src/java.base/share/classes/java/util/LinkedHashMap.java
changeset 47216 71c04702a3d5
parent 44743 f0bbd698c486
child 49433 b6671a111395
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/java.base/share/classes/java/util/LinkedHashMap.java	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,755 @@
+/*
+ * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.util;
+
+import java.util.function.Consumer;
+import java.util.function.BiConsumer;
+import java.util.function.BiFunction;
+import java.io.IOException;
+
+/**
+ * <p>Hash table and linked list implementation of the {@code Map} interface,
+ * with predictable iteration order.  This implementation differs from
+ * {@code HashMap} in that it maintains a doubly-linked list running through
+ * all of its entries.  This linked list defines the iteration ordering,
+ * which is normally the order in which keys were inserted into the map
+ * (<i>insertion-order</i>).  Note that insertion order is not affected
+ * if a key is <i>re-inserted</i> into the map.  (A key {@code k} is
+ * reinserted into a map {@code m} if {@code m.put(k, v)} is invoked when
+ * {@code m.containsKey(k)} would return {@code true} immediately prior to
+ * the invocation.)
+ *
+ * <p>This implementation spares its clients from the unspecified, generally
+ * chaotic ordering provided by {@link HashMap} (and {@link Hashtable}),
+ * without incurring the increased cost associated with {@link TreeMap}.  It
+ * can be used to produce a copy of a map that has the same order as the
+ * original, regardless of the original map's implementation:
+ * <pre>
+ *     void foo(Map m) {
+ *         Map copy = new LinkedHashMap(m);
+ *         ...
+ *     }
+ * </pre>
+ * This technique is particularly useful if a module takes a map on input,
+ * copies it, and later returns results whose order is determined by that of
+ * the copy.  (Clients generally appreciate having things returned in the same
+ * order they were presented.)
+ *
+ * <p>A special {@link #LinkedHashMap(int,float,boolean) constructor} is
+ * provided to create a linked hash map whose order of iteration is the order
+ * in which its entries were last accessed, from least-recently accessed to
+ * most-recently (<i>access-order</i>).  This kind of map is well-suited to
+ * building LRU caches.  Invoking the {@code put}, {@code putIfAbsent},
+ * {@code get}, {@code getOrDefault}, {@code compute}, {@code computeIfAbsent},
+ * {@code computeIfPresent}, or {@code merge} methods results
+ * in an access to the corresponding entry (assuming it exists after the
+ * invocation completes). The {@code replace} methods only result in an access
+ * of the entry if the value is replaced.  The {@code putAll} method generates one
+ * entry access for each mapping in the specified map, in the order that
+ * key-value mappings are provided by the specified map's entry set iterator.
+ * <i>No other methods generate entry accesses.</i>  In particular, operations
+ * on collection-views do <i>not</i> affect the order of iteration of the
+ * backing map.
+ *
+ * <p>The {@link #removeEldestEntry(Map.Entry)} method may be overridden to
+ * impose a policy for removing stale mappings automatically when new mappings
+ * are added to the map.
+ *
+ * <p>This class provides all of the optional {@code Map} operations, and
+ * permits null elements.  Like {@code HashMap}, it provides constant-time
+ * performance for the basic operations ({@code add}, {@code contains} and
+ * {@code remove}), assuming the hash function disperses elements
+ * properly among the buckets.  Performance is likely to be just slightly
+ * below that of {@code HashMap}, due to the added expense of maintaining the
+ * linked list, with one exception: Iteration over the collection-views
+ * of a {@code LinkedHashMap} requires time proportional to the <i>size</i>
+ * of the map, regardless of its capacity.  Iteration over a {@code HashMap}
+ * is likely to be more expensive, requiring time proportional to its
+ * <i>capacity</i>.
+ *
+ * <p>A linked hash map has two parameters that affect its performance:
+ * <i>initial capacity</i> and <i>load factor</i>.  They are defined precisely
+ * as for {@code HashMap}.  Note, however, that the penalty for choosing an
+ * excessively high value for initial capacity is less severe for this class
+ * than for {@code HashMap}, as iteration times for this class are unaffected
+ * by capacity.
+ *
+ * <p><strong>Note that this implementation is not synchronized.</strong>
+ * If multiple threads access a linked hash map concurrently, and at least
+ * one of the threads modifies the map structurally, it <em>must</em> be
+ * synchronized externally.  This is typically accomplished by
+ * synchronizing on some object that naturally encapsulates the map.
+ *
+ * If no such object exists, the map should be "wrapped" using the
+ * {@link Collections#synchronizedMap Collections.synchronizedMap}
+ * method.  This is best done at creation time, to prevent accidental
+ * unsynchronized access to the map:<pre>
+ *   Map m = Collections.synchronizedMap(new LinkedHashMap(...));</pre>
+ *
+ * A structural modification is any operation that adds or deletes one or more
+ * mappings or, in the case of access-ordered linked hash maps, affects
+ * iteration order.  In insertion-ordered linked hash maps, merely changing
+ * the value associated with a key that is already contained in the map is not
+ * a structural modification.  <strong>In access-ordered linked hash maps,
+ * merely querying the map with {@code get} is a structural modification.
+ * </strong>)
+ *
+ * <p>The iterators returned by the {@code iterator} method of the collections
+ * returned by all of this class's collection view methods are
+ * <em>fail-fast</em>: if the map is structurally modified at any time after
+ * the iterator is created, in any way except through the iterator's own
+ * {@code remove} method, the iterator will throw a {@link
+ * ConcurrentModificationException}.  Thus, in the face of concurrent
+ * modification, the iterator fails quickly and cleanly, rather than risking
+ * arbitrary, non-deterministic behavior at an undetermined time in the future.
+ *
+ * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
+ * as it is, generally speaking, impossible to make any hard guarantees in the
+ * presence of unsynchronized concurrent modification.  Fail-fast iterators
+ * throw {@code ConcurrentModificationException} on a best-effort basis.
+ * Therefore, it would be wrong to write a program that depended on this
+ * exception for its correctness:   <i>the fail-fast behavior of iterators
+ * should be used only to detect bugs.</i>
+ *
+ * <p>The spliterators returned by the spliterator method of the collections
+ * returned by all of this class's collection view methods are
+ * <em><a href="Spliterator.html#binding">late-binding</a></em>,
+ * <em>fail-fast</em>, and additionally report {@link Spliterator#ORDERED}.
+ *
+ * <p>This class is a member of the
+ * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
+ * Java Collections Framework</a>.
+ *
+ * @implNote
+ * The spliterators returned by the spliterator method of the collections
+ * returned by all of this class's collection view methods are created from
+ * the iterators of the corresponding collections.
+ *
+ * @param <K> the type of keys maintained by this map
+ * @param <V> the type of mapped values
+ *
+ * @author  Josh Bloch
+ * @see     Object#hashCode()
+ * @see     Collection
+ * @see     Map
+ * @see     HashMap
+ * @see     TreeMap
+ * @see     Hashtable
+ * @since   1.4
+ */
+public class LinkedHashMap<K,V>
+    extends HashMap<K,V>
+    implements Map<K,V>
+{
+
+    /*
+     * Implementation note.  A previous version of this class was
+     * internally structured a little differently. Because superclass
+     * HashMap now uses trees for some of its nodes, class
+     * LinkedHashMap.Entry is now treated as intermediary node class
+     * that can also be converted to tree form. The name of this
+     * class, LinkedHashMap.Entry, is confusing in several ways in its
+     * current context, but cannot be changed.  Otherwise, even though
+     * it is not exported outside this package, some existing source
+     * code is known to have relied on a symbol resolution corner case
+     * rule in calls to removeEldestEntry that suppressed compilation
+     * errors due to ambiguous usages. So, we keep the name to
+     * preserve unmodified compilability.
+     *
+     * The changes in node classes also require using two fields
+     * (head, tail) rather than a pointer to a header node to maintain
+     * the doubly-linked before/after list. This class also
+     * previously used a different style of callback methods upon
+     * access, insertion, and removal.
+     */
+
+    /**
+     * HashMap.Node subclass for normal LinkedHashMap entries.
+     */
+    static class Entry<K,V> extends HashMap.Node<K,V> {
+        Entry<K,V> before, after;
+        Entry(int hash, K key, V value, Node<K,V> next) {
+            super(hash, key, value, next);
+        }
+    }
+
+    private static final long serialVersionUID = 3801124242820219131L;
+
+    /**
+     * The head (eldest) of the doubly linked list.
+     */
+    transient LinkedHashMap.Entry<K,V> head;
+
+    /**
+     * The tail (youngest) of the doubly linked list.
+     */
+    transient LinkedHashMap.Entry<K,V> tail;
+
+    /**
+     * The iteration ordering method for this linked hash map: {@code true}
+     * for access-order, {@code false} for insertion-order.
+     *
+     * @serial
+     */
+    final boolean accessOrder;
+
+    // internal utilities
+
+    // link at the end of list
+    private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
+        LinkedHashMap.Entry<K,V> last = tail;
+        tail = p;
+        if (last == null)
+            head = p;
+        else {
+            p.before = last;
+            last.after = p;
+        }
+    }
+
+    // apply src's links to dst
+    private void transferLinks(LinkedHashMap.Entry<K,V> src,
+                               LinkedHashMap.Entry<K,V> dst) {
+        LinkedHashMap.Entry<K,V> b = dst.before = src.before;
+        LinkedHashMap.Entry<K,V> a = dst.after = src.after;
+        if (b == null)
+            head = dst;
+        else
+            b.after = dst;
+        if (a == null)
+            tail = dst;
+        else
+            a.before = dst;
+    }
+
+    // overrides of HashMap hook methods
+
+    void reinitialize() {
+        super.reinitialize();
+        head = tail = null;
+    }
+
+    Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
+        LinkedHashMap.Entry<K,V> p =
+            new LinkedHashMap.Entry<>(hash, key, value, e);
+        linkNodeLast(p);
+        return p;
+    }
+
+    Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
+        LinkedHashMap.Entry<K,V> q = (LinkedHashMap.Entry<K,V>)p;
+        LinkedHashMap.Entry<K,V> t =
+            new LinkedHashMap.Entry<>(q.hash, q.key, q.value, next);
+        transferLinks(q, t);
+        return t;
+    }
+
+    TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
+        TreeNode<K,V> p = new TreeNode<>(hash, key, value, next);
+        linkNodeLast(p);
+        return p;
+    }
+
+    TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
+        LinkedHashMap.Entry<K,V> q = (LinkedHashMap.Entry<K,V>)p;
+        TreeNode<K,V> t = new TreeNode<>(q.hash, q.key, q.value, next);
+        transferLinks(q, t);
+        return t;
+    }
+
+    void afterNodeRemoval(Node<K,V> e) { // unlink
+        LinkedHashMap.Entry<K,V> p =
+            (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
+        p.before = p.after = null;
+        if (b == null)
+            head = a;
+        else
+            b.after = a;
+        if (a == null)
+            tail = b;
+        else
+            a.before = b;
+    }
+
+    void afterNodeInsertion(boolean evict) { // possibly remove eldest
+        LinkedHashMap.Entry<K,V> first;
+        if (evict && (first = head) != null && removeEldestEntry(first)) {
+            K key = first.key;
+            removeNode(hash(key), key, null, false, true);
+        }
+    }
+
+    void afterNodeAccess(Node<K,V> e) { // move node to last
+        LinkedHashMap.Entry<K,V> last;
+        if (accessOrder && (last = tail) != e) {
+            LinkedHashMap.Entry<K,V> p =
+                (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
+            p.after = null;
+            if (b == null)
+                head = a;
+            else
+                b.after = a;
+            if (a != null)
+                a.before = b;
+            else
+                last = b;
+            if (last == null)
+                head = p;
+            else {
+                p.before = last;
+                last.after = p;
+            }
+            tail = p;
+            ++modCount;
+        }
+    }
+
+    void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
+        for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after) {
+            s.writeObject(e.key);
+            s.writeObject(e.value);
+        }
+    }
+
+    /**
+     * Constructs an empty insertion-ordered {@code LinkedHashMap} instance
+     * with the specified initial capacity and load factor.
+     *
+     * @param  initialCapacity the initial capacity
+     * @param  loadFactor      the load factor
+     * @throws IllegalArgumentException if the initial capacity is negative
+     *         or the load factor is nonpositive
+     */
+    public LinkedHashMap(int initialCapacity, float loadFactor) {
+        super(initialCapacity, loadFactor);
+        accessOrder = false;
+    }
+
+    /**
+     * Constructs an empty insertion-ordered {@code LinkedHashMap} instance
+     * with the specified initial capacity and a default load factor (0.75).
+     *
+     * @param  initialCapacity the initial capacity
+     * @throws IllegalArgumentException if the initial capacity is negative
+     */
+    public LinkedHashMap(int initialCapacity) {
+        super(initialCapacity);
+        accessOrder = false;
+    }
+
+    /**
+     * Constructs an empty insertion-ordered {@code LinkedHashMap} instance
+     * with the default initial capacity (16) and load factor (0.75).
+     */
+    public LinkedHashMap() {
+        super();
+        accessOrder = false;
+    }
+
+    /**
+     * Constructs an insertion-ordered {@code LinkedHashMap} instance with
+     * the same mappings as the specified map.  The {@code LinkedHashMap}
+     * instance is created with a default load factor (0.75) and an initial
+     * capacity sufficient to hold the mappings in the specified map.
+     *
+     * @param  m the map whose mappings are to be placed in this map
+     * @throws NullPointerException if the specified map is null
+     */
+    public LinkedHashMap(Map<? extends K, ? extends V> m) {
+        super();
+        accessOrder = false;
+        putMapEntries(m, false);
+    }
+
+    /**
+     * Constructs an empty {@code LinkedHashMap} instance with the
+     * specified initial capacity, load factor and ordering mode.
+     *
+     * @param  initialCapacity the initial capacity
+     * @param  loadFactor      the load factor
+     * @param  accessOrder     the ordering mode - {@code true} for
+     *         access-order, {@code false} for insertion-order
+     * @throws IllegalArgumentException if the initial capacity is negative
+     *         or the load factor is nonpositive
+     */
+    public LinkedHashMap(int initialCapacity,
+                         float loadFactor,
+                         boolean accessOrder) {
+        super(initialCapacity, loadFactor);
+        this.accessOrder = accessOrder;
+    }
+
+
+    /**
+     * Returns {@code true} if this map maps one or more keys to the
+     * specified value.
+     *
+     * @param value value whose presence in this map is to be tested
+     * @return {@code true} if this map maps one or more keys to the
+     *         specified value
+     */
+    public boolean containsValue(Object value) {
+        for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after) {
+            V v = e.value;
+            if (v == value || (value != null && value.equals(v)))
+                return true;
+        }
+        return false;
+    }
+
+    /**
+     * Returns the value to which the specified key is mapped,
+     * or {@code null} if this map contains no mapping for the key.
+     *
+     * <p>More formally, if this map contains a mapping from a key
+     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
+     * key.equals(k))}, then this method returns {@code v}; otherwise
+     * it returns {@code null}.  (There can be at most one such mapping.)
+     *
+     * <p>A return value of {@code null} does not <i>necessarily</i>
+     * indicate that the map contains no mapping for the key; it's also
+     * possible that the map explicitly maps the key to {@code null}.
+     * The {@link #containsKey containsKey} operation may be used to
+     * distinguish these two cases.
+     */
+    public V get(Object key) {
+        Node<K,V> e;
+        if ((e = getNode(hash(key), key)) == null)
+            return null;
+        if (accessOrder)
+            afterNodeAccess(e);
+        return e.value;
+    }
+
+    /**
+     * {@inheritDoc}
+     */
+    public V getOrDefault(Object key, V defaultValue) {
+       Node<K,V> e;
+       if ((e = getNode(hash(key), key)) == null)
+           return defaultValue;
+       if (accessOrder)
+           afterNodeAccess(e);
+       return e.value;
+   }
+
+    /**
+     * {@inheritDoc}
+     */
+    public void clear() {
+        super.clear();
+        head = tail = null;
+    }
+
+    /**
+     * Returns {@code true} if this map should remove its eldest entry.
+     * This method is invoked by {@code put} and {@code putAll} after
+     * inserting a new entry into the map.  It provides the implementor
+     * with the opportunity to remove the eldest entry each time a new one
+     * is added.  This is useful if the map represents a cache: it allows
+     * the map to reduce memory consumption by deleting stale entries.
+     *
+     * <p>Sample use: this override will allow the map to grow up to 100
+     * entries and then delete the eldest entry each time a new entry is
+     * added, maintaining a steady state of 100 entries.
+     * <pre>
+     *     private static final int MAX_ENTRIES = 100;
+     *
+     *     protected boolean removeEldestEntry(Map.Entry eldest) {
+     *        return size() &gt; MAX_ENTRIES;
+     *     }
+     * </pre>
+     *
+     * <p>This method typically does not modify the map in any way,
+     * instead allowing the map to modify itself as directed by its
+     * return value.  It <i>is</i> permitted for this method to modify
+     * the map directly, but if it does so, it <i>must</i> return
+     * {@code false} (indicating that the map should not attempt any
+     * further modification).  The effects of returning {@code true}
+     * after modifying the map from within this method are unspecified.
+     *
+     * <p>This implementation merely returns {@code false} (so that this
+     * map acts like a normal map - the eldest element is never removed).
+     *
+     * @param    eldest The least recently inserted entry in the map, or if
+     *           this is an access-ordered map, the least recently accessed
+     *           entry.  This is the entry that will be removed it this
+     *           method returns {@code true}.  If the map was empty prior
+     *           to the {@code put} or {@code putAll} invocation resulting
+     *           in this invocation, this will be the entry that was just
+     *           inserted; in other words, if the map contains a single
+     *           entry, the eldest entry is also the newest.
+     * @return   {@code true} if the eldest entry should be removed
+     *           from the map; {@code false} if it should be retained.
+     */
+    protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
+        return false;
+    }
+
+    /**
+     * Returns a {@link Set} view of the keys contained in this map.
+     * The set is backed by the map, so changes to the map are
+     * reflected in the set, and vice-versa.  If the map is modified
+     * while an iteration over the set is in progress (except through
+     * the iterator's own {@code remove} operation), the results of
+     * the iteration are undefined.  The set supports element removal,
+     * which removes the corresponding mapping from the map, via the
+     * {@code Iterator.remove}, {@code Set.remove},
+     * {@code removeAll}, {@code retainAll}, and {@code clear}
+     * operations.  It does not support the {@code add} or {@code addAll}
+     * operations.
+     * Its {@link Spliterator} typically provides faster sequential
+     * performance but much poorer parallel performance than that of
+     * {@code HashMap}.
+     *
+     * @return a set view of the keys contained in this map
+     */
+    public Set<K> keySet() {
+        Set<K> ks = keySet;
+        if (ks == null) {
+            ks = new LinkedKeySet();
+            keySet = ks;
+        }
+        return ks;
+    }
+
+    final class LinkedKeySet extends AbstractSet<K> {
+        public final int size()                 { return size; }
+        public final void clear()               { LinkedHashMap.this.clear(); }
+        public final Iterator<K> iterator() {
+            return new LinkedKeyIterator();
+        }
+        public final boolean contains(Object o) { return containsKey(o); }
+        public final boolean remove(Object key) {
+            return removeNode(hash(key), key, null, false, true) != null;
+        }
+        public final Spliterator<K> spliterator()  {
+            return Spliterators.spliterator(this, Spliterator.SIZED |
+                                            Spliterator.ORDERED |
+                                            Spliterator.DISTINCT);
+        }
+        public final void forEach(Consumer<? super K> action) {
+            if (action == null)
+                throw new NullPointerException();
+            int mc = modCount;
+            for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after)
+                action.accept(e.key);
+            if (modCount != mc)
+                throw new ConcurrentModificationException();
+        }
+    }
+
+    /**
+     * Returns a {@link Collection} view of the values contained in this map.
+     * The collection is backed by the map, so changes to the map are
+     * reflected in the collection, and vice-versa.  If the map is
+     * modified while an iteration over the collection is in progress
+     * (except through the iterator's own {@code remove} operation),
+     * the results of the iteration are undefined.  The collection
+     * supports element removal, which removes the corresponding
+     * mapping from the map, via the {@code Iterator.remove},
+     * {@code Collection.remove}, {@code removeAll},
+     * {@code retainAll} and {@code clear} operations.  It does not
+     * support the {@code add} or {@code addAll} operations.
+     * Its {@link Spliterator} typically provides faster sequential
+     * performance but much poorer parallel performance than that of
+     * {@code HashMap}.
+     *
+     * @return a view of the values contained in this map
+     */
+    public Collection<V> values() {
+        Collection<V> vs = values;
+        if (vs == null) {
+            vs = new LinkedValues();
+            values = vs;
+        }
+        return vs;
+    }
+
+    final class LinkedValues extends AbstractCollection<V> {
+        public final int size()                 { return size; }
+        public final void clear()               { LinkedHashMap.this.clear(); }
+        public final Iterator<V> iterator() {
+            return new LinkedValueIterator();
+        }
+        public final boolean contains(Object o) { return containsValue(o); }
+        public final Spliterator<V> spliterator() {
+            return Spliterators.spliterator(this, Spliterator.SIZED |
+                                            Spliterator.ORDERED);
+        }
+        public final void forEach(Consumer<? super V> action) {
+            if (action == null)
+                throw new NullPointerException();
+            int mc = modCount;
+            for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after)
+                action.accept(e.value);
+            if (modCount != mc)
+                throw new ConcurrentModificationException();
+        }
+    }
+
+    /**
+     * Returns a {@link Set} view of the mappings contained in this map.
+     * The set is backed by the map, so changes to the map are
+     * reflected in the set, and vice-versa.  If the map is modified
+     * while an iteration over the set is in progress (except through
+     * the iterator's own {@code remove} operation, or through the
+     * {@code setValue} operation on a map entry returned by the
+     * iterator) the results of the iteration are undefined.  The set
+     * supports element removal, which removes the corresponding
+     * mapping from the map, via the {@code Iterator.remove},
+     * {@code Set.remove}, {@code removeAll}, {@code retainAll} and
+     * {@code clear} operations.  It does not support the
+     * {@code add} or {@code addAll} operations.
+     * Its {@link Spliterator} typically provides faster sequential
+     * performance but much poorer parallel performance than that of
+     * {@code HashMap}.
+     *
+     * @return a set view of the mappings contained in this map
+     */
+    public Set<Map.Entry<K,V>> entrySet() {
+        Set<Map.Entry<K,V>> es;
+        return (es = entrySet) == null ? (entrySet = new LinkedEntrySet()) : es;
+    }
+
+    final class LinkedEntrySet extends AbstractSet<Map.Entry<K,V>> {
+        public final int size()                 { return size; }
+        public final void clear()               { LinkedHashMap.this.clear(); }
+        public final Iterator<Map.Entry<K,V>> iterator() {
+            return new LinkedEntryIterator();
+        }
+        public final boolean contains(Object o) {
+            if (!(o instanceof Map.Entry))
+                return false;
+            Map.Entry<?,?> e = (Map.Entry<?,?>) o;
+            Object key = e.getKey();
+            Node<K,V> candidate = getNode(hash(key), key);
+            return candidate != null && candidate.equals(e);
+        }
+        public final boolean remove(Object o) {
+            if (o instanceof Map.Entry) {
+                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
+                Object key = e.getKey();
+                Object value = e.getValue();
+                return removeNode(hash(key), key, value, true, true) != null;
+            }
+            return false;
+        }
+        public final Spliterator<Map.Entry<K,V>> spliterator() {
+            return Spliterators.spliterator(this, Spliterator.SIZED |
+                                            Spliterator.ORDERED |
+                                            Spliterator.DISTINCT);
+        }
+        public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
+            if (action == null)
+                throw new NullPointerException();
+            int mc = modCount;
+            for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after)
+                action.accept(e);
+            if (modCount != mc)
+                throw new ConcurrentModificationException();
+        }
+    }
+
+    // Map overrides
+
+    public void forEach(BiConsumer<? super K, ? super V> action) {
+        if (action == null)
+            throw new NullPointerException();
+        int mc = modCount;
+        for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after)
+            action.accept(e.key, e.value);
+        if (modCount != mc)
+            throw new ConcurrentModificationException();
+    }
+
+    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
+        if (function == null)
+            throw new NullPointerException();
+        int mc = modCount;
+        for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after)
+            e.value = function.apply(e.key, e.value);
+        if (modCount != mc)
+            throw new ConcurrentModificationException();
+    }
+
+    // Iterators
+
+    abstract class LinkedHashIterator {
+        LinkedHashMap.Entry<K,V> next;
+        LinkedHashMap.Entry<K,V> current;
+        int expectedModCount;
+
+        LinkedHashIterator() {
+            next = head;
+            expectedModCount = modCount;
+            current = null;
+        }
+
+        public final boolean hasNext() {
+            return next != null;
+        }
+
+        final LinkedHashMap.Entry<K,V> nextNode() {
+            LinkedHashMap.Entry<K,V> e = next;
+            if (modCount != expectedModCount)
+                throw new ConcurrentModificationException();
+            if (e == null)
+                throw new NoSuchElementException();
+            current = e;
+            next = e.after;
+            return e;
+        }
+
+        public final void remove() {
+            Node<K,V> p = current;
+            if (p == null)
+                throw new IllegalStateException();
+            if (modCount != expectedModCount)
+                throw new ConcurrentModificationException();
+            current = null;
+            removeNode(p.hash, p.key, null, false, false);
+            expectedModCount = modCount;
+        }
+    }
+
+    final class LinkedKeyIterator extends LinkedHashIterator
+        implements Iterator<K> {
+        public final K next() { return nextNode().getKey(); }
+    }
+
+    final class LinkedValueIterator extends LinkedHashIterator
+        implements Iterator<V> {
+        public final V next() { return nextNode().value; }
+    }
+
+    final class LinkedEntryIterator extends LinkedHashIterator
+        implements Iterator<Map.Entry<K,V>> {
+        public final Map.Entry<K,V> next() { return nextNode(); }
+    }
+
+
+}