this(seedUniquifier() ^ System.nanoTime());
+    }
+
+    private static long seedUniquifier() {
+        // L'Ecuyer, "Tables of Linear Congruential Generators of
+        // Different Sizes and Good Lattice Structure", 1999
+        for (;;) {
+            long current = seedUniquifier.get();
+            long next = current * 181783497276652981L;
+            if (seedUniquifier.compareAndSet(current, next))
+                return next;
+        }
+    }
+
+    private static final AtomicLong seedUniquifier
+        = new AtomicLong(8682522807148012L);
+
+    /**
+     * Creates a new random number generator using a single {@code long} seed.
+     * The seed is the initial value of the internal state of the pseudorandom
+     * number generator which is maintained by method {@link #next}.
+     *
+     * <p>The invocation {@code new Random(seed)} is equivalent to:
+     *  <pre> {@code
+     * Random rnd = new Random();
+     * rnd.setSeed(seed);}</pre>
+     *
+     * @param seed the initial seed
+     * @see   #setSeed(long)
+     */
+    public Random(long seed) {
+        if (getClass() == Random.class)
+            this.seed = new AtomicLong(initialScramble(seed));
+        else {
+            // subclass might have overriden setSeed
+            this.seed = new AtomicLong();
+            setSeed(seed);
+        }
+    }
+
+    private static long initialScramble(long seed) {
+        return (seed ^ multiplier) & mask;
+    }
+
+    /**
+     * Sets the seed of this random number generator using a single
+     * {@code long} seed. The general contract of {@code setSeed} is
+     * that it alters the state of this random number generator object
+     * so as to be in exactly the same state as if it had just been
+     * created with the argument {@code seed} as a seed. The method
+     * {@code setSeed} is implemented by class {@code Random} by
+     * atomically updating the seed to
+     *  <pre>{@code (seed ^ 0x5DEECE66DL) & ((1L << 48) - 1)}</pre>
+     * and clearing the {@code haveNextNextGaussian} flag used by {@link
+     * #nextGaussian}.
+     *
+     * <p>The implementation of {@code setSeed} by class {@code Random}
+     * happens to use only 48 bits of the given seed. In general, however,
+     * an overriding method may use all 64 bits of the {@code long}
+     * argument as a seed value.
+     *
+     * @param seed the initial seed
+     */
+    public synchronized void setSeed(long seed) {
+        this.seed.set(initialScramble(seed));
+        haveNextNextGaussian = false;
+    }
+
+    /**
+     * Generates the next pseudorandom number. Subclasses should
+     * override this, as this is used by all other methods.
+     *
+     * <p>The general contract of {@code next} is that it returns an
+     * {@code int} value and if the argument {@code bits} is between
+     * {@code 1} and {@code 32} (inclusive), then that many low-order
+     * bits of the returned value will be (approximately) independently
+     * chosen bit values, each of which is (approximately) equally
+     * likely to be {@code 0} or {@code 1}. The method {@code next} is
+     * implemented by class {@code Random} by atomically updating the seed to
+     *  <pre>{@code (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1)}</pre>
+     * and returning
+     *  <pre>{@code (int)(seed >>> (48 - bits))}.</pre>
+     *
+     * This is a linear congruential pseudorandom number generator, as
+     * defined by D. H. Lehmer and described by Donald E. Knuth in
+     * <i>The Art of Computer Programming,</i> Volume 2:
+     * <i>Seminumerical Algorithms</i>, section 3.2.1.
+     *
+     * @param  bits random bits
+     * @return the next pseudorandom value from this random number
+     *         generator's sequence
+     * @since  1.1
+     */
+    protected int next(int bits) {
+        long oldseed, nextseed;
+        AtomicLong seed = this.seed;
+        do {
+            oldseed = seed.get();
+            nextseed = (oldseed * multiplier + addend) & mask;
+        } while (!seed.compareAndSet(oldseed, nextseed));
+        return (int)(nextseed >>> (48 - bits));
+    }
+
+    /**
+     * Generates random bytes and places them into a user-supplied
+     * byte array.  The number of random bytes produced is equal to
+     * the length of the byte array.
+     *
+     * <p>The method {@code nextBytes} is implemented by class {@code Random}
+     * as if by:
+     *  <pre> {@code
+     * public void nextBytes(byte[] bytes) {
+     *   for (int i = 0; i < bytes.length; )
+     *     for (int rnd = nextInt(), n = Math.min(bytes.length - i, 4);
+     *          n-- > 0; rnd >>= 8)
+     *       bytes[i++] = (byte)rnd;
+     * }}</pre>
+     *
+     * @param  bytes the byte array to fill with random bytes
+     * @throws NullPointerException if the byte array is null
+     * @since  1.1
+     */
+    public void nextBytes(byte[] bytes) {
+        for (int i = 0, len = bytes.length; i < len; )
+            for (int rnd = nextInt(),
+                     n = Math.min(len - i, Integer.SIZE/Byte.SIZE);
+                 n-- > 0; rnd >>= Byte.SIZE)
+                bytes[i++] = (byte)rnd;
+    }
+
+    /**
+     * The form of nextLong used by LongStream Spliterators.  If
+     * origin is greater than bound, acts as unbounded form of
+     * nextLong, else as bounded form.
+     *
+     * @param origin the least value, unless greater than bound
+     * @param bound the upper bound (exclusive), must not equal origin
+     * @return a pseudorandom value
+     */
+    final long internalNextLong(long origin, long bound) {
+        long r = nextLong();
+        if (origin < bound) {
+            long n = bound - origin, m = n - 1;
+            if ((n & m) == 0L)  // power of two
+                r = (r & m) + origin;
+            else if (n > 0L) {  // reject over-represented candidates
+                for (long u = r >>> 1;            // ensure nonnegative
+                     u + m - (r = u % n) < 0L;    // rejection check
+                     u = nextLong() >>> 1) // retry
+                    ;
+                r += origin;
+            }
+            else {              // range not representable as long
+                while (r < origin || r >= bound)
+                    r = nextLong();
+            }
+        }
+        return r;
+    }
+
+    /**
+     * The form of nextInt used by IntStream Spliterators.
+     * For the unbounded case: uses nextInt().
+     * For the bounded case with representable range: uses nextInt(int bound)
+     * For the bounded case with unrepresentable range: uses nextInt()
+     *
+     * @param origin the least value, unless greater than bound
+     * @param bound the upper bound (exclusive), must not equal origin
+     * @return a pseudorandom value
+     */
+    final int internalNextInt(int origin, int bound) {
+        if (origin < bound) {
+            int n = bound - origin;
+            if (n > 0) {
+                return nextInt(n) + origin;
+            }
+            else {  // range not representable as int
+                int r;
+                do {
+                    r = nextInt();
+                } while (r < origin || r >= bound);
+                return r;
+            }
+        }
+        else {
+            return nextInt();
+        }
+    }
+
+    /**
+     * The form of nextDouble used by DoubleStream Spliterators.
+     *
+     * @param origin the least value, unless greater than bound
+     * @param bound the upper bound (exclusive), must not equal origin
+     * @return a pseudorandom value
+     */
+    final double internalNextDouble(double origin, double bound) {
+        double r = nextDouble();
+        if (origin < bound) {
+            r = r * (bound - origin) + origin;
+            if (r >= bound) // correct for rounding
+                r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
+        }
+        return r;
+    }
+
+    /**
+     * Returns the next pseudorandom, uniformly distributed {@code int}
+     * value from this random number generator's sequence. The general
+     * contract of {@code nextInt} is that one {@code int} value is
+     * pseudorandomly generated and returned. All 2<sup>32</sup> possible
+     * {@code int} values are produced with (approximately) equal probability.
+     *
+     * <p>The method {@code nextInt} is implemented by class {@code Random}
+     * as if by:
+     *  <pre> {@code
+     * public int nextInt() {
+     *   return next(32);
+     * }}</pre>
+     *
+     * @return the next pseudorandom, uniformly distributed {@code int}
+     *         value from this random number generator's sequence
+     */
+    public int nextInt() {
+        return next(32);
+    }
+
+    /**
+     * Returns a pseudorandom, uniformly distributed {@code int} value
+     * between 0 (inclusive) and the specified value (exclusive), drawn from
+     * this random number generator's sequence.  The general contract of
+     * {@code nextInt} is that one {@code int} value in the specified range
+     * is pseudorandomly generated and returned.  All {@code bound} possible
+     * {@code int} values are produced with (approximately) equal
+     * probability.  The method {@code nextInt(int bound)} is implemented by
+     * class {@code Random} as if by:
+     *  <pre> {@code
+     * public int nextInt(int bound) {
+     *   if (bound <= 0)
+     *     throw new IllegalArgumentException("bound must be positive");
+     *
+     *   if ((bound & -bound) == bound)  // i.e., bound is a power of 2
+     *     return (int)((bound * (long)next(31)) >> 31);
+     *
+     *   int bits, val;
+     *   do {
+     *       bits = next(31);
+     *       val = bits % bound;
+     *   } while (bits - val + (bound-1) < 0);
+     *   return val;
+     * }}</pre>
+     *
+     * <p>The hedge "approximately" is used in the foregoing description only
+     * because the next method is only approximately an unbiased source of
+     * independently chosen bits.  If it were a perfect source of randomly
+     * chosen bits, then the algorithm shown would choose {@code int}
+     * values from the stated range with perfect uniformity.
+     * <p>
+     * The algorithm is slightly tricky.  It rejects values that would result
+     * in an uneven distribution (due to the fact that 2^31 is not divisible
+     * by n). The probability of a value being rejected depends on n.  The
+     * worst case is n=2^30+1, for which the probability of a reject is 1/2,
+     * and the expected number of iterations before the loop terminates is 2.
+     * <p>
+     * The algorithm treats the case where n is a power of two specially: it
+     * returns the correct number of high-order bits from the underlying
+     * pseudo-random number generator.  In the absence of special treatment,
+     * the correct number of <i>low-order</i> bits would be returned.  Linear
+     * congruential pseudo-random number generators such as the one
+     * implemented by this class are known to have short periods in the
+     * sequence of values of their low-order bits.  Thus, this special case
+     * greatly increases the length of the sequence of values returned by
+     * successive calls to this method if n is a small power of two.
+     *
+     * @param bound the upper bound (exclusive).  Must be positive.
+     * @return the next pseudorandom, uniformly distributed {@code int}
+     *         value between zero (inclusive) and {@code bound} (exclusive)
+     *         from this random number generator's sequence
+     * @throws IllegalArgumentException if bound is not positive
+     * @since 1.2
+     */
+    public int nextInt(int bound) {
+        if (bound <= 0)
+            throw new IllegalArgumentException(BadBound);
+
+        int r = next(31);
+        int m = bound - 1;
+        if ((bound & m) == 0)  // i.e., bound is a power of 2
+            r = (int)((bound * (long)r) >> 31);
+        else {
+            for (int u = r;
+                 u - (r = u % bound) + m < 0;
+                 u = next(31))
+                ;
+        }
+        return r;
+    }
+
+    /**
+     * Returns the next pseudorandom, uniformly distributed {@code long}
+     * value from this random number generator's sequence. The general
+     * contract of {@code nextLong} is that one {@code long} value is
+     * pseudorandomly generated and returned.
+     *
+     * <p>The method {@code nextLong} is implemented by class {@code Random}
+     * as if by:
+     *  <pre> {@code
+     * public long nextLong() {
+     *   return ((long)next(32) << 32) + next(32);
+     * }}</pre>
+     *
+     * Because class {@code Random} uses a seed with only 48 bits,
+     * this algorithm will not return all possible {@code long} values.
+     *
+     * @return the next pseudorandom, uniformly distributed {@code long}
+     *         value from this random number generator's sequence
+     */
+    public long nextLong() {
+        // it's okay that the bottom word remains signed.
+        return ((long)(next(32)) << 32) + next(32);
+    }
+
+    /**
+     * Returns the next pseudorandom, uniformly distributed
+     * {@code boolean} value from this random number generator's
+     * sequence. The general contract of {@code nextBoolean} is that one
+     * {@code boolean} value is pseudorandomly generated and returned.  The
+     * values {@code true} and {@code false} are produced with
+     * (approximately) equal probability.
+     *
+     * <p>The method {@code nextBoolean} is implemented by class {@code Random}
+     * as if by:
+     *  <pre> {@code
+     * public boolean nextBoolean() {
+     *   return next(1) != 0;
+     * }}</pre>
+     *
+     * @return the next pseudorandom, uniformly distributed
+     *         {@code boolean} value from this random number generator's
+     *         sequence
+     * @since 1.2
+     */
+    public boolean nextBoolean() {
+        return next(1) != 0;
+    }
+
+    /**
+     * Returns the next pseudorandom, uniformly distributed {@code float}
+     * value between {@code 0.0} and {@code 1.0} from this random
+     * number generator's sequence.
+     *
+     * <p>The general contract of {@code nextFloat} is that one
+     * {@code float} value, chosen (approximately) uniformly from the
+     * range {@code 0.0f} (inclusive) to {@code 1.0f} (exclusive), is
+     * pseudorandomly generated and returned. All 2<sup>24</sup> possible
+     * {@code float} values of the form <i>m&nbsp;x&nbsp;</i>2<sup>-24</sup>,
+     * where <i>m</i> is a positive integer less than 2<sup>24</sup>, are
+     * produced with (approximately) equal probability.
+     *
+     * <p>The method {@code nextFloat} is implemented by class {@code Random}
+     * as if by:
+     *  <pre> {@code
+     * public float nextFloat() {
+     *   return next(24) / ((float)(1 << 24));
+     * }}</pre>
+     *
+     * <p>The hedge "approximately" is used in the foregoing description only
+     * because the next method is only approximately an unbiased source of
+     * independently chosen bits. If it were a perfect source of randomly
+     * chosen bits, then the algorithm shown would choose {@code float}
+     * values from the stated range with perfect uniformity.<p>
+     * [In early versions of Java, the result was incorrectly calculated as:
+     *  <pre> {@code
+     *   return next(30) / ((float)(1 << 30));}</pre>
+     * This might seem to be equivalent, if not better, but in fact it
+     * introduced a slight nonuniformity because of the bias in the rounding
+     * of floating-point numbers: it was slightly more likely that the
+     * low-order bit of the significand would be 0 than that it would be 1.]
+     *
+     * @return the next pseudorandom, uniformly distributed {@code float}
+     *         value between {@code 0.0} and {@code 1.0} from this
+     *         random number generator's sequence
+     */
+    public float nextFloat() {
+        return next(24) / ((float)(1 << 24));
+    }
+
+    /**
+     * Returns the next pseudorandom, uniformly distributed
+     * {@code double} value between {@code 0.0} and
+     * {@code 1.0} from this random number generator's sequence.
+     *
+     * <p>The general contract of {@code nextDouble} is that one
+     * {@code double} value, chosen (approximately) uniformly from the
+     * range {@code 0.0d} (inclusive) to {@code 1.0d} (exclusive), is
+     * pseudorandomly generated and returned.
+     *
+     * <p>The method {@code nextDouble} is implemented by class {@code Random}
+     * as if by:
+     *  <pre> {@code
+     * public double nextDouble() {
+     *   return (((long)next(26) << 27) + next(27))
+     *     / (double)(1L << 53);
+     * }}</pre>
+     *
+     * <p>The hedge "approximately" is used in the foregoing description only
+     * because the {@code next} method is only approximately an unbiased
+     * source of independently chosen bits. If it were a perfect source of
+     * randomly chosen bits, then the algorithm shown would choose
+     * {@code double} values from the stated range with perfect uniformity.
+     * <p>[In early versions of Java, the result was incorrectly calculated as:
+     *  <pre> {@code
+     *   return (((long)next(27) << 27) + next(27))
+     *     / (double)(1L << 54);}</pre>
+     * This might seem to be equivalent, if not better, but in fact it
+     * introduced a large nonuniformity because of the bias in the rounding
+     * of floating-point numbers: it was three times as likely that the
+     * low-order bit of the significand would be 0 than that it would be 1!
+     * This nonuniformity probably doesn't matter much in practice, but we
+     * strive for perfection.]
+     *
+     * @return the next pseudorandom, uniformly distributed {@code double}
+     *         value between {@code 0.0} and {@code 1.0} from this
+     *         random number generator's sequence
+     * @see Math#random
+     */
+    public double nextDouble() {
+        return (((long)(next(26)) << 27) + next(27)) * DOUBLE_UNIT;
+    }
+
+    private double nextNextGaussian;
+    private boolean haveNextNextGaussian = false;
+
+    /**
+     * Returns the next pseudorandom, Gaussian ("normally") distributed
+     * {@code double} value with mean {@code 0.0} and standard
+     * deviation {@code 1.0} from this random number generator's sequence.
+     * <p>
+     * The general contract of {@code nextGaussian} is that one
+     * {@code double} value, chosen from (approximately) the usual
+     * normal distribution with mean {@code 0.0} and standard deviation
+     * {@code 1.0}, is pseudorandomly generated and returned.
+     *
+     * <p>The method {@code nextGaussian} is implemented by class
+     * {@code Random} as if by a threadsafe version of the following:
+     *  <pre> {@code
+     * private double nextNextGaussian;
+     * private boolean haveNextNextGaussian = false;
+     *
+     * public double nextGaussian() {
+     *   if (haveNextNextGaussian) {
+     *     haveNextNextGaussian = false;
+     *     return nextNextGaussian;
+     *   } else {
+     *     double v1, v2, s;
+     *     do {
+     *       v1 = 2 * nextDouble() - 1;   // between -1.0 and 1.0
+     *       v2 = 2 * nextDouble() - 1;   // between -1.0 and 1.0
+     *       s = v1 * v1 + v2 * v2;
+     *     } while (s >= 1 || s == 0);
+     *     double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
+     *     nextNextGaussian = v2 * multiplier;
+     *     haveNextNextGaussian = true;
+     *     return v1 * multiplier;
+     *   }
+     * }}</pre>
+     * This uses the <i>polar method</i> of G. E. P. Box, M. E. Muller, and
+     * G. Marsaglia, as described by Donald E. Knuth in <i>The Art of
+     * Computer Programming</i>, Volume 2: <i>Seminumerical Algorithms</i>,
+     * section 3.4.1, subsection C, algorithm P. Note that it generates two
+     * independent values at the cost of only one call to {@code StrictMath.log}
+     * and one call to {@code StrictMath.sqrt}.
+     *
+     * @return the next pseudorandom, Gaussian ("normally") distributed
+     *         {@code double} value with mean {@code 0.0} and
+     *         standard deviation {@code 1.0} from this random number
+     *         generator's sequence
+     */
+    public synchronized double nextGaussian() {
+        // See Knuth, ACP, Section 3.4.1 Algorithm C.
+        if (haveNextNextGaussian) {
+            haveNextNextGaussian = false;
+            return nextNextGaussian;
+        } else {
+            double v1, v2, s;
+            do {
+                v1 = 2 * nextDouble() - 1; // between -1 and 1
+                v2 = 2 * nextDouble() - 1; // between -1 and 1
+                s = v1 * v1 + v2 * v2;
+            } while (s >= 1 || s == 0);
+            double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
+            nextNextGaussian = v2 * multiplier;
+            haveNextNextGaussian = true;
+            return v1 * multiplier;
+        }
+    }
+
+    // stream methods, coded in a way intended to better isolate for
+    // maintenance purposes the small differences across forms.
+
+    /**
+     * Returns a stream producing the given {@code streamSize} number of
+     * pseudorandom {@code int} values.
+     *
+     * <p>A pseudorandom {@code int} value is generated as if it's the result of
+     * calling the method {@link #nextInt()}.
+     *
+     * @param streamSize the number of values to generate
+     * @return a stream of pseudorandom {@code int} values
+     * @throws IllegalArgumentException if {@code streamSize} is
+     *         less than zero
+     * @since 1.8
+     */
+    public IntStream ints(long streamSize) {
+        if (streamSize < 0L)
+            throw new IllegalArgumentException(BadSize);
+        return StreamSupport.intStream
+                (new RandomIntsSpliterator
+                         (this, 0L, streamSize, Integer.MAX_VALUE, 0),
+                 false);
+    }
+
+    /**
+     * Returns an effectively unlimited stream of pseudorandom {@code int}
+     * values.
+     *
+     * <p>A pseudorandom {@code int} value is generated as if it's the result of
+     * calling the method {@link #nextInt()}.
+     *
+     * @implNote This method is implemented to be equivalent to {@code
+     * ints(Long.MAX_VALUE)}.
+     *
+     * @return a stream of pseudorandom {@code int} values
+     * @since 1.8
+     */
+    public IntStream ints() {
+        return StreamSupport.intStream
+                (new RandomIntsSpliterator
+                         (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
+                 false);
+    }
+
+    /**
+     * Returns a stream producing the given {@code streamSize} number
+     * of pseudorandom {@code int} values, each conforming to the given
+     * origin (inclusive) and bound (exclusive).
+     *
+     * <p>A pseudorandom {@code int} value is generated as if it's the result of
+     * calling the following method with the origin and bound:
+     * <pre> {@code
+     * int nextInt(int origin, int bound) {
+     *   int n = bound - origin;
+     *   if (n > 0) {
+     *     return nextInt(n) + origin;
+     *   }
+     *   else {  // range not representable as int
+     *     int r;
+     *     do {
+     *       r = nextInt();
+     *     } while (r < origin || r >= bound);
+     *     return r;
+     *   }
+     * }}</pre>
+     *
+     * @param streamSize the number of values to generate
+     * @param randomNumberOrigin the origin (inclusive) of each random value
+     * @param randomNumberBound the bound (exclusive) of each random value
+     * @return a stream of pseudorandom {@code int} values,
+     *         each with the given origin (inclusive) and bound (exclusive)
+     * @throws IllegalArgumentException if {@code streamSize} is
+     *         less than zero, or {@code randomNumberOrigin}
+     *         is greater than or equal to {@code randomNumberBound}
+     * @since 1.8
+     */
+    public IntStream ints(long streamSize, int randomNumberOrigin,
+                          int randomNumberBound) {
+        if (streamSize < 0L)
+            throw new IllegalArgumentException(BadSize);
+        if (randomNumberOrigin >= randomNumberBound)
+            throw new IllegalArgumentException(BadRange);
+        return StreamSupport.intStream
+                (new RandomIntsSpliterator
+                         (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
+                 false);
+    }
+
+    /**
+     * Returns an effectively unlimited stream of pseudorandom {@code
+     * int} values, each conforming to the given origin (inclusive) and bound
+     * (exclusive).
+     *
+     * <p>A pseudorandom {@code int} value is generated as if it's the result of
+     * calling the following method with the origin and bound:
+     * <pre> {@code
+     * int nextInt(int origin, int bound) {
+     *   int n = bound - origin;
+     *   if (n > 0) {
+     *     return nextInt(n) + origin;
+     *   }
+     *   else {  // range not representable as int
+     *     int r;
+     *     do {
+     *       r = nextInt();
+     *     } while (r < origin || r >= bound);
+     *     return r;
+     *   }
+     * }}</pre>
+     *
+     * @implNote This method is implemented to be equivalent to {@code
+     * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
+     *
+     * @param randomNumberOrigin the origin (inclusive) of each random value
+     * @param randomNumberBound the bound (exclusive) of each random value
+     * @return a stream of pseudorandom {@code int} values,
+     *         each with the given origin (inclusive) and bound (exclusive)
+     * @throws IllegalArgumentException if {@code randomNumberOrigin}
+     *         is greater than or equal to {@code randomNumberBound}
+     * @since 1.8
+     */
+    public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
+        if (randomNumberOrigin >= randomNumberBound)
+            throw new IllegalArgumentException(BadRange);
+        return StreamSupport.intStream
+                (new RandomIntsSpliterator
+                         (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
+                 false);
+    }
+
+    /**
+     * Returns a stream producing the given {@code streamSize} number of
+     * pseudorandom {@code long} values.
+     *
+     * <p>A pseudorandom {@code long} value is generated as if it's the result
+     * of calling the method {@link #nextLong()}.
+     *
+     * @param streamSize the number of values to generate
+     * @return a stream of pseudorandom {@code long} values
+     * @throws IllegalArgumentException if {@code streamSize} is
+     *         less than zero
+     * @since 1.8
+     */
+    public LongStream longs(long streamSize) {
+        if (streamSize < 0L)
+            throw new IllegalArgumentException(BadSize);
+        return StreamSupport.longStream
+                (new RandomLongsSpliterator
+                         (this, 0L, streamSize, Long.MAX_VALUE, 0L),
+                 false);
+    }
+
+    /**
+     * Returns an effectively unlimited stream of pseudorandom {@code long}
+     * values.
+     *
+     * <p>A pseudorandom {@code long} value is generated as if it's the result
+     * of calling the method {@link #nextLong()}.
+     *
+     * @implNote This method is implemented to be equivalent to {@code
+     * longs(Long.MAX_VALUE)}.
+     *
+     * @return a stream of pseudorandom {@code long} values
+     * @since 1.8
+     */
+    public LongStream longs() {
+        return StreamSupport.longStream
+                (new RandomLongsSpliterator
+                         (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
+                 false);
+    }
+
+    /**
+     * Returns a stream producing the given {@code streamSize} number of
+     * pseudorandom {@code long}, each conforming to the given origin
+     * (inclusive) and bound (exclusive).
+     *
+     * <p>A pseudorandom {@code long} value is generated as if it's the result
+     * of calling the following method with the origin and bound:
+     * <pre> {@code
+     * long nextLong(long origin, long bound) {
+     *   long r = nextLong();
+     *   long n = bound - origin, m = n - 1;
+     *   if ((n & m) == 0L)  // power of two
+     *     r = (r & m) + origin;
+     *   else if (n > 0L) {  // reject over-represented candidates
+     *     for (long u = r >>> 1;            // ensure nonnegative
+     *          u + m - (r = u % n) < 0L;    // rejection check
+     *          u = nextLong() >>> 1) // retry
+     *         ;
+     *     r += origin;
+     *   }
+     *   else {              // range not representable as long
+     *     while (r < origin || r >= bound)
+     *       r = nextLong();
+     *   }
+     *   return r;
+     * }}</pre>
+     *
+     * @param streamSize the number of values to generate
+     * @param randomNumberOrigin the origin (inclusive) of each random value
+     * @param randomNumberBound the bound (exclusive) of each random value
+     * @return a stream of pseudorandom {@code long} values,
+     *         each with the given origin (inclusive) and bound (exclusive)
+     * @throws IllegalArgumentException if {@code streamSize} is
+     *         less than zero, or {@code randomNumberOrigin}
+     *         is greater than or equal to {@code randomNumberBound}
+     * @since 1.8
+     */
+    public LongStream longs(long streamSize, long randomNumberOrigin,
+                            long randomNumberBound) {
+        if (streamSize < 0L)
+            throw new IllegalArgumentException(BadSize);
+        if (randomNumberOrigin >= randomNumberBound)
+            throw new IllegalArgumentException(BadRange);
+        return StreamSupport.longStream
+                (new RandomLongsSpliterator
+                         (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
+                 false);
+    }
+
+    /**
+     * Returns an effectively unlimited stream of pseudorandom {@code
+     * long} values, each conforming to the given origin (inclusive) and bound
+     * (exclusive).
+     *
+     * <p>A pseudorandom {@code long} value is generated as if it's the result
+     * of calling the following method with the origin and bound:
+     * <pre> {@code
+     * long nextLong(long origin, long bound) {
+     *   long r = nextLong();
+     *   long n = bound - origin, m = n - 1;
+     *   if ((n & m) == 0L)  // power of two
+     *     r = (r & m) + origin;
+     *   else if (n > 0L) {  // reject over-represented candidates
+     *     for (long u = r >>> 1;            // ensure nonnegative
+     *          u + m - (r = u % n) < 0L;    // rejection check
+     *          u = nextLong() >>> 1) // retry
+     *         ;
+     *     r += origin;
+     *   }
+     *   else {              // range not representable as long
+     *     while (r < origin || r >= bound)
+     *       r = nextLong();
+     *   }
+     *   return r;
+     * }}</pre>
+     *
+     * @implNote This method is implemented to be equivalent to {@code
+     * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
+     *
+     * @param randomNumberOrigin the origin (inclusive) of each random value
+     * @param randomNumberBound the bound (exclusive) of each random value
+     * @return a stream of pseudorandom {@code long} values,
+     *         each with the given origin (inclusive) and bound (exclusive)
+     * @throws IllegalArgumentException if {@code randomNumberOrigin}
+     *         is greater than or equal to {@code randomNumberBound}
+     * @since 1.8
+     */
+    public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
+        if (randomNumberOrigin >= randomNumberBound)
+            throw new IllegalArgumentException(BadRange);
+        return StreamSupport.longStream
+                (new RandomLongsSpliterator
+                         (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
+                 false);
+    }
+
+    /**
+     * Returns a stream producing the given {@code streamSize} number of
+     * pseudorandom {@code double} values, each between zero
+     * (inclusive) and one (exclusive).
+     *
+     * <p>A pseudorandom {@code double} value is generated as if it's the result
+     * of calling the method {@link #nextDouble()}.
+     *
+     * @param streamSize the number of values to generate
+     * @return a stream of {@code double} values
+     * @throws IllegalArgumentException if {@code streamSize} is
+     *         less than zero
+     * @since 1.8
+     */
+    public DoubleStream doubles(long streamSize) {
+        if (streamSize < 0L)
+            throw new IllegalArgumentException(BadSize);
+        return StreamSupport.doubleStream
+                (new RandomDoublesSpliterator
+                         (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
+                 false);
+    }
+
+    /**
+     * Returns an effectively unlimited stream of pseudorandom {@code
+     * double} values, each between zero (inclusive) and one
+     * (exclusive).
+     *
+     * <p>A pseudorandom {@code double} value is generated as if it's the result
+     * of calling the method {@link #nextDouble()}.
+     *
+     * @implNote This method is implemented to be equivalent to {@code
+     * doubles(Long.MAX_VALUE)}.
+     *
+     * @return a stream of pseudorandom {@code double} values
+     * @since 1.8
+     */
+    public DoubleStream doubles() {
+        return StreamSupport.doubleStream
+                (new RandomDoublesSpliterator
+                         (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
+                 false);
+    }
+
+    /**
+     * Returns a stream producing the given {@code streamSize} number of
+     * pseudorandom {@code double} values, each conforming to the given origin
+     * (inclusive) and bound (exclusive).
+     *
+     * <p>A pseudorandom {@code double} value is generated as if it's the result
+     * of calling the following method with the origin and bound:
+     * <pre> {@code
+     * double nextDouble(double origin, double bound) {
+     *   double r = nextDouble();
+     *   r = r * (bound - origin) + origin;
+     *   if (r >= bound) // correct for rounding
+     *     r = Math.nextDown(bound);
+     *   return r;
+     * }}</pre>
+     *
+     * @param streamSize the number of values to generate
+     * @param randomNumberOrigin the origin (inclusive) of each random value
+     * @param randomNumberBound the bound (exclusive) of each random value
+     * @return a stream of pseudorandom {@code double} values,
+     *         each with the given origin (inclusive) and bound (exclusive)
+     * @throws IllegalArgumentException if {@code streamSize} is
+     *         less than zero
+     * @throws IllegalArgumentException if {@code randomNumberOrigin}
+     *         is greater than or equal to {@code randomNumberBound}
+     * @since 1.8
+     */
+    public DoubleStream doubles(long streamSize, double randomNumberOrigin,
+                                double randomNumberBound) {
+        if (streamSize < 0L)
+            throw new IllegalArgumentException(BadSize);
+        if (!(randomNumberOrigin < randomNumberBound))
+            throw new IllegalArgumentException(BadRange);
+        return StreamSupport.doubleStream
+                (new RandomDoublesSpliterator
+                         (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
+                 false);
+    }
+
+    /**
+     * Returns an effectively unlimited stream of pseudorandom {@code
+     * double} values, each conforming to the given origin (inclusive) and bound
+     * (exclusive).
+     *
+     * <p>A pseudorandom {@code double} value is generated as if it's the result
+     * of calling the following method with the origin and bound:
+     * <pre> {@code
+     * double nextDouble(double origin, double bound) {
+     *   double r = nextDouble();
+     *   r = r * (bound - origin) + origin;
+     *   if (r >= bound) // correct for rounding
+     *     r = Math.nextDown(bound);
+     *   return r;
+     * }}</pre>
+     *
+     * @implNote This method is implemented to be equivalent to {@code
+     * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
+     *
+     * @param randomNumberOrigin the origin (inclusive) of each random value
+     * @param randomNumberBound the bound (exclusive) of each random value
+     * @return a stream of pseudorandom {@code double} values,
+     *         each with the given origin (inclusive) and bound (exclusive)
+     * @throws IllegalArgumentException if {@code randomNumberOrigin}
+     *         is greater than or equal to {@code randomNumberBound}
+     * @since 1.8
+     */
+    public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
+        if (!(randomNumberOrigin < randomNumberBound))
+            throw new IllegalArgumentException(BadRange);
+        return StreamSupport.doubleStream
+                (new RandomDoublesSpliterator
+                         (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
+                 false);
+    }
+
+    /**
+     * Spliterator for int streams.  We multiplex the four int
+     * versions into one class by treating a bound less than origin as
+     * unbounded, and also by treating "infinite" as equivalent to
+     * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
+     * approach. The long and double versions of this class are
+     * identical except for types.
+     */
+    static final class RandomIntsSpliterator implements Spliterator.OfInt {
+        final Random rng;
+        long index;
+        final long fence;
+        final int origin;
+        final int bound;
+        RandomIntsSpliterator(Random rng, long index, long fence,
+                              int origin, int bound) {
+            this.rng = rng; this.index = index; this.fence = fence;
+            this.origin = origin; this.bound = bound;
+        }
+
+        public RandomIntsSpliterator trySplit() {
+            long i = index, m = (i + fence) >>> 1;
+            return (m <= i) ? null :
+                   new RandomIntsSpliterator(rng, i, index = m, origin, bound);
+        }
+
+        public long estimateSize() {
+            return fence - index;
+        }
+
+        public int characteristics() {
+            return (Spliterator.SIZED | Spliterator.SUBSIZED |
+                    Spliterator.NONNULL | Spliterator.IMMUTABLE);
+        }
+
+        public boolean tryAdvance(IntConsumer consumer) {
+            if (consumer == null) throw new NullPointerException();
+            long i = index, f = fence;
+            if (i < f) {
+                consumer.accept(rng.internalNextInt(origin, bound));
+                index = i + 1;
+                return true;
+            }
+            return false;
+        }
+
+        public void forEachRemaining(IntConsumer consumer) {
+            if (consumer == null) throw new NullPointerException();
+            long i = index, f = fence;
+            if (i < f) {
+                index = f;
+                Random r = rng;
+                int o = origin, b = bound;
+                do {
+                    consumer.accept(r.internalNextInt(o, b));
+                } while (++i < f);
+            }
+        }
+    }
+
+    /**
+     * Spliterator for long streams.
+     */
+    static final class RandomLongsSpliterator implements Spliterator.OfLong {
+        final Random rng;
+        long index;
+        final long fence;
+        final long origin;
+        final long bound;
+        RandomLongsSpliterator(Random rng, long index, long fence,
+                               long origin, long bound) {
+            this.rng = rng; this.index = index; this.fence = fence;
+            this.origin = origin; this.bound = bound;
+        }
+
+        public RandomLongsSpliterator trySplit() {
+            long i = index, m = (i + fence) >>> 1;
+            return (m <= i) ? null :
+                   new RandomLongsSpliterator(rng, i, index = m, origin, bound);
+        }
+
+        public long estimateSize() {
+            return fence - index;
+        }
+
+        public int characteristics() {
+            return (Spliterator.SIZED | Spliterator.SUBSIZED |
+                    Spliterator.NONNULL | Spliterator.IMMUTABLE);
+        }
+
+        public boolean tryAdvance(LongConsumer consumer) {
+            if (consumer == null) throw new NullPointerException();
+            long i = index, f = fence;
+            if (i < f) {
+                consumer.accept(rng.internalNextLong(origin, bound));
+                index = i + 1;
+                return true;
+            }
+            return false;
+        }
+
+        public void forEachRemaining(LongConsumer consumer) {
+            if (consumer == null) throw new NullPointerException();
+            long i = index, f = fence;
+            if (i < f) {
+                index = f;
+                Random r = rng;
+                long o = origin, b = bound;
+                do {
+                    consumer.accept(r.internalNextLong(o, b));
+                } while (++i < f);
+            }
+        }
+
+    }
+
+    /**
+     * Spliterator for double streams.
+     */
+    static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
+        final Random rng;
+        long index;
+        final long fence;
+        final double origin;
+        final double bound;
+        RandomDoublesSpliterator(Random rng, long index, long fence,
+                                 double origin, double bound) {
+            this.rng = rng; this.index = index; this.fence = fence;
+            this.origin = origin; this.bound = bound;
+        }
+
+        public RandomDoublesSpliterator trySplit() {
+            long i = index, m = (i + fence) >>> 1;
+            return (m <= i) ? null :
+                   new RandomDoublesSpliterator(rng, i, index = m, origin, bound);
+        }
+
+        public long estimateSize() {
+            return fence - index;
+        }
+
+        public int characteristics() {
+            return (Spliterator.SIZED | Spliterator.SUBSIZED |
+                    Spliterator.NONNULL | Spliterator.IMMUTABLE);
+        }
+
+        public boolean tryAdvance(DoubleConsumer consumer) {
+            if (consumer == null) throw new NullPointerException();
+            long i = index, f = fence;
+            if (i < f) {
+                consumer.accept(rng.internalNextDouble(origin, bound));
+                index = i + 1;
+                return true;
+            }
+            return false;
+        }
+
+        public void forEachRemaining(DoubleConsumer consumer) {
+            if (consumer == null) throw new NullPointerException();
+            long i = index, f = fence;
+            if (i < f) {
+                index = f;
+                Random r = rng;
+                double o = origin, b = bound;
+                do {
+                    consumer.accept(r.internalNextDouble(o, b));
+                } while (++i < f);
+            }
+        }
+    }
+
+    /**
+     * Serializable fields for Random.
+     *
+     * @serialField    seed long
+     *              seed for random computations
+     * @serialField    nextNextGaussian double
+     *              next Gaussian to be returned
+     * @serialField      haveNextNextGaussian boolean
+     *              nextNextGaussian is valid
+     */
+    private static final ObjectStreamField[] serialPersistentFields = {
+        new ObjectStreamField("seed", Long.TYPE),
+        new ObjectStreamField("nextNextGaussian", Double.TYPE),
+        new ObjectStreamField("haveNextNextGaussian", Boolean.TYPE)
+    };
+
+    /**
+     * Reconstitute the {@code Random} instance from a stream (that is,
+     * deserialize it).
+     */
+    private void readObject(java.io.ObjectInputStream s)
+        throws java.io.IOException, ClassNotFoundException {
+
+        ObjectInputStream.GetField fields = s.readFields();
+
+        // The seed is read in as {@code long} for
+        // historical reasons, but it is converted to an AtomicLong.
+        long seedVal = fields.get("seed", -1L);
+        if (seedVal < 0)
+          throw new java.io.StreamCorruptedException(
+                              "Random: invalid seed");
+        resetSeed(seedVal);
+        nextNextGaussian = fields.get("nextNextGaussian", 0.0);
+        haveNextNextGaussian = fields.get("haveNextNextGaussian", false);
+    }
+
+    /**
+     * Save the {@code Random} instance to a stream.
+     */
+    private synchronized void writeObject(ObjectOutputStream s)
+        throws IOException {
+
+        // set the values of the Serializable fields
+        ObjectOutputStream.PutField fields = s.putFields();
+
+        // The seed is serialized as a long for historical reasons.
+        fields.put("seed", seed.get());
+        fields.put("nextNextGaussian", nextNextGaussian);
+        fields.put("haveNextNextGaussian", haveNextNextGaussian);
+
+        // save them
+        s.writeFields();
+    }
+
+    // Support for resetting seed while deserializing
+    private static final Unsafe unsafe = Unsafe.getUnsafe();
+    private static final long seedOffset;
+    static {
+        try {
+            seedOffset = unsafe.objectFieldOffset
+                (Random.class.getDeclaredField("seed"));
+        } catch (Exception ex) { throw new Error(ex); }
+    }
+    private void resetSeed(long seedVal) {
+        unsafe.putObjectVolatile(this, seedOffset, new AtomicLong(seedVal));
+    }
+}