src/hotspot/share/opto/macro.cpp
changeset 47216 71c04702a3d5
parent 46630 75aa3e39d02c
child 48145 f913f6dba2d3
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/opto/macro.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,2796 @@
+/*
+ * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "compiler/compileLog.hpp"
+#include "libadt/vectset.hpp"
+#include "opto/addnode.hpp"
+#include "opto/arraycopynode.hpp"
+#include "opto/callnode.hpp"
+#include "opto/castnode.hpp"
+#include "opto/cfgnode.hpp"
+#include "opto/compile.hpp"
+#include "opto/convertnode.hpp"
+#include "opto/graphKit.hpp"
+#include "opto/locknode.hpp"
+#include "opto/loopnode.hpp"
+#include "opto/macro.hpp"
+#include "opto/memnode.hpp"
+#include "opto/narrowptrnode.hpp"
+#include "opto/node.hpp"
+#include "opto/opaquenode.hpp"
+#include "opto/phaseX.hpp"
+#include "opto/rootnode.hpp"
+#include "opto/runtime.hpp"
+#include "opto/subnode.hpp"
+#include "opto/type.hpp"
+#include "runtime/sharedRuntime.hpp"
+
+
+//
+// Replace any references to "oldref" in inputs to "use" with "newref".
+// Returns the number of replacements made.
+//
+int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
+  int nreplacements = 0;
+  uint req = use->req();
+  for (uint j = 0; j < use->len(); j++) {
+    Node *uin = use->in(j);
+    if (uin == oldref) {
+      if (j < req)
+        use->set_req(j, newref);
+      else
+        use->set_prec(j, newref);
+      nreplacements++;
+    } else if (j >= req && uin == NULL) {
+      break;
+    }
+  }
+  return nreplacements;
+}
+
+void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
+  // Copy debug information and adjust JVMState information
+  uint old_dbg_start = oldcall->tf()->domain()->cnt();
+  uint new_dbg_start = newcall->tf()->domain()->cnt();
+  int jvms_adj  = new_dbg_start - old_dbg_start;
+  assert (new_dbg_start == newcall->req(), "argument count mismatch");
+
+  // SafePointScalarObject node could be referenced several times in debug info.
+  // Use Dict to record cloned nodes.
+  Dict* sosn_map = new Dict(cmpkey,hashkey);
+  for (uint i = old_dbg_start; i < oldcall->req(); i++) {
+    Node* old_in = oldcall->in(i);
+    // Clone old SafePointScalarObjectNodes, adjusting their field contents.
+    if (old_in != NULL && old_in->is_SafePointScalarObject()) {
+      SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
+      uint old_unique = C->unique();
+      Node* new_in = old_sosn->clone(sosn_map);
+      if (old_unique != C->unique()) { // New node?
+        new_in->set_req(0, C->root()); // reset control edge
+        new_in = transform_later(new_in); // Register new node.
+      }
+      old_in = new_in;
+    }
+    newcall->add_req(old_in);
+  }
+
+  // JVMS may be shared so clone it before we modify it
+  newcall->set_jvms(oldcall->jvms() != NULL ? oldcall->jvms()->clone_deep(C) : NULL);
+  for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
+    jvms->set_map(newcall);
+    jvms->set_locoff(jvms->locoff()+jvms_adj);
+    jvms->set_stkoff(jvms->stkoff()+jvms_adj);
+    jvms->set_monoff(jvms->monoff()+jvms_adj);
+    jvms->set_scloff(jvms->scloff()+jvms_adj);
+    jvms->set_endoff(jvms->endoff()+jvms_adj);
+  }
+}
+
+Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
+  Node* cmp;
+  if (mask != 0) {
+    Node* and_node = transform_later(new AndXNode(word, MakeConX(mask)));
+    cmp = transform_later(new CmpXNode(and_node, MakeConX(bits)));
+  } else {
+    cmp = word;
+  }
+  Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne));
+  IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
+  transform_later(iff);
+
+  // Fast path taken.
+  Node *fast_taken = transform_later(new IfFalseNode(iff));
+
+  // Fast path not-taken, i.e. slow path
+  Node *slow_taken = transform_later(new IfTrueNode(iff));
+
+  if (return_fast_path) {
+    region->init_req(edge, slow_taken); // Capture slow-control
+    return fast_taken;
+  } else {
+    region->init_req(edge, fast_taken); // Capture fast-control
+    return slow_taken;
+  }
+}
+
+//--------------------copy_predefined_input_for_runtime_call--------------------
+void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
+  // Set fixed predefined input arguments
+  call->init_req( TypeFunc::Control, ctrl );
+  call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
+  call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
+  call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
+  call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
+}
+
+//------------------------------make_slow_call---------------------------------
+CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type,
+                                           address slow_call, const char* leaf_name, Node* slow_path,
+                                           Node* parm0, Node* parm1, Node* parm2) {
+
+  // Slow-path call
+ CallNode *call = leaf_name
+   ? (CallNode*)new CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
+   : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
+
+  // Slow path call has no side-effects, uses few values
+  copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
+  if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
+  if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
+  if (parm2 != NULL)  call->init_req(TypeFunc::Parms+2, parm2);
+  copy_call_debug_info(oldcall, call);
+  call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
+  _igvn.replace_node(oldcall, call);
+  transform_later(call);
+
+  return call;
+}
+
+void PhaseMacroExpand::extract_call_projections(CallNode *call) {
+  _fallthroughproj = NULL;
+  _fallthroughcatchproj = NULL;
+  _ioproj_fallthrough = NULL;
+  _ioproj_catchall = NULL;
+  _catchallcatchproj = NULL;
+  _memproj_fallthrough = NULL;
+  _memproj_catchall = NULL;
+  _resproj = NULL;
+  for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
+    ProjNode *pn = call->fast_out(i)->as_Proj();
+    switch (pn->_con) {
+      case TypeFunc::Control:
+      {
+        // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
+        _fallthroughproj = pn;
+        DUIterator_Fast jmax, j = pn->fast_outs(jmax);
+        const Node *cn = pn->fast_out(j);
+        if (cn->is_Catch()) {
+          ProjNode *cpn = NULL;
+          for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
+            cpn = cn->fast_out(k)->as_Proj();
+            assert(cpn->is_CatchProj(), "must be a CatchProjNode");
+            if (cpn->_con == CatchProjNode::fall_through_index)
+              _fallthroughcatchproj = cpn;
+            else {
+              assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
+              _catchallcatchproj = cpn;
+            }
+          }
+        }
+        break;
+      }
+      case TypeFunc::I_O:
+        if (pn->_is_io_use)
+          _ioproj_catchall = pn;
+        else
+          _ioproj_fallthrough = pn;
+        break;
+      case TypeFunc::Memory:
+        if (pn->_is_io_use)
+          _memproj_catchall = pn;
+        else
+          _memproj_fallthrough = pn;
+        break;
+      case TypeFunc::Parms:
+        _resproj = pn;
+        break;
+      default:
+        assert(false, "unexpected projection from allocation node.");
+    }
+  }
+
+}
+
+// Eliminate a card mark sequence.  p2x is a ConvP2XNode
+void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
+  assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
+  if (!UseG1GC) {
+    // vanilla/CMS post barrier
+    Node *shift = p2x->unique_out();
+    Node *addp = shift->unique_out();
+    for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
+      Node *mem = addp->last_out(j);
+      if (UseCondCardMark && mem->is_Load()) {
+        assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
+        // The load is checking if the card has been written so
+        // replace it with zero to fold the test.
+        _igvn.replace_node(mem, intcon(0));
+        continue;
+      }
+      assert(mem->is_Store(), "store required");
+      _igvn.replace_node(mem, mem->in(MemNode::Memory));
+    }
+  } else {
+    // G1 pre/post barriers
+    assert(p2x->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes");
+    // It could be only one user, URShift node, in Object.clone() intrinsic
+    // but the new allocation is passed to arraycopy stub and it could not
+    // be scalar replaced. So we don't check the case.
+
+    // An other case of only one user (Xor) is when the value check for NULL
+    // in G1 post barrier is folded after CCP so the code which used URShift
+    // is removed.
+
+    // Take Region node before eliminating post barrier since it also
+    // eliminates CastP2X node when it has only one user.
+    Node* this_region = p2x->in(0);
+    assert(this_region != NULL, "");
+
+    // Remove G1 post barrier.
+
+    // Search for CastP2X->Xor->URShift->Cmp path which
+    // checks if the store done to a different from the value's region.
+    // And replace Cmp with #0 (false) to collapse G1 post barrier.
+    Node* xorx = p2x->find_out_with(Op_XorX);
+    if (xorx != NULL) {
+      Node* shift = xorx->unique_out();
+      Node* cmpx = shift->unique_out();
+      assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
+      cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
+      "missing region check in G1 post barrier");
+      _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
+
+      // Remove G1 pre barrier.
+
+      // Search "if (marking != 0)" check and set it to "false".
+      // There is no G1 pre barrier if previous stored value is NULL
+      // (for example, after initialization).
+      if (this_region->is_Region() && this_region->req() == 3) {
+        int ind = 1;
+        if (!this_region->in(ind)->is_IfFalse()) {
+          ind = 2;
+        }
+        if (this_region->in(ind)->is_IfFalse()) {
+          Node* bol = this_region->in(ind)->in(0)->in(1);
+          assert(bol->is_Bool(), "");
+          cmpx = bol->in(1);
+          if (bol->as_Bool()->_test._test == BoolTest::ne &&
+              cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
+              cmpx->in(1)->is_Load()) {
+            Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
+            const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
+                                                SATBMarkQueue::byte_offset_of_active());
+            if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
+                adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
+                adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
+              _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
+            }
+          }
+        }
+      }
+    } else {
+      assert(!GraphKit::use_ReduceInitialCardMarks(), "can only happen with card marking");
+      // This is a G1 post barrier emitted by the Object.clone() intrinsic.
+      // Search for the CastP2X->URShiftX->AddP->LoadB->Cmp path which checks if the card
+      // is marked as young_gen and replace the Cmp with 0 (false) to collapse the barrier.
+      Node* shift = p2x->find_out_with(Op_URShiftX);
+      assert(shift != NULL, "missing G1 post barrier");
+      Node* addp = shift->unique_out();
+      Node* load = addp->find_out_with(Op_LoadB);
+      assert(load != NULL, "missing G1 post barrier");
+      Node* cmpx = load->unique_out();
+      assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
+             cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
+             "missing card value check in G1 post barrier");
+      _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
+      // There is no G1 pre barrier in this case
+    }
+    // Now CastP2X can be removed since it is used only on dead path
+    // which currently still alive until igvn optimize it.
+    assert(p2x->outcnt() == 0 || p2x->unique_out()->Opcode() == Op_URShiftX, "");
+    _igvn.replace_node(p2x, top());
+  }
+}
+
+// Search for a memory operation for the specified memory slice.
+static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
+  Node *orig_mem = mem;
+  Node *alloc_mem = alloc->in(TypeFunc::Memory);
+  const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
+  while (true) {
+    if (mem == alloc_mem || mem == start_mem ) {
+      return mem;  // hit one of our sentinels
+    } else if (mem->is_MergeMem()) {
+      mem = mem->as_MergeMem()->memory_at(alias_idx);
+    } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
+      Node *in = mem->in(0);
+      // we can safely skip over safepoints, calls, locks and membars because we
+      // already know that the object is safe to eliminate.
+      if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
+        return in;
+      } else if (in->is_Call()) {
+        CallNode *call = in->as_Call();
+        if (call->may_modify(tinst, phase)) {
+          assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape");
+          if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) {
+            return in;
+          }
+        }
+        mem = in->in(TypeFunc::Memory);
+      } else if (in->is_MemBar()) {
+        ArrayCopyNode* ac = NULL;
+        if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) {
+          assert(ac != NULL && ac->is_clonebasic(), "Only basic clone is a non escaping clone");
+          return ac;
+        }
+        mem = in->in(TypeFunc::Memory);
+      } else {
+        assert(false, "unexpected projection");
+      }
+    } else if (mem->is_Store()) {
+      const TypePtr* atype = mem->as_Store()->adr_type();
+      int adr_idx = phase->C->get_alias_index(atype);
+      if (adr_idx == alias_idx) {
+        assert(atype->isa_oopptr(), "address type must be oopptr");
+        int adr_offset = atype->offset();
+        uint adr_iid = atype->is_oopptr()->instance_id();
+        // Array elements references have the same alias_idx
+        // but different offset and different instance_id.
+        if (adr_offset == offset && adr_iid == alloc->_idx)
+          return mem;
+      } else {
+        assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
+      }
+      mem = mem->in(MemNode::Memory);
+    } else if (mem->is_ClearArray()) {
+      if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
+        // Can not bypass initialization of the instance
+        // we are looking.
+        debug_only(intptr_t offset;)
+        assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
+        InitializeNode* init = alloc->as_Allocate()->initialization();
+        // We are looking for stored value, return Initialize node
+        // or memory edge from Allocate node.
+        if (init != NULL)
+          return init;
+        else
+          return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
+      }
+      // Otherwise skip it (the call updated 'mem' value).
+    } else if (mem->Opcode() == Op_SCMemProj) {
+      mem = mem->in(0);
+      Node* adr = NULL;
+      if (mem->is_LoadStore()) {
+        adr = mem->in(MemNode::Address);
+      } else {
+        assert(mem->Opcode() == Op_EncodeISOArray ||
+               mem->Opcode() == Op_StrCompressedCopy, "sanity");
+        adr = mem->in(3); // Destination array
+      }
+      const TypePtr* atype = adr->bottom_type()->is_ptr();
+      int adr_idx = phase->C->get_alias_index(atype);
+      if (adr_idx == alias_idx) {
+        DEBUG_ONLY(mem->dump();)
+        assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
+        return NULL;
+      }
+      mem = mem->in(MemNode::Memory);
+   } else if (mem->Opcode() == Op_StrInflatedCopy) {
+      Node* adr = mem->in(3); // Destination array
+      const TypePtr* atype = adr->bottom_type()->is_ptr();
+      int adr_idx = phase->C->get_alias_index(atype);
+      if (adr_idx == alias_idx) {
+        DEBUG_ONLY(mem->dump();)
+        assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
+        return NULL;
+      }
+      mem = mem->in(MemNode::Memory);
+    } else {
+      return mem;
+    }
+    assert(mem != orig_mem, "dead memory loop");
+  }
+}
+
+// Generate loads from source of the arraycopy for fields of
+// destination needed at a deoptimization point
+Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) {
+  BasicType bt = ft;
+  const Type *type = ftype;
+  if (ft == T_NARROWOOP) {
+    bt = T_OBJECT;
+    type = ftype->make_oopptr();
+  }
+  Node* res = NULL;
+  if (ac->is_clonebasic()) {
+    Node* base = ac->in(ArrayCopyNode::Src)->in(AddPNode::Base);
+    Node* adr = _igvn.transform(new AddPNode(base, base, MakeConX(offset)));
+    const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
+    res = LoadNode::make(_igvn, ctl, mem, adr, adr_type, type, bt, MemNode::unordered, LoadNode::Pinned);
+  } else {
+    if (ac->modifies(offset, offset, &_igvn, true)) {
+      assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result");
+      uint shift  = exact_log2(type2aelembytes(bt));
+      Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
+#ifdef _LP64
+      diff = _igvn.transform(new ConvI2LNode(diff));
+#endif
+      diff = _igvn.transform(new LShiftXNode(diff, intcon(shift)));
+
+      Node* off = _igvn.transform(new AddXNode(MakeConX(offset), diff));
+      Node* base = ac->in(ArrayCopyNode::Src);
+      Node* adr = _igvn.transform(new AddPNode(base, base, off));
+      const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
+      res = LoadNode::make(_igvn, ctl, mem, adr, adr_type, type, bt, MemNode::unordered, LoadNode::Pinned);
+    }
+  }
+  if (res != NULL) {
+    res = _igvn.transform(res);
+    if (ftype->isa_narrowoop()) {
+      // PhaseMacroExpand::scalar_replacement adds DecodeN nodes
+      res = _igvn.transform(new EncodePNode(res, ftype));
+    }
+    return res;
+  }
+  return NULL;
+}
+
+//
+// Given a Memory Phi, compute a value Phi containing the values from stores
+// on the input paths.
+// Note: this function is recursive, its depth is limited by the "level" argument
+// Returns the computed Phi, or NULL if it cannot compute it.
+Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) {
+  assert(mem->is_Phi(), "sanity");
+  int alias_idx = C->get_alias_index(adr_t);
+  int offset = adr_t->offset();
+  int instance_id = adr_t->instance_id();
+
+  // Check if an appropriate value phi already exists.
+  Node* region = mem->in(0);
+  for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
+    Node* phi = region->fast_out(k);
+    if (phi->is_Phi() && phi != mem &&
+        phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) {
+      return phi;
+    }
+  }
+  // Check if an appropriate new value phi already exists.
+  Node* new_phi = value_phis->find(mem->_idx);
+  if (new_phi != NULL)
+    return new_phi;
+
+  if (level <= 0) {
+    return NULL; // Give up: phi tree too deep
+  }
+  Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
+  Node *alloc_mem = alloc->in(TypeFunc::Memory);
+
+  uint length = mem->req();
+  GrowableArray <Node *> values(length, length, NULL, false);
+
+  // create a new Phi for the value
+  PhiNode *phi = new PhiNode(mem->in(0), phi_type, NULL, mem->_idx, instance_id, alias_idx, offset);
+  transform_later(phi);
+  value_phis->push(phi, mem->_idx);
+
+  for (uint j = 1; j < length; j++) {
+    Node *in = mem->in(j);
+    if (in == NULL || in->is_top()) {
+      values.at_put(j, in);
+    } else  {
+      Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
+      if (val == start_mem || val == alloc_mem) {
+        // hit a sentinel, return appropriate 0 value
+        values.at_put(j, _igvn.zerocon(ft));
+        continue;
+      }
+      if (val->is_Initialize()) {
+        val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
+      }
+      if (val == NULL) {
+        return NULL;  // can't find a value on this path
+      }
+      if (val == mem) {
+        values.at_put(j, mem);
+      } else if (val->is_Store()) {
+        values.at_put(j, val->in(MemNode::ValueIn));
+      } else if(val->is_Proj() && val->in(0) == alloc) {
+        values.at_put(j, _igvn.zerocon(ft));
+      } else if (val->is_Phi()) {
+        val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
+        if (val == NULL) {
+          return NULL;
+        }
+        values.at_put(j, val);
+      } else if (val->Opcode() == Op_SCMemProj) {
+        assert(val->in(0)->is_LoadStore() ||
+               val->in(0)->Opcode() == Op_EncodeISOArray ||
+               val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity");
+        assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
+        return NULL;
+      } else if (val->is_ArrayCopy()) {
+        Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc);
+        if (res == NULL) {
+          return NULL;
+        }
+        values.at_put(j, res);
+      } else {
+#ifdef ASSERT
+        val->dump();
+        assert(false, "unknown node on this path");
+#endif
+        return NULL;  // unknown node on this path
+      }
+    }
+  }
+  // Set Phi's inputs
+  for (uint j = 1; j < length; j++) {
+    if (values.at(j) == mem) {
+      phi->init_req(j, phi);
+    } else {
+      phi->init_req(j, values.at(j));
+    }
+  }
+  return phi;
+}
+
+// Search the last value stored into the object's field.
+Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) {
+  assert(adr_t->is_known_instance_field(), "instance required");
+  int instance_id = adr_t->instance_id();
+  assert((uint)instance_id == alloc->_idx, "wrong allocation");
+
+  int alias_idx = C->get_alias_index(adr_t);
+  int offset = adr_t->offset();
+  Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
+  Node *alloc_ctrl = alloc->in(TypeFunc::Control);
+  Node *alloc_mem = alloc->in(TypeFunc::Memory);
+  Arena *a = Thread::current()->resource_area();
+  VectorSet visited(a);
+
+
+  bool done = sfpt_mem == alloc_mem;
+  Node *mem = sfpt_mem;
+  while (!done) {
+    if (visited.test_set(mem->_idx)) {
+      return NULL;  // found a loop, give up
+    }
+    mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
+    if (mem == start_mem || mem == alloc_mem) {
+      done = true;  // hit a sentinel, return appropriate 0 value
+    } else if (mem->is_Initialize()) {
+      mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
+      if (mem == NULL) {
+        done = true; // Something go wrong.
+      } else if (mem->is_Store()) {
+        const TypePtr* atype = mem->as_Store()->adr_type();
+        assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
+        done = true;
+      }
+    } else if (mem->is_Store()) {
+      const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
+      assert(atype != NULL, "address type must be oopptr");
+      assert(C->get_alias_index(atype) == alias_idx &&
+             atype->is_known_instance_field() && atype->offset() == offset &&
+             atype->instance_id() == instance_id, "store is correct memory slice");
+      done = true;
+    } else if (mem->is_Phi()) {
+      // try to find a phi's unique input
+      Node *unique_input = NULL;
+      Node *top = C->top();
+      for (uint i = 1; i < mem->req(); i++) {
+        Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
+        if (n == NULL || n == top || n == mem) {
+          continue;
+        } else if (unique_input == NULL) {
+          unique_input = n;
+        } else if (unique_input != n) {
+          unique_input = top;
+          break;
+        }
+      }
+      if (unique_input != NULL && unique_input != top) {
+        mem = unique_input;
+      } else {
+        done = true;
+      }
+    } else if (mem->is_ArrayCopy()) {
+      done = true;
+    } else {
+      assert(false, "unexpected node");
+    }
+  }
+  if (mem != NULL) {
+    if (mem == start_mem || mem == alloc_mem) {
+      // hit a sentinel, return appropriate 0 value
+      return _igvn.zerocon(ft);
+    } else if (mem->is_Store()) {
+      return mem->in(MemNode::ValueIn);
+    } else if (mem->is_Phi()) {
+      // attempt to produce a Phi reflecting the values on the input paths of the Phi
+      Node_Stack value_phis(a, 8);
+      Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
+      if (phi != NULL) {
+        return phi;
+      } else {
+        // Kill all new Phis
+        while(value_phis.is_nonempty()) {
+          Node* n = value_phis.node();
+          _igvn.replace_node(n, C->top());
+          value_phis.pop();
+        }
+      }
+    } else if (mem->is_ArrayCopy()) {
+      Node* ctl = mem->in(0);
+      Node* m = mem->in(TypeFunc::Memory);
+      if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj(Deoptimization::Reason_none)) {
+        // pin the loads in the uncommon trap path
+        ctl = sfpt_ctl;
+        m = sfpt_mem;
+      }
+      return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc);
+    }
+  }
+  // Something go wrong.
+  return NULL;
+}
+
+// Check the possibility of scalar replacement.
+bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
+  //  Scan the uses of the allocation to check for anything that would
+  //  prevent us from eliminating it.
+  NOT_PRODUCT( const char* fail_eliminate = NULL; )
+  DEBUG_ONLY( Node* disq_node = NULL; )
+  bool  can_eliminate = true;
+
+  Node* res = alloc->result_cast();
+  const TypeOopPtr* res_type = NULL;
+  if (res == NULL) {
+    // All users were eliminated.
+  } else if (!res->is_CheckCastPP()) {
+    NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
+    can_eliminate = false;
+  } else {
+    res_type = _igvn.type(res)->isa_oopptr();
+    if (res_type == NULL) {
+      NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
+      can_eliminate = false;
+    } else if (res_type->isa_aryptr()) {
+      int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
+      if (length < 0) {
+        NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
+        can_eliminate = false;
+      }
+    }
+  }
+
+  if (can_eliminate && res != NULL) {
+    for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
+                               j < jmax && can_eliminate; j++) {
+      Node* use = res->fast_out(j);
+
+      if (use->is_AddP()) {
+        const TypePtr* addp_type = _igvn.type(use)->is_ptr();
+        int offset = addp_type->offset();
+
+        if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
+          NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
+          can_eliminate = false;
+          break;
+        }
+        for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
+                                   k < kmax && can_eliminate; k++) {
+          Node* n = use->fast_out(k);
+          if (!n->is_Store() && n->Opcode() != Op_CastP2X &&
+              !(n->is_ArrayCopy() &&
+                n->as_ArrayCopy()->is_clonebasic() &&
+                n->in(ArrayCopyNode::Dest) == use)) {
+            DEBUG_ONLY(disq_node = n;)
+            if (n->is_Load() || n->is_LoadStore()) {
+              NOT_PRODUCT(fail_eliminate = "Field load";)
+            } else {
+              NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
+            }
+            can_eliminate = false;
+          }
+        }
+      } else if (use->is_ArrayCopy() &&
+                 (use->as_ArrayCopy()->is_arraycopy_validated() ||
+                  use->as_ArrayCopy()->is_copyof_validated() ||
+                  use->as_ArrayCopy()->is_copyofrange_validated()) &&
+                 use->in(ArrayCopyNode::Dest) == res) {
+        // ok to eliminate
+      } else if (use->is_SafePoint()) {
+        SafePointNode* sfpt = use->as_SafePoint();
+        if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
+          // Object is passed as argument.
+          DEBUG_ONLY(disq_node = use;)
+          NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
+          can_eliminate = false;
+        }
+        Node* sfptMem = sfpt->memory();
+        if (sfptMem == NULL || sfptMem->is_top()) {
+          DEBUG_ONLY(disq_node = use;)
+          NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
+          can_eliminate = false;
+        } else {
+          safepoints.append_if_missing(sfpt);
+        }
+      } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
+        if (use->is_Phi()) {
+          if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
+            NOT_PRODUCT(fail_eliminate = "Object is return value";)
+          } else {
+            NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
+          }
+          DEBUG_ONLY(disq_node = use;)
+        } else {
+          if (use->Opcode() == Op_Return) {
+            NOT_PRODUCT(fail_eliminate = "Object is return value";)
+          }else {
+            NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
+          }
+          DEBUG_ONLY(disq_node = use;)
+        }
+        can_eliminate = false;
+      }
+    }
+  }
+
+#ifndef PRODUCT
+  if (PrintEliminateAllocations) {
+    if (can_eliminate) {
+      tty->print("Scalar ");
+      if (res == NULL)
+        alloc->dump();
+      else
+        res->dump();
+    } else if (alloc->_is_scalar_replaceable) {
+      tty->print("NotScalar (%s)", fail_eliminate);
+      if (res == NULL)
+        alloc->dump();
+      else
+        res->dump();
+#ifdef ASSERT
+      if (disq_node != NULL) {
+          tty->print("  >>>> ");
+          disq_node->dump();
+      }
+#endif /*ASSERT*/
+    }
+  }
+#endif
+  return can_eliminate;
+}
+
+// Do scalar replacement.
+bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
+  GrowableArray <SafePointNode *> safepoints_done;
+
+  ciKlass* klass = NULL;
+  ciInstanceKlass* iklass = NULL;
+  int nfields = 0;
+  int array_base = 0;
+  int element_size = 0;
+  BasicType basic_elem_type = T_ILLEGAL;
+  ciType* elem_type = NULL;
+
+  Node* res = alloc->result_cast();
+  assert(res == NULL || res->is_CheckCastPP(), "unexpected AllocateNode result");
+  const TypeOopPtr* res_type = NULL;
+  if (res != NULL) { // Could be NULL when there are no users
+    res_type = _igvn.type(res)->isa_oopptr();
+  }
+
+  if (res != NULL) {
+    klass = res_type->klass();
+    if (res_type->isa_instptr()) {
+      // find the fields of the class which will be needed for safepoint debug information
+      assert(klass->is_instance_klass(), "must be an instance klass.");
+      iklass = klass->as_instance_klass();
+      nfields = iklass->nof_nonstatic_fields();
+    } else {
+      // find the array's elements which will be needed for safepoint debug information
+      nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
+      assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
+      elem_type = klass->as_array_klass()->element_type();
+      basic_elem_type = elem_type->basic_type();
+      array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
+      element_size = type2aelembytes(basic_elem_type);
+    }
+  }
+  //
+  // Process the safepoint uses
+  //
+  while (safepoints.length() > 0) {
+    SafePointNode* sfpt = safepoints.pop();
+    Node* mem = sfpt->memory();
+    Node* ctl = sfpt->control();
+    assert(sfpt->jvms() != NULL, "missed JVMS");
+    // Fields of scalar objs are referenced only at the end
+    // of regular debuginfo at the last (youngest) JVMS.
+    // Record relative start index.
+    uint first_ind = (sfpt->req() - sfpt->jvms()->scloff());
+    SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type,
+#ifdef ASSERT
+                                                 alloc,
+#endif
+                                                 first_ind, nfields);
+    sobj->init_req(0, C->root());
+    transform_later(sobj);
+
+    // Scan object's fields adding an input to the safepoint for each field.
+    for (int j = 0; j < nfields; j++) {
+      intptr_t offset;
+      ciField* field = NULL;
+      if (iklass != NULL) {
+        field = iklass->nonstatic_field_at(j);
+        offset = field->offset();
+        elem_type = field->type();
+        basic_elem_type = field->layout_type();
+      } else {
+        offset = array_base + j * (intptr_t)element_size;
+      }
+
+      const Type *field_type;
+      // The next code is taken from Parse::do_get_xxx().
+      if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
+        if (!elem_type->is_loaded()) {
+          field_type = TypeInstPtr::BOTTOM;
+        } else if (field != NULL && field->is_static_constant()) {
+          // This can happen if the constant oop is non-perm.
+          ciObject* con = field->constant_value().as_object();
+          // Do not "join" in the previous type; it doesn't add value,
+          // and may yield a vacuous result if the field is of interface type.
+          field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
+          assert(field_type != NULL, "field singleton type must be consistent");
+        } else {
+          field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
+        }
+        if (UseCompressedOops) {
+          field_type = field_type->make_narrowoop();
+          basic_elem_type = T_NARROWOOP;
+        }
+      } else {
+        field_type = Type::get_const_basic_type(basic_elem_type);
+      }
+
+      const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
+
+      Node *field_val = value_from_mem(mem, ctl, basic_elem_type, field_type, field_addr_type, alloc);
+      if (field_val == NULL) {
+        // We weren't able to find a value for this field,
+        // give up on eliminating this allocation.
+
+        // Remove any extra entries we added to the safepoint.
+        uint last = sfpt->req() - 1;
+        for (int k = 0;  k < j; k++) {
+          sfpt->del_req(last--);
+        }
+        _igvn._worklist.push(sfpt);
+        // rollback processed safepoints
+        while (safepoints_done.length() > 0) {
+          SafePointNode* sfpt_done = safepoints_done.pop();
+          // remove any extra entries we added to the safepoint
+          last = sfpt_done->req() - 1;
+          for (int k = 0;  k < nfields; k++) {
+            sfpt_done->del_req(last--);
+          }
+          JVMState *jvms = sfpt_done->jvms();
+          jvms->set_endoff(sfpt_done->req());
+          // Now make a pass over the debug information replacing any references
+          // to SafePointScalarObjectNode with the allocated object.
+          int start = jvms->debug_start();
+          int end   = jvms->debug_end();
+          for (int i = start; i < end; i++) {
+            if (sfpt_done->in(i)->is_SafePointScalarObject()) {
+              SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
+              if (scobj->first_index(jvms) == sfpt_done->req() &&
+                  scobj->n_fields() == (uint)nfields) {
+                assert(scobj->alloc() == alloc, "sanity");
+                sfpt_done->set_req(i, res);
+              }
+            }
+          }
+          _igvn._worklist.push(sfpt_done);
+        }
+#ifndef PRODUCT
+        if (PrintEliminateAllocations) {
+          if (field != NULL) {
+            tty->print("=== At SafePoint node %d can't find value of Field: ",
+                       sfpt->_idx);
+            field->print();
+            int field_idx = C->get_alias_index(field_addr_type);
+            tty->print(" (alias_idx=%d)", field_idx);
+          } else { // Array's element
+            tty->print("=== At SafePoint node %d can't find value of array element [%d]",
+                       sfpt->_idx, j);
+          }
+          tty->print(", which prevents elimination of: ");
+          if (res == NULL)
+            alloc->dump();
+          else
+            res->dump();
+        }
+#endif
+        return false;
+      }
+      if (UseCompressedOops && field_type->isa_narrowoop()) {
+        // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
+        // to be able scalar replace the allocation.
+        if (field_val->is_EncodeP()) {
+          field_val = field_val->in(1);
+        } else {
+          field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type()));
+        }
+      }
+      sfpt->add_req(field_val);
+    }
+    JVMState *jvms = sfpt->jvms();
+    jvms->set_endoff(sfpt->req());
+    // Now make a pass over the debug information replacing any references
+    // to the allocated object with "sobj"
+    int start = jvms->debug_start();
+    int end   = jvms->debug_end();
+    sfpt->replace_edges_in_range(res, sobj, start, end);
+    _igvn._worklist.push(sfpt);
+    safepoints_done.append_if_missing(sfpt); // keep it for rollback
+  }
+  return true;
+}
+
+static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) {
+  Node* ctl_proj = n->proj_out(TypeFunc::Control);
+  Node* mem_proj = n->proj_out(TypeFunc::Memory);
+  if (ctl_proj != NULL) {
+    igvn.replace_node(ctl_proj, n->in(0));
+  }
+  if (mem_proj != NULL) {
+    igvn.replace_node(mem_proj, n->in(TypeFunc::Memory));
+  }
+}
+
+// Process users of eliminated allocation.
+void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
+  Node* res = alloc->result_cast();
+  if (res != NULL) {
+    for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
+      Node *use = res->last_out(j);
+      uint oc1 = res->outcnt();
+
+      if (use->is_AddP()) {
+        for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
+          Node *n = use->last_out(k);
+          uint oc2 = use->outcnt();
+          if (n->is_Store()) {
+#ifdef ASSERT
+            // Verify that there is no dependent MemBarVolatile nodes,
+            // they should be removed during IGVN, see MemBarNode::Ideal().
+            for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
+                                       p < pmax; p++) {
+              Node* mb = n->fast_out(p);
+              assert(mb->is_Initialize() || !mb->is_MemBar() ||
+                     mb->req() <= MemBarNode::Precedent ||
+                     mb->in(MemBarNode::Precedent) != n,
+                     "MemBarVolatile should be eliminated for non-escaping object");
+            }
+#endif
+            _igvn.replace_node(n, n->in(MemNode::Memory));
+          } else if (n->is_ArrayCopy()) {
+            // Disconnect ArrayCopy node
+            ArrayCopyNode* ac = n->as_ArrayCopy();
+            assert(ac->is_clonebasic(), "unexpected array copy kind");
+            Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out();
+            disconnect_projections(ac, _igvn);
+            assert(alloc->in(0)->is_Proj() && alloc->in(0)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation");
+            Node* membar_before = alloc->in(0)->in(0);
+            disconnect_projections(membar_before->as_MemBar(), _igvn);
+            if (membar_after->is_MemBar()) {
+              disconnect_projections(membar_after->as_MemBar(), _igvn);
+            }
+          } else {
+            eliminate_card_mark(n);
+          }
+          k -= (oc2 - use->outcnt());
+        }
+      } else if (use->is_ArrayCopy()) {
+        // Disconnect ArrayCopy node
+        ArrayCopyNode* ac = use->as_ArrayCopy();
+        assert(ac->is_arraycopy_validated() ||
+               ac->is_copyof_validated() ||
+               ac->is_copyofrange_validated(), "unsupported");
+        CallProjections callprojs;
+        ac->extract_projections(&callprojs, true);
+
+        _igvn.replace_node(callprojs.fallthrough_ioproj, ac->in(TypeFunc::I_O));
+        _igvn.replace_node(callprojs.fallthrough_memproj, ac->in(TypeFunc::Memory));
+        _igvn.replace_node(callprojs.fallthrough_catchproj, ac->in(TypeFunc::Control));
+
+        // Set control to top. IGVN will remove the remaining projections
+        ac->set_req(0, top());
+        ac->replace_edge(res, top());
+
+        // Disconnect src right away: it can help find new
+        // opportunities for allocation elimination
+        Node* src = ac->in(ArrayCopyNode::Src);
+        ac->replace_edge(src, top());
+        // src can be top at this point if src and dest of the
+        // arraycopy were the same
+        if (src->outcnt() == 0 && !src->is_top()) {
+          _igvn.remove_dead_node(src);
+        }
+
+        _igvn._worklist.push(ac);
+      } else {
+        eliminate_card_mark(use);
+      }
+      j -= (oc1 - res->outcnt());
+    }
+    assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
+    _igvn.remove_dead_node(res);
+  }
+
+  //
+  // Process other users of allocation's projections
+  //
+  if (_resproj != NULL && _resproj->outcnt() != 0) {
+    // First disconnect stores captured by Initialize node.
+    // If Initialize node is eliminated first in the following code,
+    // it will kill such stores and DUIterator_Last will assert.
+    for (DUIterator_Fast jmax, j = _resproj->fast_outs(jmax);  j < jmax; j++) {
+      Node *use = _resproj->fast_out(j);
+      if (use->is_AddP()) {
+        // raw memory addresses used only by the initialization
+        _igvn.replace_node(use, C->top());
+        --j; --jmax;
+      }
+    }
+    for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
+      Node *use = _resproj->last_out(j);
+      uint oc1 = _resproj->outcnt();
+      if (use->is_Initialize()) {
+        // Eliminate Initialize node.
+        InitializeNode *init = use->as_Initialize();
+        assert(init->outcnt() <= 2, "only a control and memory projection expected");
+        Node *ctrl_proj = init->proj_out(TypeFunc::Control);
+        if (ctrl_proj != NULL) {
+           assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
+          _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
+        }
+        Node *mem_proj = init->proj_out(TypeFunc::Memory);
+        if (mem_proj != NULL) {
+          Node *mem = init->in(TypeFunc::Memory);
+#ifdef ASSERT
+          if (mem->is_MergeMem()) {
+            assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
+          } else {
+            assert(mem == _memproj_fallthrough, "allocation memory projection");
+          }
+#endif
+          _igvn.replace_node(mem_proj, mem);
+        }
+      } else  {
+        assert(false, "only Initialize or AddP expected");
+      }
+      j -= (oc1 - _resproj->outcnt());
+    }
+  }
+  if (_fallthroughcatchproj != NULL) {
+    _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
+  }
+  if (_memproj_fallthrough != NULL) {
+    _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
+  }
+  if (_memproj_catchall != NULL) {
+    _igvn.replace_node(_memproj_catchall, C->top());
+  }
+  if (_ioproj_fallthrough != NULL) {
+    _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
+  }
+  if (_ioproj_catchall != NULL) {
+    _igvn.replace_node(_ioproj_catchall, C->top());
+  }
+  if (_catchallcatchproj != NULL) {
+    _igvn.replace_node(_catchallcatchproj, C->top());
+  }
+}
+
+bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
+  // Don't do scalar replacement if the frame can be popped by JVMTI:
+  // if reallocation fails during deoptimization we'll pop all
+  // interpreter frames for this compiled frame and that won't play
+  // nice with JVMTI popframe.
+  if (!EliminateAllocations || JvmtiExport::can_pop_frame() || !alloc->_is_non_escaping) {
+    return false;
+  }
+  Node* klass = alloc->in(AllocateNode::KlassNode);
+  const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
+  Node* res = alloc->result_cast();
+  // Eliminate boxing allocations which are not used
+  // regardless scalar replacable status.
+  bool boxing_alloc = C->eliminate_boxing() &&
+                      tklass->klass()->is_instance_klass()  &&
+                      tklass->klass()->as_instance_klass()->is_box_klass();
+  if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != NULL))) {
+    return false;
+  }
+
+  extract_call_projections(alloc);
+
+  GrowableArray <SafePointNode *> safepoints;
+  if (!can_eliminate_allocation(alloc, safepoints)) {
+    return false;
+  }
+
+  if (!alloc->_is_scalar_replaceable) {
+    assert(res == NULL, "sanity");
+    // We can only eliminate allocation if all debug info references
+    // are already replaced with SafePointScalarObject because
+    // we can't search for a fields value without instance_id.
+    if (safepoints.length() > 0) {
+      return false;
+    }
+  }
+
+  if (!scalar_replacement(alloc, safepoints)) {
+    return false;
+  }
+
+  CompileLog* log = C->log();
+  if (log != NULL) {
+    log->head("eliminate_allocation type='%d'",
+              log->identify(tklass->klass()));
+    JVMState* p = alloc->jvms();
+    while (p != NULL) {
+      log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
+      p = p->caller();
+    }
+    log->tail("eliminate_allocation");
+  }
+
+  process_users_of_allocation(alloc);
+
+#ifndef PRODUCT
+  if (PrintEliminateAllocations) {
+    if (alloc->is_AllocateArray())
+      tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
+    else
+      tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
+  }
+#endif
+
+  return true;
+}
+
+bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
+  // EA should remove all uses of non-escaping boxing node.
+  if (!C->eliminate_boxing() || boxing->proj_out(TypeFunc::Parms) != NULL) {
+    return false;
+  }
+
+  assert(boxing->result_cast() == NULL, "unexpected boxing node result");
+
+  extract_call_projections(boxing);
+
+  const TypeTuple* r = boxing->tf()->range();
+  assert(r->cnt() > TypeFunc::Parms, "sanity");
+  const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
+  assert(t != NULL, "sanity");
+
+  CompileLog* log = C->log();
+  if (log != NULL) {
+    log->head("eliminate_boxing type='%d'",
+              log->identify(t->klass()));
+    JVMState* p = boxing->jvms();
+    while (p != NULL) {
+      log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
+      p = p->caller();
+    }
+    log->tail("eliminate_boxing");
+  }
+
+  process_users_of_allocation(boxing);
+
+#ifndef PRODUCT
+  if (PrintEliminateAllocations) {
+    tty->print("++++ Eliminated: %d ", boxing->_idx);
+    boxing->method()->print_short_name(tty);
+    tty->cr();
+  }
+#endif
+
+  return true;
+}
+
+//---------------------------set_eden_pointers-------------------------
+void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
+  if (UseTLAB) {                // Private allocation: load from TLS
+    Node* thread = transform_later(new ThreadLocalNode());
+    int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
+    int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
+    eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
+    eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
+  } else {                      // Shared allocation: load from globals
+    CollectedHeap* ch = Universe::heap();
+    address top_adr = (address)ch->top_addr();
+    address end_adr = (address)ch->end_addr();
+    eden_top_adr = makecon(TypeRawPtr::make(top_adr));
+    eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
+  }
+}
+
+
+Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
+  Node* adr = basic_plus_adr(base, offset);
+  const TypePtr* adr_type = adr->bottom_type()->is_ptr();
+  Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered);
+  transform_later(value);
+  return value;
+}
+
+
+Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
+  Node* adr = basic_plus_adr(base, offset);
+  mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt, MemNode::unordered);
+  transform_later(mem);
+  return mem;
+}
+
+//=============================================================================
+//
+//                              A L L O C A T I O N
+//
+// Allocation attempts to be fast in the case of frequent small objects.
+// It breaks down like this:
+//
+// 1) Size in doublewords is computed.  This is a constant for objects and
+// variable for most arrays.  Doubleword units are used to avoid size
+// overflow of huge doubleword arrays.  We need doublewords in the end for
+// rounding.
+//
+// 2) Size is checked for being 'too large'.  Too-large allocations will go
+// the slow path into the VM.  The slow path can throw any required
+// exceptions, and does all the special checks for very large arrays.  The
+// size test can constant-fold away for objects.  For objects with
+// finalizers it constant-folds the otherway: you always go slow with
+// finalizers.
+//
+// 3) If NOT using TLABs, this is the contended loop-back point.
+// Load-Locked the heap top.  If using TLABs normal-load the heap top.
+//
+// 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
+// NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
+// "size*8" we always enter the VM, where "largish" is a constant picked small
+// enough that there's always space between the eden max and 4Gig (old space is
+// there so it's quite large) and large enough that the cost of entering the VM
+// is dwarfed by the cost to initialize the space.
+//
+// 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
+// down.  If contended, repeat at step 3.  If using TLABs normal-store
+// adjusted heap top back down; there is no contention.
+//
+// 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
+// fields.
+//
+// 7) Merge with the slow-path; cast the raw memory pointer to the correct
+// oop flavor.
+//
+//=============================================================================
+// FastAllocateSizeLimit value is in DOUBLEWORDS.
+// Allocations bigger than this always go the slow route.
+// This value must be small enough that allocation attempts that need to
+// trigger exceptions go the slow route.  Also, it must be small enough so
+// that heap_top + size_in_bytes does not wrap around the 4Gig limit.
+//=============================================================================j//
+// %%% Here is an old comment from parseHelper.cpp; is it outdated?
+// The allocator will coalesce int->oop copies away.  See comment in
+// coalesce.cpp about how this works.  It depends critically on the exact
+// code shape produced here, so if you are changing this code shape
+// make sure the GC info for the heap-top is correct in and around the
+// slow-path call.
+//
+
+void PhaseMacroExpand::expand_allocate_common(
+            AllocateNode* alloc, // allocation node to be expanded
+            Node* length,  // array length for an array allocation
+            const TypeFunc* slow_call_type, // Type of slow call
+            address slow_call_address  // Address of slow call
+    )
+{
+
+  Node* ctrl = alloc->in(TypeFunc::Control);
+  Node* mem  = alloc->in(TypeFunc::Memory);
+  Node* i_o  = alloc->in(TypeFunc::I_O);
+  Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
+  Node* klass_node        = alloc->in(AllocateNode::KlassNode);
+  Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
+
+  assert(ctrl != NULL, "must have control");
+  // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
+  // they will not be used if "always_slow" is set
+  enum { slow_result_path = 1, fast_result_path = 2 };
+  Node *result_region = NULL;
+  Node *result_phi_rawmem = NULL;
+  Node *result_phi_rawoop = NULL;
+  Node *result_phi_i_o = NULL;
+
+  // The initial slow comparison is a size check, the comparison
+  // we want to do is a BoolTest::gt
+  bool always_slow = false;
+  int tv = _igvn.find_int_con(initial_slow_test, -1);
+  if (tv >= 0) {
+    always_slow = (tv == 1);
+    initial_slow_test = NULL;
+  } else {
+    initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
+  }
+
+  if (C->env()->dtrace_alloc_probes() ||
+      (!UseTLAB && !Universe::heap()->supports_inline_contig_alloc())) {
+    // Force slow-path allocation
+    always_slow = true;
+    initial_slow_test = NULL;
+  }
+
+
+  enum { too_big_or_final_path = 1, need_gc_path = 2 };
+  Node *slow_region = NULL;
+  Node *toobig_false = ctrl;
+
+  assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
+  // generate the initial test if necessary
+  if (initial_slow_test != NULL ) {
+    slow_region = new RegionNode(3);
+
+    // Now make the initial failure test.  Usually a too-big test but
+    // might be a TRUE for finalizers or a fancy class check for
+    // newInstance0.
+    IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
+    transform_later(toobig_iff);
+    // Plug the failing-too-big test into the slow-path region
+    Node *toobig_true = new IfTrueNode( toobig_iff );
+    transform_later(toobig_true);
+    slow_region    ->init_req( too_big_or_final_path, toobig_true );
+    toobig_false = new IfFalseNode( toobig_iff );
+    transform_later(toobig_false);
+  } else {         // No initial test, just fall into next case
+    toobig_false = ctrl;
+    debug_only(slow_region = NodeSentinel);
+  }
+
+  Node *slow_mem = mem;  // save the current memory state for slow path
+  // generate the fast allocation code unless we know that the initial test will always go slow
+  if (!always_slow) {
+    // Fast path modifies only raw memory.
+    if (mem->is_MergeMem()) {
+      mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
+    }
+
+    Node* eden_top_adr;
+    Node* eden_end_adr;
+
+    set_eden_pointers(eden_top_adr, eden_end_adr);
+
+    // Load Eden::end.  Loop invariant and hoisted.
+    //
+    // Note: We set the control input on "eden_end" and "old_eden_top" when using
+    //       a TLAB to work around a bug where these values were being moved across
+    //       a safepoint.  These are not oops, so they cannot be include in the oop
+    //       map, but they can be changed by a GC.   The proper way to fix this would
+    //       be to set the raw memory state when generating a  SafepointNode.  However
+    //       this will require extensive changes to the loop optimization in order to
+    //       prevent a degradation of the optimization.
+    //       See comment in memnode.hpp, around line 227 in class LoadPNode.
+    Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
+
+    // allocate the Region and Phi nodes for the result
+    result_region = new RegionNode(3);
+    result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
+    result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM);
+    result_phi_i_o    = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
+
+    // We need a Region for the loop-back contended case.
+    enum { fall_in_path = 1, contended_loopback_path = 2 };
+    Node *contended_region;
+    Node *contended_phi_rawmem;
+    if (UseTLAB) {
+      contended_region = toobig_false;
+      contended_phi_rawmem = mem;
+    } else {
+      contended_region = new RegionNode(3);
+      contended_phi_rawmem = new PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
+      // Now handle the passing-too-big test.  We fall into the contended
+      // loop-back merge point.
+      contended_region    ->init_req(fall_in_path, toobig_false);
+      contended_phi_rawmem->init_req(fall_in_path, mem);
+      transform_later(contended_region);
+      transform_later(contended_phi_rawmem);
+    }
+
+    // Load(-locked) the heap top.
+    // See note above concerning the control input when using a TLAB
+    Node *old_eden_top = UseTLAB
+      ? new LoadPNode      (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered)
+      : new LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr, MemNode::acquire);
+
+    transform_later(old_eden_top);
+    // Add to heap top to get a new heap top
+    Node *new_eden_top = new AddPNode(top(), old_eden_top, size_in_bytes);
+    transform_later(new_eden_top);
+    // Check for needing a GC; compare against heap end
+    Node *needgc_cmp = new CmpPNode(new_eden_top, eden_end);
+    transform_later(needgc_cmp);
+    Node *needgc_bol = new BoolNode(needgc_cmp, BoolTest::ge);
+    transform_later(needgc_bol);
+    IfNode *needgc_iff = new IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
+    transform_later(needgc_iff);
+
+    // Plug the failing-heap-space-need-gc test into the slow-path region
+    Node *needgc_true = new IfTrueNode(needgc_iff);
+    transform_later(needgc_true);
+    if (initial_slow_test) {
+      slow_region->init_req(need_gc_path, needgc_true);
+      // This completes all paths into the slow merge point
+      transform_later(slow_region);
+    } else {                      // No initial slow path needed!
+      // Just fall from the need-GC path straight into the VM call.
+      slow_region = needgc_true;
+    }
+    // No need for a GC.  Setup for the Store-Conditional
+    Node *needgc_false = new IfFalseNode(needgc_iff);
+    transform_later(needgc_false);
+
+    // Grab regular I/O before optional prefetch may change it.
+    // Slow-path does no I/O so just set it to the original I/O.
+    result_phi_i_o->init_req(slow_result_path, i_o);
+
+    i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
+                              old_eden_top, new_eden_top, length);
+
+    // Name successful fast-path variables
+    Node* fast_oop = old_eden_top;
+    Node* fast_oop_ctrl;
+    Node* fast_oop_rawmem;
+
+    // Store (-conditional) the modified eden top back down.
+    // StorePConditional produces flags for a test PLUS a modified raw
+    // memory state.
+    if (UseTLAB) {
+      Node* store_eden_top =
+        new StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
+                              TypeRawPtr::BOTTOM, new_eden_top, MemNode::unordered);
+      transform_later(store_eden_top);
+      fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
+      fast_oop_rawmem = store_eden_top;
+    } else {
+      Node* store_eden_top =
+        new StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
+                                         new_eden_top, fast_oop/*old_eden_top*/);
+      transform_later(store_eden_top);
+      Node *contention_check = new BoolNode(store_eden_top, BoolTest::ne);
+      transform_later(contention_check);
+      store_eden_top = new SCMemProjNode(store_eden_top);
+      transform_later(store_eden_top);
+
+      // If not using TLABs, check to see if there was contention.
+      IfNode *contention_iff = new IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
+      transform_later(contention_iff);
+      Node *contention_true = new IfTrueNode(contention_iff);
+      transform_later(contention_true);
+      // If contention, loopback and try again.
+      contended_region->init_req(contended_loopback_path, contention_true);
+      contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
+
+      // Fast-path succeeded with no contention!
+      Node *contention_false = new IfFalseNode(contention_iff);
+      transform_later(contention_false);
+      fast_oop_ctrl = contention_false;
+
+      // Bump total allocated bytes for this thread
+      Node* thread = new ThreadLocalNode();
+      transform_later(thread);
+      Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
+                                             in_bytes(JavaThread::allocated_bytes_offset()));
+      Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
+                                    0, TypeLong::LONG, T_LONG);
+#ifdef _LP64
+      Node* alloc_size = size_in_bytes;
+#else
+      Node* alloc_size = new ConvI2LNode(size_in_bytes);
+      transform_later(alloc_size);
+#endif
+      Node* new_alloc_bytes = new AddLNode(alloc_bytes, alloc_size);
+      transform_later(new_alloc_bytes);
+      fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
+                                   0, new_alloc_bytes, T_LONG);
+    }
+
+    InitializeNode* init = alloc->initialization();
+    fast_oop_rawmem = initialize_object(alloc,
+                                        fast_oop_ctrl, fast_oop_rawmem, fast_oop,
+                                        klass_node, length, size_in_bytes);
+
+    // If initialization is performed by an array copy, any required
+    // MemBarStoreStore was already added. If the object does not
+    // escape no need for a MemBarStoreStore. If the object does not
+    // escape in its initializer and memory barrier (MemBarStoreStore or
+    // stronger) is already added at exit of initializer, also no need
+    // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore
+    // so that stores that initialize this object can't be reordered
+    // with a subsequent store that makes this object accessible by
+    // other threads.
+    // Other threads include java threads and JVM internal threads
+    // (for example concurrent GC threads). Current concurrent GC
+    // implementation: CMS and G1 will not scan newly created object,
+    // so it's safe to skip storestore barrier when allocation does
+    // not escape.
+    if (!alloc->does_not_escape_thread() &&
+        !alloc->is_allocation_MemBar_redundant() &&
+        (init == NULL || !init->is_complete_with_arraycopy())) {
+      if (init == NULL || init->req() < InitializeNode::RawStores) {
+        // No InitializeNode or no stores captured by zeroing
+        // elimination. Simply add the MemBarStoreStore after object
+        // initialization.
+        MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
+        transform_later(mb);
+
+        mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
+        mb->init_req(TypeFunc::Control, fast_oop_ctrl);
+        fast_oop_ctrl = new ProjNode(mb,TypeFunc::Control);
+        transform_later(fast_oop_ctrl);
+        fast_oop_rawmem = new ProjNode(mb,TypeFunc::Memory);
+        transform_later(fast_oop_rawmem);
+      } else {
+        // Add the MemBarStoreStore after the InitializeNode so that
+        // all stores performing the initialization that were moved
+        // before the InitializeNode happen before the storestore
+        // barrier.
+
+        Node* init_ctrl = init->proj_out(TypeFunc::Control);
+        Node* init_mem = init->proj_out(TypeFunc::Memory);
+
+        MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
+        transform_later(mb);
+
+        Node* ctrl = new ProjNode(init,TypeFunc::Control);
+        transform_later(ctrl);
+        Node* mem = new ProjNode(init,TypeFunc::Memory);
+        transform_later(mem);
+
+        // The MemBarStoreStore depends on control and memory coming
+        // from the InitializeNode
+        mb->init_req(TypeFunc::Memory, mem);
+        mb->init_req(TypeFunc::Control, ctrl);
+
+        ctrl = new ProjNode(mb,TypeFunc::Control);
+        transform_later(ctrl);
+        mem = new ProjNode(mb,TypeFunc::Memory);
+        transform_later(mem);
+
+        // All nodes that depended on the InitializeNode for control
+        // and memory must now depend on the MemBarNode that itself
+        // depends on the InitializeNode
+        if (init_ctrl != NULL) {
+          _igvn.replace_node(init_ctrl, ctrl);
+        }
+        if (init_mem != NULL) {
+          _igvn.replace_node(init_mem, mem);
+        }
+      }
+    }
+
+    if (C->env()->dtrace_extended_probes()) {
+      // Slow-path call
+      int size = TypeFunc::Parms + 2;
+      CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
+                                            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
+                                            "dtrace_object_alloc",
+                                            TypeRawPtr::BOTTOM);
+
+      // Get base of thread-local storage area
+      Node* thread = new ThreadLocalNode();
+      transform_later(thread);
+
+      call->init_req(TypeFunc::Parms+0, thread);
+      call->init_req(TypeFunc::Parms+1, fast_oop);
+      call->init_req(TypeFunc::Control, fast_oop_ctrl);
+      call->init_req(TypeFunc::I_O    , top()); // does no i/o
+      call->init_req(TypeFunc::Memory , fast_oop_rawmem);
+      call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
+      call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
+      transform_later(call);
+      fast_oop_ctrl = new ProjNode(call,TypeFunc::Control);
+      transform_later(fast_oop_ctrl);
+      fast_oop_rawmem = new ProjNode(call,TypeFunc::Memory);
+      transform_later(fast_oop_rawmem);
+    }
+
+    // Plug in the successful fast-path into the result merge point
+    result_region    ->init_req(fast_result_path, fast_oop_ctrl);
+    result_phi_rawoop->init_req(fast_result_path, fast_oop);
+    result_phi_i_o   ->init_req(fast_result_path, i_o);
+    result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
+  } else {
+    slow_region = ctrl;
+    result_phi_i_o = i_o; // Rename it to use in the following code.
+  }
+
+  // Generate slow-path call
+  CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address,
+                               OptoRuntime::stub_name(slow_call_address),
+                               alloc->jvms()->bci(),
+                               TypePtr::BOTTOM);
+  call->init_req( TypeFunc::Control, slow_region );
+  call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
+  call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
+  call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
+  call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
+
+  call->init_req(TypeFunc::Parms+0, klass_node);
+  if (length != NULL) {
+    call->init_req(TypeFunc::Parms+1, length);
+  }
+
+  // Copy debug information and adjust JVMState information, then replace
+  // allocate node with the call
+  copy_call_debug_info((CallNode *) alloc,  call);
+  if (!always_slow) {
+    call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
+  } else {
+    // Hook i_o projection to avoid its elimination during allocation
+    // replacement (when only a slow call is generated).
+    call->set_req(TypeFunc::I_O, result_phi_i_o);
+  }
+  _igvn.replace_node(alloc, call);
+  transform_later(call);
+
+  // Identify the output projections from the allocate node and
+  // adjust any references to them.
+  // The control and io projections look like:
+  //
+  //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
+  //  Allocate                   Catch
+  //        ^---Proj(io) <-------+   ^---CatchProj(io)
+  //
+  //  We are interested in the CatchProj nodes.
+  //
+  extract_call_projections(call);
+
+  // An allocate node has separate memory projections for the uses on
+  // the control and i_o paths. Replace the control memory projection with
+  // result_phi_rawmem (unless we are only generating a slow call when
+  // both memory projections are combined)
+  if (!always_slow && _memproj_fallthrough != NULL) {
+    for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
+      Node *use = _memproj_fallthrough->fast_out(i);
+      _igvn.rehash_node_delayed(use);
+      imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
+      // back up iterator
+      --i;
+    }
+  }
+  // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
+  // _memproj_catchall so we end up with a call that has only 1 memory projection.
+  if (_memproj_catchall != NULL ) {
+    if (_memproj_fallthrough == NULL) {
+      _memproj_fallthrough = new ProjNode(call, TypeFunc::Memory);
+      transform_later(_memproj_fallthrough);
+    }
+    for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
+      Node *use = _memproj_catchall->fast_out(i);
+      _igvn.rehash_node_delayed(use);
+      imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
+      // back up iterator
+      --i;
+    }
+    assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted");
+    _igvn.remove_dead_node(_memproj_catchall);
+  }
+
+  // An allocate node has separate i_o projections for the uses on the control
+  // and i_o paths. Always replace the control i_o projection with result i_o
+  // otherwise incoming i_o become dead when only a slow call is generated
+  // (it is different from memory projections where both projections are
+  // combined in such case).
+  if (_ioproj_fallthrough != NULL) {
+    for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
+      Node *use = _ioproj_fallthrough->fast_out(i);
+      _igvn.rehash_node_delayed(use);
+      imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
+      // back up iterator
+      --i;
+    }
+  }
+  // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
+  // _ioproj_catchall so we end up with a call that has only 1 i_o projection.
+  if (_ioproj_catchall != NULL ) {
+    if (_ioproj_fallthrough == NULL) {
+      _ioproj_fallthrough = new ProjNode(call, TypeFunc::I_O);
+      transform_later(_ioproj_fallthrough);
+    }
+    for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
+      Node *use = _ioproj_catchall->fast_out(i);
+      _igvn.rehash_node_delayed(use);
+      imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
+      // back up iterator
+      --i;
+    }
+    assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted");
+    _igvn.remove_dead_node(_ioproj_catchall);
+  }
+
+  // if we generated only a slow call, we are done
+  if (always_slow) {
+    // Now we can unhook i_o.
+    if (result_phi_i_o->outcnt() > 1) {
+      call->set_req(TypeFunc::I_O, top());
+    } else {
+      assert(result_phi_i_o->unique_ctrl_out() == call, "");
+      // Case of new array with negative size known during compilation.
+      // AllocateArrayNode::Ideal() optimization disconnect unreachable
+      // following code since call to runtime will throw exception.
+      // As result there will be no users of i_o after the call.
+      // Leave i_o attached to this call to avoid problems in preceding graph.
+    }
+    return;
+  }
+
+
+  if (_fallthroughcatchproj != NULL) {
+    ctrl = _fallthroughcatchproj->clone();
+    transform_later(ctrl);
+    _igvn.replace_node(_fallthroughcatchproj, result_region);
+  } else {
+    ctrl = top();
+  }
+  Node *slow_result;
+  if (_resproj == NULL) {
+    // no uses of the allocation result
+    slow_result = top();
+  } else {
+    slow_result = _resproj->clone();
+    transform_later(slow_result);
+    _igvn.replace_node(_resproj, result_phi_rawoop);
+  }
+
+  // Plug slow-path into result merge point
+  result_region    ->init_req( slow_result_path, ctrl );
+  result_phi_rawoop->init_req( slow_result_path, slow_result);
+  result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
+  transform_later(result_region);
+  transform_later(result_phi_rawoop);
+  transform_later(result_phi_rawmem);
+  transform_later(result_phi_i_o);
+  // This completes all paths into the result merge point
+}
+
+
+// Helper for PhaseMacroExpand::expand_allocate_common.
+// Initializes the newly-allocated storage.
+Node*
+PhaseMacroExpand::initialize_object(AllocateNode* alloc,
+                                    Node* control, Node* rawmem, Node* object,
+                                    Node* klass_node, Node* length,
+                                    Node* size_in_bytes) {
+  InitializeNode* init = alloc->initialization();
+  // Store the klass & mark bits
+  Node* mark_node = NULL;
+  // For now only enable fast locking for non-array types
+  if (UseBiasedLocking && (length == NULL)) {
+    mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
+  } else {
+    mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
+  }
+  rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
+
+  rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
+  int header_size = alloc->minimum_header_size();  // conservatively small
+
+  // Array length
+  if (length != NULL) {         // Arrays need length field
+    rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
+    // conservatively small header size:
+    header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
+    ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
+    if (k->is_array_klass())    // we know the exact header size in most cases:
+      header_size = Klass::layout_helper_header_size(k->layout_helper());
+  }
+
+  // Clear the object body, if necessary.
+  if (init == NULL) {
+    // The init has somehow disappeared; be cautious and clear everything.
+    //
+    // This can happen if a node is allocated but an uncommon trap occurs
+    // immediately.  In this case, the Initialize gets associated with the
+    // trap, and may be placed in a different (outer) loop, if the Allocate
+    // is in a loop.  If (this is rare) the inner loop gets unrolled, then
+    // there can be two Allocates to one Initialize.  The answer in all these
+    // edge cases is safety first.  It is always safe to clear immediately
+    // within an Allocate, and then (maybe or maybe not) clear some more later.
+    if (!(UseTLAB && ZeroTLAB)) {
+      rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
+                                            header_size, size_in_bytes,
+                                            &_igvn);
+    }
+  } else {
+    if (!init->is_complete()) {
+      // Try to win by zeroing only what the init does not store.
+      // We can also try to do some peephole optimizations,
+      // such as combining some adjacent subword stores.
+      rawmem = init->complete_stores(control, rawmem, object,
+                                     header_size, size_in_bytes, &_igvn);
+    }
+    // We have no more use for this link, since the AllocateNode goes away:
+    init->set_req(InitializeNode::RawAddress, top());
+    // (If we keep the link, it just confuses the register allocator,
+    // who thinks he sees a real use of the address by the membar.)
+  }
+
+  return rawmem;
+}
+
+// Generate prefetch instructions for next allocations.
+Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
+                                        Node*& contended_phi_rawmem,
+                                        Node* old_eden_top, Node* new_eden_top,
+                                        Node* length) {
+   enum { fall_in_path = 1, pf_path = 2 };
+   if( UseTLAB && AllocatePrefetchStyle == 2 ) {
+      // Generate prefetch allocation with watermark check.
+      // As an allocation hits the watermark, we will prefetch starting
+      // at a "distance" away from watermark.
+
+      Node *pf_region = new RegionNode(3);
+      Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY,
+                                                TypeRawPtr::BOTTOM );
+      // I/O is used for Prefetch
+      Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO );
+
+      Node *thread = new ThreadLocalNode();
+      transform_later(thread);
+
+      Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread,
+                   _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
+      transform_later(eden_pf_adr);
+
+      Node *old_pf_wm = new LoadPNode(needgc_false,
+                                   contended_phi_rawmem, eden_pf_adr,
+                                   TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,
+                                   MemNode::unordered);
+      transform_later(old_pf_wm);
+
+      // check against new_eden_top
+      Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm );
+      transform_later(need_pf_cmp);
+      Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge );
+      transform_later(need_pf_bol);
+      IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol,
+                                       PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
+      transform_later(need_pf_iff);
+
+      // true node, add prefetchdistance
+      Node *need_pf_true = new IfTrueNode( need_pf_iff );
+      transform_later(need_pf_true);
+
+      Node *need_pf_false = new IfFalseNode( need_pf_iff );
+      transform_later(need_pf_false);
+
+      Node *new_pf_wmt = new AddPNode( top(), old_pf_wm,
+                                    _igvn.MakeConX(AllocatePrefetchDistance) );
+      transform_later(new_pf_wmt );
+      new_pf_wmt->set_req(0, need_pf_true);
+
+      Node *store_new_wmt = new StorePNode(need_pf_true,
+                                       contended_phi_rawmem, eden_pf_adr,
+                                       TypeRawPtr::BOTTOM, new_pf_wmt,
+                                       MemNode::unordered);
+      transform_later(store_new_wmt);
+
+      // adding prefetches
+      pf_phi_abio->init_req( fall_in_path, i_o );
+
+      Node *prefetch_adr;
+      Node *prefetch;
+      uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
+      uint step_size = AllocatePrefetchStepSize;
+      uint distance = 0;
+
+      for ( uint i = 0; i < lines; i++ ) {
+        prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt,
+                                            _igvn.MakeConX(distance) );
+        transform_later(prefetch_adr);
+        prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
+        transform_later(prefetch);
+        distance += step_size;
+        i_o = prefetch;
+      }
+      pf_phi_abio->set_req( pf_path, i_o );
+
+      pf_region->init_req( fall_in_path, need_pf_false );
+      pf_region->init_req( pf_path, need_pf_true );
+
+      pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
+      pf_phi_rawmem->init_req( pf_path, store_new_wmt );
+
+      transform_later(pf_region);
+      transform_later(pf_phi_rawmem);
+      transform_later(pf_phi_abio);
+
+      needgc_false = pf_region;
+      contended_phi_rawmem = pf_phi_rawmem;
+      i_o = pf_phi_abio;
+   } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
+      // Insert a prefetch instruction for each allocation.
+      // This code is used to generate 1 prefetch instruction per cache line.
+
+      // Generate several prefetch instructions.
+      uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
+      uint step_size = AllocatePrefetchStepSize;
+      uint distance = AllocatePrefetchDistance;
+
+      // Next cache address.
+      Node *cache_adr = new AddPNode(old_eden_top, old_eden_top,
+                                     _igvn.MakeConX(step_size + distance));
+      transform_later(cache_adr);
+      cache_adr = new CastP2XNode(needgc_false, cache_adr);
+      transform_later(cache_adr);
+      // Address is aligned to execute prefetch to the beginning of cache line size
+      // (it is important when BIS instruction is used on SPARC as prefetch).
+      Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
+      cache_adr = new AndXNode(cache_adr, mask);
+      transform_later(cache_adr);
+      cache_adr = new CastX2PNode(cache_adr);
+      transform_later(cache_adr);
+
+      // Prefetch
+      Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
+      prefetch->set_req(0, needgc_false);
+      transform_later(prefetch);
+      contended_phi_rawmem = prefetch;
+      Node *prefetch_adr;
+      distance = step_size;
+      for ( uint i = 1; i < lines; i++ ) {
+        prefetch_adr = new AddPNode( cache_adr, cache_adr,
+                                            _igvn.MakeConX(distance) );
+        transform_later(prefetch_adr);
+        prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
+        transform_later(prefetch);
+        distance += step_size;
+        contended_phi_rawmem = prefetch;
+      }
+   } else if( AllocatePrefetchStyle > 0 ) {
+      // Insert a prefetch for each allocation only on the fast-path
+      Node *prefetch_adr;
+      Node *prefetch;
+      // Generate several prefetch instructions.
+      uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
+      uint step_size = AllocatePrefetchStepSize;
+      uint distance = AllocatePrefetchDistance;
+      for ( uint i = 0; i < lines; i++ ) {
+        prefetch_adr = new AddPNode( old_eden_top, new_eden_top,
+                                            _igvn.MakeConX(distance) );
+        transform_later(prefetch_adr);
+        prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
+        // Do not let it float too high, since if eden_top == eden_end,
+        // both might be null.
+        if( i == 0 ) { // Set control for first prefetch, next follows it
+          prefetch->init_req(0, needgc_false);
+        }
+        transform_later(prefetch);
+        distance += step_size;
+        i_o = prefetch;
+      }
+   }
+   return i_o;
+}
+
+
+void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
+  expand_allocate_common(alloc, NULL,
+                         OptoRuntime::new_instance_Type(),
+                         OptoRuntime::new_instance_Java());
+}
+
+void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
+  Node* length = alloc->in(AllocateNode::ALength);
+  InitializeNode* init = alloc->initialization();
+  Node* klass_node = alloc->in(AllocateNode::KlassNode);
+  ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
+  address slow_call_address;  // Address of slow call
+  if (init != NULL && init->is_complete_with_arraycopy() &&
+      k->is_type_array_klass()) {
+    // Don't zero type array during slow allocation in VM since
+    // it will be initialized later by arraycopy in compiled code.
+    slow_call_address = OptoRuntime::new_array_nozero_Java();
+  } else {
+    slow_call_address = OptoRuntime::new_array_Java();
+  }
+  expand_allocate_common(alloc, length,
+                         OptoRuntime::new_array_Type(),
+                         slow_call_address);
+}
+
+//-------------------mark_eliminated_box----------------------------------
+//
+// During EA obj may point to several objects but after few ideal graph
+// transformations (CCP) it may point to only one non escaping object
+// (but still using phi), corresponding locks and unlocks will be marked
+// for elimination. Later obj could be replaced with a new node (new phi)
+// and which does not have escape information. And later after some graph
+// reshape other locks and unlocks (which were not marked for elimination
+// before) are connected to this new obj (phi) but they still will not be
+// marked for elimination since new obj has no escape information.
+// Mark all associated (same box and obj) lock and unlock nodes for
+// elimination if some of them marked already.
+void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
+  if (oldbox->as_BoxLock()->is_eliminated())
+    return; // This BoxLock node was processed already.
+
+  // New implementation (EliminateNestedLocks) has separate BoxLock
+  // node for each locked region so mark all associated locks/unlocks as
+  // eliminated even if different objects are referenced in one locked region
+  // (for example, OSR compilation of nested loop inside locked scope).
+  if (EliminateNestedLocks ||
+      oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) {
+    // Box is used only in one lock region. Mark this box as eliminated.
+    _igvn.hash_delete(oldbox);
+    oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
+     _igvn.hash_insert(oldbox);
+
+    for (uint i = 0; i < oldbox->outcnt(); i++) {
+      Node* u = oldbox->raw_out(i);
+      if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
+        AbstractLockNode* alock = u->as_AbstractLock();
+        // Check lock's box since box could be referenced by Lock's debug info.
+        if (alock->box_node() == oldbox) {
+          // Mark eliminated all related locks and unlocks.
+#ifdef ASSERT
+          alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4");
+#endif
+          alock->set_non_esc_obj();
+        }
+      }
+    }
+    return;
+  }
+
+  // Create new "eliminated" BoxLock node and use it in monitor debug info
+  // instead of oldbox for the same object.
+  BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
+
+  // Note: BoxLock node is marked eliminated only here and it is used
+  // to indicate that all associated lock and unlock nodes are marked
+  // for elimination.
+  newbox->set_eliminated();
+  transform_later(newbox);
+
+  // Replace old box node with new box for all users of the same object.
+  for (uint i = 0; i < oldbox->outcnt();) {
+    bool next_edge = true;
+
+    Node* u = oldbox->raw_out(i);
+    if (u->is_AbstractLock()) {
+      AbstractLockNode* alock = u->as_AbstractLock();
+      if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
+        // Replace Box and mark eliminated all related locks and unlocks.
+#ifdef ASSERT
+        alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5");
+#endif
+        alock->set_non_esc_obj();
+        _igvn.rehash_node_delayed(alock);
+        alock->set_box_node(newbox);
+        next_edge = false;
+      }
+    }
+    if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
+      FastLockNode* flock = u->as_FastLock();
+      assert(flock->box_node() == oldbox, "sanity");
+      _igvn.rehash_node_delayed(flock);
+      flock->set_box_node(newbox);
+      next_edge = false;
+    }
+
+    // Replace old box in monitor debug info.
+    if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
+      SafePointNode* sfn = u->as_SafePoint();
+      JVMState* youngest_jvms = sfn->jvms();
+      int max_depth = youngest_jvms->depth();
+      for (int depth = 1; depth <= max_depth; depth++) {
+        JVMState* jvms = youngest_jvms->of_depth(depth);
+        int num_mon  = jvms->nof_monitors();
+        // Loop over monitors
+        for (int idx = 0; idx < num_mon; idx++) {
+          Node* obj_node = sfn->monitor_obj(jvms, idx);
+          Node* box_node = sfn->monitor_box(jvms, idx);
+          if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
+            int j = jvms->monitor_box_offset(idx);
+            _igvn.replace_input_of(u, j, newbox);
+            next_edge = false;
+          }
+        }
+      }
+    }
+    if (next_edge) i++;
+  }
+}
+
+//-----------------------mark_eliminated_locking_nodes-----------------------
+void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
+  if (EliminateNestedLocks) {
+    if (alock->is_nested()) {
+       assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
+       return;
+    } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
+      // Only Lock node has JVMState needed here.
+      // Not that preceding claim is documented anywhere else.
+      if (alock->jvms() != NULL) {
+        if (alock->as_Lock()->is_nested_lock_region()) {
+          // Mark eliminated related nested locks and unlocks.
+          Node* obj = alock->obj_node();
+          BoxLockNode* box_node = alock->box_node()->as_BoxLock();
+          assert(!box_node->is_eliminated(), "should not be marked yet");
+          // Note: BoxLock node is marked eliminated only here
+          // and it is used to indicate that all associated lock
+          // and unlock nodes are marked for elimination.
+          box_node->set_eliminated(); // Box's hash is always NO_HASH here
+          for (uint i = 0; i < box_node->outcnt(); i++) {
+            Node* u = box_node->raw_out(i);
+            if (u->is_AbstractLock()) {
+              alock = u->as_AbstractLock();
+              if (alock->box_node() == box_node) {
+                // Verify that this Box is referenced only by related locks.
+                assert(alock->obj_node()->eqv_uncast(obj), "");
+                // Mark all related locks and unlocks.
+#ifdef ASSERT
+                alock->log_lock_optimization(C, "eliminate_lock_set_nested");
+#endif
+                alock->set_nested();
+              }
+            }
+          }
+        } else {
+#ifdef ASSERT
+          alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region");
+          if (C->log() != NULL)
+            alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output
+#endif
+        }
+      }
+      return;
+    }
+    // Process locks for non escaping object
+    assert(alock->is_non_esc_obj(), "");
+  } // EliminateNestedLocks
+
+  if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
+    // Look for all locks of this object and mark them and
+    // corresponding BoxLock nodes as eliminated.
+    Node* obj = alock->obj_node();
+    for (uint j = 0; j < obj->outcnt(); j++) {
+      Node* o = obj->raw_out(j);
+      if (o->is_AbstractLock() &&
+          o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
+        alock = o->as_AbstractLock();
+        Node* box = alock->box_node();
+        // Replace old box node with new eliminated box for all users
+        // of the same object and mark related locks as eliminated.
+        mark_eliminated_box(box, obj);
+      }
+    }
+  }
+}
+
+// we have determined that this lock/unlock can be eliminated, we simply
+// eliminate the node without expanding it.
+//
+// Note:  The membar's associated with the lock/unlock are currently not
+//        eliminated.  This should be investigated as a future enhancement.
+//
+bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
+
+  if (!alock->is_eliminated()) {
+    return false;
+  }
+#ifdef ASSERT
+  if (!alock->is_coarsened()) {
+    // Check that new "eliminated" BoxLock node is created.
+    BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
+    assert(oldbox->is_eliminated(), "should be done already");
+  }
+#endif
+
+  alock->log_lock_optimization(C, "eliminate_lock");
+
+#ifndef PRODUCT
+  if (PrintEliminateLocks) {
+    if (alock->is_Lock()) {
+      tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
+    } else {
+      tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
+    }
+  }
+#endif
+
+  Node* mem  = alock->in(TypeFunc::Memory);
+  Node* ctrl = alock->in(TypeFunc::Control);
+
+  extract_call_projections(alock);
+  // There are 2 projections from the lock.  The lock node will
+  // be deleted when its last use is subsumed below.
+  assert(alock->outcnt() == 2 &&
+         _fallthroughproj != NULL &&
+         _memproj_fallthrough != NULL,
+         "Unexpected projections from Lock/Unlock");
+
+  Node* fallthroughproj = _fallthroughproj;
+  Node* memproj_fallthrough = _memproj_fallthrough;
+
+  // The memory projection from a lock/unlock is RawMem
+  // The input to a Lock is merged memory, so extract its RawMem input
+  // (unless the MergeMem has been optimized away.)
+  if (alock->is_Lock()) {
+    // Seach for MemBarAcquireLock node and delete it also.
+    MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
+    assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
+    Node* ctrlproj = membar->proj_out(TypeFunc::Control);
+    Node* memproj = membar->proj_out(TypeFunc::Memory);
+    _igvn.replace_node(ctrlproj, fallthroughproj);
+    _igvn.replace_node(memproj, memproj_fallthrough);
+
+    // Delete FastLock node also if this Lock node is unique user
+    // (a loop peeling may clone a Lock node).
+    Node* flock = alock->as_Lock()->fastlock_node();
+    if (flock->outcnt() == 1) {
+      assert(flock->unique_out() == alock, "sanity");
+      _igvn.replace_node(flock, top());
+    }
+  }
+
+  // Seach for MemBarReleaseLock node and delete it also.
+  if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
+      ctrl->in(0)->is_MemBar()) {
+    MemBarNode* membar = ctrl->in(0)->as_MemBar();
+    assert(membar->Opcode() == Op_MemBarReleaseLock &&
+           mem->is_Proj() && membar == mem->in(0), "");
+    _igvn.replace_node(fallthroughproj, ctrl);
+    _igvn.replace_node(memproj_fallthrough, mem);
+    fallthroughproj = ctrl;
+    memproj_fallthrough = mem;
+    ctrl = membar->in(TypeFunc::Control);
+    mem  = membar->in(TypeFunc::Memory);
+  }
+
+  _igvn.replace_node(fallthroughproj, ctrl);
+  _igvn.replace_node(memproj_fallthrough, mem);
+  return true;
+}
+
+
+//------------------------------expand_lock_node----------------------
+void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
+
+  Node* ctrl = lock->in(TypeFunc::Control);
+  Node* mem = lock->in(TypeFunc::Memory);
+  Node* obj = lock->obj_node();
+  Node* box = lock->box_node();
+  Node* flock = lock->fastlock_node();
+
+  assert(!box->as_BoxLock()->is_eliminated(), "sanity");
+
+  // Make the merge point
+  Node *region;
+  Node *mem_phi;
+  Node *slow_path;
+
+  if (UseOptoBiasInlining) {
+    /*
+     *  See the full description in MacroAssembler::biased_locking_enter().
+     *
+     *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
+     *    // The object is biased.
+     *    proto_node = klass->prototype_header;
+     *    o_node = thread | proto_node;
+     *    x_node = o_node ^ mark_word;
+     *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
+     *      // Done.
+     *    } else {
+     *      if( (x_node & biased_lock_mask) != 0 ) {
+     *        // The klass's prototype header is no longer biased.
+     *        cas(&mark_word, mark_word, proto_node)
+     *        goto cas_lock;
+     *      } else {
+     *        // The klass's prototype header is still biased.
+     *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
+     *          old = mark_word;
+     *          new = o_node;
+     *        } else {
+     *          // Different thread or anonymous biased.
+     *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
+     *          new = thread | old;
+     *        }
+     *        // Try to rebias.
+     *        if( cas(&mark_word, old, new) == 0 ) {
+     *          // Done.
+     *        } else {
+     *          goto slow_path; // Failed.
+     *        }
+     *      }
+     *    }
+     *  } else {
+     *    // The object is not biased.
+     *    cas_lock:
+     *    if( FastLock(obj) == 0 ) {
+     *      // Done.
+     *    } else {
+     *      slow_path:
+     *      OptoRuntime::complete_monitor_locking_Java(obj);
+     *    }
+     *  }
+     */
+
+    region  = new RegionNode(5);
+    // create a Phi for the memory state
+    mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
+
+    Node* fast_lock_region  = new RegionNode(3);
+    Node* fast_lock_mem_phi = new PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
+
+    // First, check mark word for the biased lock pattern.
+    Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
+
+    // Get fast path - mark word has the biased lock pattern.
+    ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
+                         markOopDesc::biased_lock_mask_in_place,
+                         markOopDesc::biased_lock_pattern, true);
+    // fast_lock_region->in(1) is set to slow path.
+    fast_lock_mem_phi->init_req(1, mem);
+
+    // Now check that the lock is biased to the current thread and has
+    // the same epoch and bias as Klass::_prototype_header.
+
+    // Special-case a fresh allocation to avoid building nodes:
+    Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
+    if (klass_node == NULL) {
+      Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
+      klass_node = transform_later(LoadKlassNode::make(_igvn, NULL, mem, k_adr, _igvn.type(k_adr)->is_ptr()));
+#ifdef _LP64
+      if (UseCompressedClassPointers && klass_node->is_DecodeNKlass()) {
+        assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
+        klass_node->in(1)->init_req(0, ctrl);
+      } else
+#endif
+      klass_node->init_req(0, ctrl);
+    }
+    Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
+
+    Node* thread = transform_later(new ThreadLocalNode());
+    Node* cast_thread = transform_later(new CastP2XNode(ctrl, thread));
+    Node* o_node = transform_later(new OrXNode(cast_thread, proto_node));
+    Node* x_node = transform_later(new XorXNode(o_node, mark_node));
+
+    // Get slow path - mark word does NOT match the value.
+    Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
+                                      (~markOopDesc::age_mask_in_place), 0);
+    // region->in(3) is set to fast path - the object is biased to the current thread.
+    mem_phi->init_req(3, mem);
+
+
+    // Mark word does NOT match the value (thread | Klass::_prototype_header).
+
+
+    // First, check biased pattern.
+    // Get fast path - _prototype_header has the same biased lock pattern.
+    ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
+                          markOopDesc::biased_lock_mask_in_place, 0, true);
+
+    not_biased_ctrl = fast_lock_region->in(2); // Slow path
+    // fast_lock_region->in(2) - the prototype header is no longer biased
+    // and we have to revoke the bias on this object.
+    // We are going to try to reset the mark of this object to the prototype
+    // value and fall through to the CAS-based locking scheme.
+    Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
+    Node* cas = new StoreXConditionalNode(not_biased_ctrl, mem, adr,
+                                          proto_node, mark_node);
+    transform_later(cas);
+    Node* proj = transform_later(new SCMemProjNode(cas));
+    fast_lock_mem_phi->init_req(2, proj);
+
+
+    // Second, check epoch bits.
+    Node* rebiased_region  = new RegionNode(3);
+    Node* old_phi = new PhiNode( rebiased_region, TypeX_X);
+    Node* new_phi = new PhiNode( rebiased_region, TypeX_X);
+
+    // Get slow path - mark word does NOT match epoch bits.
+    Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
+                                      markOopDesc::epoch_mask_in_place, 0);
+    // The epoch of the current bias is not valid, attempt to rebias the object
+    // toward the current thread.
+    rebiased_region->init_req(2, epoch_ctrl);
+    old_phi->init_req(2, mark_node);
+    new_phi->init_req(2, o_node);
+
+    // rebiased_region->in(1) is set to fast path.
+    // The epoch of the current bias is still valid but we know
+    // nothing about the owner; it might be set or it might be clear.
+    Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
+                             markOopDesc::age_mask_in_place |
+                             markOopDesc::epoch_mask_in_place);
+    Node* old = transform_later(new AndXNode(mark_node, cmask));
+    cast_thread = transform_later(new CastP2XNode(ctrl, thread));
+    Node* new_mark = transform_later(new OrXNode(cast_thread, old));
+    old_phi->init_req(1, old);
+    new_phi->init_req(1, new_mark);
+
+    transform_later(rebiased_region);
+    transform_later(old_phi);
+    transform_later(new_phi);
+
+    // Try to acquire the bias of the object using an atomic operation.
+    // If this fails we will go in to the runtime to revoke the object's bias.
+    cas = new StoreXConditionalNode(rebiased_region, mem, adr, new_phi, old_phi);
+    transform_later(cas);
+    proj = transform_later(new SCMemProjNode(cas));
+
+    // Get slow path - Failed to CAS.
+    not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
+    mem_phi->init_req(4, proj);
+    // region->in(4) is set to fast path - the object is rebiased to the current thread.
+
+    // Failed to CAS.
+    slow_path  = new RegionNode(3);
+    Node *slow_mem = new PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
+
+    slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
+    slow_mem->init_req(1, proj);
+
+    // Call CAS-based locking scheme (FastLock node).
+
+    transform_later(fast_lock_region);
+    transform_later(fast_lock_mem_phi);
+
+    // Get slow path - FastLock failed to lock the object.
+    ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
+    mem_phi->init_req(2, fast_lock_mem_phi);
+    // region->in(2) is set to fast path - the object is locked to the current thread.
+
+    slow_path->init_req(2, ctrl); // Capture slow-control
+    slow_mem->init_req(2, fast_lock_mem_phi);
+
+    transform_later(slow_path);
+    transform_later(slow_mem);
+    // Reset lock's memory edge.
+    lock->set_req(TypeFunc::Memory, slow_mem);
+
+  } else {
+    region  = new RegionNode(3);
+    // create a Phi for the memory state
+    mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
+
+    // Optimize test; set region slot 2
+    slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
+    mem_phi->init_req(2, mem);
+  }
+
+  // Make slow path call
+  CallNode *call = make_slow_call((CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(),
+                                  OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path,
+                                  obj, box, NULL);
+
+  extract_call_projections(call);
+
+  // Slow path can only throw asynchronous exceptions, which are always
+  // de-opted.  So the compiler thinks the slow-call can never throw an
+  // exception.  If it DOES throw an exception we would need the debug
+  // info removed first (since if it throws there is no monitor).
+  assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
+           _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
+
+  // Capture slow path
+  // disconnect fall-through projection from call and create a new one
+  // hook up users of fall-through projection to region
+  Node *slow_ctrl = _fallthroughproj->clone();
+  transform_later(slow_ctrl);
+  _igvn.hash_delete(_fallthroughproj);
+  _fallthroughproj->disconnect_inputs(NULL, C);
+  region->init_req(1, slow_ctrl);
+  // region inputs are now complete
+  transform_later(region);
+  _igvn.replace_node(_fallthroughproj, region);
+
+  Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory));
+  mem_phi->init_req(1, memproj );
+  transform_later(mem_phi);
+  _igvn.replace_node(_memproj_fallthrough, mem_phi);
+}
+
+//------------------------------expand_unlock_node----------------------
+void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
+
+  Node* ctrl = unlock->in(TypeFunc::Control);
+  Node* mem = unlock->in(TypeFunc::Memory);
+  Node* obj = unlock->obj_node();
+  Node* box = unlock->box_node();
+
+  assert(!box->as_BoxLock()->is_eliminated(), "sanity");
+
+  // No need for a null check on unlock
+
+  // Make the merge point
+  Node *region;
+  Node *mem_phi;
+
+  if (UseOptoBiasInlining) {
+    // Check for biased locking unlock case, which is a no-op.
+    // See the full description in MacroAssembler::biased_locking_exit().
+    region  = new RegionNode(4);
+    // create a Phi for the memory state
+    mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
+    mem_phi->init_req(3, mem);
+
+    Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
+    ctrl = opt_bits_test(ctrl, region, 3, mark_node,
+                         markOopDesc::biased_lock_mask_in_place,
+                         markOopDesc::biased_lock_pattern);
+  } else {
+    region  = new RegionNode(3);
+    // create a Phi for the memory state
+    mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
+  }
+
+  FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box );
+  funlock = transform_later( funlock )->as_FastUnlock();
+  // Optimize test; set region slot 2
+  Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
+  Node *thread = transform_later(new ThreadLocalNode());
+
+  CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(),
+                                  CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C),
+                                  "complete_monitor_unlocking_C", slow_path, obj, box, thread);
+
+  extract_call_projections(call);
+
+  assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
+           _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
+
+  // No exceptions for unlocking
+  // Capture slow path
+  // disconnect fall-through projection from call and create a new one
+  // hook up users of fall-through projection to region
+  Node *slow_ctrl = _fallthroughproj->clone();
+  transform_later(slow_ctrl);
+  _igvn.hash_delete(_fallthroughproj);
+  _fallthroughproj->disconnect_inputs(NULL, C);
+  region->init_req(1, slow_ctrl);
+  // region inputs are now complete
+  transform_later(region);
+  _igvn.replace_node(_fallthroughproj, region);
+
+  Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) );
+  mem_phi->init_req(1, memproj );
+  mem_phi->init_req(2, mem);
+  transform_later(mem_phi);
+  _igvn.replace_node(_memproj_fallthrough, mem_phi);
+}
+
+//---------------------------eliminate_macro_nodes----------------------
+// Eliminate scalar replaced allocations and associated locks.
+void PhaseMacroExpand::eliminate_macro_nodes() {
+  if (C->macro_count() == 0)
+    return;
+
+  // First, attempt to eliminate locks
+  int cnt = C->macro_count();
+  for (int i=0; i < cnt; i++) {
+    Node *n = C->macro_node(i);
+    if (n->is_AbstractLock()) { // Lock and Unlock nodes
+      // Before elimination mark all associated (same box and obj)
+      // lock and unlock nodes.
+      mark_eliminated_locking_nodes(n->as_AbstractLock());
+    }
+  }
+  bool progress = true;
+  while (progress) {
+    progress = false;
+    for (int i = C->macro_count(); i > 0; i--) {
+      Node * n = C->macro_node(i-1);
+      bool success = false;
+      debug_only(int old_macro_count = C->macro_count(););
+      if (n->is_AbstractLock()) {
+        success = eliminate_locking_node(n->as_AbstractLock());
+      }
+      assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
+      progress = progress || success;
+    }
+  }
+  // Next, attempt to eliminate allocations
+  _has_locks = false;
+  progress = true;
+  while (progress) {
+    progress = false;
+    for (int i = C->macro_count(); i > 0; i--) {
+      Node * n = C->macro_node(i-1);
+      bool success = false;
+      debug_only(int old_macro_count = C->macro_count(););
+      switch (n->class_id()) {
+      case Node::Class_Allocate:
+      case Node::Class_AllocateArray:
+        success = eliminate_allocate_node(n->as_Allocate());
+        break;
+      case Node::Class_CallStaticJava:
+        success = eliminate_boxing_node(n->as_CallStaticJava());
+        break;
+      case Node::Class_Lock:
+      case Node::Class_Unlock:
+        assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
+        _has_locks = true;
+        break;
+      case Node::Class_ArrayCopy:
+        break;
+      default:
+        assert(n->Opcode() == Op_LoopLimit ||
+               n->Opcode() == Op_Opaque1   ||
+               n->Opcode() == Op_Opaque2   ||
+               n->Opcode() == Op_Opaque3   ||
+               n->Opcode() == Op_Opaque4, "unknown node type in macro list");
+      }
+      assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
+      progress = progress || success;
+    }
+  }
+}
+
+//------------------------------expand_macro_nodes----------------------
+//  Returns true if a failure occurred.
+bool PhaseMacroExpand::expand_macro_nodes() {
+  // Last attempt to eliminate macro nodes.
+  eliminate_macro_nodes();
+
+  // Make sure expansion will not cause node limit to be exceeded.
+  // Worst case is a macro node gets expanded into about 200 nodes.
+  // Allow 50% more for optimization.
+  if (C->check_node_count(C->macro_count() * 300, "out of nodes before macro expansion" ) )
+    return true;
+
+  // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
+  bool progress = true;
+  while (progress) {
+    progress = false;
+    for (int i = C->macro_count(); i > 0; i--) {
+      Node * n = C->macro_node(i-1);
+      bool success = false;
+      debug_only(int old_macro_count = C->macro_count(););
+      if (n->Opcode() == Op_LoopLimit) {
+        // Remove it from macro list and put on IGVN worklist to optimize.
+        C->remove_macro_node(n);
+        _igvn._worklist.push(n);
+        success = true;
+      } else if (n->Opcode() == Op_CallStaticJava) {
+        // Remove it from macro list and put on IGVN worklist to optimize.
+        C->remove_macro_node(n);
+        _igvn._worklist.push(n);
+        success = true;
+      } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
+        _igvn.replace_node(n, n->in(1));
+        success = true;
+#if INCLUDE_RTM_OPT
+      } else if ((n->Opcode() == Op_Opaque3) && ((Opaque3Node*)n)->rtm_opt()) {
+        assert(C->profile_rtm(), "should be used only in rtm deoptimization code");
+        assert((n->outcnt() == 1) && n->unique_out()->is_Cmp(), "");
+        Node* cmp = n->unique_out();
+#ifdef ASSERT
+        // Validate graph.
+        assert((cmp->outcnt() == 1) && cmp->unique_out()->is_Bool(), "");
+        BoolNode* bol = cmp->unique_out()->as_Bool();
+        assert((bol->outcnt() == 1) && bol->unique_out()->is_If() &&
+               (bol->_test._test == BoolTest::ne), "");
+        IfNode* ifn = bol->unique_out()->as_If();
+        assert((ifn->outcnt() == 2) &&
+               ifn->proj_out(1)->is_uncommon_trap_proj(Deoptimization::Reason_rtm_state_change) != NULL, "");
+#endif
+        Node* repl = n->in(1);
+        if (!_has_locks) {
+          // Remove RTM state check if there are no locks in the code.
+          // Replace input to compare the same value.
+          repl = (cmp->in(1) == n) ? cmp->in(2) : cmp->in(1);
+        }
+        _igvn.replace_node(n, repl);
+        success = true;
+#endif
+      } else if (n->Opcode() == Op_Opaque4) {
+        _igvn.replace_node(n, n->in(2));
+        success = true;
+      }
+      assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
+      progress = progress || success;
+    }
+  }
+
+  // expand arraycopy "macro" nodes first
+  // For ReduceBulkZeroing, we must first process all arraycopy nodes
+  // before the allocate nodes are expanded.
+  int macro_idx = C->macro_count() - 1;
+  while (macro_idx >= 0) {
+    Node * n = C->macro_node(macro_idx);
+    assert(n->is_macro(), "only macro nodes expected here");
+    if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
+      // node is unreachable, so don't try to expand it
+      C->remove_macro_node(n);
+    } else if (n->is_ArrayCopy()){
+      int macro_count = C->macro_count();
+      expand_arraycopy_node(n->as_ArrayCopy());
+      assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
+    }
+    if (C->failing())  return true;
+    macro_idx --;
+  }
+
+  // expand "macro" nodes
+  // nodes are removed from the macro list as they are processed
+  while (C->macro_count() > 0) {
+    int macro_count = C->macro_count();
+    Node * n = C->macro_node(macro_count-1);
+    assert(n->is_macro(), "only macro nodes expected here");
+    if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
+      // node is unreachable, so don't try to expand it
+      C->remove_macro_node(n);
+      continue;
+    }
+    switch (n->class_id()) {
+    case Node::Class_Allocate:
+      expand_allocate(n->as_Allocate());
+      break;
+    case Node::Class_AllocateArray:
+      expand_allocate_array(n->as_AllocateArray());
+      break;
+    case Node::Class_Lock:
+      expand_lock_node(n->as_Lock());
+      break;
+    case Node::Class_Unlock:
+      expand_unlock_node(n->as_Unlock());
+      break;
+    default:
+      assert(false, "unknown node type in macro list");
+    }
+    assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
+    if (C->failing())  return true;
+  }
+
+  _igvn.set_delay_transform(false);
+  _igvn.optimize();
+  if (C->failing())  return true;
+  return false;
+}