src/hotspot/share/opto/superword.cpp
changeset 47216 71c04702a3d5
parent 46728 a1bee305515d
child 47591 d78db2ebce5e
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/opto/superword.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,4496 @@
+/*
+ * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+#include "precompiled.hpp"
+#include "compiler/compileLog.hpp"
+#include "libadt/vectset.hpp"
+#include "memory/allocation.inline.hpp"
+#include "memory/resourceArea.hpp"
+#include "opto/addnode.hpp"
+#include "opto/callnode.hpp"
+#include "opto/castnode.hpp"
+#include "opto/convertnode.hpp"
+#include "opto/divnode.hpp"
+#include "opto/matcher.hpp"
+#include "opto/memnode.hpp"
+#include "opto/mulnode.hpp"
+#include "opto/opcodes.hpp"
+#include "opto/opaquenode.hpp"
+#include "opto/superword.hpp"
+#include "opto/vectornode.hpp"
+#include "opto/movenode.hpp"
+
+//
+//                  S U P E R W O R D   T R A N S F O R M
+//=============================================================================
+
+//------------------------------SuperWord---------------------------
+SuperWord::SuperWord(PhaseIdealLoop* phase) :
+  _phase(phase),
+  _igvn(phase->_igvn),
+  _arena(phase->C->comp_arena()),
+  _packset(arena(), 8,  0, NULL),         // packs for the current block
+  _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
+  _block(arena(), 8,  0, NULL),           // nodes in current block
+  _post_block(arena(), 8, 0, NULL),       // nodes common to current block which are marked as post loop vectorizable
+  _data_entry(arena(), 8,  0, NULL),      // nodes with all inputs from outside
+  _mem_slice_head(arena(), 8,  0, NULL),  // memory slice heads
+  _mem_slice_tail(arena(), 8,  0, NULL),  // memory slice tails
+  _node_info(arena(), 8,  0, SWNodeInfo::initial), // info needed per node
+  _clone_map(phase->C->clone_map()),      // map of nodes created in cloning
+  _cmovev_kit(_arena, this),              // map to facilitate CMoveVD creation
+  _align_to_ref(NULL),                    // memory reference to align vectors to
+  _disjoint_ptrs(arena(), 8,  0, OrderedPair::initial), // runtime disambiguated pointer pairs
+  _dg(_arena),                            // dependence graph
+  _visited(arena()),                      // visited node set
+  _post_visited(arena()),                 // post visited node set
+  _n_idx_list(arena(), 8),                // scratch list of (node,index) pairs
+  _stk(arena(), 8, 0, NULL),              // scratch stack of nodes
+  _nlist(arena(), 8, 0, NULL),            // scratch list of nodes
+  _lpt(NULL),                             // loop tree node
+  _lp(NULL),                              // LoopNode
+  _bb(NULL),                              // basic block
+  _iv(NULL),                              // induction var
+  _race_possible(false),                  // cases where SDMU is true
+  _early_return(true),                    // analysis evaluations routine
+  _num_work_vecs(0),                      // amount of vector work we have
+  _num_reductions(0),                     // amount of reduction work we have
+  _do_vector_loop(phase->C->do_vector_loop()),  // whether to do vectorization/simd style
+  _do_reserve_copy(DoReserveCopyInSuperWord),
+  _ii_first(-1),                          // first loop generation index - only if do_vector_loop()
+  _ii_last(-1),                           // last loop generation index - only if do_vector_loop()
+  _ii_order(arena(), 8, 0, 0)
+{
+#ifndef PRODUCT
+  _vector_loop_debug = 0;
+  if (_phase->C->method() != NULL) {
+    _vector_loop_debug = phase->C->directive()->VectorizeDebugOption;
+  }
+
+#endif
+}
+
+//------------------------------transform_loop---------------------------
+void SuperWord::transform_loop(IdealLoopTree* lpt, bool do_optimization) {
+  assert(UseSuperWord, "should be");
+  // Do vectors exist on this architecture?
+  if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return;
+
+  assert(lpt->_head->is_CountedLoop(), "must be");
+  CountedLoopNode *cl = lpt->_head->as_CountedLoop();
+
+  if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop
+
+  bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
+  if (post_loop_allowed) {
+    if (cl->is_reduction_loop()) return; // no predication mapping
+    Node *limit = cl->limit();
+    if (limit->is_Con()) return; // non constant limits only
+    // Now check the limit for expressions we do not handle
+    if (limit->is_Add()) {
+      Node *in2 = limit->in(2);
+      if (in2->is_Con()) {
+        int val = in2->get_int();
+        // should not try to program these cases
+        if (val < 0) return;
+      }
+    }
+  }
+
+  // skip any loop that has not been assigned max unroll by analysis
+  if (do_optimization) {
+    if (SuperWordLoopUnrollAnalysis && cl->slp_max_unroll() == 0) return;
+  }
+
+  // Check for no control flow in body (other than exit)
+  Node *cl_exit = cl->loopexit();
+  if (cl->is_main_loop() && (cl_exit->in(0) != lpt->_head)) {
+    #ifndef PRODUCT
+      if (TraceSuperWord) {
+        tty->print_cr("SuperWord::transform_loop: loop too complicated, cl_exit->in(0) != lpt->_head");
+        tty->print("cl_exit %d", cl_exit->_idx); cl_exit->dump();
+        tty->print("cl_exit->in(0) %d", cl_exit->in(0)->_idx); cl_exit->in(0)->dump();
+        tty->print("lpt->_head %d", lpt->_head->_idx); lpt->_head->dump();
+        lpt->dump_head();
+      }
+    #endif
+    return;
+  }
+
+  // Make sure the are no extra control users of the loop backedge
+  if (cl->back_control()->outcnt() != 1) {
+    return;
+  }
+
+  // Skip any loops already optimized by slp
+  if (cl->is_vectorized_loop()) return;
+
+  if (cl->is_main_loop()) {
+    // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
+    CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
+    if (pre_end == NULL) return;
+    Node *pre_opaq1 = pre_end->limit();
+    if (pre_opaq1->Opcode() != Op_Opaque1) return;
+  }
+
+  init(); // initialize data structures
+
+  set_lpt(lpt);
+  set_lp(cl);
+
+  // For now, define one block which is the entire loop body
+  set_bb(cl);
+
+  if (do_optimization) {
+    assert(_packset.length() == 0, "packset must be empty");
+    SLP_extract();
+    if (PostLoopMultiversioning && Matcher::has_predicated_vectors()) {
+      if (cl->is_vectorized_loop() && cl->is_main_loop() && !cl->is_reduction_loop()) {
+        IdealLoopTree *lpt_next = lpt->_next;
+        CountedLoopNode *cl_next = lpt_next->_head->as_CountedLoop();
+        _phase->has_range_checks(lpt_next);
+        if (cl_next->is_post_loop() && !cl_next->range_checks_present()) {
+          if (!cl_next->is_vectorized_loop()) {
+            int slp_max_unroll_factor = cl->slp_max_unroll();
+            cl_next->set_slp_max_unroll(slp_max_unroll_factor);
+          }
+        }
+      }
+    }
+  }
+}
+
+//------------------------------early unrolling analysis------------------------------
+void SuperWord::unrolling_analysis(int &local_loop_unroll_factor) {
+  bool is_slp = true;
+  ResourceMark rm;
+  size_t ignored_size = lpt()->_body.size();
+  int *ignored_loop_nodes = NEW_RESOURCE_ARRAY(int, ignored_size);
+  Node_Stack nstack((int)ignored_size);
+  CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
+  Node *cl_exit = cl->loopexit();
+  int rpo_idx = _post_block.length();
+
+  assert(rpo_idx == 0, "post loop block is empty");
+
+  // First clear the entries
+  for (uint i = 0; i < lpt()->_body.size(); i++) {
+    ignored_loop_nodes[i] = -1;
+  }
+
+  int max_vector = Matcher::max_vector_size(T_BYTE);
+  bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
+
+  // Process the loop, some/all of the stack entries will not be in order, ergo
+  // need to preprocess the ignored initial state before we process the loop
+  for (uint i = 0; i < lpt()->_body.size(); i++) {
+    Node* n = lpt()->_body.at(i);
+    if (n == cl->incr() ||
+      n->is_reduction() ||
+      n->is_AddP() ||
+      n->is_Cmp() ||
+      n->is_IfTrue() ||
+      n->is_CountedLoop() ||
+      (n == cl_exit)) {
+      ignored_loop_nodes[i] = n->_idx;
+      continue;
+    }
+
+    if (n->is_If()) {
+      IfNode *iff = n->as_If();
+      if (iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN) {
+        if (lpt()->is_loop_exit(iff)) {
+          ignored_loop_nodes[i] = n->_idx;
+          continue;
+        }
+      }
+    }
+
+    if (n->is_Phi() && (n->bottom_type() == Type::MEMORY)) {
+      Node* n_tail = n->in(LoopNode::LoopBackControl);
+      if (n_tail != n->in(LoopNode::EntryControl)) {
+        if (!n_tail->is_Mem()) {
+          is_slp = false;
+          break;
+        }
+      }
+    }
+
+    // This must happen after check of phi/if
+    if (n->is_Phi() || n->is_If()) {
+      ignored_loop_nodes[i] = n->_idx;
+      continue;
+    }
+
+    if (n->is_LoadStore() || n->is_MergeMem() ||
+      (n->is_Proj() && !n->as_Proj()->is_CFG())) {
+      is_slp = false;
+      break;
+    }
+
+    // Ignore nodes with non-primitive type.
+    BasicType bt;
+    if (n->is_Mem()) {
+      bt = n->as_Mem()->memory_type();
+    } else {
+      bt = n->bottom_type()->basic_type();
+    }
+    if (is_java_primitive(bt) == false) {
+      ignored_loop_nodes[i] = n->_idx;
+      continue;
+    }
+
+    if (n->is_Mem()) {
+      MemNode* current = n->as_Mem();
+      Node* adr = n->in(MemNode::Address);
+      Node* n_ctrl = _phase->get_ctrl(adr);
+
+      // save a queue of post process nodes
+      if (n_ctrl != NULL && lpt()->is_member(_phase->get_loop(n_ctrl))) {
+        // Process the memory expression
+        int stack_idx = 0;
+        bool have_side_effects = true;
+        if (adr->is_AddP() == false) {
+          nstack.push(adr, stack_idx++);
+        } else {
+          // Mark the components of the memory operation in nstack
+          SWPointer p1(current, this, &nstack, true);
+          have_side_effects = p1.node_stack()->is_nonempty();
+        }
+
+        // Process the pointer stack
+        while (have_side_effects) {
+          Node* pointer_node = nstack.node();
+          for (uint j = 0; j < lpt()->_body.size(); j++) {
+            Node* cur_node = lpt()->_body.at(j);
+            if (cur_node == pointer_node) {
+              ignored_loop_nodes[j] = cur_node->_idx;
+              break;
+            }
+          }
+          nstack.pop();
+          have_side_effects = nstack.is_nonempty();
+        }
+      }
+    }
+  }
+
+  if (is_slp) {
+    // Now we try to find the maximum supported consistent vector which the machine
+    // description can use
+    bool small_basic_type = false;
+    bool flag_small_bt = false;
+    for (uint i = 0; i < lpt()->_body.size(); i++) {
+      if (ignored_loop_nodes[i] != -1) continue;
+
+      BasicType bt;
+      Node* n = lpt()->_body.at(i);
+      if (n->is_Mem()) {
+        bt = n->as_Mem()->memory_type();
+      } else {
+        bt = n->bottom_type()->basic_type();
+      }
+
+      if (post_loop_allowed) {
+        if (!small_basic_type) {
+          switch (bt) {
+          case T_CHAR:
+          case T_BYTE:
+          case T_SHORT:
+            small_basic_type = true;
+            break;
+
+          case T_LONG:
+            // TODO: Remove when support completed for mask context with LONG.
+            //       Support needs to be augmented for logical qword operations, currently we map to dword
+            //       buckets for vectors on logicals as these were legacy.
+            small_basic_type = true;
+            break;
+
+          default:
+            break;
+          }
+        }
+      }
+
+      if (is_java_primitive(bt) == false) continue;
+
+         int cur_max_vector = Matcher::max_vector_size(bt);
+
+      // If a max vector exists which is not larger than _local_loop_unroll_factor
+      // stop looking, we already have the max vector to map to.
+      if (cur_max_vector < local_loop_unroll_factor) {
+        is_slp = false;
+        if (TraceSuperWordLoopUnrollAnalysis) {
+          tty->print_cr("slp analysis fails: unroll limit greater than max vector\n");
+        }
+        break;
+      }
+
+      // Map the maximal common vector
+      if (VectorNode::implemented(n->Opcode(), cur_max_vector, bt)) {
+        if (cur_max_vector < max_vector && !flag_small_bt) {
+          max_vector = cur_max_vector;
+        } else if (cur_max_vector > max_vector && UseSubwordForMaxVector) {
+          // Analyse subword in the loop to set maximum vector size to take advantage of full vector width for subword types.
+          // Here we analyze if narrowing is likely to happen and if it is we set vector size more aggressively.
+          // We check for possibility of narrowing by looking through chain operations using subword types.
+          if (is_subword_type(bt)) {
+            uint start, end;
+            VectorNode::vector_operands(n, &start, &end);
+
+            for (uint j = start; j < end; j++) {
+              Node* in = n->in(j);
+              // Don't propagate through a memory
+              if (!in->is_Mem() && in_bb(in) && in->bottom_type()->basic_type() == T_INT) {
+                bool same_type = true;
+                for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
+                  Node *use = in->fast_out(k);
+                  if (!in_bb(use) && use->bottom_type()->basic_type() != bt) {
+                    same_type = false;
+                    break;
+                  }
+                }
+                if (same_type) {
+                  max_vector = cur_max_vector;
+                  flag_small_bt = true;
+                }
+              }
+            }
+          }
+        }
+        // We only process post loops on predicated targets where we want to
+        // mask map the loop to a single iteration
+        if (post_loop_allowed) {
+          _post_block.at_put_grow(rpo_idx++, n);
+        }
+      }
+    }
+    if (is_slp) {
+      local_loop_unroll_factor = max_vector;
+      cl->mark_passed_slp();
+    }
+    cl->mark_was_slp();
+    if (cl->is_main_loop()) {
+      cl->set_slp_max_unroll(local_loop_unroll_factor);
+    } else if (post_loop_allowed) {
+      if (!small_basic_type) {
+        // avoid replication context for small basic types in programmable masked loops
+        cl->set_slp_max_unroll(local_loop_unroll_factor);
+      }
+    }
+  }
+}
+
+//------------------------------SLP_extract---------------------------
+// Extract the superword level parallelism
+//
+// 1) A reverse post-order of nodes in the block is constructed.  By scanning
+//    this list from first to last, all definitions are visited before their uses.
+//
+// 2) A point-to-point dependence graph is constructed between memory references.
+//    This simplies the upcoming "independence" checker.
+//
+// 3) The maximum depth in the node graph from the beginning of the block
+//    to each node is computed.  This is used to prune the graph search
+//    in the independence checker.
+//
+// 4) For integer types, the necessary bit width is propagated backwards
+//    from stores to allow packed operations on byte, char, and short
+//    integers.  This reverses the promotion to type "int" that javac
+//    did for operations like: char c1,c2,c3;  c1 = c2 + c3.
+//
+// 5) One of the memory references is picked to be an aligned vector reference.
+//    The pre-loop trip count is adjusted to align this reference in the
+//    unrolled body.
+//
+// 6) The initial set of pack pairs is seeded with memory references.
+//
+// 7) The set of pack pairs is extended by following use->def and def->use links.
+//
+// 8) The pairs are combined into vector sized packs.
+//
+// 9) Reorder the memory slices to co-locate members of the memory packs.
+//
+// 10) Generate ideal vector nodes for the final set of packs and where necessary,
+//    inserting scalar promotion, vector creation from multiple scalars, and
+//    extraction of scalar values from vectors.
+//
+void SuperWord::SLP_extract() {
+
+#ifndef PRODUCT
+  if (_do_vector_loop && TraceSuperWord) {
+    tty->print("SuperWord::SLP_extract\n");
+    tty->print("input loop\n");
+    _lpt->dump_head();
+    _lpt->dump();
+    for (uint i = 0; i < _lpt->_body.size(); i++) {
+      _lpt->_body.at(i)->dump();
+    }
+  }
+#endif
+  // Ready the block
+  if (!construct_bb()) {
+    return; // Exit if no interesting nodes or complex graph.
+  }
+
+  // build    _dg, _disjoint_ptrs
+  dependence_graph();
+
+  // compute function depth(Node*)
+  compute_max_depth();
+
+  CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
+  bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
+  if (cl->is_main_loop()) {
+    if (_do_vector_loop) {
+      if (mark_generations() != -1) {
+        hoist_loads_in_graph(); // this only rebuild the graph; all basic structs need rebuild explicitly
+
+        if (!construct_bb()) {
+          return; // Exit if no interesting nodes or complex graph.
+        }
+        dependence_graph();
+        compute_max_depth();
+      }
+
+#ifndef PRODUCT
+      if (TraceSuperWord) {
+        tty->print_cr("\nSuperWord::_do_vector_loop: graph after hoist_loads_in_graph");
+        _lpt->dump_head();
+        for (int j = 0; j < _block.length(); j++) {
+          Node* n = _block.at(j);
+          int d = depth(n);
+          for (int i = 0; i < d; i++) tty->print("%s", "  ");
+          tty->print("%d :", d);
+          n->dump();
+        }
+      }
+#endif
+    }
+
+    compute_vector_element_type();
+
+    // Attempt vectorization
+
+    find_adjacent_refs();
+
+    extend_packlist();
+
+    if (_do_vector_loop) {
+      if (_packset.length() == 0) {
+        if (TraceSuperWord) {
+          tty->print_cr("\nSuperWord::_do_vector_loop DFA could not build packset, now trying to build anyway");
+        }
+        pack_parallel();
+      }
+    }
+
+    combine_packs();
+
+    construct_my_pack_map();
+
+    if (_do_vector_loop) {
+      merge_packs_to_cmovd();
+    }
+
+    filter_packs();
+
+    schedule();
+  } else if (post_loop_allowed) {
+    int saved_mapped_unroll_factor = cl->slp_max_unroll();
+    if (saved_mapped_unroll_factor) {
+      int vector_mapped_unroll_factor = saved_mapped_unroll_factor;
+
+      // now reset the slp_unroll_factor so that we can check the analysis mapped
+      // what the vector loop was mapped to
+      cl->set_slp_max_unroll(0);
+
+      // do the analysis on the post loop
+      unrolling_analysis(vector_mapped_unroll_factor);
+
+      // if our analyzed loop is a canonical fit, start processing it
+      if (vector_mapped_unroll_factor == saved_mapped_unroll_factor) {
+        // now add the vector nodes to packsets
+        for (int i = 0; i < _post_block.length(); i++) {
+          Node* n = _post_block.at(i);
+          Node_List* singleton = new Node_List();
+          singleton->push(n);
+          _packset.append(singleton);
+          set_my_pack(n, singleton);
+        }
+
+        // map base types for vector usage
+        compute_vector_element_type();
+      } else {
+        return;
+      }
+    } else {
+      // for some reason we could not map the slp analysis state of the vectorized loop
+      return;
+    }
+  }
+
+  output();
+}
+
+//------------------------------find_adjacent_refs---------------------------
+// Find the adjacent memory references and create pack pairs for them.
+// This is the initial set of packs that will then be extended by
+// following use->def and def->use links.  The align positions are
+// assigned relative to the reference "align_to_ref"
+void SuperWord::find_adjacent_refs() {
+  // Get list of memory operations
+  Node_List memops;
+  for (int i = 0; i < _block.length(); i++) {
+    Node* n = _block.at(i);
+    if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) &&
+        is_java_primitive(n->as_Mem()->memory_type())) {
+      int align = memory_alignment(n->as_Mem(), 0);
+      if (align != bottom_align) {
+        memops.push(n);
+      }
+    }
+  }
+
+  Node_List align_to_refs;
+  int best_iv_adjustment = 0;
+  MemNode* best_align_to_mem_ref = NULL;
+
+  while (memops.size() != 0) {
+    // Find a memory reference to align to.
+    MemNode* mem_ref = find_align_to_ref(memops);
+    if (mem_ref == NULL) break;
+    align_to_refs.push(mem_ref);
+    int iv_adjustment = get_iv_adjustment(mem_ref);
+
+    if (best_align_to_mem_ref == NULL) {
+      // Set memory reference which is the best from all memory operations
+      // to be used for alignment. The pre-loop trip count is modified to align
+      // this reference to a vector-aligned address.
+      best_align_to_mem_ref = mem_ref;
+      best_iv_adjustment = iv_adjustment;
+      NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);)
+    }
+
+    SWPointer align_to_ref_p(mem_ref, this, NULL, false);
+    // Set alignment relative to "align_to_ref" for all related memory operations.
+    for (int i = memops.size() - 1; i >= 0; i--) {
+      MemNode* s = memops.at(i)->as_Mem();
+      if (isomorphic(s, mem_ref) &&
+           (!_do_vector_loop || same_origin_idx(s, mem_ref))) {
+        SWPointer p2(s, this, NULL, false);
+        if (p2.comparable(align_to_ref_p)) {
+          int align = memory_alignment(s, iv_adjustment);
+          set_alignment(s, align);
+        }
+      }
+    }
+
+    // Create initial pack pairs of memory operations for which
+    // alignment is set and vectors will be aligned.
+    bool create_pack = true;
+    if (memory_alignment(mem_ref, best_iv_adjustment) == 0 || _do_vector_loop) {
+      if (!Matcher::misaligned_vectors_ok()) {
+        int vw = vector_width(mem_ref);
+        int vw_best = vector_width(best_align_to_mem_ref);
+        if (vw > vw_best) {
+          // Do not vectorize a memory access with more elements per vector
+          // if unaligned memory access is not allowed because number of
+          // iterations in pre-loop will be not enough to align it.
+          create_pack = false;
+        } else {
+          SWPointer p2(best_align_to_mem_ref, this, NULL, false);
+          if (align_to_ref_p.invar() != p2.invar()) {
+            // Do not vectorize memory accesses with different invariants
+            // if unaligned memory accesses are not allowed.
+            create_pack = false;
+          }
+        }
+      }
+    } else {
+      if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
+        // Can't allow vectorization of unaligned memory accesses with the
+        // same type since it could be overlapped accesses to the same array.
+        create_pack = false;
+      } else {
+        // Allow independent (different type) unaligned memory operations
+        // if HW supports them.
+        if (!Matcher::misaligned_vectors_ok()) {
+          create_pack = false;
+        } else {
+          // Check if packs of the same memory type but
+          // with a different alignment were created before.
+          for (uint i = 0; i < align_to_refs.size(); i++) {
+            MemNode* mr = align_to_refs.at(i)->as_Mem();
+            if (same_velt_type(mr, mem_ref) &&
+                memory_alignment(mr, iv_adjustment) != 0)
+              create_pack = false;
+          }
+        }
+      }
+    }
+    if (create_pack) {
+      for (uint i = 0; i < memops.size(); i++) {
+        Node* s1 = memops.at(i);
+        int align = alignment(s1);
+        if (align == top_align) continue;
+        for (uint j = 0; j < memops.size(); j++) {
+          Node* s2 = memops.at(j);
+          if (alignment(s2) == top_align) continue;
+          if (s1 != s2 && are_adjacent_refs(s1, s2)) {
+            if (stmts_can_pack(s1, s2, align)) {
+              Node_List* pair = new Node_List();
+              pair->push(s1);
+              pair->push(s2);
+              if (!_do_vector_loop || same_origin_idx(s1, s2)) {
+                _packset.append(pair);
+              }
+            }
+          }
+        }
+      }
+    } else { // Don't create unaligned pack
+      // First, remove remaining memory ops of the same type from the list.
+      for (int i = memops.size() - 1; i >= 0; i--) {
+        MemNode* s = memops.at(i)->as_Mem();
+        if (same_velt_type(s, mem_ref)) {
+          memops.remove(i);
+        }
+      }
+
+      // Second, remove already constructed packs of the same type.
+      for (int i = _packset.length() - 1; i >= 0; i--) {
+        Node_List* p = _packset.at(i);
+        MemNode* s = p->at(0)->as_Mem();
+        if (same_velt_type(s, mem_ref)) {
+          remove_pack_at(i);
+        }
+      }
+
+      // If needed find the best memory reference for loop alignment again.
+      if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
+        // Put memory ops from remaining packs back on memops list for
+        // the best alignment search.
+        uint orig_msize = memops.size();
+        for (int i = 0; i < _packset.length(); i++) {
+          Node_List* p = _packset.at(i);
+          MemNode* s = p->at(0)->as_Mem();
+          assert(!same_velt_type(s, mem_ref), "sanity");
+          memops.push(s);
+        }
+        best_align_to_mem_ref = find_align_to_ref(memops);
+        if (best_align_to_mem_ref == NULL) {
+          if (TraceSuperWord) {
+            tty->print_cr("SuperWord::find_adjacent_refs(): best_align_to_mem_ref == NULL");
+          }
+          break;
+        }
+        best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref);
+        NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);)
+        // Restore list.
+        while (memops.size() > orig_msize)
+          (void)memops.pop();
+      }
+    } // unaligned memory accesses
+
+    // Remove used mem nodes.
+    for (int i = memops.size() - 1; i >= 0; i--) {
+      MemNode* m = memops.at(i)->as_Mem();
+      if (alignment(m) != top_align) {
+        memops.remove(i);
+      }
+    }
+
+  } // while (memops.size() != 0
+  set_align_to_ref(best_align_to_mem_ref);
+
+  if (TraceSuperWord) {
+    tty->print_cr("\nAfter find_adjacent_refs");
+    print_packset();
+  }
+}
+
+#ifndef PRODUCT
+void SuperWord::find_adjacent_refs_trace_1(Node* best_align_to_mem_ref, int best_iv_adjustment) {
+  if (is_trace_adjacent()) {
+    tty->print("SuperWord::find_adjacent_refs best_align_to_mem_ref = %d, best_iv_adjustment = %d",
+       best_align_to_mem_ref->_idx, best_iv_adjustment);
+       best_align_to_mem_ref->dump();
+  }
+}
+#endif
+
+//------------------------------find_align_to_ref---------------------------
+// Find a memory reference to align the loop induction variable to.
+// Looks first at stores then at loads, looking for a memory reference
+// with the largest number of references similar to it.
+MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
+  GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
+
+  // Count number of comparable memory ops
+  for (uint i = 0; i < memops.size(); i++) {
+    MemNode* s1 = memops.at(i)->as_Mem();
+    SWPointer p1(s1, this, NULL, false);
+    // Discard if pre loop can't align this reference
+    if (!ref_is_alignable(p1)) {
+      *cmp_ct.adr_at(i) = 0;
+      continue;
+    }
+    for (uint j = i+1; j < memops.size(); j++) {
+      MemNode* s2 = memops.at(j)->as_Mem();
+      if (isomorphic(s1, s2)) {
+        SWPointer p2(s2, this, NULL, false);
+        if (p1.comparable(p2)) {
+          (*cmp_ct.adr_at(i))++;
+          (*cmp_ct.adr_at(j))++;
+        }
+      }
+    }
+  }
+
+  // Find Store (or Load) with the greatest number of "comparable" references,
+  // biggest vector size, smallest data size and smallest iv offset.
+  int max_ct        = 0;
+  int max_vw        = 0;
+  int max_idx       = -1;
+  int min_size      = max_jint;
+  int min_iv_offset = max_jint;
+  for (uint j = 0; j < memops.size(); j++) {
+    MemNode* s = memops.at(j)->as_Mem();
+    if (s->is_Store()) {
+      int vw = vector_width_in_bytes(s);
+      assert(vw > 1, "sanity");
+      SWPointer p(s, this, NULL, false);
+      if ( cmp_ct.at(j) >  max_ct ||
+          (cmp_ct.at(j) == max_ct &&
+            ( vw >  max_vw ||
+             (vw == max_vw &&
+              ( data_size(s) <  min_size ||
+               (data_size(s) == min_size &&
+                p.offset_in_bytes() < min_iv_offset)))))) {
+        max_ct = cmp_ct.at(j);
+        max_vw = vw;
+        max_idx = j;
+        min_size = data_size(s);
+        min_iv_offset = p.offset_in_bytes();
+      }
+    }
+  }
+  // If no stores, look at loads
+  if (max_ct == 0) {
+    for (uint j = 0; j < memops.size(); j++) {
+      MemNode* s = memops.at(j)->as_Mem();
+      if (s->is_Load()) {
+        int vw = vector_width_in_bytes(s);
+        assert(vw > 1, "sanity");
+        SWPointer p(s, this, NULL, false);
+        if ( cmp_ct.at(j) >  max_ct ||
+            (cmp_ct.at(j) == max_ct &&
+              ( vw >  max_vw ||
+               (vw == max_vw &&
+                ( data_size(s) <  min_size ||
+                 (data_size(s) == min_size &&
+                  p.offset_in_bytes() < min_iv_offset)))))) {
+          max_ct = cmp_ct.at(j);
+          max_vw = vw;
+          max_idx = j;
+          min_size = data_size(s);
+          min_iv_offset = p.offset_in_bytes();
+        }
+      }
+    }
+  }
+
+#ifdef ASSERT
+  if (TraceSuperWord && Verbose) {
+    tty->print_cr("\nVector memops after find_align_to_ref");
+    for (uint i = 0; i < memops.size(); i++) {
+      MemNode* s = memops.at(i)->as_Mem();
+      s->dump();
+    }
+  }
+#endif
+
+  if (max_ct > 0) {
+#ifdef ASSERT
+    if (TraceSuperWord) {
+      tty->print("\nVector align to node: ");
+      memops.at(max_idx)->as_Mem()->dump();
+    }
+#endif
+    return memops.at(max_idx)->as_Mem();
+  }
+  return NULL;
+}
+
+//------------------------------ref_is_alignable---------------------------
+// Can the preloop align the reference to position zero in the vector?
+bool SuperWord::ref_is_alignable(SWPointer& p) {
+  if (!p.has_iv()) {
+    return true;   // no induction variable
+  }
+  CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
+  assert(pre_end != NULL, "we must have a correct pre-loop");
+  assert(pre_end->stride_is_con(), "pre loop stride is constant");
+  int preloop_stride = pre_end->stride_con();
+
+  int span = preloop_stride * p.scale_in_bytes();
+  int mem_size = p.memory_size();
+  int offset   = p.offset_in_bytes();
+  // Stride one accesses are alignable if offset is aligned to memory operation size.
+  // Offset can be unaligned when UseUnalignedAccesses is used.
+  if (ABS(span) == mem_size && (ABS(offset) % mem_size) == 0) {
+    return true;
+  }
+  // If the initial offset from start of the object is computable,
+  // check if the pre-loop can align the final offset accordingly.
+  //
+  // In other words: Can we find an i such that the offset
+  // after i pre-loop iterations is aligned to vw?
+  //   (init_offset + pre_loop) % vw == 0              (1)
+  // where
+  //   pre_loop = i * span
+  // is the number of bytes added to the offset by i pre-loop iterations.
+  //
+  // For this to hold we need pre_loop to increase init_offset by
+  //   pre_loop = vw - (init_offset % vw)
+  //
+  // This is only possible if pre_loop is divisible by span because each
+  // pre-loop iteration increases the initial offset by 'span' bytes:
+  //   (vw - (init_offset % vw)) % span == 0
+  //
+  int vw = vector_width_in_bytes(p.mem());
+  assert(vw > 1, "sanity");
+  Node* init_nd = pre_end->init_trip();
+  if (init_nd->is_Con() && p.invar() == NULL) {
+    int init = init_nd->bottom_type()->is_int()->get_con();
+    int init_offset = init * p.scale_in_bytes() + offset;
+    assert(init_offset >= 0, "positive offset from object start");
+    if (vw % span == 0) {
+      // If vm is a multiple of span, we use formula (1).
+      if (span > 0) {
+        return (vw - (init_offset % vw)) % span == 0;
+      } else {
+        assert(span < 0, "nonzero stride * scale");
+        return (init_offset % vw) % -span == 0;
+      }
+    } else if (span % vw == 0) {
+      // If span is a multiple of vw, we can simplify formula (1) to:
+      //   (init_offset + i * span) % vw == 0
+      //     =>
+      //   (init_offset % vw) + ((i * span) % vw) == 0
+      //     =>
+      //   init_offset % vw == 0
+      //
+      // Because we add a multiple of vw to the initial offset, the final
+      // offset is a multiple of vw if and only if init_offset is a multiple.
+      //
+      return (init_offset % vw) == 0;
+    }
+  }
+  return false;
+}
+
+//---------------------------get_iv_adjustment---------------------------
+// Calculate loop's iv adjustment for this memory ops.
+int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
+  SWPointer align_to_ref_p(mem_ref, this, NULL, false);
+  int offset = align_to_ref_p.offset_in_bytes();
+  int scale  = align_to_ref_p.scale_in_bytes();
+  int elt_size = align_to_ref_p.memory_size();
+  int vw       = vector_width_in_bytes(mem_ref);
+  assert(vw > 1, "sanity");
+  int iv_adjustment;
+  if (scale != 0) {
+    int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1;
+    // At least one iteration is executed in pre-loop by default. As result
+    // several iterations are needed to align memory operations in main-loop even
+    // if offset is 0.
+    int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw));
+    assert(((ABS(iv_adjustment_in_bytes) % elt_size) == 0),
+           "(%d) should be divisible by (%d)", iv_adjustment_in_bytes, elt_size);
+    iv_adjustment = iv_adjustment_in_bytes/elt_size;
+  } else {
+    // This memory op is not dependent on iv (scale == 0)
+    iv_adjustment = 0;
+  }
+
+#ifndef PRODUCT
+  if (TraceSuperWord) {
+    tty->print("SuperWord::get_iv_adjustment: n = %d, noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d: ",
+      mem_ref->_idx, offset, iv_adjustment, elt_size, scale, iv_stride(), vw);
+    mem_ref->dump();
+  }
+#endif
+  return iv_adjustment;
+}
+
+//---------------------------dependence_graph---------------------------
+// Construct dependency graph.
+// Add dependence edges to load/store nodes for memory dependence
+//    A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
+void SuperWord::dependence_graph() {
+  CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
+  // First, assign a dependence node to each memory node
+  for (int i = 0; i < _block.length(); i++ ) {
+    Node *n = _block.at(i);
+    if (n->is_Mem() || (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
+      _dg.make_node(n);
+    }
+  }
+
+  // For each memory slice, create the dependences
+  for (int i = 0; i < _mem_slice_head.length(); i++) {
+    Node* n      = _mem_slice_head.at(i);
+    Node* n_tail = _mem_slice_tail.at(i);
+
+    // Get slice in predecessor order (last is first)
+    if (cl->is_main_loop()) {
+      mem_slice_preds(n_tail, n, _nlist);
+    }
+
+#ifndef PRODUCT
+    if(TraceSuperWord && Verbose) {
+      tty->print_cr("SuperWord::dependence_graph: built a new mem slice");
+      for (int j = _nlist.length() - 1; j >= 0 ; j--) {
+        _nlist.at(j)->dump();
+      }
+    }
+#endif
+    // Make the slice dependent on the root
+    DepMem* slice = _dg.dep(n);
+    _dg.make_edge(_dg.root(), slice);
+
+    // Create a sink for the slice
+    DepMem* slice_sink = _dg.make_node(NULL);
+    _dg.make_edge(slice_sink, _dg.tail());
+
+    // Now visit each pair of memory ops, creating the edges
+    for (int j = _nlist.length() - 1; j >= 0 ; j--) {
+      Node* s1 = _nlist.at(j);
+
+      // If no dependency yet, use slice
+      if (_dg.dep(s1)->in_cnt() == 0) {
+        _dg.make_edge(slice, s1);
+      }
+      SWPointer p1(s1->as_Mem(), this, NULL, false);
+      bool sink_dependent = true;
+      for (int k = j - 1; k >= 0; k--) {
+        Node* s2 = _nlist.at(k);
+        if (s1->is_Load() && s2->is_Load())
+          continue;
+        SWPointer p2(s2->as_Mem(), this, NULL, false);
+
+        int cmp = p1.cmp(p2);
+        if (SuperWordRTDepCheck &&
+            p1.base() != p2.base() && p1.valid() && p2.valid()) {
+          // Create a runtime check to disambiguate
+          OrderedPair pp(p1.base(), p2.base());
+          _disjoint_ptrs.append_if_missing(pp);
+        } else if (!SWPointer::not_equal(cmp)) {
+          // Possibly same address
+          _dg.make_edge(s1, s2);
+          sink_dependent = false;
+        }
+      }
+      if (sink_dependent) {
+        _dg.make_edge(s1, slice_sink);
+      }
+    }
+
+    if (TraceSuperWord) {
+      tty->print_cr("\nDependence graph for slice: %d", n->_idx);
+      for (int q = 0; q < _nlist.length(); q++) {
+        _dg.print(_nlist.at(q));
+      }
+      tty->cr();
+    }
+
+    _nlist.clear();
+  }
+
+  if (TraceSuperWord) {
+    tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
+    for (int r = 0; r < _disjoint_ptrs.length(); r++) {
+      _disjoint_ptrs.at(r).print();
+      tty->cr();
+    }
+    tty->cr();
+  }
+
+}
+
+//---------------------------mem_slice_preds---------------------------
+// Return a memory slice (node list) in predecessor order starting at "start"
+void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
+  assert(preds.length() == 0, "start empty");
+  Node* n = start;
+  Node* prev = NULL;
+  while (true) {
+    NOT_PRODUCT( if(is_trace_mem_slice()) tty->print_cr("SuperWord::mem_slice_preds: n %d", n->_idx);)
+    assert(in_bb(n), "must be in block");
+    for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
+      Node* out = n->fast_out(i);
+      if (out->is_Load()) {
+        if (in_bb(out)) {
+          preds.push(out);
+          if (TraceSuperWord && Verbose) {
+            tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", out->_idx);
+          }
+        }
+      } else {
+        // FIXME
+        if (out->is_MergeMem() && !in_bb(out)) {
+          // Either unrolling is causing a memory edge not to disappear,
+          // or need to run igvn.optimize() again before SLP
+        } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
+          // Ditto.  Not sure what else to check further.
+        } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
+          // StoreCM has an input edge used as a precedence edge.
+          // Maybe an issue when oop stores are vectorized.
+        } else {
+          assert(out == prev || prev == NULL, "no branches off of store slice");
+        }
+      }//else
+    }//for
+    if (n == stop) break;
+    preds.push(n);
+    if (TraceSuperWord && Verbose) {
+      tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", n->_idx);
+    }
+    prev = n;
+    assert(n->is_Mem(), "unexpected node %s", n->Name());
+    n = n->in(MemNode::Memory);
+  }
+}
+
+//------------------------------stmts_can_pack---------------------------
+// Can s1 and s2 be in a pack with s1 immediately preceding s2 and
+// s1 aligned at "align"
+bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
+
+  // Do not use superword for non-primitives
+  BasicType bt1 = velt_basic_type(s1);
+  BasicType bt2 = velt_basic_type(s2);
+  if(!is_java_primitive(bt1) || !is_java_primitive(bt2))
+    return false;
+  if (Matcher::max_vector_size(bt1) < 2) {
+    return false; // No vectors for this type
+  }
+
+  if (isomorphic(s1, s2)) {
+    if (independent(s1, s2) || reduction(s1, s2)) {
+      if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
+        if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
+          int s1_align = alignment(s1);
+          int s2_align = alignment(s2);
+          if (s1_align == top_align || s1_align == align) {
+            if (s2_align == top_align || s2_align == align + data_size(s1)) {
+              return true;
+            }
+          }
+        }
+      }
+    }
+  }
+  return false;
+}
+
+//------------------------------exists_at---------------------------
+// Does s exist in a pack at position pos?
+bool SuperWord::exists_at(Node* s, uint pos) {
+  for (int i = 0; i < _packset.length(); i++) {
+    Node_List* p = _packset.at(i);
+    if (p->at(pos) == s) {
+      return true;
+    }
+  }
+  return false;
+}
+
+//------------------------------are_adjacent_refs---------------------------
+// Is s1 immediately before s2 in memory?
+bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
+  if (!s1->is_Mem() || !s2->is_Mem()) return false;
+  if (!in_bb(s1)    || !in_bb(s2))    return false;
+
+  // Do not use superword for non-primitives
+  if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
+      !is_java_primitive(s2->as_Mem()->memory_type())) {
+    return false;
+  }
+
+  // FIXME - co_locate_pack fails on Stores in different mem-slices, so
+  // only pack memops that are in the same alias set until that's fixed.
+  if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
+      _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
+    return false;
+  SWPointer p1(s1->as_Mem(), this, NULL, false);
+  SWPointer p2(s2->as_Mem(), this, NULL, false);
+  if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
+  int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
+  return diff == data_size(s1);
+}
+
+//------------------------------isomorphic---------------------------
+// Are s1 and s2 similar?
+bool SuperWord::isomorphic(Node* s1, Node* s2) {
+  if (s1->Opcode() != s2->Opcode()) return false;
+  if (s1->req() != s2->req()) return false;
+  if (s1->in(0) != s2->in(0)) return false;
+  if (!same_velt_type(s1, s2)) return false;
+  return true;
+}
+
+//------------------------------independent---------------------------
+// Is there no data path from s1 to s2 or s2 to s1?
+bool SuperWord::independent(Node* s1, Node* s2) {
+  //  assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
+  int d1 = depth(s1);
+  int d2 = depth(s2);
+  if (d1 == d2) return s1 != s2;
+  Node* deep    = d1 > d2 ? s1 : s2;
+  Node* shallow = d1 > d2 ? s2 : s1;
+
+  visited_clear();
+
+  return independent_path(shallow, deep);
+}
+
+//------------------------------reduction---------------------------
+// Is there a data path between s1 and s2 and the nodes reductions?
+bool SuperWord::reduction(Node* s1, Node* s2) {
+  bool retValue = false;
+  int d1 = depth(s1);
+  int d2 = depth(s2);
+  if (d1 + 1 == d2) {
+    if (s1->is_reduction() && s2->is_reduction()) {
+      // This is an ordered set, so s1 should define s2
+      for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
+        Node* t1 = s1->fast_out(i);
+        if (t1 == s2) {
+          // both nodes are reductions and connected
+          retValue = true;
+        }
+      }
+    }
+  }
+
+  return retValue;
+}
+
+//------------------------------independent_path------------------------------
+// Helper for independent
+bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
+  if (dp >= 1000) return false; // stop deep recursion
+  visited_set(deep);
+  int shal_depth = depth(shallow);
+  assert(shal_depth <= depth(deep), "must be");
+  for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
+    Node* pred = preds.current();
+    if (in_bb(pred) && !visited_test(pred)) {
+      if (shallow == pred) {
+        return false;
+      }
+      if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
+        return false;
+      }
+    }
+  }
+  return true;
+}
+
+//------------------------------set_alignment---------------------------
+void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
+  set_alignment(s1, align);
+  if (align == top_align || align == bottom_align) {
+    set_alignment(s2, align);
+  } else {
+    set_alignment(s2, align + data_size(s1));
+  }
+}
+
+//------------------------------data_size---------------------------
+int SuperWord::data_size(Node* s) {
+  Node* use = NULL; //test if the node is a candidate for CMoveVD optimization, then return the size of CMov
+  if (_do_vector_loop) {
+    use = _cmovev_kit.is_Bool_candidate(s);
+    if (use != NULL) {
+      return data_size(use);
+    }
+    use = _cmovev_kit.is_CmpD_candidate(s);
+    if (use != NULL) {
+      return data_size(use);
+    }
+  }
+  int bsize = type2aelembytes(velt_basic_type(s));
+  assert(bsize != 0, "valid size");
+  return bsize;
+}
+
+//------------------------------extend_packlist---------------------------
+// Extend packset by following use->def and def->use links from pack members.
+void SuperWord::extend_packlist() {
+  bool changed;
+  do {
+    packset_sort(_packset.length());
+    changed = false;
+    for (int i = 0; i < _packset.length(); i++) {
+      Node_List* p = _packset.at(i);
+      changed |= follow_use_defs(p);
+      changed |= follow_def_uses(p);
+    }
+  } while (changed);
+
+  if (_race_possible) {
+    for (int i = 0; i < _packset.length(); i++) {
+      Node_List* p = _packset.at(i);
+      order_def_uses(p);
+    }
+  }
+
+  if (TraceSuperWord) {
+    tty->print_cr("\nAfter extend_packlist");
+    print_packset();
+  }
+}
+
+//------------------------------follow_use_defs---------------------------
+// Extend the packset by visiting operand definitions of nodes in pack p
+bool SuperWord::follow_use_defs(Node_List* p) {
+  assert(p->size() == 2, "just checking");
+  Node* s1 = p->at(0);
+  Node* s2 = p->at(1);
+  assert(s1->req() == s2->req(), "just checking");
+  assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
+
+  if (s1->is_Load()) return false;
+
+  int align = alignment(s1);
+  NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: s1 %d, align %d", s1->_idx, align);)
+  bool changed = false;
+  int start = s1->is_Store() ? MemNode::ValueIn   : 1;
+  int end   = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
+  for (int j = start; j < end; j++) {
+    Node* t1 = s1->in(j);
+    Node* t2 = s2->in(j);
+    if (!in_bb(t1) || !in_bb(t2))
+      continue;
+    if (stmts_can_pack(t1, t2, align)) {
+      if (est_savings(t1, t2) >= 0) {
+        Node_List* pair = new Node_List();
+        pair->push(t1);
+        pair->push(t2);
+        _packset.append(pair);
+        NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: set_alignment(%d, %d, %d)", t1->_idx, t2->_idx, align);)
+        set_alignment(t1, t2, align);
+        changed = true;
+      }
+    }
+  }
+  return changed;
+}
+
+//------------------------------follow_def_uses---------------------------
+// Extend the packset by visiting uses of nodes in pack p
+bool SuperWord::follow_def_uses(Node_List* p) {
+  bool changed = false;
+  Node* s1 = p->at(0);
+  Node* s2 = p->at(1);
+  assert(p->size() == 2, "just checking");
+  assert(s1->req() == s2->req(), "just checking");
+  assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
+
+  if (s1->is_Store()) return false;
+
+  int align = alignment(s1);
+  NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: s1 %d, align %d", s1->_idx, align);)
+  int savings = -1;
+  int num_s1_uses = 0;
+  Node* u1 = NULL;
+  Node* u2 = NULL;
+  for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
+    Node* t1 = s1->fast_out(i);
+    num_s1_uses++;
+    if (!in_bb(t1)) continue;
+    for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
+      Node* t2 = s2->fast_out(j);
+      if (!in_bb(t2)) continue;
+      if (!opnd_positions_match(s1, t1, s2, t2))
+        continue;
+      if (stmts_can_pack(t1, t2, align)) {
+        int my_savings = est_savings(t1, t2);
+        if (my_savings > savings) {
+          savings = my_savings;
+          u1 = t1;
+          u2 = t2;
+        }
+      }
+    }
+  }
+  if (num_s1_uses > 1) {
+    _race_possible = true;
+  }
+  if (savings >= 0) {
+    Node_List* pair = new Node_List();
+    pair->push(u1);
+    pair->push(u2);
+    _packset.append(pair);
+    NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: set_alignment(%d, %d, %d)", u1->_idx, u2->_idx, align);)
+    set_alignment(u1, u2, align);
+    changed = true;
+  }
+  return changed;
+}
+
+//------------------------------order_def_uses---------------------------
+// For extended packsets, ordinally arrange uses packset by major component
+void SuperWord::order_def_uses(Node_List* p) {
+  Node* s1 = p->at(0);
+
+  if (s1->is_Store()) return;
+
+  // reductions are always managed beforehand
+  if (s1->is_reduction()) return;
+
+  for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
+    Node* t1 = s1->fast_out(i);
+
+    // Only allow operand swap on commuting operations
+    if (!t1->is_Add() && !t1->is_Mul()) {
+      break;
+    }
+
+    // Now find t1's packset
+    Node_List* p2 = NULL;
+    for (int j = 0; j < _packset.length(); j++) {
+      p2 = _packset.at(j);
+      Node* first = p2->at(0);
+      if (t1 == first) {
+        break;
+      }
+      p2 = NULL;
+    }
+    // Arrange all sub components by the major component
+    if (p2 != NULL) {
+      for (uint j = 1; j < p->size(); j++) {
+        Node* d1 = p->at(j);
+        Node* u1 = p2->at(j);
+        opnd_positions_match(s1, t1, d1, u1);
+      }
+    }
+  }
+}
+
+//---------------------------opnd_positions_match-------------------------
+// Is the use of d1 in u1 at the same operand position as d2 in u2?
+bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
+  // check reductions to see if they are marshalled to represent the reduction
+  // operator in a specified opnd
+  if (u1->is_reduction() && u2->is_reduction()) {
+    // ensure reductions have phis and reduction definitions feeding the 1st operand
+    Node* first = u1->in(2);
+    if (first->is_Phi() || first->is_reduction()) {
+      u1->swap_edges(1, 2);
+    }
+    // ensure reductions have phis and reduction definitions feeding the 1st operand
+    first = u2->in(2);
+    if (first->is_Phi() || first->is_reduction()) {
+      u2->swap_edges(1, 2);
+    }
+    return true;
+  }
+
+  uint ct = u1->req();
+  if (ct != u2->req()) return false;
+  uint i1 = 0;
+  uint i2 = 0;
+  do {
+    for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
+    for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
+    if (i1 != i2) {
+      if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) {
+        // Further analysis relies on operands position matching.
+        u2->swap_edges(i1, i2);
+      } else {
+        return false;
+      }
+    }
+  } while (i1 < ct);
+  return true;
+}
+
+//------------------------------est_savings---------------------------
+// Estimate the savings from executing s1 and s2 as a pack
+int SuperWord::est_savings(Node* s1, Node* s2) {
+  int save_in = 2 - 1; // 2 operations per instruction in packed form
+
+  // inputs
+  for (uint i = 1; i < s1->req(); i++) {
+    Node* x1 = s1->in(i);
+    Node* x2 = s2->in(i);
+    if (x1 != x2) {
+      if (are_adjacent_refs(x1, x2)) {
+        save_in += adjacent_profit(x1, x2);
+      } else if (!in_packset(x1, x2)) {
+        save_in -= pack_cost(2);
+      } else {
+        save_in += unpack_cost(2);
+      }
+    }
+  }
+
+  // uses of result
+  uint ct = 0;
+  int save_use = 0;
+  for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
+    Node* s1_use = s1->fast_out(i);
+    for (int j = 0; j < _packset.length(); j++) {
+      Node_List* p = _packset.at(j);
+      if (p->at(0) == s1_use) {
+        for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
+          Node* s2_use = s2->fast_out(k);
+          if (p->at(p->size()-1) == s2_use) {
+            ct++;
+            if (are_adjacent_refs(s1_use, s2_use)) {
+              save_use += adjacent_profit(s1_use, s2_use);
+            }
+          }
+        }
+      }
+    }
+  }
+
+  if (ct < s1->outcnt()) save_use += unpack_cost(1);
+  if (ct < s2->outcnt()) save_use += unpack_cost(1);
+
+  return MAX2(save_in, save_use);
+}
+
+//------------------------------costs---------------------------
+int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
+int SuperWord::pack_cost(int ct)   { return ct; }
+int SuperWord::unpack_cost(int ct) { return ct; }
+
+//------------------------------combine_packs---------------------------
+// Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
+void SuperWord::combine_packs() {
+  bool changed = true;
+  // Combine packs regardless max vector size.
+  while (changed) {
+    changed = false;
+    for (int i = 0; i < _packset.length(); i++) {
+      Node_List* p1 = _packset.at(i);
+      if (p1 == NULL) continue;
+      // Because of sorting we can start at i + 1
+      for (int j = i + 1; j < _packset.length(); j++) {
+        Node_List* p2 = _packset.at(j);
+        if (p2 == NULL) continue;
+        if (i == j) continue;
+        if (p1->at(p1->size()-1) == p2->at(0)) {
+          for (uint k = 1; k < p2->size(); k++) {
+            p1->push(p2->at(k));
+          }
+          _packset.at_put(j, NULL);
+          changed = true;
+        }
+      }
+    }
+  }
+
+  // Split packs which have size greater then max vector size.
+  for (int i = 0; i < _packset.length(); i++) {
+    Node_List* p1 = _packset.at(i);
+    if (p1 != NULL) {
+      BasicType bt = velt_basic_type(p1->at(0));
+      uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector
+      assert(is_power_of_2(max_vlen), "sanity");
+      uint psize = p1->size();
+      if (!is_power_of_2(psize)) {
+        // Skip pack which can't be vector.
+        // case1: for(...) { a[i] = i; }    elements values are different (i+x)
+        // case2: for(...) { a[i] = b[i+1]; }  can't align both, load and store
+        _packset.at_put(i, NULL);
+        continue;
+      }
+      if (psize > max_vlen) {
+        Node_List* pack = new Node_List();
+        for (uint j = 0; j < psize; j++) {
+          pack->push(p1->at(j));
+          if (pack->size() >= max_vlen) {
+            assert(is_power_of_2(pack->size()), "sanity");
+            _packset.append(pack);
+            pack = new Node_List();
+          }
+        }
+        _packset.at_put(i, NULL);
+      }
+    }
+  }
+
+  // Compress list.
+  for (int i = _packset.length() - 1; i >= 0; i--) {
+    Node_List* p1 = _packset.at(i);
+    if (p1 == NULL) {
+      _packset.remove_at(i);
+    }
+  }
+
+  if (TraceSuperWord) {
+    tty->print_cr("\nAfter combine_packs");
+    print_packset();
+  }
+}
+
+//-----------------------------construct_my_pack_map--------------------------
+// Construct the map from nodes to packs.  Only valid after the
+// point where a node is only in one pack (after combine_packs).
+void SuperWord::construct_my_pack_map() {
+  Node_List* rslt = NULL;
+  for (int i = 0; i < _packset.length(); i++) {
+    Node_List* p = _packset.at(i);
+    for (uint j = 0; j < p->size(); j++) {
+      Node* s = p->at(j);
+      assert(my_pack(s) == NULL, "only in one pack");
+      set_my_pack(s, p);
+    }
+  }
+}
+
+//------------------------------filter_packs---------------------------
+// Remove packs that are not implemented or not profitable.
+void SuperWord::filter_packs() {
+  // Remove packs that are not implemented
+  for (int i = _packset.length() - 1; i >= 0; i--) {
+    Node_List* pk = _packset.at(i);
+    bool impl = implemented(pk);
+    if (!impl) {
+#ifndef PRODUCT
+      if (TraceSuperWord && Verbose) {
+        tty->print_cr("Unimplemented");
+        pk->at(0)->dump();
+      }
+#endif
+      remove_pack_at(i);
+    }
+    Node *n = pk->at(0);
+    if (n->is_reduction()) {
+      _num_reductions++;
+    } else {
+      _num_work_vecs++;
+    }
+  }
+
+  // Remove packs that are not profitable
+  bool changed;
+  do {
+    changed = false;
+    for (int i = _packset.length() - 1; i >= 0; i--) {
+      Node_List* pk = _packset.at(i);
+      bool prof = profitable(pk);
+      if (!prof) {
+#ifndef PRODUCT
+        if (TraceSuperWord && Verbose) {
+          tty->print_cr("Unprofitable");
+          pk->at(0)->dump();
+        }
+#endif
+        remove_pack_at(i);
+        changed = true;
+      }
+    }
+  } while (changed);
+
+#ifndef PRODUCT
+  if (TraceSuperWord) {
+    tty->print_cr("\nAfter filter_packs");
+    print_packset();
+    tty->cr();
+  }
+#endif
+}
+
+//------------------------------merge_packs_to_cmovd---------------------------
+// Merge CMoveD into new vector-nodes
+// We want to catch this pattern and subsume CmpD and Bool into CMoveD
+//
+//                   SubD             ConD
+//                  /  |               /
+//                 /   |           /   /
+//                /    |       /      /
+//               /     |   /         /
+//              /      /            /
+//             /    /  |           /
+//            v /      |          /
+//         CmpD        |         /
+//          |          |        /
+//          v          |       /
+//         Bool        |      /
+//           \         |     /
+//             \       |    /
+//               \     |   /
+//                 \   |  /
+//                   \ v /
+//                   CMoveD
+//
+
+void SuperWord::merge_packs_to_cmovd() {
+  for (int i = _packset.length() - 1; i >= 0; i--) {
+    _cmovev_kit.make_cmovevd_pack(_packset.at(i));
+  }
+  #ifndef PRODUCT
+    if (TraceSuperWord) {
+      tty->print_cr("\nSuperWord::merge_packs_to_cmovd(): After merge");
+      print_packset();
+      tty->cr();
+    }
+  #endif
+}
+
+Node* CMoveKit::is_Bool_candidate(Node* def) const {
+  Node* use = NULL;
+  if (!def->is_Bool() || def->in(0) != NULL || def->outcnt() != 1) {
+    return NULL;
+  }
+  for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
+    use = def->fast_out(j);
+    if (!_sw->same_generation(def, use) || !use->is_CMove()) {
+      return NULL;
+    }
+  }
+  return use;
+}
+
+Node* CMoveKit::is_CmpD_candidate(Node* def) const {
+  Node* use = NULL;
+  if (!def->is_Cmp() || def->in(0) != NULL || def->outcnt() != 1) {
+    return NULL;
+  }
+  for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
+    use = def->fast_out(j);
+    if (!_sw->same_generation(def, use) || (use = is_Bool_candidate(use)) == NULL || !_sw->same_generation(def, use)) {
+      return NULL;
+    }
+  }
+  return use;
+}
+
+Node_List* CMoveKit::make_cmovevd_pack(Node_List* cmovd_pk) {
+  Node *cmovd = cmovd_pk->at(0);
+  if (!cmovd->is_CMove()) {
+    return NULL;
+  }
+  if (pack(cmovd) != NULL) { // already in the cmov pack
+    return NULL;
+  }
+  if (cmovd->in(0) != NULL) {
+    NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CMoveD %d has control flow, escaping...", cmovd->_idx); cmovd->dump();})
+    return NULL;
+  }
+
+  Node* bol = cmovd->as_CMove()->in(CMoveNode::Condition);
+  if (!bol->is_Bool()
+      || bol->outcnt() != 1
+      || !_sw->same_generation(bol, cmovd)
+      || bol->in(0) != NULL  // BoolNode has control flow!!
+      || _sw->my_pack(bol) == NULL) {
+      NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: Bool %d does not fit CMoveD %d for building vector, escaping...", bol->_idx, cmovd->_idx); bol->dump();})
+      return NULL;
+  }
+  Node_List* bool_pk = _sw->my_pack(bol);
+  if (bool_pk->size() != cmovd_pk->size() ) {
+    return NULL;
+  }
+
+  Node* cmpd = bol->in(1);
+  if (!cmpd->is_Cmp()
+      || cmpd->outcnt() != 1
+      || !_sw->same_generation(cmpd, cmovd)
+      || cmpd->in(0) != NULL  // CmpDNode has control flow!!
+      || _sw->my_pack(cmpd) == NULL) {
+      NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CmpD %d does not fit CMoveD %d for building vector, escaping...", cmpd->_idx, cmovd->_idx); cmpd->dump();})
+      return NULL;
+  }
+  Node_List* cmpd_pk = _sw->my_pack(cmpd);
+  if (cmpd_pk->size() != cmovd_pk->size() ) {
+    return NULL;
+  }
+
+  if (!test_cmpd_pack(cmpd_pk, cmovd_pk)) {
+    NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: cmpd pack for CmpD %d failed vectorization test", cmpd->_idx); cmpd->dump();})
+    return NULL;
+  }
+
+  Node_List* new_cmpd_pk = new Node_List();
+  uint sz = cmovd_pk->size() - 1;
+  for (uint i = 0; i <= sz; ++i) {
+    Node* cmov = cmovd_pk->at(i);
+    Node* bol  = bool_pk->at(i);
+    Node* cmp  = cmpd_pk->at(i);
+
+    new_cmpd_pk->insert(i, cmov);
+
+    map(cmov, new_cmpd_pk);
+    map(bol, new_cmpd_pk);
+    map(cmp, new_cmpd_pk);
+
+    _sw->set_my_pack(cmov, new_cmpd_pk); // and keep old packs for cmp and bool
+  }
+  _sw->_packset.remove(cmovd_pk);
+  _sw->_packset.remove(bool_pk);
+  _sw->_packset.remove(cmpd_pk);
+  _sw->_packset.append(new_cmpd_pk);
+  NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print_cr("CMoveKit::make_cmovevd_pack: added syntactic CMoveD pack"); _sw->print_pack(new_cmpd_pk);})
+  return new_cmpd_pk;
+}
+
+bool CMoveKit::test_cmpd_pack(Node_List* cmpd_pk, Node_List* cmovd_pk) {
+  Node* cmpd0 = cmpd_pk->at(0);
+  assert(cmpd0->is_Cmp(), "CMoveKit::test_cmpd_pack: should be CmpDNode");
+  assert(cmovd_pk->at(0)->is_CMove(), "CMoveKit::test_cmpd_pack: should be CMoveD");
+  assert(cmpd_pk->size() == cmovd_pk->size(), "CMoveKit::test_cmpd_pack: should be same size");
+  Node* in1 = cmpd0->in(1);
+  Node* in2 = cmpd0->in(2);
+  Node_List* in1_pk = _sw->my_pack(in1);
+  Node_List* in2_pk = _sw->my_pack(in2);
+
+  if (  (in1_pk != NULL && in1_pk->size() != cmpd_pk->size())
+     || (in2_pk != NULL && in2_pk->size() != cmpd_pk->size()) ) {
+    return false;
+  }
+
+  // test if "all" in1 are in the same pack or the same node
+  if (in1_pk == NULL) {
+    for (uint j = 1; j < cmpd_pk->size(); j++) {
+      if (cmpd_pk->at(j)->in(1) != in1) {
+        return false;
+      }
+    }//for: in1_pk is not pack but all CmpD nodes in the pack have the same in(1)
+  }
+  // test if "all" in2 are in the same pack or the same node
+  if (in2_pk == NULL) {
+    for (uint j = 1; j < cmpd_pk->size(); j++) {
+      if (cmpd_pk->at(j)->in(2) != in2) {
+        return false;
+      }
+    }//for: in2_pk is not pack but all CmpD nodes in the pack have the same in(2)
+  }
+  //now check if cmpd_pk may be subsumed in vector built for cmovd_pk
+  int cmovd_ind1, cmovd_ind2;
+  if (cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse)
+   && cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) {
+      cmovd_ind1 = CMoveNode::IfFalse;
+      cmovd_ind2 = CMoveNode::IfTrue;
+  } else if (cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse)
+          && cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) {
+      cmovd_ind2 = CMoveNode::IfFalse;
+      cmovd_ind1 = CMoveNode::IfTrue;
+  }
+  else {
+    return false;
+  }
+
+  for (uint j = 1; j < cmpd_pk->size(); j++) {
+    if (cmpd_pk->at(j)->in(1) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind1)
+        || cmpd_pk->at(j)->in(2) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind2)) {
+        return false;
+    }//if
+  }
+  NOT_PRODUCT(if(_sw->is_trace_cmov()) { tty->print("CMoveKit::test_cmpd_pack: cmpd pack for 1st CmpD %d is OK for vectorization: ", cmpd0->_idx); cmpd0->dump(); })
+  return true;
+}
+
+//------------------------------implemented---------------------------
+// Can code be generated for pack p?
+bool SuperWord::implemented(Node_List* p) {
+  bool retValue = false;
+  Node* p0 = p->at(0);
+  if (p0 != NULL) {
+    int opc = p0->Opcode();
+    uint size = p->size();
+    if (p0->is_reduction()) {
+      const Type *arith_type = p0->bottom_type();
+      // Length 2 reductions of INT/LONG do not offer performance benefits
+      if (((arith_type->basic_type() == T_INT) || (arith_type->basic_type() == T_LONG)) && (size == 2)) {
+        retValue = false;
+      } else {
+        retValue = ReductionNode::implemented(opc, size, arith_type->basic_type());
+      }
+    } else {
+      retValue = VectorNode::implemented(opc, size, velt_basic_type(p0));
+    }
+    if (!retValue) {
+      if (is_cmov_pack(p)) {
+        NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::implemented: found cmpd pack"); print_pack(p);})
+        return true;
+      }
+    }
+  }
+  return retValue;
+}
+
+bool SuperWord::is_cmov_pack(Node_List* p) {
+  return _cmovev_kit.pack(p->at(0)) != NULL;
+}
+//------------------------------same_inputs--------------------------
+// For pack p, are all idx operands the same?
+bool SuperWord::same_inputs(Node_List* p, int idx) {
+  Node* p0 = p->at(0);
+  uint vlen = p->size();
+  Node* p0_def = p0->in(idx);
+  for (uint i = 1; i < vlen; i++) {
+    Node* pi = p->at(i);
+    Node* pi_def = pi->in(idx);
+    if (p0_def != pi_def) {
+      return false;
+    }
+  }
+  return true;
+}
+
+//------------------------------profitable---------------------------
+// For pack p, are all operands and all uses (with in the block) vector?
+bool SuperWord::profitable(Node_List* p) {
+  Node* p0 = p->at(0);
+  uint start, end;
+  VectorNode::vector_operands(p0, &start, &end);
+
+  // Return false if some inputs are not vectors or vectors with different
+  // size or alignment.
+  // Also, for now, return false if not scalar promotion case when inputs are
+  // the same. Later, implement PackNode and allow differing, non-vector inputs
+  // (maybe just the ones from outside the block.)
+  for (uint i = start; i < end; i++) {
+    if (!is_vector_use(p0, i)) {
+      return false;
+    }
+  }
+  // Check if reductions are connected
+  if (p0->is_reduction()) {
+    Node* second_in = p0->in(2);
+    Node_List* second_pk = my_pack(second_in);
+    if ((second_pk == NULL) || (_num_work_vecs == _num_reductions)) {
+      // Remove reduction flag if no parent pack or if not enough work
+      // to cover reduction expansion overhead
+      p0->remove_flag(Node::Flag_is_reduction);
+      return false;
+    } else if (second_pk->size() != p->size()) {
+      return false;
+    }
+  }
+  if (VectorNode::is_shift(p0)) {
+    // For now, return false if shift count is vector or not scalar promotion
+    // case (different shift counts) because it is not supported yet.
+    Node* cnt = p0->in(2);
+    Node_List* cnt_pk = my_pack(cnt);
+    if (cnt_pk != NULL)
+      return false;
+    if (!same_inputs(p, 2))
+      return false;
+  }
+  if (!p0->is_Store()) {
+    // For now, return false if not all uses are vector.
+    // Later, implement ExtractNode and allow non-vector uses (maybe
+    // just the ones outside the block.)
+    for (uint i = 0; i < p->size(); i++) {
+      Node* def = p->at(i);
+      if (is_cmov_pack_internal_node(p, def)) {
+        continue;
+      }
+      for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
+        Node* use = def->fast_out(j);
+        for (uint k = 0; k < use->req(); k++) {
+          Node* n = use->in(k);
+          if (def == n) {
+            // reductions can be loop carried dependences
+            if (def->is_reduction() && use->is_Phi())
+              continue;
+            if (!is_vector_use(use, k)) {
+              return false;
+            }
+          }
+        }
+      }
+    }
+  }
+  return true;
+}
+
+//------------------------------schedule---------------------------
+// Adjust the memory graph for the packed operations
+void SuperWord::schedule() {
+
+  // Co-locate in the memory graph the members of each memory pack
+  for (int i = 0; i < _packset.length(); i++) {
+    co_locate_pack(_packset.at(i));
+  }
+}
+
+//-------------------------------remove_and_insert-------------------
+// Remove "current" from its current position in the memory graph and insert
+// it after the appropriate insertion point (lip or uip).
+void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
+                                  Node *uip, Unique_Node_List &sched_before) {
+  Node* my_mem = current->in(MemNode::Memory);
+  bool sched_up = sched_before.member(current);
+
+  // remove current_store from its current position in the memmory graph
+  for (DUIterator i = current->outs(); current->has_out(i); i++) {
+    Node* use = current->out(i);
+    if (use->is_Mem()) {
+      assert(use->in(MemNode::Memory) == current, "must be");
+      if (use == prev) { // connect prev to my_mem
+          _igvn.replace_input_of(use, MemNode::Memory, my_mem);
+          --i; //deleted this edge; rescan position
+      } else if (sched_before.member(use)) {
+        if (!sched_up) { // Will be moved together with current
+          _igvn.replace_input_of(use, MemNode::Memory, uip);
+          --i; //deleted this edge; rescan position
+        }
+      } else {
+        if (sched_up) { // Will be moved together with current
+          _igvn.replace_input_of(use, MemNode::Memory, lip);
+          --i; //deleted this edge; rescan position
+        }
+      }
+    }
+  }
+
+  Node *insert_pt =  sched_up ?  uip : lip;
+
+  // all uses of insert_pt's memory state should use current's instead
+  for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
+    Node* use = insert_pt->out(i);
+    if (use->is_Mem()) {
+      assert(use->in(MemNode::Memory) == insert_pt, "must be");
+      _igvn.replace_input_of(use, MemNode::Memory, current);
+      --i; //deleted this edge; rescan position
+    } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
+      uint pos; //lip (lower insert point) must be the last one in the memory slice
+      for (pos=1; pos < use->req(); pos++) {
+        if (use->in(pos) == insert_pt) break;
+      }
+      _igvn.replace_input_of(use, pos, current);
+      --i;
+    }
+  }
+
+  //connect current to insert_pt
+  _igvn.replace_input_of(current, MemNode::Memory, insert_pt);
+}
+
+//------------------------------co_locate_pack----------------------------------
+// To schedule a store pack, we need to move any sandwiched memory ops either before
+// or after the pack, based upon dependence information:
+// (1) If any store in the pack depends on the sandwiched memory op, the
+//     sandwiched memory op must be scheduled BEFORE the pack;
+// (2) If a sandwiched memory op depends on any store in the pack, the
+//     sandwiched memory op must be scheduled AFTER the pack;
+// (3) If a sandwiched memory op (say, memA) depends on another sandwiched
+//     memory op (say memB), memB must be scheduled before memA. So, if memA is
+//     scheduled before the pack, memB must also be scheduled before the pack;
+// (4) If there is no dependence restriction for a sandwiched memory op, we simply
+//     schedule this store AFTER the pack
+// (5) We know there is no dependence cycle, so there in no other case;
+// (6) Finally, all memory ops in another single pack should be moved in the same direction.
+//
+// To schedule a load pack, we use the memory state of either the first or the last load in
+// the pack, based on the dependence constraint.
+void SuperWord::co_locate_pack(Node_List* pk) {
+  if (pk->at(0)->is_Store()) {
+    MemNode* first     = executed_first(pk)->as_Mem();
+    MemNode* last      = executed_last(pk)->as_Mem();
+    Unique_Node_List schedule_before_pack;
+    Unique_Node_List memops;
+
+    MemNode* current   = last->in(MemNode::Memory)->as_Mem();
+    MemNode* previous  = last;
+    while (true) {
+      assert(in_bb(current), "stay in block");
+      memops.push(previous);
+      for (DUIterator i = current->outs(); current->has_out(i); i++) {
+        Node* use = current->out(i);
+        if (use->is_Mem() && use != previous)
+          memops.push(use);
+      }
+      if (current == first) break;
+      previous = current;
+      current  = current->in(MemNode::Memory)->as_Mem();
+    }
+
+    // determine which memory operations should be scheduled before the pack
+    for (uint i = 1; i < memops.size(); i++) {
+      Node *s1 = memops.at(i);
+      if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
+        for (uint j = 0; j< i; j++) {
+          Node *s2 = memops.at(j);
+          if (!independent(s1, s2)) {
+            if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
+              schedule_before_pack.push(s1); // s1 must be scheduled before
+              Node_List* mem_pk = my_pack(s1);
+              if (mem_pk != NULL) {
+                for (uint ii = 0; ii < mem_pk->size(); ii++) {
+                  Node* s = mem_pk->at(ii);  // follow partner
+                  if (memops.member(s) && !schedule_before_pack.member(s))
+                    schedule_before_pack.push(s);
+                }
+              }
+              break;
+            }
+          }
+        }
+      }
+    }
+
+    Node*    upper_insert_pt = first->in(MemNode::Memory);
+    // Following code moves loads connected to upper_insert_pt below aliased stores.
+    // Collect such loads here and reconnect them back to upper_insert_pt later.
+    memops.clear();
+    for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) {
+      Node* use = upper_insert_pt->out(i);
+      if (use->is_Mem() && !use->is_Store()) {
+        memops.push(use);
+      }
+    }
+
+    MemNode* lower_insert_pt = last;
+    previous                 = last; //previous store in pk
+    current                  = last->in(MemNode::Memory)->as_Mem();
+
+    // start scheduling from "last" to "first"
+    while (true) {
+      assert(in_bb(current), "stay in block");
+      assert(in_pack(previous, pk), "previous stays in pack");
+      Node* my_mem = current->in(MemNode::Memory);
+
+      if (in_pack(current, pk)) {
+        // Forward users of my memory state (except "previous) to my input memory state
+        for (DUIterator i = current->outs(); current->has_out(i); i++) {
+          Node* use = current->out(i);
+          if (use->is_Mem() && use != previous) {
+            assert(use->in(MemNode::Memory) == current, "must be");
+            if (schedule_before_pack.member(use)) {
+              _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt);
+            } else {
+              _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt);
+            }
+            --i; // deleted this edge; rescan position
+          }
+        }
+        previous = current;
+      } else { // !in_pack(current, pk) ==> a sandwiched store
+        remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
+      }
+
+      if (current == first) break;
+      current = my_mem->as_Mem();
+    } // end while
+
+    // Reconnect loads back to upper_insert_pt.
+    for (uint i = 0; i < memops.size(); i++) {
+      Node *ld = memops.at(i);
+      if (ld->in(MemNode::Memory) != upper_insert_pt) {
+        _igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt);
+      }
+    }
+  } else if (pk->at(0)->is_Load()) { //load
+    // all loads in the pack should have the same memory state. By default,
+    // we use the memory state of the last load. However, if any load could
+    // not be moved down due to the dependence constraint, we use the memory
+    // state of the first load.
+    Node* last_mem  = executed_last(pk)->in(MemNode::Memory);
+    Node* first_mem = executed_first(pk)->in(MemNode::Memory);
+    bool schedule_last = true;
+    for (uint i = 0; i < pk->size(); i++) {
+      Node* ld = pk->at(i);
+      for (Node* current = last_mem; current != ld->in(MemNode::Memory);
+           current=current->in(MemNode::Memory)) {
+        assert(current != first_mem, "corrupted memory graph");
+        if(current->is_Mem() && !independent(current, ld)){
+          schedule_last = false; // a later store depends on this load
+          break;
+        }
+      }
+    }
+
+    Node* mem_input = schedule_last ? last_mem : first_mem;
+    _igvn.hash_delete(mem_input);
+    // Give each load the same memory state
+    for (uint i = 0; i < pk->size(); i++) {
+      LoadNode* ld = pk->at(i)->as_Load();
+      _igvn.replace_input_of(ld, MemNode::Memory, mem_input);
+    }
+  }
+}
+
+#ifndef PRODUCT
+void SuperWord::print_loop(bool whole) {
+  Node_Stack stack(_arena, _phase->C->unique() >> 2);
+  Node_List rpo_list;
+  VectorSet visited(_arena);
+  visited.set(lpt()->_head->_idx);
+  _phase->rpo(lpt()->_head, stack, visited, rpo_list);
+  _phase->dump(lpt(), rpo_list.size(), rpo_list );
+  if(whole) {
+    tty->print_cr("\n Whole loop tree");
+    _phase->dump();
+    tty->print_cr(" End of whole loop tree\n");
+  }
+}
+#endif
+
+//------------------------------output---------------------------
+// Convert packs into vector node operations
+void SuperWord::output() {
+  if (_packset.length() == 0) return;
+
+#ifndef PRODUCT
+  if (TraceLoopOpts) {
+    tty->print("SuperWord::output    ");
+    lpt()->dump_head();
+  }
+#endif
+
+  CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
+  if (cl->is_main_loop()) {
+    // MUST ENSURE main loop's initial value is properly aligned:
+    //  (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
+
+    align_initial_loop_index(align_to_ref());
+
+    // Insert extract (unpack) operations for scalar uses
+    for (int i = 0; i < _packset.length(); i++) {
+      insert_extracts(_packset.at(i));
+    }
+  }
+
+  Compile* C = _phase->C;
+  uint max_vlen_in_bytes = 0;
+  uint max_vlen = 0;
+  bool can_process_post_loop = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
+
+  NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop before create_reserve_version_of_loop"); print_loop(true);})
+
+  CountedLoopReserveKit make_reversable(_phase, _lpt, do_reserve_copy());
+
+  NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop after create_reserve_version_of_loop"); print_loop(true);})
+
+  if (do_reserve_copy() && !make_reversable.has_reserved()) {
+    NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: loop was not reserved correctly, exiting SuperWord");})
+    return;
+  }
+
+  for (int i = 0; i < _block.length(); i++) {
+    Node* n = _block.at(i);
+    Node_List* p = my_pack(n);
+    if (p && n == executed_last(p)) {
+      uint vlen = p->size();
+      uint vlen_in_bytes = 0;
+      Node* vn = NULL;
+      Node* low_adr = p->at(0);
+      Node* first   = executed_first(p);
+      if (can_process_post_loop) {
+        // override vlen with the main loops vector length
+        vlen = cl->slp_max_unroll();
+      }
+      NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d executed first, %d executed last in pack", first->_idx, n->_idx); print_pack(p);})
+      int   opc = n->Opcode();
+      if (n->is_Load()) {
+        Node* ctl = n->in(MemNode::Control);
+        Node* mem = first->in(MemNode::Memory);
+        SWPointer p1(n->as_Mem(), this, NULL, false);
+        // Identify the memory dependency for the new loadVector node by
+        // walking up through memory chain.
+        // This is done to give flexibility to the new loadVector node so that
+        // it can move above independent storeVector nodes.
+        while (mem->is_StoreVector()) {
+          SWPointer p2(mem->as_Mem(), this, NULL, false);
+          int cmp = p1.cmp(p2);
+          if (SWPointer::not_equal(cmp) || !SWPointer::comparable(cmp)) {
+            mem = mem->in(MemNode::Memory);
+          } else {
+            break; // dependent memory
+          }
+        }
+        Node* adr = low_adr->in(MemNode::Address);
+        const TypePtr* atyp = n->adr_type();
+        vn = LoadVectorNode::make(opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n), control_dependency(p));
+        vlen_in_bytes = vn->as_LoadVector()->memory_size();
+      } else if (n->is_Store()) {
+        // Promote value to be stored to vector
+        Node* val = vector_opd(p, MemNode::ValueIn);
+        if (val == NULL) {
+          if (do_reserve_copy()) {
+            NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: val should not be NULL, exiting SuperWord");})
+            return; //and reverse to backup IG
+          }
+          ShouldNotReachHere();
+        }
+
+        Node* ctl = n->in(MemNode::Control);
+        Node* mem = first->in(MemNode::Memory);
+        Node* adr = low_adr->in(MemNode::Address);
+        const TypePtr* atyp = n->adr_type();
+        vn = StoreVectorNode::make(opc, ctl, mem, adr, atyp, val, vlen);
+        vlen_in_bytes = vn->as_StoreVector()->memory_size();
+      } else if (n->req() == 3 && !is_cmov_pack(p)) {
+        // Promote operands to vector
+        Node* in1 = NULL;
+        bool node_isa_reduction = n->is_reduction();
+        if (node_isa_reduction) {
+          // the input to the first reduction operation is retained
+          in1 = low_adr->in(1);
+        } else {
+          in1 = vector_opd(p, 1);
+          if (in1 == NULL) {
+            if (do_reserve_copy()) {
+              NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in1 should not be NULL, exiting SuperWord");})
+              return; //and reverse to backup IG
+            }
+            ShouldNotReachHere();
+          }
+        }
+        Node* in2 = vector_opd(p, 2);
+        if (in2 == NULL) {
+          if (do_reserve_copy()) {
+            NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in2 should not be NULL, exiting SuperWord");})
+            return; //and reverse to backup IG
+          }
+          ShouldNotReachHere();
+        }
+        if (VectorNode::is_invariant_vector(in1) && (node_isa_reduction == false) && (n->is_Add() || n->is_Mul())) {
+          // Move invariant vector input into second position to avoid register spilling.
+          Node* tmp = in1;
+          in1 = in2;
+          in2 = tmp;
+        }
+        if (node_isa_reduction) {
+          const Type *arith_type = n->bottom_type();
+          vn = ReductionNode::make(opc, NULL, in1, in2, arith_type->basic_type());
+          if (in2->is_Load()) {
+            vlen_in_bytes = in2->as_LoadVector()->memory_size();
+          } else {
+            vlen_in_bytes = in2->as_Vector()->length_in_bytes();
+          }
+        } else {
+          vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n));
+          vlen_in_bytes = vn->as_Vector()->length_in_bytes();
+        }
+      } else if (opc == Op_SqrtD || opc == Op_AbsF || opc == Op_AbsD || opc == Op_NegF || opc == Op_NegD) {
+        // Promote operand to vector (Sqrt/Abs/Neg are 2 address instructions)
+        Node* in = vector_opd(p, 1);
+        vn = VectorNode::make(opc, in, NULL, vlen, velt_basic_type(n));
+        vlen_in_bytes = vn->as_Vector()->length_in_bytes();
+      } else if (is_cmov_pack(p)) {
+        if (can_process_post_loop) {
+          // do not refactor of flow in post loop context
+          return;
+        }
+        if (!n->is_CMove()) {
+          continue;
+        }
+        // place here CMoveVDNode
+        NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: print before CMove vectorization"); print_loop(false);})
+        Node* bol = n->in(CMoveNode::Condition);
+        if (!bol->is_Bool() && bol->Opcode() == Op_ExtractI && bol->req() > 1 ) {
+          NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d is not Bool node, trying its in(1) node %d", bol->_idx, bol->in(1)->_idx); bol->dump(); bol->in(1)->dump();})
+          bol = bol->in(1); //may be ExtractNode
+        }
+
+        assert(bol->is_Bool(), "should be BoolNode - too late to bail out!");
+        if (!bol->is_Bool()) {
+          if (do_reserve_copy()) {
+            NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: expected %d bool node, exiting SuperWord", bol->_idx); bol->dump();})
+            return; //and reverse to backup IG
+          }
+          ShouldNotReachHere();
+        }
+
+        int cond = (int)bol->as_Bool()->_test._test;
+        Node* in_cc  = _igvn.intcon(cond);
+        NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created intcon in_cc node %d", in_cc->_idx); in_cc->dump();})
+        Node* cc = bol->clone();
+        cc->set_req(1, in_cc);
+        NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created bool cc node %d", cc->_idx); cc->dump();})
+
+        Node* src1 = vector_opd(p, 2); //2=CMoveNode::IfFalse
+        if (src1 == NULL) {
+          if (do_reserve_copy()) {
+            NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src1 should not be NULL, exiting SuperWord");})
+            return; //and reverse to backup IG
+          }
+          ShouldNotReachHere();
+        }
+        Node* src2 = vector_opd(p, 3); //3=CMoveNode::IfTrue
+        if (src2 == NULL) {
+          if (do_reserve_copy()) {
+            NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src2 should not be NULL, exiting SuperWord");})
+            return; //and reverse to backup IG
+          }
+          ShouldNotReachHere();
+        }
+        BasicType bt = velt_basic_type(n);
+        const TypeVect* vt = TypeVect::make(bt, vlen);
+        vn = new CMoveVDNode(cc, src1, src2, vt);
+        NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created new CMove node %d: ", vn->_idx); vn->dump();})
+      } else if (opc == Op_FmaD || opc == Op_FmaF) {
+        // Promote operands to vector
+        Node* in1 = vector_opd(p, 1);
+        Node* in2 = vector_opd(p, 2);
+        Node* in3 = vector_opd(p, 3);
+        vn = VectorNode::make(opc, in1, in2, in3, vlen, velt_basic_type(n));
+        vlen_in_bytes = vn->as_Vector()->length_in_bytes();
+      } else {
+        if (do_reserve_copy()) {
+          NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: ShouldNotReachHere, exiting SuperWord");})
+          return; //and reverse to backup IG
+        }
+        ShouldNotReachHere();
+      }
+
+      assert(vn != NULL, "sanity");
+      if (vn == NULL) {
+        if (do_reserve_copy()){
+          NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: got NULL node, cannot proceed, exiting SuperWord");})
+          return; //and reverse to backup IG
+        }
+        ShouldNotReachHere();
+      }
+
+      _block.at_put(i, vn);
+      _igvn.register_new_node_with_optimizer(vn);
+      _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
+      for (uint j = 0; j < p->size(); j++) {
+        Node* pm = p->at(j);
+        _igvn.replace_node(pm, vn);
+      }
+      _igvn._worklist.push(vn);
+
+      if (can_process_post_loop) {
+        // first check if the vector size if the maximum vector which we can use on the machine,
+        // other vector size have reduced values for predicated data mapping.
+        if (vlen_in_bytes != (uint)MaxVectorSize) {
+          return;
+        }
+      }
+
+      if (vlen_in_bytes >= max_vlen_in_bytes && vlen > max_vlen) {
+        max_vlen = vlen;
+        max_vlen_in_bytes = vlen_in_bytes;
+      }
+#ifdef ASSERT
+      if (TraceNewVectors) {
+        tty->print("new Vector node: ");
+        vn->dump();
+      }
+#endif
+    }
+  }//for (int i = 0; i < _block.length(); i++)
+
+  C->set_max_vector_size(max_vlen_in_bytes);
+
+  if (SuperWordLoopUnrollAnalysis) {
+    if (cl->has_passed_slp()) {
+      uint slp_max_unroll_factor = cl->slp_max_unroll();
+      if (slp_max_unroll_factor == max_vlen) {
+        if (TraceSuperWordLoopUnrollAnalysis) {
+          tty->print_cr("vector loop(unroll=%d, len=%d)\n", max_vlen, max_vlen_in_bytes*BitsPerByte);
+        }
+
+        // For atomic unrolled loops which are vector mapped, instigate more unrolling
+        cl->set_notpassed_slp();
+        if (cl->is_main_loop()) {
+          // if vector resources are limited, do not allow additional unrolling, also
+          // do not unroll more on pure vector loops which were not reduced so that we can
+          // program the post loop to single iteration execution.
+          if (FLOATPRESSURE > 8) {
+            C->set_major_progress();
+            cl->mark_do_unroll_only();
+          }
+        }
+
+        if (do_reserve_copy()) {
+          cl->mark_loop_vectorized();
+          if (can_process_post_loop) {
+            // Now create the difference of trip and limit and use it as our mask index.
+            // Note: We limited the unroll of the vectorized loop so that
+            //       only vlen-1 size iterations can remain to be mask programmed.
+            Node *incr = cl->incr();
+            SubINode *index = new SubINode(cl->limit(), cl->init_trip());
+            _igvn.register_new_node_with_optimizer(index);
+            SetVectMaskINode  *mask = new SetVectMaskINode(_phase->get_ctrl(cl->init_trip()), index);
+            _igvn.register_new_node_with_optimizer(mask);
+            // make this a single iteration loop
+            AddINode *new_incr = new AddINode(incr->in(1), mask);
+            _igvn.register_new_node_with_optimizer(new_incr);
+            _phase->set_ctrl(new_incr, _phase->get_ctrl(incr));
+            _igvn.replace_node(incr, new_incr);
+            cl->mark_is_multiversioned();
+            cl->loopexit()->add_flag(Node::Flag_has_vector_mask_set);
+          }
+        }
+      }
+    }
+  }
+
+  if (do_reserve_copy()) {
+    make_reversable.use_new();
+  }
+  NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("\n Final loop after SuperWord"); print_loop(true);})
+  return;
+}
+
+//------------------------------vector_opd---------------------------
+// Create a vector operand for the nodes in pack p for operand: in(opd_idx)
+Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
+  Node* p0 = p->at(0);
+  uint vlen = p->size();
+  Node* opd = p0->in(opd_idx);
+  CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
+
+  if (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop()) {
+    // override vlen with the main loops vector length
+    vlen = cl->slp_max_unroll();
+  }
+
+  if (same_inputs(p, opd_idx)) {
+    if (opd->is_Vector() || opd->is_LoadVector()) {
+      assert(((opd_idx != 2) || !VectorNode::is_shift(p0)), "shift's count can't be vector");
+      if (opd_idx == 2 && VectorNode::is_shift(p0)) {
+        NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("shift's count can't be vector");})
+        return NULL;
+      }
+      return opd; // input is matching vector
+    }
+    if ((opd_idx == 2) && VectorNode::is_shift(p0)) {
+      Compile* C = _phase->C;
+      Node* cnt = opd;
+      // Vector instructions do not mask shift count, do it here.
+      juint mask = (p0->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
+      const TypeInt* t = opd->find_int_type();
+      if (t != NULL && t->is_con()) {
+        juint shift = t->get_con();
+        if (shift > mask) { // Unsigned cmp
+          cnt = ConNode::make(TypeInt::make(shift & mask));
+        }
+      } else {
+        if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
+          cnt = ConNode::make(TypeInt::make(mask));
+          _igvn.register_new_node_with_optimizer(cnt);
+          cnt = new AndINode(opd, cnt);
+          _igvn.register_new_node_with_optimizer(cnt);
+          _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
+        }
+        assert(opd->bottom_type()->isa_int(), "int type only");
+        if (!opd->bottom_type()->isa_int()) {
+          NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should be int type only");})
+          return NULL;
+        }
+        // Move non constant shift count into vector register.
+        cnt = VectorNode::shift_count(p0, cnt, vlen, velt_basic_type(p0));
+      }
+      if (cnt != opd) {
+        _igvn.register_new_node_with_optimizer(cnt);
+        _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
+      }
+      return cnt;
+    }
+    assert(!opd->is_StoreVector(), "such vector is not expected here");
+    if (opd->is_StoreVector()) {
+      NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("StoreVector is not expected here");})
+      return NULL;
+    }
+    // Convert scalar input to vector with the same number of elements as
+    // p0's vector. Use p0's type because size of operand's container in
+    // vector should match p0's size regardless operand's size.
+    const Type* p0_t = velt_type(p0);
+    VectorNode* vn = VectorNode::scalar2vector(opd, vlen, p0_t);
+
+    _igvn.register_new_node_with_optimizer(vn);
+    _phase->set_ctrl(vn, _phase->get_ctrl(opd));
+#ifdef ASSERT
+    if (TraceNewVectors) {
+      tty->print("new Vector node: ");
+      vn->dump();
+    }
+#endif
+    return vn;
+  }
+
+  // Insert pack operation
+  BasicType bt = velt_basic_type(p0);
+  PackNode* pk = PackNode::make(opd, vlen, bt);
+  DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); )
+
+  for (uint i = 1; i < vlen; i++) {
+    Node* pi = p->at(i);
+    Node* in = pi->in(opd_idx);
+    assert(my_pack(in) == NULL, "Should already have been unpacked");
+    if (my_pack(in) != NULL) {
+      NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should already have been unpacked");})
+      return NULL;
+    }
+    assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
+    pk->add_opd(in);
+  }
+  _igvn.register_new_node_with_optimizer(pk);
+  _phase->set_ctrl(pk, _phase->get_ctrl(opd));
+#ifdef ASSERT
+  if (TraceNewVectors) {
+    tty->print("new Vector node: ");
+    pk->dump();
+  }
+#endif
+  return pk;
+}
+
+//------------------------------insert_extracts---------------------------
+// If a use of pack p is not a vector use, then replace the
+// use with an extract operation.
+void SuperWord::insert_extracts(Node_List* p) {
+  if (p->at(0)->is_Store()) return;
+  assert(_n_idx_list.is_empty(), "empty (node,index) list");
+
+  // Inspect each use of each pack member.  For each use that is
+  // not a vector use, replace the use with an extract operation.
+
+  for (uint i = 0; i < p->size(); i++) {
+    Node* def = p->at(i);
+    for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
+      Node* use = def->fast_out(j);
+      for (uint k = 0; k < use->req(); k++) {
+        Node* n = use->in(k);
+        if (def == n) {
+          Node_List* u_pk = my_pack(use);
+          if ((u_pk == NULL || !is_cmov_pack(u_pk) || use->is_CMove()) && !is_vector_use(use, k)) {
+              _n_idx_list.push(use, k);
+          }
+        }
+      }
+    }
+  }
+
+  while (_n_idx_list.is_nonempty()) {
+    Node* use = _n_idx_list.node();
+    int   idx = _n_idx_list.index();
+    _n_idx_list.pop();
+    Node* def = use->in(idx);
+
+    if (def->is_reduction()) continue;
+
+    // Insert extract operation
+    _igvn.hash_delete(def);
+    int def_pos = alignment(def) / data_size(def);
+
+    Node* ex = ExtractNode::make(def, def_pos, velt_basic_type(def));
+    _igvn.register_new_node_with_optimizer(ex);
+    _phase->set_ctrl(ex, _phase->get_ctrl(def));
+    _igvn.replace_input_of(use, idx, ex);
+    _igvn._worklist.push(def);
+
+    bb_insert_after(ex, bb_idx(def));
+    set_velt_type(ex, velt_type(def));
+  }
+}
+
+//------------------------------is_vector_use---------------------------
+// Is use->in(u_idx) a vector use?
+bool SuperWord::is_vector_use(Node* use, int u_idx) {
+  Node_List* u_pk = my_pack(use);
+  if (u_pk == NULL) return false;
+  if (use->is_reduction()) return true;
+  Node* def = use->in(u_idx);
+  Node_List* d_pk = my_pack(def);
+  if (d_pk == NULL) {
+    // check for scalar promotion
+    Node* n = u_pk->at(0)->in(u_idx);
+    for (uint i = 1; i < u_pk->size(); i++) {
+      if (u_pk->at(i)->in(u_idx) != n) return false;
+    }
+    return true;
+  }
+  if (u_pk->size() != d_pk->size())
+    return false;
+  for (uint i = 0; i < u_pk->size(); i++) {
+    Node* ui = u_pk->at(i);
+    Node* di = d_pk->at(i);
+    if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
+      return false;
+  }
+  return true;
+}
+
+//------------------------------construct_bb---------------------------
+// Construct reverse postorder list of block members
+bool SuperWord::construct_bb() {
+  Node* entry = bb();
+
+  assert(_stk.length() == 0,            "stk is empty");
+  assert(_block.length() == 0,          "block is empty");
+  assert(_data_entry.length() == 0,     "data_entry is empty");
+  assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
+  assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
+
+  // Find non-control nodes with no inputs from within block,
+  // create a temporary map from node _idx to bb_idx for use
+  // by the visited and post_visited sets,
+  // and count number of nodes in block.
+  int bb_ct = 0;
+  for (uint i = 0; i < lpt()->_body.size(); i++) {
+    Node *n = lpt()->_body.at(i);
+    set_bb_idx(n, i); // Create a temporary map
+    if (in_bb(n)) {
+      if (n->is_LoadStore() || n->is_MergeMem() ||
+          (n->is_Proj() && !n->as_Proj()->is_CFG())) {
+        // Bailout if the loop has LoadStore, MergeMem or data Proj
+        // nodes. Superword optimization does not work with them.
+        return false;
+      }
+      bb_ct++;
+      if (!n->is_CFG()) {
+        bool found = false;
+        for (uint j = 0; j < n->req(); j++) {
+          Node* def = n->in(j);
+          if (def && in_bb(def)) {
+            found = true;
+            break;
+          }
+        }
+        if (!found) {
+          assert(n != entry, "can't be entry");
+          _data_entry.push(n);
+        }
+      }
+    }
+  }
+
+  // Find memory slices (head and tail)
+  for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
+    Node *n = lp()->fast_out(i);
+    if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
+      Node* n_tail  = n->in(LoopNode::LoopBackControl);
+      if (n_tail != n->in(LoopNode::EntryControl)) {
+        if (!n_tail->is_Mem()) {
+          assert(n_tail->is_Mem(), "unexpected node for memory slice: %s", n_tail->Name());
+          return false; // Bailout
+        }
+        _mem_slice_head.push(n);
+        _mem_slice_tail.push(n_tail);
+      }
+    }
+  }
+
+  // Create an RPO list of nodes in block
+
+  visited_clear();
+  post_visited_clear();
+
+  // Push all non-control nodes with no inputs from within block, then control entry
+  for (int j = 0; j < _data_entry.length(); j++) {
+    Node* n = _data_entry.at(j);
+    visited_set(n);
+    _stk.push(n);
+  }
+  visited_set(entry);
+  _stk.push(entry);
+
+  // Do a depth first walk over out edges
+  int rpo_idx = bb_ct - 1;
+  int size;
+  int reduction_uses = 0;
+  while ((size = _stk.length()) > 0) {
+    Node* n = _stk.top(); // Leave node on stack
+    if (!visited_test_set(n)) {
+      // forward arc in graph
+    } else if (!post_visited_test(n)) {
+      // cross or back arc
+      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
+        Node *use = n->fast_out(i);
+        if (in_bb(use) && !visited_test(use) &&
+            // Don't go around backedge
+            (!use->is_Phi() || n == entry)) {
+          if (use->is_reduction()) {
+            // First see if we can map the reduction on the given system we are on, then
+            // make a data entry operation for each reduction we see.
+            BasicType bt = use->bottom_type()->basic_type();
+            if (ReductionNode::implemented(use->Opcode(), Matcher::min_vector_size(bt), bt)) {
+              reduction_uses++;
+            }
+          }
+          _stk.push(use);
+        }
+      }
+      if (_stk.length() == size) {
+        // There were no additional uses, post visit node now
+        _stk.pop(); // Remove node from stack
+        assert(rpo_idx >= 0, "");
+        _block.at_put_grow(rpo_idx, n);
+        rpo_idx--;
+        post_visited_set(n);
+        assert(rpo_idx >= 0 || _stk.is_empty(), "");
+      }
+    } else {
+      _stk.pop(); // Remove post-visited node from stack
+    }
+  }//while
+
+  int ii_current = -1;
+  unsigned int load_idx = (unsigned int)-1;
+  _ii_order.clear();
+  // Create real map of block indices for nodes
+  for (int j = 0; j < _block.length(); j++) {
+    Node* n = _block.at(j);
+    set_bb_idx(n, j);
+    if (_do_vector_loop && n->is_Load()) {
+      if (ii_current == -1) {
+        ii_current = _clone_map.gen(n->_idx);
+        _ii_order.push(ii_current);
+        load_idx = _clone_map.idx(n->_idx);
+      } else if (_clone_map.idx(n->_idx) == load_idx && _clone_map.gen(n->_idx) != ii_current) {
+        ii_current = _clone_map.gen(n->_idx);
+        _ii_order.push(ii_current);
+      }
+    }
+  }//for
+
+  // Ensure extra info is allocated.
+  initialize_bb();
+
+#ifndef PRODUCT
+  if (_vector_loop_debug && _ii_order.length() > 0) {
+    tty->print("SuperWord::construct_bb: List of generations: ");
+    for (int jj = 0; jj < _ii_order.length(); ++jj) {
+      tty->print("  %d:%d", jj, _ii_order.at(jj));
+    }
+    tty->print_cr(" ");
+  }
+  if (TraceSuperWord) {
+    print_bb();
+    tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
+    for (int m = 0; m < _data_entry.length(); m++) {
+      tty->print("%3d ", m);
+      _data_entry.at(m)->dump();
+    }
+    tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
+    for (int m = 0; m < _mem_slice_head.length(); m++) {
+      tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
+      tty->print("    ");    _mem_slice_tail.at(m)->dump();
+    }
+  }
+#endif
+  assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
+  return (_mem_slice_head.length() > 0) || (reduction_uses > 0) || (_data_entry.length() > 0);
+}
+
+//------------------------------initialize_bb---------------------------
+// Initialize per node info
+void SuperWord::initialize_bb() {
+  Node* last = _block.at(_block.length() - 1);
+  grow_node_info(bb_idx(last));
+}
+
+//------------------------------bb_insert_after---------------------------
+// Insert n into block after pos
+void SuperWord::bb_insert_after(Node* n, int pos) {
+  int n_pos = pos + 1;
+  // Make room
+  for (int i = _block.length() - 1; i >= n_pos; i--) {
+    _block.at_put_grow(i+1, _block.at(i));
+  }
+  for (int j = _node_info.length() - 1; j >= n_pos; j--) {
+    _node_info.at_put_grow(j+1, _node_info.at(j));
+  }
+  // Set value
+  _block.at_put_grow(n_pos, n);
+  _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
+  // Adjust map from node->_idx to _block index
+  for (int i = n_pos; i < _block.length(); i++) {
+    set_bb_idx(_block.at(i), i);
+  }
+}
+
+//------------------------------compute_max_depth---------------------------
+// Compute max depth for expressions from beginning of block
+// Use to prune search paths during test for independence.
+void SuperWord::compute_max_depth() {
+  int ct = 0;
+  bool again;
+  do {
+    again = false;
+    for (int i = 0; i < _block.length(); i++) {
+      Node* n = _block.at(i);
+      if (!n->is_Phi()) {
+        int d_orig = depth(n);
+        int d_in   = 0;
+        for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
+          Node* pred = preds.current();
+          if (in_bb(pred)) {
+            d_in = MAX2(d_in, depth(pred));
+          }
+        }
+        if (d_in + 1 != d_orig) {
+          set_depth(n, d_in + 1);
+          again = true;
+        }
+      }
+    }
+    ct++;
+  } while (again);
+
+  if (TraceSuperWord && Verbose) {
+    tty->print_cr("compute_max_depth iterated: %d times", ct);
+  }
+}
+
+//-------------------------compute_vector_element_type-----------------------
+// Compute necessary vector element type for expressions
+// This propagates backwards a narrower integer type when the
+// upper bits of the value are not needed.
+// Example:  char a,b,c;  a = b + c;
+// Normally the type of the add is integer, but for packed character
+// operations the type of the add needs to be char.
+void SuperWord::compute_vector_element_type() {
+  if (TraceSuperWord && Verbose) {
+    tty->print_cr("\ncompute_velt_type:");
+  }
+
+  // Initial type
+  for (int i = 0; i < _block.length(); i++) {
+    Node* n = _block.at(i);
+    set_velt_type(n, container_type(n));
+  }
+
+  // Propagate integer narrowed type backwards through operations
+  // that don't depend on higher order bits
+  for (int i = _block.length() - 1; i >= 0; i--) {
+    Node* n = _block.at(i);
+    // Only integer types need be examined
+    const Type* vtn = velt_type(n);
+    if (vtn->basic_type() == T_INT) {
+      uint start, end;
+      VectorNode::vector_operands(n, &start, &end);
+
+      for (uint j = start; j < end; j++) {
+        Node* in  = n->in(j);
+        // Don't propagate through a memory
+        if (!in->is_Mem() && in_bb(in) && velt_type(in)->basic_type() == T_INT &&
+            data_size(n) < data_size(in)) {
+          bool same_type = true;
+          for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
+            Node *use = in->fast_out(k);
+            if (!in_bb(use) || !same_velt_type(use, n)) {
+              same_type = false;
+              break;
+            }
+          }
+          if (same_type) {
+            // For right shifts of small integer types (bool, byte, char, short)
+            // we need precise information about sign-ness. Only Load nodes have
+            // this information because Store nodes are the same for signed and
+            // unsigned values. And any arithmetic operation after a load may
+            // expand a value to signed Int so such right shifts can't be used
+            // because vector elements do not have upper bits of Int.
+            const Type* vt = vtn;
+            if (VectorNode::is_shift(in)) {
+              Node* load = in->in(1);
+              if (load->is_Load() && in_bb(load) && (velt_type(load)->basic_type() == T_INT)) {
+                vt = velt_type(load);
+              } else if (in->Opcode() != Op_LShiftI) {
+                // Widen type to Int to avoid creation of right shift vector
+                // (align + data_size(s1) check in stmts_can_pack() will fail).
+                // Note, left shifts work regardless type.
+                vt = TypeInt::INT;
+              }
+            }
+            set_velt_type(in, vt);
+          }
+        }
+      }
+    }
+  }
+#ifndef PRODUCT
+  if (TraceSuperWord && Verbose) {
+    for (int i = 0; i < _block.length(); i++) {
+      Node* n = _block.at(i);
+      velt_type(n)->dump();
+      tty->print("\t");
+      n->dump();
+    }
+  }
+#endif
+}
+
+//------------------------------memory_alignment---------------------------
+// Alignment within a vector memory reference
+int SuperWord::memory_alignment(MemNode* s, int iv_adjust) {
+  #ifndef PRODUCT
+    if(TraceSuperWord && Verbose) {
+      tty->print("SuperWord::memory_alignment within a vector memory reference for %d:  ", s->_idx); s->dump();
+    }
+  #endif
+  NOT_PRODUCT(SWPointer::Tracer::Depth ddd(0);)
+  SWPointer p(s, this, NULL, false);
+  if (!p.valid()) {
+    NOT_PRODUCT(if(is_trace_alignment()) tty->print("SWPointer::memory_alignment: SWPointer p invalid, return bottom_align");)
+    return bottom_align;
+  }
+  int vw = vector_width_in_bytes(s);
+  if (vw < 2) {
+    NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SWPointer::memory_alignment: vector_width_in_bytes < 2, return bottom_align");)
+    return bottom_align; // No vectors for this type
+  }
+  int offset  = p.offset_in_bytes();
+  offset     += iv_adjust*p.memory_size();
+  int off_rem = offset % vw;
+  int off_mod = off_rem >= 0 ? off_rem : off_rem + vw;
+  if (TraceSuperWord && Verbose) {
+    tty->print_cr("SWPointer::memory_alignment: off_rem = %d, off_mod = %d", off_rem, off_mod);
+  }
+  return off_mod;
+}
+
+//---------------------------container_type---------------------------
+// Smallest type containing range of values
+const Type* SuperWord::container_type(Node* n) {
+  if (n->is_Mem()) {
+    BasicType bt = n->as_Mem()->memory_type();
+    if (n->is_Store() && (bt == T_CHAR)) {
+      // Use T_SHORT type instead of T_CHAR for stored values because any
+      // preceding arithmetic operation extends values to signed Int.
+      bt = T_SHORT;
+    }
+    if (n->Opcode() == Op_LoadUB) {
+      // Adjust type for unsigned byte loads, it is important for right shifts.
+      // T_BOOLEAN is used because there is no basic type representing type
+      // TypeInt::UBYTE. Use of T_BOOLEAN for vectors is fine because only
+      // size (one byte) and sign is important.
+      bt = T_BOOLEAN;
+    }
+    return Type::get_const_basic_type(bt);
+  }
+  const Type* t = _igvn.type(n);
+  if (t->basic_type() == T_INT) {
+    // A narrow type of arithmetic operations will be determined by
+    // propagating the type of memory operations.
+    return TypeInt::INT;
+  }
+  return t;
+}
+
+bool SuperWord::same_velt_type(Node* n1, Node* n2) {
+  const Type* vt1 = velt_type(n1);
+  const Type* vt2 = velt_type(n2);
+  if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) {
+    // Compare vectors element sizes for integer types.
+    return data_size(n1) == data_size(n2);
+  }
+  return vt1 == vt2;
+}
+
+//------------------------------in_packset---------------------------
+// Are s1 and s2 in a pack pair and ordered as s1,s2?
+bool SuperWord::in_packset(Node* s1, Node* s2) {
+  for (int i = 0; i < _packset.length(); i++) {
+    Node_List* p = _packset.at(i);
+    assert(p->size() == 2, "must be");
+    if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
+      return true;
+    }
+  }
+  return false;
+}
+
+//------------------------------in_pack---------------------------
+// Is s in pack p?
+Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
+  for (uint i = 0; i < p->size(); i++) {
+    if (p->at(i) == s) {
+      return p;
+    }
+  }
+  return NULL;
+}
+
+//------------------------------remove_pack_at---------------------------
+// Remove the pack at position pos in the packset
+void SuperWord::remove_pack_at(int pos) {
+  Node_List* p = _packset.at(pos);
+  for (uint i = 0; i < p->size(); i++) {
+    Node* s = p->at(i);
+    set_my_pack(s, NULL);
+  }
+  _packset.remove_at(pos);
+}
+
+void SuperWord::packset_sort(int n) {
+  // simple bubble sort so that we capitalize with O(n) when its already sorted
+  while (n != 0) {
+    bool swapped = false;
+    for (int i = 1; i < n; i++) {
+      Node_List* q_low = _packset.at(i-1);
+      Node_List* q_i = _packset.at(i);
+
+      // only swap when we find something to swap
+      if (alignment(q_low->at(0)) > alignment(q_i->at(0))) {
+        Node_List* t = q_i;
+        *(_packset.adr_at(i)) = q_low;
+        *(_packset.adr_at(i-1)) = q_i;
+        swapped = true;
+      }
+    }
+    if (swapped == false) break;
+    n--;
+  }
+}
+
+//------------------------------executed_first---------------------------
+// Return the node executed first in pack p.  Uses the RPO block list
+// to determine order.
+Node* SuperWord::executed_first(Node_List* p) {
+  Node* n = p->at(0);
+  int n_rpo = bb_idx(n);
+  for (uint i = 1; i < p->size(); i++) {
+    Node* s = p->at(i);
+    int s_rpo = bb_idx(s);
+    if (s_rpo < n_rpo) {
+      n = s;
+      n_rpo = s_rpo;
+    }
+  }
+  return n;
+}
+
+//------------------------------executed_last---------------------------
+// Return the node executed last in pack p.
+Node* SuperWord::executed_last(Node_List* p) {
+  Node* n = p->at(0);
+  int n_rpo = bb_idx(n);
+  for (uint i = 1; i < p->size(); i++) {
+    Node* s = p->at(i);
+    int s_rpo = bb_idx(s);
+    if (s_rpo > n_rpo) {
+      n = s;
+      n_rpo = s_rpo;
+    }
+  }
+  return n;
+}
+
+LoadNode::ControlDependency SuperWord::control_dependency(Node_List* p) {
+  LoadNode::ControlDependency dep = LoadNode::DependsOnlyOnTest;
+  for (uint i = 0; i < p->size(); i++) {
+    Node* n = p->at(i);
+    assert(n->is_Load(), "only meaningful for loads");
+    if (!n->depends_only_on_test()) {
+      dep = LoadNode::Pinned;
+    }
+  }
+  return dep;
+}
+
+
+//----------------------------align_initial_loop_index---------------------------
+// Adjust pre-loop limit so that in main loop, a load/store reference
+// to align_to_ref will be a position zero in the vector.
+//   (iv + k) mod vector_align == 0
+void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
+  CountedLoopNode *main_head = lp()->as_CountedLoop();
+  assert(main_head->is_main_loop(), "");
+  CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
+  assert(pre_end != NULL, "we must have a correct pre-loop");
+  Node *pre_opaq1 = pre_end->limit();
+  assert(pre_opaq1->Opcode() == Op_Opaque1, "");
+  Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
+  Node *lim0 = pre_opaq->in(1);
+
+  // Where we put new limit calculations
+  Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
+
+  // Ensure the original loop limit is available from the
+  // pre-loop Opaque1 node.
+  Node *orig_limit = pre_opaq->original_loop_limit();
+  assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
+
+  SWPointer align_to_ref_p(align_to_ref, this, NULL, false);
+  assert(align_to_ref_p.valid(), "sanity");
+
+  // Given:
+  //     lim0 == original pre loop limit
+  //     V == v_align (power of 2)
+  //     invar == extra invariant piece of the address expression
+  //     e == offset [ +/- invar ]
+  //
+  // When reassociating expressions involving '%' the basic rules are:
+  //     (a - b) % k == 0   =>  a % k == b % k
+  // and:
+  //     (a + b) % k == 0   =>  a % k == (k - b) % k
+  //
+  // For stride > 0 && scale > 0,
+  //   Derive the new pre-loop limit "lim" such that the two constraints:
+  //     (1) lim = lim0 + N           (where N is some positive integer < V)
+  //     (2) (e + lim) % V == 0
+  //   are true.
+  //
+  //   Substituting (1) into (2),
+  //     (e + lim0 + N) % V == 0
+  //   solve for N:
+  //     N = (V - (e + lim0)) % V
+  //   substitute back into (1), so that new limit
+  //     lim = lim0 + (V - (e + lim0)) % V
+  //
+  // For stride > 0 && scale < 0
+  //   Constraints:
+  //     lim = lim0 + N
+  //     (e - lim) % V == 0
+  //   Solving for lim:
+  //     (e - lim0 - N) % V == 0
+  //     N = (e - lim0) % V
+  //     lim = lim0 + (e - lim0) % V
+  //
+  // For stride < 0 && scale > 0
+  //   Constraints:
+  //     lim = lim0 - N
+  //     (e + lim) % V == 0
+  //   Solving for lim:
+  //     (e + lim0 - N) % V == 0
+  //     N = (e + lim0) % V
+  //     lim = lim0 - (e + lim0) % V
+  //
+  // For stride < 0 && scale < 0
+  //   Constraints:
+  //     lim = lim0 - N
+  //     (e - lim) % V == 0
+  //   Solving for lim:
+  //     (e - lim0 + N) % V == 0
+  //     N = (V - (e - lim0)) % V
+  //     lim = lim0 - (V - (e - lim0)) % V
+
+  int vw = vector_width_in_bytes(align_to_ref);
+  int stride   = iv_stride();
+  int scale    = align_to_ref_p.scale_in_bytes();
+  int elt_size = align_to_ref_p.memory_size();
+  int v_align  = vw / elt_size;
+  assert(v_align > 1, "sanity");
+  int offset   = align_to_ref_p.offset_in_bytes() / elt_size;
+  Node *offsn  = _igvn.intcon(offset);
+
+  Node *e = offsn;
+  if (align_to_ref_p.invar() != NULL) {
+    // incorporate any extra invariant piece producing (offset +/- invar) >>> log2(elt)
+    Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
+    Node* invar = align_to_ref_p.invar();
+    if (_igvn.type(invar)->isa_long()) {
+      // Computations are done % (vector width/element size) so it's
+      // safe to simply convert invar to an int and loose the upper 32
+      // bit half.
+      invar = new ConvL2INode(invar);
+      _igvn.register_new_node_with_optimizer(invar);
+    }
+    Node* aref = new URShiftINode(invar, log2_elt);
+    _igvn.register_new_node_with_optimizer(aref);
+    _phase->set_ctrl(aref, pre_ctrl);
+    if (align_to_ref_p.negate_invar()) {
+      e = new SubINode(e, aref);
+    } else {
+      e = new AddINode(e, aref);
+    }
+    _igvn.register_new_node_with_optimizer(e);
+    _phase->set_ctrl(e, pre_ctrl);
+  }
+  if (vw > ObjectAlignmentInBytes) {
+    // incorporate base e +/- base && Mask >>> log2(elt)
+    Node* xbase = new CastP2XNode(NULL, align_to_ref_p.base());
+    _igvn.register_new_node_with_optimizer(xbase);
+#ifdef _LP64
+    xbase  = new ConvL2INode(xbase);
+    _igvn.register_new_node_with_optimizer(xbase);
+#endif
+    Node* mask = _igvn.intcon(vw-1);
+    Node* masked_xbase  = new AndINode(xbase, mask);
+    _igvn.register_new_node_with_optimizer(masked_xbase);
+    Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
+    Node* bref     = new URShiftINode(masked_xbase, log2_elt);
+    _igvn.register_new_node_with_optimizer(bref);
+    _phase->set_ctrl(bref, pre_ctrl);
+    e = new AddINode(e, bref);
+    _igvn.register_new_node_with_optimizer(e);
+    _phase->set_ctrl(e, pre_ctrl);
+  }
+
+  // compute e +/- lim0
+  if (scale < 0) {
+    e = new SubINode(e, lim0);
+  } else {
+    e = new AddINode(e, lim0);
+  }
+  _igvn.register_new_node_with_optimizer(e);
+  _phase->set_ctrl(e, pre_ctrl);
+
+  if (stride * scale > 0) {
+    // compute V - (e +/- lim0)
+    Node* va  = _igvn.intcon(v_align);
+    e = new SubINode(va, e);
+    _igvn.register_new_node_with_optimizer(e);
+    _phase->set_ctrl(e, pre_ctrl);
+  }
+  // compute N = (exp) % V
+  Node* va_msk = _igvn.intcon(v_align - 1);
+  Node* N = new AndINode(e, va_msk);
+  _igvn.register_new_node_with_optimizer(N);
+  _phase->set_ctrl(N, pre_ctrl);
+
+  //   substitute back into (1), so that new limit
+  //     lim = lim0 + N
+  Node* lim;
+  if (stride < 0) {
+    lim = new SubINode(lim0, N);
+  } else {
+    lim = new AddINode(lim0, N);
+  }
+  _igvn.register_new_node_with_optimizer(lim);
+  _phase->set_ctrl(lim, pre_ctrl);
+  Node* constrained =
+    (stride > 0) ? (Node*) new MinINode(lim, orig_limit)
+                 : (Node*) new MaxINode(lim, orig_limit);
+  _igvn.register_new_node_with_optimizer(constrained);
+  _phase->set_ctrl(constrained, pre_ctrl);
+  _igvn.replace_input_of(pre_opaq, 1, constrained);
+}
+
+//----------------------------get_pre_loop_end---------------------------
+// Find pre loop end from main loop.  Returns null if none.
+CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode* cl) {
+  // The loop cannot be optimized if the graph shape at
+  // the loop entry is inappropriate.
+  if (!PhaseIdealLoop::is_canonical_loop_entry(cl)) {
+    return NULL;
+  }
+
+  Node* p_f = cl->in(LoopNode::EntryControl)->in(0)->in(0);
+  if (!p_f->is_IfFalse()) return NULL;
+  if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
+  CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd();
+  CountedLoopNode* loop_node = pre_end->loopnode();
+  if (loop_node == NULL || !loop_node->is_pre_loop()) return NULL;
+  return pre_end;
+}
+
+//------------------------------init---------------------------
+void SuperWord::init() {
+  _dg.init();
+  _packset.clear();
+  _disjoint_ptrs.clear();
+  _block.clear();
+  _post_block.clear();
+  _data_entry.clear();
+  _mem_slice_head.clear();
+  _mem_slice_tail.clear();
+  _iteration_first.clear();
+  _iteration_last.clear();
+  _node_info.clear();
+  _align_to_ref = NULL;
+  _lpt = NULL;
+  _lp = NULL;
+  _bb = NULL;
+  _iv = NULL;
+  _race_possible = 0;
+  _early_return = false;
+  _num_work_vecs = 0;
+  _num_reductions = 0;
+}
+
+//------------------------------restart---------------------------
+void SuperWord::restart() {
+  _dg.init();
+  _packset.clear();
+  _disjoint_ptrs.clear();
+  _block.clear();
+  _post_block.clear();
+  _data_entry.clear();
+  _mem_slice_head.clear();
+  _mem_slice_tail.clear();
+  _node_info.clear();
+}
+
+//------------------------------print_packset---------------------------
+void SuperWord::print_packset() {
+#ifndef PRODUCT
+  tty->print_cr("packset");
+  for (int i = 0; i < _packset.length(); i++) {
+    tty->print_cr("Pack: %d", i);
+    Node_List* p = _packset.at(i);
+    print_pack(p);
+  }
+#endif
+}
+
+//------------------------------print_pack---------------------------
+void SuperWord::print_pack(Node_List* p) {
+  for (uint i = 0; i < p->size(); i++) {
+    print_stmt(p->at(i));
+  }
+}
+
+//------------------------------print_bb---------------------------
+void SuperWord::print_bb() {
+#ifndef PRODUCT
+  tty->print_cr("\nBlock");
+  for (int i = 0; i < _block.length(); i++) {
+    Node* n = _block.at(i);
+    tty->print("%d ", i);
+    if (n) {
+      n->dump();
+    }
+  }
+#endif
+}
+
+//------------------------------print_stmt---------------------------
+void SuperWord::print_stmt(Node* s) {
+#ifndef PRODUCT
+  tty->print(" align: %d \t", alignment(s));
+  s->dump();
+#endif
+}
+
+//------------------------------blank---------------------------
+char* SuperWord::blank(uint depth) {
+  static char blanks[101];
+  assert(depth < 101, "too deep");
+  for (uint i = 0; i < depth; i++) blanks[i] = ' ';
+  blanks[depth] = '\0';
+  return blanks;
+}
+
+
+//==============================SWPointer===========================
+#ifndef PRODUCT
+int SWPointer::Tracer::_depth = 0;
+#endif
+//----------------------------SWPointer------------------------
+SWPointer::SWPointer(MemNode* mem, SuperWord* slp, Node_Stack *nstack, bool analyze_only) :
+  _mem(mem), _slp(slp),  _base(NULL),  _adr(NULL),
+  _scale(0), _offset(0), _invar(NULL), _negate_invar(false),
+  _nstack(nstack), _analyze_only(analyze_only),
+  _stack_idx(0)
+#ifndef PRODUCT
+  , _tracer(slp)
+#endif
+{
+  NOT_PRODUCT(_tracer.ctor_1(mem);)
+
+  Node* adr = mem->in(MemNode::Address);
+  if (!adr->is_AddP()) {
+    assert(!valid(), "too complex");
+    return;
+  }
+  // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
+  Node* base = adr->in(AddPNode::Base);
+  // The base address should be loop invariant
+  if (!invariant(base)) {
+    assert(!valid(), "base address is loop variant");
+    return;
+  }
+  //unsafe reference could not be aligned appropriately without runtime checking
+  if (base == NULL || base->bottom_type() == Type::TOP) {
+    assert(!valid(), "unsafe access");
+    return;
+  }
+
+  NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.store_depth();)
+  NOT_PRODUCT(_tracer.ctor_2(adr);)
+
+  int i;
+  for (i = 0; i < 3; i++) {
+    NOT_PRODUCT(_tracer.ctor_3(adr, i);)
+
+    if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
+      assert(!valid(), "too complex");
+      return;
+    }
+    adr = adr->in(AddPNode::Address);
+    NOT_PRODUCT(_tracer.ctor_4(adr, i);)
+
+    if (base == adr || !adr->is_AddP()) {
+      NOT_PRODUCT(_tracer.ctor_5(adr, base, i);)
+      break; // stop looking at addp's
+    }
+  }
+  NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.restore_depth();)
+  NOT_PRODUCT(_tracer.ctor_6(mem);)
+
+  _base = base;
+  _adr  = adr;
+  assert(valid(), "Usable");
+}
+
+// Following is used to create a temporary object during
+// the pattern match of an address expression.
+SWPointer::SWPointer(SWPointer* p) :
+  _mem(p->_mem), _slp(p->_slp),  _base(NULL),  _adr(NULL),
+  _scale(0), _offset(0), _invar(NULL), _negate_invar(false),
+  _nstack(p->_nstack), _analyze_only(p->_analyze_only),
+  _stack_idx(p->_stack_idx)
+  #ifndef PRODUCT
+  , _tracer(p->_slp)
+  #endif
+{}
+
+
+bool SWPointer::invariant(Node* n) {
+  NOT_PRODUCT(Tracer::Depth dd;)
+  Node *n_c = phase()->get_ctrl(n);
+  NOT_PRODUCT(_tracer.invariant_1(n, n_c);)
+  return !lpt()->is_member(phase()->get_loop(n_c));
+}
+//------------------------scaled_iv_plus_offset--------------------
+// Match: k*iv + offset
+// where: k is a constant that maybe zero, and
+//        offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
+bool SWPointer::scaled_iv_plus_offset(Node* n) {
+  NOT_PRODUCT(Tracer::Depth ddd;)
+  NOT_PRODUCT(_tracer.scaled_iv_plus_offset_1(n);)
+
+  if (scaled_iv(n)) {
+    NOT_PRODUCT(_tracer.scaled_iv_plus_offset_2(n);)
+    return true;
+  }
+
+  if (offset_plus_k(n)) {
+    NOT_PRODUCT(_tracer.scaled_iv_plus_offset_3(n);)
+    return true;
+  }
+
+  int opc = n->Opcode();
+  if (opc == Op_AddI) {
+    if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
+      NOT_PRODUCT(_tracer.scaled_iv_plus_offset_4(n);)
+      return true;
+    }
+    if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
+      NOT_PRODUCT(_tracer.scaled_iv_plus_offset_5(n);)
+      return true;
+    }
+  } else if (opc == Op_SubI) {
+    if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
+      NOT_PRODUCT(_tracer.scaled_iv_plus_offset_6(n);)
+      return true;
+    }
+    if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
+      _scale *= -1;
+      NOT_PRODUCT(_tracer.scaled_iv_plus_offset_7(n);)
+      return true;
+    }
+  }
+
+  NOT_PRODUCT(_tracer.scaled_iv_plus_offset_8(n);)
+  return false;
+}
+
+//----------------------------scaled_iv------------------------
+// Match: k*iv where k is a constant that's not zero
+bool SWPointer::scaled_iv(Node* n) {
+  NOT_PRODUCT(Tracer::Depth ddd;)
+  NOT_PRODUCT(_tracer.scaled_iv_1(n);)
+
+  if (_scale != 0) { // already found a scale
+    NOT_PRODUCT(_tracer.scaled_iv_2(n, _scale);)
+    return false;
+  }
+
+  if (n == iv()) {
+    _scale = 1;
+    NOT_PRODUCT(_tracer.scaled_iv_3(n, _scale);)
+    return true;
+  }
+  if (_analyze_only && (invariant(n) == false)) {
+    _nstack->push(n, _stack_idx++);
+  }
+
+  int opc = n->Opcode();
+  if (opc == Op_MulI) {
+    if (n->in(1) == iv() && n->in(2)->is_Con()) {
+      _scale = n->in(2)->get_int();
+      NOT_PRODUCT(_tracer.scaled_iv_4(n, _scale);)
+      return true;
+    } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
+      _scale = n->in(1)->get_int();
+      NOT_PRODUCT(_tracer.scaled_iv_5(n, _scale);)
+      return true;
+    }
+  } else if (opc == Op_LShiftI) {
+    if (n->in(1) == iv() && n->in(2)->is_Con()) {
+      _scale = 1 << n->in(2)->get_int();
+      NOT_PRODUCT(_tracer.scaled_iv_6(n, _scale);)
+      return true;
+    }
+  } else if (opc == Op_ConvI2L) {
+    if (n->in(1)->Opcode() == Op_CastII &&
+        n->in(1)->as_CastII()->has_range_check()) {
+      // Skip range check dependent CastII nodes
+      n = n->in(1);
+    }
+    if (scaled_iv_plus_offset(n->in(1))) {
+      NOT_PRODUCT(_tracer.scaled_iv_7(n);)
+      return true;
+    }
+  } else if (opc == Op_LShiftL) {
+    if (!has_iv() && _invar == NULL) {
+      // Need to preserve the current _offset value, so
+      // create a temporary object for this expression subtree.
+      // Hacky, so should re-engineer the address pattern match.
+      NOT_PRODUCT(Tracer::Depth dddd;)
+      SWPointer tmp(this);
+      NOT_PRODUCT(_tracer.scaled_iv_8(n, &tmp);)
+
+      if (tmp.scaled_iv_plus_offset(n->in(1))) {
+        if (tmp._invar == NULL || _slp->do_vector_loop()) {
+          int mult = 1 << n->in(2)->get_int();
+          _scale   = tmp._scale  * mult;
+          _offset += tmp._offset * mult;
+          NOT_PRODUCT(_tracer.scaled_iv_9(n, _scale, _offset, mult);)
+          return true;
+        }
+      }
+    }
+  }
+  NOT_PRODUCT(_tracer.scaled_iv_10(n);)
+  return false;
+}
+
+//----------------------------offset_plus_k------------------------
+// Match: offset is (k [+/- invariant])
+// where k maybe zero and invariant is optional, but not both.
+bool SWPointer::offset_plus_k(Node* n, bool negate) {
+  NOT_PRODUCT(Tracer::Depth ddd;)
+  NOT_PRODUCT(_tracer.offset_plus_k_1(n);)
+
+  int opc = n->Opcode();
+  if (opc == Op_ConI) {
+    _offset += negate ? -(n->get_int()) : n->get_int();
+    NOT_PRODUCT(_tracer.offset_plus_k_2(n, _offset);)
+    return true;
+  } else if (opc == Op_ConL) {
+    // Okay if value fits into an int
+    const TypeLong* t = n->find_long_type();
+    if (t->higher_equal(TypeLong::INT)) {
+      jlong loff = n->get_long();
+      jint  off  = (jint)loff;
+      _offset += negate ? -off : loff;
+      NOT_PRODUCT(_tracer.offset_plus_k_3(n, _offset);)
+      return true;
+    }
+    NOT_PRODUCT(_tracer.offset_plus_k_4(n);)
+    return false;
+  }
+  if (_invar != NULL) { // already has an invariant
+    NOT_PRODUCT(_tracer.offset_plus_k_5(n, _invar);)
+    return false;
+  }
+
+  if (_analyze_only && (invariant(n) == false)) {
+    _nstack->push(n, _stack_idx++);
+  }
+  if (opc == Op_AddI) {
+    if (n->in(2)->is_Con() && invariant(n->in(1))) {
+      _negate_invar = negate;
+      _invar = n->in(1);
+      _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
+      NOT_PRODUCT(_tracer.offset_plus_k_6(n, _invar, _negate_invar, _offset);)
+      return true;
+    } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
+      _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
+      _negate_invar = negate;
+      _invar = n->in(2);
+      NOT_PRODUCT(_tracer.offset_plus_k_7(n, _invar, _negate_invar, _offset);)
+      return true;
+    }
+  }
+  if (opc == Op_SubI) {
+    if (n->in(2)->is_Con() && invariant(n->in(1))) {
+      _negate_invar = negate;
+      _invar = n->in(1);
+      _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
+      NOT_PRODUCT(_tracer.offset_plus_k_8(n, _invar, _negate_invar, _offset);)
+      return true;
+    } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
+      _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
+      _negate_invar = !negate;
+      _invar = n->in(2);
+      NOT_PRODUCT(_tracer.offset_plus_k_9(n, _invar, _negate_invar, _offset);)
+      return true;
+    }
+  }
+  if (invariant(n)) {
+    if (opc == Op_ConvI2L) {
+      n = n->in(1);
+      if (n->Opcode() == Op_CastII &&
+          n->as_CastII()->has_range_check()) {
+        // Skip range check dependent CastII nodes
+        assert(invariant(n), "sanity");
+        n = n->in(1);
+      }
+    }
+    _negate_invar = negate;
+    _invar = n;
+    NOT_PRODUCT(_tracer.offset_plus_k_10(n, _invar, _negate_invar, _offset);)
+    return true;
+  }
+
+  NOT_PRODUCT(_tracer.offset_plus_k_11(n);)
+  return false;
+}
+
+//----------------------------print------------------------
+void SWPointer::print() {
+#ifndef PRODUCT
+  tty->print("base: %d  adr: %d  scale: %d  offset: %d  invar: %c%d\n",
+             _base != NULL ? _base->_idx : 0,
+             _adr  != NULL ? _adr->_idx  : 0,
+             _scale, _offset,
+             _negate_invar?'-':'+',
+             _invar != NULL ? _invar->_idx : 0);
+#endif
+}
+
+//----------------------------tracing------------------------
+#ifndef PRODUCT
+void SWPointer::Tracer::print_depth() {
+  for (int ii = 0; ii<_depth; ++ii) tty->print("  ");
+}
+
+void SWPointer::Tracer::ctor_1 (Node* mem) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print(" %d SWPointer::SWPointer: start alignment analysis", mem->_idx); mem->dump();
+  }
+}
+
+void SWPointer::Tracer::ctor_2(Node* adr) {
+  if(_slp->is_trace_alignment()) {
+    //store_depth();
+    inc_depth();
+    print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: ", adr->_idx); adr->dump();
+    inc_depth();
+    print_depth(); tty->print(" %d (base) SWPointer::SWPointer: ", adr->in(AddPNode::Base)->_idx); adr->in(AddPNode::Base)->dump();
+  }
+}
+
+void SWPointer::Tracer::ctor_3(Node* adr, int i) {
+  if(_slp->is_trace_alignment()) {
+    inc_depth();
+    Node* offset = adr->in(AddPNode::Offset);
+    print_depth(); tty->print(" %d (offset) SWPointer::SWPointer: i = %d: ", offset->_idx, i); offset->dump();
+  }
+}
+
+void SWPointer::Tracer::ctor_4(Node* adr, int i) {
+  if(_slp->is_trace_alignment()) {
+    inc_depth();
+    print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: i = %d: ", adr->_idx, i); adr->dump();
+  }
+}
+
+void SWPointer::Tracer::ctor_5(Node* adr, Node* base, int i) {
+  if(_slp->is_trace_alignment()) {
+    inc_depth();
+    if (base == adr) {
+      print_depth(); tty->print_cr("  \\ %d (adr) == %d (base) SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, base->_idx, i);
+    } else if (!adr->is_AddP()) {
+      print_depth(); tty->print_cr("  \\ %d (adr) is NOT Addp SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, i);
+    }
+  }
+}
+
+void SWPointer::Tracer::ctor_6(Node* mem) {
+  if(_slp->is_trace_alignment()) {
+    //restore_depth();
+    print_depth(); tty->print_cr(" %d (adr) SWPointer::SWPointer: stop analysis", mem->_idx);
+  }
+}
+
+void SWPointer::Tracer::invariant_1(Node *n, Node *n_c) {
+  if (_slp->do_vector_loop() && _slp->is_debug() && _slp->_lpt->is_member(_slp->_phase->get_loop(n_c)) != (int)_slp->in_bb(n)) {
+    int is_member =  _slp->_lpt->is_member(_slp->_phase->get_loop(n_c));
+    int in_bb     =  _slp->in_bb(n);
+    print_depth(); tty->print("  \\ ");  tty->print_cr(" %d SWPointer::invariant  conditions differ: n_c %d", n->_idx, n_c->_idx);
+    print_depth(); tty->print("  \\ ");  tty->print_cr("is_member %d, in_bb %d", is_member, in_bb);
+    print_depth(); tty->print("  \\ ");  n->dump();
+    print_depth(); tty->print("  \\ ");  n_c->dump();
+  }
+}
+
+void SWPointer::Tracer::scaled_iv_plus_offset_1(Node* n) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print(" %d SWPointer::scaled_iv_plus_offset testing node: ", n->_idx);
+    n->dump();
+  }
+}
+
+void SWPointer::Tracer::scaled_iv_plus_offset_2(Node* n) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx);
+  }
+}
+
+void SWPointer::Tracer::scaled_iv_plus_offset_3(Node* n) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx);
+  }
+}
+
+void SWPointer::Tracer::scaled_iv_plus_offset_4(Node* n) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx);
+    print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump();
+    print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump();
+  }
+}
+
+void SWPointer::Tracer::scaled_iv_plus_offset_5(Node* n) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx);
+    print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump();
+    print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump();
+  }
+}
+
+void SWPointer::Tracer::scaled_iv_plus_offset_6(Node* n) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx);
+    print_depth(); tty->print("  \\  %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump();
+    print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump();
+  }
+}
+
+void SWPointer::Tracer::scaled_iv_plus_offset_7(Node* n) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx);
+    print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump();
+    print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump();
+  }
+}
+
+void SWPointer::Tracer::scaled_iv_plus_offset_8(Node* n) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: FAILED", n->_idx);
+  }
+}
+
+void SWPointer::Tracer::scaled_iv_1(Node* n) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print(" %d SWPointer::scaled_iv: testing node: ", n->_idx); n->dump();
+  }
+}
+
+void SWPointer::Tracer::scaled_iv_2(Node* n, int scale) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED since another _scale has been detected before", n->_idx);
+    print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: _scale (%d) != 0", scale);
+  }
+}
+
+void SWPointer::Tracer::scaled_iv_3(Node* n, int scale) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: is iv, setting _scale = %d", n->_idx, scale);
+  }
+}
+
+void SWPointer::Tracer::scaled_iv_4(Node* n, int scale) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale);
+    print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump();
+    print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
+  }
+}
+
+void SWPointer::Tracer::scaled_iv_5(Node* n, int scale) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale);
+    print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is iv: ", n->in(2)->_idx); n->in(2)->dump();
+    print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
+  }
+}
+
+void SWPointer::Tracer::scaled_iv_6(Node* n, int scale) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftI PASSED, setting _scale = %d", n->_idx, scale);
+    print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump();
+    print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
+  }
+}
+
+void SWPointer::Tracer::scaled_iv_7(Node* n) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_ConvI2L PASSED", n->_idx);
+    print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset: ", n->in(1)->_idx);
+    inc_depth(); inc_depth();
+    print_depth(); n->in(1)->dump();
+    dec_depth(); dec_depth();
+  }
+}
+
+void SWPointer::Tracer::scaled_iv_8(Node* n, SWPointer* tmp) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print(" %d SWPointer::scaled_iv: Op_LShiftL, creating tmp SWPointer: ", n->_idx); tmp->print();
+  }
+}
+
+void SWPointer::Tracer::scaled_iv_9(Node* n, int scale, int _offset, int mult) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftL PASSED, setting _scale = %d, _offset = %d", n->_idx, scale, _offset);
+    print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset, in(2) %d used to get mult = %d: _scale = %d, _offset = %d",
+    n->in(1)->_idx, n->in(2)->_idx, mult, scale, _offset);
+    inc_depth(); inc_depth();
+    print_depth(); n->in(1)->dump();
+    print_depth(); n->in(2)->dump();
+    dec_depth(); dec_depth();
+  }
+}
+
+void SWPointer::Tracer::scaled_iv_10(Node* n) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED", n->_idx);
+  }
+}
+
+void SWPointer::Tracer::offset_plus_k_1(Node* n) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print(" %d SWPointer::offset_plus_k: testing node: ", n->_idx); n->dump();
+  }
+}
+
+void SWPointer::Tracer::offset_plus_k_2(Node* n, int _offset) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConI PASSED, setting _offset = %d", n->_idx, _offset);
+  }
+}
+
+void SWPointer::Tracer::offset_plus_k_3(Node* n, int _offset) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConL PASSED, setting _offset = %d", n->_idx, _offset);
+  }
+}
+
+void SWPointer::Tracer::offset_plus_k_4(Node* n) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx);
+    print_depth(); tty->print_cr("  \\ " JLONG_FORMAT " SWPointer::offset_plus_k: Op_ConL FAILED, k is too big", n->get_long());
+  }
+}
+
+void SWPointer::Tracer::offset_plus_k_5(Node* n, Node* _invar) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED since another invariant has been detected before", n->_idx);
+    print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: _invar != NULL: ", _invar->_idx); _invar->dump();
+  }
+}
+
+void SWPointer::Tracer::offset_plus_k_6(Node* n, Node* _invar, bool _negate_invar, int _offset) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
+    n->_idx, _negate_invar, _invar->_idx, _offset);
+    print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
+    print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump();
+  }
+}
+
+void SWPointer::Tracer::offset_plus_k_7(Node* n, Node* _invar, bool _negate_invar, int _offset) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
+    n->_idx, _negate_invar, _invar->_idx, _offset);
+    print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
+    print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump();
+  }
+}
+
+void SWPointer::Tracer::offset_plus_k_8(Node* n, Node* _invar, bool _negate_invar, int _offset) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI is PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
+    n->_idx, _negate_invar, _invar->_idx, _offset);
+    print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
+    print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump();
+  }
+}
+
+void SWPointer::Tracer::offset_plus_k_9(Node* n, Node* _invar, bool _negate_invar, int _offset) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset);
+    print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
+    print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump();
+  }
+}
+
+void SWPointer::Tracer::offset_plus_k_10(Node* n, Node* _invar, bool _negate_invar, int _offset) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset);
+    print_depth(); tty->print_cr("  \\ %d SWPointer::offset_plus_k: is invariant", n->_idx);
+  }
+}
+
+void SWPointer::Tracer::offset_plus_k_11(Node* n) {
+  if(_slp->is_trace_alignment()) {
+    print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx);
+  }
+}
+
+#endif
+// ========================= OrderedPair =====================
+
+const OrderedPair OrderedPair::initial;
+
+// ========================= SWNodeInfo =====================
+
+const SWNodeInfo SWNodeInfo::initial;
+
+
+// ============================ DepGraph ===========================
+
+//------------------------------make_node---------------------------
+// Make a new dependence graph node for an ideal node.
+DepMem* DepGraph::make_node(Node* node) {
+  DepMem* m = new (_arena) DepMem(node);
+  if (node != NULL) {
+    assert(_map.at_grow(node->_idx) == NULL, "one init only");
+    _map.at_put_grow(node->_idx, m);
+  }
+  return m;
+}
+
+//------------------------------make_edge---------------------------
+// Make a new dependence graph edge from dpred -> dsucc
+DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
+  DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
+  dpred->set_out_head(e);
+  dsucc->set_in_head(e);
+  return e;
+}
+
+// ========================== DepMem ========================
+
+//------------------------------in_cnt---------------------------
+int DepMem::in_cnt() {
+  int ct = 0;
+  for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
+  return ct;
+}
+
+//------------------------------out_cnt---------------------------
+int DepMem::out_cnt() {
+  int ct = 0;
+  for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
+  return ct;
+}
+
+//------------------------------print-----------------------------
+void DepMem::print() {
+#ifndef PRODUCT
+  tty->print("  DepNode %d (", _node->_idx);
+  for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
+    Node* pred = p->pred()->node();
+    tty->print(" %d", pred != NULL ? pred->_idx : 0);
+  }
+  tty->print(") [");
+  for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
+    Node* succ = s->succ()->node();
+    tty->print(" %d", succ != NULL ? succ->_idx : 0);
+  }
+  tty->print_cr(" ]");
+#endif
+}
+
+// =========================== DepEdge =========================
+
+//------------------------------DepPreds---------------------------
+void DepEdge::print() {
+#ifndef PRODUCT
+  tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
+#endif
+}
+
+// =========================== DepPreds =========================
+// Iterator over predecessor edges in the dependence graph.
+
+//------------------------------DepPreds---------------------------
+DepPreds::DepPreds(Node* n, DepGraph& dg) {
+  _n = n;
+  _done = false;
+  if (_n->is_Store() || _n->is_Load()) {
+    _next_idx = MemNode::Address;
+    _end_idx  = n->req();
+    _dep_next = dg.dep(_n)->in_head();
+  } else if (_n->is_Mem()) {
+    _next_idx = 0;
+    _end_idx  = 0;
+    _dep_next = dg.dep(_n)->in_head();
+  } else {
+    _next_idx = 1;
+    _end_idx  = _n->req();
+    _dep_next = NULL;
+  }
+  next();
+}
+
+//------------------------------next---------------------------
+void DepPreds::next() {
+  if (_dep_next != NULL) {
+    _current  = _dep_next->pred()->node();
+    _dep_next = _dep_next->next_in();
+  } else if (_next_idx < _end_idx) {
+    _current  = _n->in(_next_idx++);
+  } else {
+    _done = true;
+  }
+}
+
+// =========================== DepSuccs =========================
+// Iterator over successor edges in the dependence graph.
+
+//------------------------------DepSuccs---------------------------
+DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
+  _n = n;
+  _done = false;
+  if (_n->is_Load()) {
+    _next_idx = 0;
+    _end_idx  = _n->outcnt();
+    _dep_next = dg.dep(_n)->out_head();
+  } else if (_n->is_Mem() || (_n->is_Phi() && _n->bottom_type() == Type::MEMORY)) {
+    _next_idx = 0;
+    _end_idx  = 0;
+    _dep_next = dg.dep(_n)->out_head();
+  } else {
+    _next_idx = 0;
+    _end_idx  = _n->outcnt();
+    _dep_next = NULL;
+  }
+  next();
+}
+
+//-------------------------------next---------------------------
+void DepSuccs::next() {
+  if (_dep_next != NULL) {
+    _current  = _dep_next->succ()->node();
+    _dep_next = _dep_next->next_out();
+  } else if (_next_idx < _end_idx) {
+    _current  = _n->raw_out(_next_idx++);
+  } else {
+    _done = true;
+  }
+}
+
+//
+// --------------------------------- vectorization/simd -----------------------------------
+//
+bool SuperWord::same_origin_idx(Node* a, Node* b) const {
+  return a != NULL && b != NULL && _clone_map.same_idx(a->_idx, b->_idx);
+}
+bool SuperWord::same_generation(Node* a, Node* b) const {
+  return a != NULL && b != NULL && _clone_map.same_gen(a->_idx, b->_idx);
+}
+
+Node*  SuperWord::find_phi_for_mem_dep(LoadNode* ld) {
+  assert(in_bb(ld), "must be in block");
+  if (_clone_map.gen(ld->_idx) == _ii_first) {
+#ifndef PRODUCT
+    if (_vector_loop_debug) {
+      tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(ld->_idx)=%d",
+        _clone_map.gen(ld->_idx));
+    }
+#endif
+    return NULL; //we think that any ld in the first gen being vectorizable
+  }
+
+  Node* mem = ld->in(MemNode::Memory);
+  if (mem->outcnt() <= 1) {
+    // we don't want to remove the only edge from mem node to load
+#ifndef PRODUCT
+    if (_vector_loop_debug) {
+      tty->print_cr("SuperWord::find_phi_for_mem_dep input node %d to load %d has no other outputs and edge mem->load cannot be removed",
+        mem->_idx, ld->_idx);
+      ld->dump();
+      mem->dump();
+    }
+#endif
+    return NULL;
+  }
+  if (!in_bb(mem) || same_generation(mem, ld)) {
+#ifndef PRODUCT
+    if (_vector_loop_debug) {
+      tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(mem->_idx)=%d",
+        _clone_map.gen(mem->_idx));
+    }
+#endif
+    return NULL; // does not depend on loop volatile node or depends on the same generation
+  }
+
+  //otherwise first node should depend on mem-phi
+  Node* first = first_node(ld);
+  assert(first->is_Load(), "must be Load");
+  Node* phi = first->as_Load()->in(MemNode::Memory);
+  if (!phi->is_Phi() || phi->bottom_type() != Type::MEMORY) {
+#ifndef PRODUCT
+    if (_vector_loop_debug) {
+      tty->print_cr("SuperWord::find_phi_for_mem_dep load is not vectorizable node, since it's `first` does not take input from mem phi");
+      ld->dump();
+      first->dump();
+    }
+#endif
+    return NULL;
+  }
+
+  Node* tail = 0;
+  for (int m = 0; m < _mem_slice_head.length(); m++) {
+    if (_mem_slice_head.at(m) == phi) {
+      tail = _mem_slice_tail.at(m);
+    }
+  }
+  if (tail == 0) { //test that found phi is in the list  _mem_slice_head
+#ifndef PRODUCT
+    if (_vector_loop_debug) {
+      tty->print_cr("SuperWord::find_phi_for_mem_dep load %d is not vectorizable node, its phi %d is not _mem_slice_head",
+        ld->_idx, phi->_idx);
+      ld->dump();
+      phi->dump();
+    }
+#endif
+    return NULL;
+  }
+
+  // now all conditions are met
+  return phi;
+}
+
+Node* SuperWord::first_node(Node* nd) {
+  for (int ii = 0; ii < _iteration_first.length(); ii++) {
+    Node* nnn = _iteration_first.at(ii);
+    if (same_origin_idx(nnn, nd)) {
+#ifndef PRODUCT
+      if (_vector_loop_debug) {
+        tty->print_cr("SuperWord::first_node: %d is the first iteration node for %d (_clone_map.idx(nnn->_idx) = %d)",
+          nnn->_idx, nd->_idx, _clone_map.idx(nnn->_idx));
+      }
+#endif
+      return nnn;
+    }
+  }
+
+#ifndef PRODUCT
+  if (_vector_loop_debug) {
+    tty->print_cr("SuperWord::first_node: did not find first iteration node for %d (_clone_map.idx(nd->_idx)=%d)",
+      nd->_idx, _clone_map.idx(nd->_idx));
+  }
+#endif
+  return 0;
+}
+
+Node* SuperWord::last_node(Node* nd) {
+  for (int ii = 0; ii < _iteration_last.length(); ii++) {
+    Node* nnn = _iteration_last.at(ii);
+    if (same_origin_idx(nnn, nd)) {
+#ifndef PRODUCT
+      if (_vector_loop_debug) {
+        tty->print_cr("SuperWord::last_node _clone_map.idx(nnn->_idx)=%d, _clone_map.idx(nd->_idx)=%d",
+          _clone_map.idx(nnn->_idx), _clone_map.idx(nd->_idx));
+      }
+#endif
+      return nnn;
+    }
+  }
+  return 0;
+}
+
+int SuperWord::mark_generations() {
+  Node *ii_err = NULL, *tail_err = NULL;
+  for (int i = 0; i < _mem_slice_head.length(); i++) {
+    Node* phi  = _mem_slice_head.at(i);
+    assert(phi->is_Phi(), "must be phi");
+
+    Node* tail = _mem_slice_tail.at(i);
+    if (_ii_last == -1) {
+      tail_err = tail;
+      _ii_last = _clone_map.gen(tail->_idx);
+    }
+    else if (_ii_last != _clone_map.gen(tail->_idx)) {
+#ifndef PRODUCT
+      if (TraceSuperWord && Verbose) {
+        tty->print_cr("SuperWord::mark_generations _ii_last error - found different generations in two tail nodes ");
+        tail->dump();
+        tail_err->dump();
+      }
+#endif
+      return -1;
+    }
+
+    // find first iteration in the loop
+    for (DUIterator_Fast imax, i = phi->fast_outs(imax); i < imax; i++) {
+      Node* ii = phi->fast_out(i);
+      if (in_bb(ii) && ii->is_Store()) { // we speculate that normally Stores of one and one only generation have deps from mem phi
+        if (_ii_first == -1) {
+          ii_err = ii;
+          _ii_first = _clone_map.gen(ii->_idx);
+        } else if (_ii_first != _clone_map.gen(ii->_idx)) {
+#ifndef PRODUCT
+          if (TraceSuperWord && Verbose) {
+            tty->print_cr("SuperWord::mark_generations: _ii_first was found before and not equal to one in this node (%d)", _ii_first);
+            ii->dump();
+            if (ii_err!= 0) {
+              ii_err->dump();
+            }
+          }
+#endif
+          return -1; // this phi has Stores from different generations of unroll and cannot be simd/vectorized
+        }
+      }
+    }//for (DUIterator_Fast imax,
+  }//for (int i...
+
+  if (_ii_first == -1 || _ii_last == -1) {
+    if (TraceSuperWord && Verbose) {
+      tty->print_cr("SuperWord::mark_generations unknown error, something vent wrong");
+    }
+    return -1; // something vent wrong
+  }
+  // collect nodes in the first and last generations
+  assert(_iteration_first.length() == 0, "_iteration_first must be empty");
+  assert(_iteration_last.length() == 0, "_iteration_last must be empty");
+  for (int j = 0; j < _block.length(); j++) {
+    Node* n = _block.at(j);
+    node_idx_t gen = _clone_map.gen(n->_idx);
+    if ((signed)gen == _ii_first) {
+      _iteration_first.push(n);
+    } else if ((signed)gen == _ii_last) {
+      _iteration_last.push(n);
+    }
+  }
+
+  // building order of iterations
+  if (_ii_order.length() == 0 && ii_err != 0) {
+    assert(in_bb(ii_err) && ii_err->is_Store(), "should be Store in bb");
+    Node* nd = ii_err;
+    while(_clone_map.gen(nd->_idx) != _ii_last) {
+      _ii_order.push(_clone_map.gen(nd->_idx));
+      bool found = false;
+      for (DUIterator_Fast imax, i = nd->fast_outs(imax); i < imax; i++) {
+        Node* use = nd->fast_out(i);
+        if (same_origin_idx(use, nd) && use->as_Store()->in(MemNode::Memory) == nd) {
+          found = true;
+          nd = use;
+          break;
+        }
+      }//for
+
+      if (found == false) {
+        if (TraceSuperWord && Verbose) {
+          tty->print_cr("SuperWord::mark_generations: Cannot build order of iterations - no dependent Store for %d", nd->_idx);
+        }
+        _ii_order.clear();
+        return -1;
+      }
+    } //while
+    _ii_order.push(_clone_map.gen(nd->_idx));
+  }
+
+#ifndef PRODUCT
+  if (_vector_loop_debug) {
+    tty->print_cr("SuperWord::mark_generations");
+    tty->print_cr("First generation (%d) nodes:", _ii_first);
+    for (int ii = 0; ii < _iteration_first.length(); ii++)  _iteration_first.at(ii)->dump();
+    tty->print_cr("Last generation (%d) nodes:", _ii_last);
+    for (int ii = 0; ii < _iteration_last.length(); ii++)  _iteration_last.at(ii)->dump();
+    tty->print_cr(" ");
+
+    tty->print("SuperWord::List of generations: ");
+    for (int jj = 0; jj < _ii_order.length(); ++jj) {
+      tty->print("%d:%d ", jj, _ii_order.at(jj));
+    }
+    tty->print_cr(" ");
+  }
+#endif
+
+  return _ii_first;
+}
+
+bool SuperWord::fix_commutative_inputs(Node* gold, Node* fix) {
+  assert(gold->is_Add() && fix->is_Add() || gold->is_Mul() && fix->is_Mul(), "should be only Add or Mul nodes");
+  assert(same_origin_idx(gold, fix), "should be clones of the same node");
+  Node* gin1 = gold->in(1);
+  Node* gin2 = gold->in(2);
+  Node* fin1 = fix->in(1);
+  Node* fin2 = fix->in(2);
+  bool swapped = false;
+
+  if (in_bb(gin1) && in_bb(gin2) && in_bb(fin1) && in_bb(fin1)) {
+    if (same_origin_idx(gin1, fin1) &&
+        same_origin_idx(gin2, fin2)) {
+      return true; // nothing to fix
+    }
+    if (same_origin_idx(gin1, fin2) &&
+        same_origin_idx(gin2, fin1)) {
+      fix->swap_edges(1, 2);
+      swapped = true;
+    }
+  }
+  // at least one input comes from outside of bb
+  if (gin1->_idx == fin1->_idx)  {
+    return true; // nothing to fix
+  }
+  if (!swapped && (gin1->_idx == fin2->_idx || gin2->_idx == fin1->_idx))  { //swapping is expensive, check condition first
+    fix->swap_edges(1, 2);
+    swapped = true;
+  }
+
+  if (swapped) {
+#ifndef PRODUCT
+    if (_vector_loop_debug) {
+      tty->print_cr("SuperWord::fix_commutative_inputs: fixed node %d", fix->_idx);
+    }
+#endif
+    return true;
+  }
+
+  if (TraceSuperWord && Verbose) {
+    tty->print_cr("SuperWord::fix_commutative_inputs: cannot fix node %d", fix->_idx);
+  }
+
+  return false;
+}
+
+bool SuperWord::pack_parallel() {
+#ifndef PRODUCT
+  if (_vector_loop_debug) {
+    tty->print_cr("SuperWord::pack_parallel: START");
+  }
+#endif
+
+  _packset.clear();
+
+  for (int ii = 0; ii < _iteration_first.length(); ii++) {
+    Node* nd = _iteration_first.at(ii);
+    if (in_bb(nd) && (nd->is_Load() || nd->is_Store() || nd->is_Add() || nd->is_Mul())) {
+      Node_List* pk = new Node_List();
+      pk->push(nd);
+      for (int gen = 1; gen < _ii_order.length(); ++gen) {
+        for (int kk = 0; kk < _block.length(); kk++) {
+          Node* clone = _block.at(kk);
+          if (same_origin_idx(clone, nd) &&
+              _clone_map.gen(clone->_idx) == _ii_order.at(gen)) {
+            if (nd->is_Add() || nd->is_Mul()) {
+              fix_commutative_inputs(nd, clone);
+            }
+            pk->push(clone);
+            if (pk->size() == 4) {
+              _packset.append(pk);
+#ifndef PRODUCT
+              if (_vector_loop_debug) {
+                tty->print_cr("SuperWord::pack_parallel: added pack ");
+                pk->dump();
+              }
+#endif
+              if (_clone_map.gen(clone->_idx) != _ii_last) {
+                pk = new Node_List();
+              }
+            }
+            break;
+          }
+        }
+      }//for
+    }//if
+  }//for
+
+#ifndef PRODUCT
+  if (_vector_loop_debug) {
+    tty->print_cr("SuperWord::pack_parallel: END");
+  }
+#endif
+
+  return true;
+}
+
+bool SuperWord::hoist_loads_in_graph() {
+  GrowableArray<Node*> loads;
+
+#ifndef PRODUCT
+  if (_vector_loop_debug) {
+    tty->print_cr("SuperWord::hoist_loads_in_graph: total number _mem_slice_head.length() = %d", _mem_slice_head.length());
+  }
+#endif
+
+  for (int i = 0; i < _mem_slice_head.length(); i++) {
+    Node* n = _mem_slice_head.at(i);
+    if ( !in_bb(n) || !n->is_Phi() || n->bottom_type() != Type::MEMORY) {
+      if (TraceSuperWord && Verbose) {
+        tty->print_cr("SuperWord::hoist_loads_in_graph: skipping unexpected node n=%d", n->_idx);
+      }
+      continue;
+    }
+
+#ifndef PRODUCT
+    if (_vector_loop_debug) {
+      tty->print_cr("SuperWord::hoist_loads_in_graph: processing phi %d  = _mem_slice_head.at(%d);", n->_idx, i);
+    }
+#endif
+
+    for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
+      Node* ld = n->fast_out(i);
+      if (ld->is_Load() && ld->as_Load()->in(MemNode::Memory) == n && in_bb(ld)) {
+        for (int i = 0; i < _block.length(); i++) {
+          Node* ld2 = _block.at(i);
+          if (ld2->is_Load() && same_origin_idx(ld, ld2) &&
+              !same_generation(ld, ld2)) { // <= do not collect the first generation ld
+#ifndef PRODUCT
+            if (_vector_loop_debug) {
+              tty->print_cr("SuperWord::hoist_loads_in_graph: will try to hoist load ld2->_idx=%d, cloned from %d (ld->_idx=%d)",
+                ld2->_idx, _clone_map.idx(ld->_idx), ld->_idx);
+            }
+#endif
+            // could not do on-the-fly, since iterator is immutable
+            loads.push(ld2);
+          }
+        }// for
+      }//if
+    }//for (DUIterator_Fast imax,
+  }//for (int i = 0; i
+
+  for (int i = 0; i < loads.length(); i++) {
+    LoadNode* ld = loads.at(i)->as_Load();
+    Node* phi = find_phi_for_mem_dep(ld);
+    if (phi != NULL) {
+#ifndef PRODUCT
+      if (_vector_loop_debug) {
+        tty->print_cr("SuperWord::hoist_loads_in_graph replacing MemNode::Memory(%d) edge in %d with one from %d",
+          MemNode::Memory, ld->_idx, phi->_idx);
+      }
+#endif
+      _igvn.replace_input_of(ld, MemNode::Memory, phi);
+    }
+  }//for
+
+  restart(); // invalidate all basic structures, since we rebuilt the graph
+
+  if (TraceSuperWord && Verbose) {
+    tty->print_cr("\nSuperWord::hoist_loads_in_graph() the graph was rebuilt, all structures invalidated and need rebuild");
+  }
+
+  return true;
+}
+