src/hotspot/share/opto/loopTransform.cpp
changeset 47216 71c04702a3d5
parent 46692 117b089cb1c3
child 47591 d78db2ebce5e
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/opto/loopTransform.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,3308 @@
+/*
+ * Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "compiler/compileLog.hpp"
+#include "memory/allocation.inline.hpp"
+#include "opto/addnode.hpp"
+#include "opto/callnode.hpp"
+#include "opto/castnode.hpp"
+#include "opto/connode.hpp"
+#include "opto/convertnode.hpp"
+#include "opto/divnode.hpp"
+#include "opto/loopnode.hpp"
+#include "opto/mulnode.hpp"
+#include "opto/movenode.hpp"
+#include "opto/opaquenode.hpp"
+#include "opto/rootnode.hpp"
+#include "opto/runtime.hpp"
+#include "opto/subnode.hpp"
+#include "opto/superword.hpp"
+#include "opto/vectornode.hpp"
+
+//------------------------------is_loop_exit-----------------------------------
+// Given an IfNode, return the loop-exiting projection or NULL if both
+// arms remain in the loop.
+Node *IdealLoopTree::is_loop_exit(Node *iff) const {
+  if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
+  PhaseIdealLoop *phase = _phase;
+  // Test is an IfNode, has 2 projections.  If BOTH are in the loop
+  // we need loop unswitching instead of peeling.
+  if( !is_member(phase->get_loop( iff->raw_out(0) )) )
+    return iff->raw_out(0);
+  if( !is_member(phase->get_loop( iff->raw_out(1) )) )
+    return iff->raw_out(1);
+  return NULL;
+}
+
+
+//=============================================================================
+
+
+//------------------------------record_for_igvn----------------------------
+// Put loop body on igvn work list
+void IdealLoopTree::record_for_igvn() {
+  for( uint i = 0; i < _body.size(); i++ ) {
+    Node *n = _body.at(i);
+    _phase->_igvn._worklist.push(n);
+  }
+}
+
+//------------------------------compute_exact_trip_count-----------------------
+// Compute loop trip count if possible. Do not recalculate trip count for
+// split loops (pre-main-post) which have their limits and inits behind Opaque node.
+void IdealLoopTree::compute_trip_count(PhaseIdealLoop* phase) {
+  if (!_head->as_Loop()->is_valid_counted_loop()) {
+    return;
+  }
+  CountedLoopNode* cl = _head->as_CountedLoop();
+  // Trip count may become nonexact for iteration split loops since
+  // RCE modifies limits. Note, _trip_count value is not reset since
+  // it is used to limit unrolling of main loop.
+  cl->set_nonexact_trip_count();
+
+  // Loop's test should be part of loop.
+  if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
+    return; // Infinite loop
+
+#ifdef ASSERT
+  BoolTest::mask bt = cl->loopexit()->test_trip();
+  assert(bt == BoolTest::lt || bt == BoolTest::gt ||
+         bt == BoolTest::ne, "canonical test is expected");
+#endif
+
+  Node* init_n = cl->init_trip();
+  Node* limit_n = cl->limit();
+  if (init_n != NULL && limit_n != NULL) {
+    // Use longs to avoid integer overflow.
+    int stride_con = cl->stride_con();
+    jlong init_con = phase->_igvn.type(init_n)->is_int()->_lo;
+    jlong limit_con = phase->_igvn.type(limit_n)->is_int()->_hi;
+    int stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
+    jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
+    if (trip_count > 0 && (julong)trip_count < (julong)max_juint) {
+      if (init_n->is_Con() && limit_n->is_Con()) {
+        // Set exact trip count.
+        cl->set_exact_trip_count((uint)trip_count);
+      } else if (cl->unrolled_count() == 1) {
+        // Set maximum trip count before unrolling.
+        cl->set_trip_count((uint)trip_count);
+      }
+    }
+  }
+}
+
+//------------------------------compute_profile_trip_cnt----------------------------
+// Compute loop trip count from profile data as
+//    (backedge_count + loop_exit_count) / loop_exit_count
+void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
+  if (!_head->is_CountedLoop()) {
+    return;
+  }
+  CountedLoopNode* head = _head->as_CountedLoop();
+  if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
+    return; // Already computed
+  }
+  float trip_cnt = (float)max_jint; // default is big
+
+  Node* back = head->in(LoopNode::LoopBackControl);
+  while (back != head) {
+    if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
+        back->in(0) &&
+        back->in(0)->is_If() &&
+        back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
+        back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
+      break;
+    }
+    back = phase->idom(back);
+  }
+  if (back != head) {
+    assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
+           back->in(0), "if-projection exists");
+    IfNode* back_if = back->in(0)->as_If();
+    float loop_back_cnt = back_if->_fcnt * back_if->_prob;
+
+    // Now compute a loop exit count
+    float loop_exit_cnt = 0.0f;
+    for( uint i = 0; i < _body.size(); i++ ) {
+      Node *n = _body[i];
+      if( n->is_If() ) {
+        IfNode *iff = n->as_If();
+        if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
+          Node *exit = is_loop_exit(iff);
+          if( exit ) {
+            float exit_prob = iff->_prob;
+            if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
+            if (exit_prob > PROB_MIN) {
+              float exit_cnt = iff->_fcnt * exit_prob;
+              loop_exit_cnt += exit_cnt;
+            }
+          }
+        }
+      }
+    }
+    if (loop_exit_cnt > 0.0f) {
+      trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
+    } else {
+      // No exit count so use
+      trip_cnt = loop_back_cnt;
+    }
+  }
+#ifndef PRODUCT
+  if (TraceProfileTripCount) {
+    tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
+  }
+#endif
+  head->set_profile_trip_cnt(trip_cnt);
+}
+
+//---------------------is_invariant_addition-----------------------------
+// Return nonzero index of invariant operand for an Add or Sub
+// of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
+int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
+  int op = n->Opcode();
+  if (op == Op_AddI || op == Op_SubI) {
+    bool in1_invar = this->is_invariant(n->in(1));
+    bool in2_invar = this->is_invariant(n->in(2));
+    if (in1_invar && !in2_invar) return 1;
+    if (!in1_invar && in2_invar) return 2;
+  }
+  return 0;
+}
+
+//---------------------reassociate_add_sub-----------------------------
+// Reassociate invariant add and subtract expressions:
+//
+// inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
+// (x + inv2) + inv1  =>  ( inv1 + inv2) + x
+// inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
+// inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
+// (x + inv2) - inv1  =>  (-inv1 + inv2) + x
+// (x - inv2) + inv1  =>  ( inv1 - inv2) + x
+// (x - inv2) - inv1  =>  (-inv1 - inv2) + x
+// inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
+// inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
+// (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
+// (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
+// inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
+//
+Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
+  if ((!n1->is_Add() && !n1->is_Sub()) || n1->outcnt() == 0) return NULL;
+  if (is_invariant(n1)) return NULL;
+  int inv1_idx = is_invariant_addition(n1, phase);
+  if (!inv1_idx) return NULL;
+  // Don't mess with add of constant (igvn moves them to expression tree root.)
+  if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
+  Node* inv1 = n1->in(inv1_idx);
+  Node* n2 = n1->in(3 - inv1_idx);
+  int inv2_idx = is_invariant_addition(n2, phase);
+  if (!inv2_idx) return NULL;
+  Node* x    = n2->in(3 - inv2_idx);
+  Node* inv2 = n2->in(inv2_idx);
+
+  bool neg_x    = n2->is_Sub() && inv2_idx == 1;
+  bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
+  bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
+  if (n1->is_Sub() && inv1_idx == 1) {
+    neg_x    = !neg_x;
+    neg_inv2 = !neg_inv2;
+  }
+  Node* inv1_c = phase->get_ctrl(inv1);
+  Node* inv2_c = phase->get_ctrl(inv2);
+  Node* n_inv1;
+  if (neg_inv1) {
+    Node *zero = phase->_igvn.intcon(0);
+    phase->set_ctrl(zero, phase->C->root());
+    n_inv1 = new SubINode(zero, inv1);
+    phase->register_new_node(n_inv1, inv1_c);
+  } else {
+    n_inv1 = inv1;
+  }
+  Node* inv;
+  if (neg_inv2) {
+    inv = new SubINode(n_inv1, inv2);
+  } else {
+    inv = new AddINode(n_inv1, inv2);
+  }
+  phase->register_new_node(inv, phase->get_early_ctrl(inv));
+
+  Node* addx;
+  if (neg_x) {
+    addx = new SubINode(inv, x);
+  } else {
+    addx = new AddINode(x, inv);
+  }
+  phase->register_new_node(addx, phase->get_ctrl(x));
+  phase->_igvn.replace_node(n1, addx);
+  assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
+  _body.yank(n1);
+  return addx;
+}
+
+//---------------------reassociate_invariants-----------------------------
+// Reassociate invariant expressions:
+void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
+  for (int i = _body.size() - 1; i >= 0; i--) {
+    Node *n = _body.at(i);
+    for (int j = 0; j < 5; j++) {
+      Node* nn = reassociate_add_sub(n, phase);
+      if (nn == NULL) break;
+      n = nn; // again
+    };
+  }
+}
+
+//------------------------------policy_peeling---------------------------------
+// Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
+// make some loop-invariant test (usually a null-check) happen before the loop.
+bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
+  Node *test = ((IdealLoopTree*)this)->tail();
+  int  body_size = ((IdealLoopTree*)this)->_body.size();
+  // Peeling does loop cloning which can result in O(N^2) node construction
+  if( body_size > 255 /* Prevent overflow for large body_size */
+      || (body_size * body_size + phase->C->live_nodes()) > phase->C->max_node_limit() ) {
+    return false;           // too large to safely clone
+  }
+
+  // check for vectorized loops, any peeling done was already applied
+  if (_head->is_CountedLoop() && _head->as_CountedLoop()->do_unroll_only()) return false;
+
+  while( test != _head ) {      // Scan till run off top of loop
+    if( test->is_If() ) {       // Test?
+      Node *ctrl = phase->get_ctrl(test->in(1));
+      if (ctrl->is_top())
+        return false;           // Found dead test on live IF?  No peeling!
+      // Standard IF only has one input value to check for loop invariance
+      assert(test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd || test->Opcode() == Op_RangeCheck, "Check this code when new subtype is added");
+      // Condition is not a member of this loop?
+      if( !is_member(phase->get_loop(ctrl)) &&
+          is_loop_exit(test) )
+        return true;            // Found reason to peel!
+    }
+    // Walk up dominators to loop _head looking for test which is
+    // executed on every path thru loop.
+    test = phase->idom(test);
+  }
+  return false;
+}
+
+//------------------------------peeled_dom_test_elim---------------------------
+// If we got the effect of peeling, either by actually peeling or by making
+// a pre-loop which must execute at least once, we can remove all
+// loop-invariant dominated tests in the main body.
+void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
+  bool progress = true;
+  while( progress ) {
+    progress = false;           // Reset for next iteration
+    Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
+    Node *test = prev->in(0);
+    while( test != loop->_head ) { // Scan till run off top of loop
+
+      int p_op = prev->Opcode();
+      if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
+          test->is_If() &&      // Test?
+          !test->in(1)->is_Con() && // And not already obvious?
+          // Condition is not a member of this loop?
+          !loop->is_member(get_loop(get_ctrl(test->in(1))))){
+        // Walk loop body looking for instances of this test
+        for( uint i = 0; i < loop->_body.size(); i++ ) {
+          Node *n = loop->_body.at(i);
+          if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
+            // IfNode was dominated by version in peeled loop body
+            progress = true;
+            dominated_by( old_new[prev->_idx], n );
+          }
+        }
+      }
+      prev = test;
+      test = idom(test);
+    } // End of scan tests in loop
+
+  } // End of while( progress )
+}
+
+//------------------------------do_peeling-------------------------------------
+// Peel the first iteration of the given loop.
+// Step 1: Clone the loop body.  The clone becomes the peeled iteration.
+//         The pre-loop illegally has 2 control users (old & new loops).
+// Step 2: Make the old-loop fall-in edges point to the peeled iteration.
+//         Do this by making the old-loop fall-in edges act as if they came
+//         around the loopback from the prior iteration (follow the old-loop
+//         backedges) and then map to the new peeled iteration.  This leaves
+//         the pre-loop with only 1 user (the new peeled iteration), but the
+//         peeled-loop backedge has 2 users.
+// Step 3: Cut the backedge on the clone (so its not a loop) and remove the
+//         extra backedge user.
+//
+//                   orig
+//
+//                  stmt1
+//                    |
+//                    v
+//              loop predicate
+//                    |
+//                    v
+//                   loop<----+
+//                     |      |
+//                   stmt2    |
+//                     |      |
+//                     v      |
+//                    if      ^
+//                   / \      |
+//                  /   \     |
+//                 v     v    |
+//               false true   |
+//               /       \    |
+//              /         ----+
+//             |
+//             v
+//           exit
+//
+//
+//            after clone loop
+//
+//                   stmt1
+//                     |
+//                     v
+//               loop predicate
+//                 /       \
+//        clone   /         \   orig
+//               /           \
+//              /             \
+//             v               v
+//   +---->loop clone          loop<----+
+//   |      |                    |      |
+//   |    stmt2 clone          stmt2    |
+//   |      |                    |      |
+//   |      v                    v      |
+//   ^      if clone            If      ^
+//   |      / \                / \      |
+//   |     /   \              /   \     |
+//   |    v     v            v     v    |
+//   |    true  false      false true   |
+//   |    /         \      /       \    |
+//   +----           \    /         ----+
+//                    \  /
+//                    1v v2
+//                  region
+//                     |
+//                     v
+//                   exit
+//
+//
+//         after peel and predicate move
+//
+//                   stmt1
+//                    /
+//                   /
+//        clone     /            orig
+//                 /
+//                /              +----------+
+//               /               |          |
+//              /          loop predicate   |
+//             /                 |          |
+//            v                  v          |
+//   TOP-->loop clone          loop<----+   |
+//          |                    |      |   |
+//        stmt2 clone          stmt2    |   |
+//          |                    |      |   ^
+//          v                    v      |   |
+//          if clone            If      ^   |
+//          / \                / \      |   |
+//         /   \              /   \     |   |
+//        v     v            v     v    |   |
+//      true   false      false  true   |   |
+//        |         \      /       \    |   |
+//        |          \    /         ----+   ^
+//        |           \  /                  |
+//        |           1v v2                 |
+//        v         region                  |
+//        |            |                    |
+//        |            v                    |
+//        |          exit                   |
+//        |                                 |
+//        +--------------->-----------------+
+//
+//
+//              final graph
+//
+//                  stmt1
+//                    |
+//                    v
+//                  stmt2 clone
+//                    |
+//                    v
+//                   if clone
+//                  / |
+//                 /  |
+//                v   v
+//            false  true
+//             |      |
+//             |      v
+//             | loop predicate
+//             |      |
+//             |      v
+//             |     loop<----+
+//             |      |       |
+//             |    stmt2     |
+//             |      |       |
+//             |      v       |
+//             v      if      ^
+//             |     /  \     |
+//             |    /    \    |
+//             |   v     v    |
+//             | false  true  |
+//             |  |        \  |
+//             v  v         --+
+//            region
+//              |
+//              v
+//             exit
+//
+void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
+
+  C->set_major_progress();
+  // Peeling a 'main' loop in a pre/main/post situation obfuscates the
+  // 'pre' loop from the main and the 'pre' can no longer have its
+  // iterations adjusted.  Therefore, we need to declare this loop as
+  // no longer a 'main' loop; it will need new pre and post loops before
+  // we can do further RCE.
+#ifndef PRODUCT
+  if (TraceLoopOpts) {
+    tty->print("Peel         ");
+    loop->dump_head();
+  }
+#endif
+  Node* head = loop->_head;
+  bool counted_loop = head->is_CountedLoop();
+  if (counted_loop) {
+    CountedLoopNode *cl = head->as_CountedLoop();
+    assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
+    cl->set_trip_count(cl->trip_count() - 1);
+    if (cl->is_main_loop()) {
+      cl->set_normal_loop();
+#ifndef PRODUCT
+      if (PrintOpto && VerifyLoopOptimizations) {
+        tty->print("Peeling a 'main' loop; resetting to 'normal' ");
+        loop->dump_head();
+      }
+#endif
+    }
+  }
+  Node* entry = head->in(LoopNode::EntryControl);
+
+  // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
+  //         The pre-loop illegally has 2 control users (old & new loops).
+  clone_loop( loop, old_new, dom_depth(head) );
+
+  // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
+  //         Do this by making the old-loop fall-in edges act as if they came
+  //         around the loopback from the prior iteration (follow the old-loop
+  //         backedges) and then map to the new peeled iteration.  This leaves
+  //         the pre-loop with only 1 user (the new peeled iteration), but the
+  //         peeled-loop backedge has 2 users.
+  Node* new_entry = old_new[head->in(LoopNode::LoopBackControl)->_idx];
+  _igvn.hash_delete(head);
+  head->set_req(LoopNode::EntryControl, new_entry);
+  for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
+    Node* old = head->fast_out(j);
+    if (old->in(0) == loop->_head && old->req() == 3 && old->is_Phi()) {
+      Node* new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
+      if (!new_exit_value )     // Backedge value is ALSO loop invariant?
+        // Then loop body backedge value remains the same.
+        new_exit_value = old->in(LoopNode::LoopBackControl);
+      _igvn.hash_delete(old);
+      old->set_req(LoopNode::EntryControl, new_exit_value);
+    }
+  }
+
+
+  // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
+  //         extra backedge user.
+  Node* new_head = old_new[head->_idx];
+  _igvn.hash_delete(new_head);
+  new_head->set_req(LoopNode::LoopBackControl, C->top());
+  for (DUIterator_Fast j2max, j2 = new_head->fast_outs(j2max); j2 < j2max; j2++) {
+    Node* use = new_head->fast_out(j2);
+    if (use->in(0) == new_head && use->req() == 3 && use->is_Phi()) {
+      _igvn.hash_delete(use);
+      use->set_req(LoopNode::LoopBackControl, C->top());
+    }
+  }
+
+
+  // Step 4: Correct dom-depth info.  Set to loop-head depth.
+  int dd = dom_depth(head);
+  set_idom(head, head->in(1), dd);
+  for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
+    Node *old = loop->_body.at(j3);
+    Node *nnn = old_new[old->_idx];
+    if (!has_ctrl(nnn))
+      set_idom(nnn, idom(nnn), dd-1);
+  }
+
+  // Now force out all loop-invariant dominating tests.  The optimizer
+  // finds some, but we _know_ they are all useless.
+  peeled_dom_test_elim(loop,old_new);
+
+  loop->record_for_igvn();
+}
+
+#define EMPTY_LOOP_SIZE 7 // number of nodes in an empty loop
+
+//------------------------------policy_maximally_unroll------------------------
+// Calculate exact loop trip count and return true if loop can be maximally
+// unrolled.
+bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
+  CountedLoopNode *cl = _head->as_CountedLoop();
+  assert(cl->is_normal_loop(), "");
+  if (!cl->is_valid_counted_loop())
+    return false; // Malformed counted loop
+
+  if (!cl->has_exact_trip_count()) {
+    // Trip count is not exact.
+    return false;
+  }
+
+  uint trip_count = cl->trip_count();
+  // Note, max_juint is used to indicate unknown trip count.
+  assert(trip_count > 1, "one iteration loop should be optimized out already");
+  assert(trip_count < max_juint, "exact trip_count should be less than max_uint.");
+
+  // Real policy: if we maximally unroll, does it get too big?
+  // Allow the unrolled mess to get larger than standard loop
+  // size.  After all, it will no longer be a loop.
+  uint body_size    = _body.size();
+  uint unroll_limit = (uint)LoopUnrollLimit * 4;
+  assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
+  if (trip_count > unroll_limit || body_size > unroll_limit) {
+    return false;
+  }
+
+  // Fully unroll a loop with few iterations regardless next
+  // conditions since following loop optimizations will split
+  // such loop anyway (pre-main-post).
+  if (trip_count <= 3)
+    return true;
+
+  // Take into account that after unroll conjoined heads and tails will fold,
+  // otherwise policy_unroll() may allow more unrolling than max unrolling.
+  uint new_body_size = EMPTY_LOOP_SIZE + (body_size - EMPTY_LOOP_SIZE) * trip_count;
+  uint tst_body_size = (new_body_size - EMPTY_LOOP_SIZE) / trip_count + EMPTY_LOOP_SIZE;
+  if (body_size != tst_body_size) // Check for int overflow
+    return false;
+  if (new_body_size > unroll_limit ||
+      // Unrolling can result in a large amount of node construction
+      new_body_size >= phase->C->max_node_limit() - phase->C->live_nodes()) {
+    return false;
+  }
+
+  // Do not unroll a loop with String intrinsics code.
+  // String intrinsics are large and have loops.
+  for (uint k = 0; k < _body.size(); k++) {
+    Node* n = _body.at(k);
+    switch (n->Opcode()) {
+      case Op_StrComp:
+      case Op_StrEquals:
+      case Op_StrIndexOf:
+      case Op_StrIndexOfChar:
+      case Op_EncodeISOArray:
+      case Op_AryEq:
+      case Op_HasNegatives: {
+        return false;
+      }
+#if INCLUDE_RTM_OPT
+      case Op_FastLock:
+      case Op_FastUnlock: {
+        // Don't unroll RTM locking code because it is large.
+        if (UseRTMLocking) {
+          return false;
+        }
+      }
+#endif
+    } // switch
+  }
+
+  return true; // Do maximally unroll
+}
+
+
+//------------------------------policy_unroll----------------------------------
+// Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
+// the loop is a CountedLoop and the body is small enough.
+bool IdealLoopTree::policy_unroll(PhaseIdealLoop *phase) {
+
+  CountedLoopNode *cl = _head->as_CountedLoop();
+  assert(cl->is_normal_loop() || cl->is_main_loop(), "");
+
+  if (!cl->is_valid_counted_loop())
+    return false; // Malformed counted loop
+
+  // Protect against over-unrolling.
+  // After split at least one iteration will be executed in pre-loop.
+  if (cl->trip_count() <= (uint)(cl->is_normal_loop() ? 2 : 1)) return false;
+
+  _local_loop_unroll_limit = LoopUnrollLimit;
+  _local_loop_unroll_factor = 4;
+  int future_unroll_ct = cl->unrolled_count() * 2;
+  if (!cl->do_unroll_only()) {
+    if (future_unroll_ct > LoopMaxUnroll) return false;
+  } else {
+    // obey user constraints on vector mapped loops with additional unrolling applied
+    int unroll_constraint = (cl->slp_max_unroll()) ? cl->slp_max_unroll() : 1;
+    if ((future_unroll_ct / unroll_constraint) > LoopMaxUnroll) return false;
+  }
+
+  // Check for initial stride being a small enough constant
+  if (abs(cl->stride_con()) > (1<<2)*future_unroll_ct) return false;
+
+  // Don't unroll if the next round of unrolling would push us
+  // over the expected trip count of the loop.  One is subtracted
+  // from the expected trip count because the pre-loop normally
+  // executes 1 iteration.
+  if (UnrollLimitForProfileCheck > 0 &&
+      cl->profile_trip_cnt() != COUNT_UNKNOWN &&
+      future_unroll_ct        > UnrollLimitForProfileCheck &&
+      (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
+    return false;
+  }
+
+  // When unroll count is greater than LoopUnrollMin, don't unroll if:
+  //   the residual iterations are more than 10% of the trip count
+  //   and rounds of "unroll,optimize" are not making significant progress
+  //   Progress defined as current size less than 20% larger than previous size.
+  if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
+      future_unroll_ct > LoopUnrollMin &&
+      (future_unroll_ct - 1) * (100 / LoopPercentProfileLimit) > cl->profile_trip_cnt() &&
+      1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
+    return false;
+  }
+
+  Node *init_n = cl->init_trip();
+  Node *limit_n = cl->limit();
+  int stride_con = cl->stride_con();
+  // Non-constant bounds.
+  // Protect against over-unrolling when init or/and limit are not constant
+  // (so that trip_count's init value is maxint) but iv range is known.
+  if (init_n   == NULL || !init_n->is_Con()  ||
+      limit_n  == NULL || !limit_n->is_Con()) {
+    Node* phi = cl->phi();
+    if (phi != NULL) {
+      assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
+      const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
+      int next_stride = stride_con * 2; // stride after this unroll
+      if (next_stride > 0) {
+        if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
+            iv_type->_lo + next_stride >  iv_type->_hi) {
+          return false;  // over-unrolling
+        }
+      } else if (next_stride < 0) {
+        if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
+            iv_type->_hi + next_stride <  iv_type->_lo) {
+          return false;  // over-unrolling
+        }
+      }
+    }
+  }
+
+  // After unroll limit will be adjusted: new_limit = limit-stride.
+  // Bailout if adjustment overflow.
+  const TypeInt* limit_type = phase->_igvn.type(limit_n)->is_int();
+  if ((stride_con > 0 && ((limit_type->_hi - stride_con) >= limit_type->_hi)) ||
+      (stride_con < 0 && ((limit_type->_lo - stride_con) <= limit_type->_lo)))
+    return false;  // overflow
+
+  // Adjust body_size to determine if we unroll or not
+  uint body_size = _body.size();
+  // Key test to unroll loop in CRC32 java code
+  int xors_in_loop = 0;
+  // Also count ModL, DivL and MulL which expand mightly
+  for (uint k = 0; k < _body.size(); k++) {
+    Node* n = _body.at(k);
+    switch (n->Opcode()) {
+      case Op_XorI: xors_in_loop++; break; // CRC32 java code
+      case Op_ModL: body_size += 30; break;
+      case Op_DivL: body_size += 30; break;
+      case Op_MulL: body_size += 10; break;
+      case Op_StrComp:
+      case Op_StrEquals:
+      case Op_StrIndexOf:
+      case Op_StrIndexOfChar:
+      case Op_EncodeISOArray:
+      case Op_AryEq:
+      case Op_HasNegatives: {
+        // Do not unroll a loop with String intrinsics code.
+        // String intrinsics are large and have loops.
+        return false;
+      }
+#if INCLUDE_RTM_OPT
+      case Op_FastLock:
+      case Op_FastUnlock: {
+        // Don't unroll RTM locking code because it is large.
+        if (UseRTMLocking) {
+          return false;
+        }
+      }
+#endif
+    } // switch
+  }
+
+  if (UseSuperWord) {
+    if (!cl->is_reduction_loop()) {
+      phase->mark_reductions(this);
+    }
+
+    // Only attempt slp analysis when user controls do not prohibit it
+    if (LoopMaxUnroll > _local_loop_unroll_factor) {
+      // Once policy_slp_analysis succeeds, mark the loop with the
+      // maximal unroll factor so that we minimize analysis passes
+      if (future_unroll_ct >= _local_loop_unroll_factor) {
+        policy_unroll_slp_analysis(cl, phase, future_unroll_ct);
+      }
+    }
+  }
+
+  int slp_max_unroll_factor = cl->slp_max_unroll();
+  if ((LoopMaxUnroll < slp_max_unroll_factor) && FLAG_IS_DEFAULT(LoopMaxUnroll) && UseSubwordForMaxVector) {
+    LoopMaxUnroll = slp_max_unroll_factor;
+  }
+  if (cl->has_passed_slp()) {
+    if (slp_max_unroll_factor >= future_unroll_ct) return true;
+    // Normal case: loop too big
+    return false;
+  }
+
+  // Check for being too big
+  if (body_size > (uint)_local_loop_unroll_limit) {
+    if ((UseSubwordForMaxVector || xors_in_loop >= 4) && body_size < (uint)LoopUnrollLimit * 4) return true;
+    // Normal case: loop too big
+    return false;
+  }
+
+  if (cl->do_unroll_only()) {
+    if (TraceSuperWordLoopUnrollAnalysis) {
+      tty->print_cr("policy_unroll passed vector loop(vlen=%d,factor = %d)\n", slp_max_unroll_factor, future_unroll_ct);
+    }
+  }
+
+  // Unroll once!  (Each trip will soon do double iterations)
+  return true;
+}
+
+void IdealLoopTree::policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct) {
+  // Enable this functionality target by target as needed
+  if (SuperWordLoopUnrollAnalysis) {
+    if (!cl->was_slp_analyzed()) {
+      SuperWord sw(phase);
+      sw.transform_loop(this, false);
+
+      // If the loop is slp canonical analyze it
+      if (sw.early_return() == false) {
+        sw.unrolling_analysis(_local_loop_unroll_factor);
+      }
+    }
+
+    if (cl->has_passed_slp()) {
+      int slp_max_unroll_factor = cl->slp_max_unroll();
+      if (slp_max_unroll_factor >= future_unroll_ct) {
+        int new_limit = cl->node_count_before_unroll() * slp_max_unroll_factor;
+        if (new_limit > LoopUnrollLimit) {
+          if (TraceSuperWordLoopUnrollAnalysis) {
+            tty->print_cr("slp analysis unroll=%d, default limit=%d\n", new_limit, _local_loop_unroll_limit);
+          }
+          _local_loop_unroll_limit = new_limit;
+        }
+      }
+    }
+  }
+}
+
+//------------------------------policy_align-----------------------------------
+// Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
+// expression that does the alignment.  Note that only one array base can be
+// aligned in a loop (unless the VM guarantees mutual alignment).  Note that
+// if we vectorize short memory ops into longer memory ops, we may want to
+// increase alignment.
+bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
+  return false;
+}
+
+//------------------------------policy_range_check-----------------------------
+// Return TRUE or FALSE if the loop should be range-check-eliminated.
+// Actually we do iteration-splitting, a more powerful form of RCE.
+bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
+  if (!RangeCheckElimination) return false;
+
+  CountedLoopNode *cl = _head->as_CountedLoop();
+  // If we unrolled with no intention of doing RCE and we later
+  // changed our minds, we got no pre-loop.  Either we need to
+  // make a new pre-loop, or we gotta disallow RCE.
+  if (cl->is_main_no_pre_loop()) return false; // Disallowed for now.
+  Node *trip_counter = cl->phi();
+
+  // check for vectorized loops, some opts are no longer needed
+  if (cl->do_unroll_only()) return false;
+
+  // Check loop body for tests of trip-counter plus loop-invariant vs
+  // loop-invariant.
+  for (uint i = 0; i < _body.size(); i++) {
+    Node *iff = _body[i];
+    if (iff->Opcode() == Op_If ||
+        iff->Opcode() == Op_RangeCheck) { // Test?
+
+      // Comparing trip+off vs limit
+      Node *bol = iff->in(1);
+      if (bol->req() != 2) continue; // dead constant test
+      if (!bol->is_Bool()) {
+        assert(bol->Opcode() == Op_Conv2B, "predicate check only");
+        continue;
+      }
+      if (bol->as_Bool()->_test._test == BoolTest::ne)
+        continue; // not RC
+
+      Node *cmp = bol->in(1);
+      Node *rc_exp = cmp->in(1);
+      Node *limit = cmp->in(2);
+
+      Node *limit_c = phase->get_ctrl(limit);
+      if( limit_c == phase->C->top() )
+        return false;           // Found dead test on live IF?  No RCE!
+      if( is_member(phase->get_loop(limit_c) ) ) {
+        // Compare might have operands swapped; commute them
+        rc_exp = cmp->in(2);
+        limit  = cmp->in(1);
+        limit_c = phase->get_ctrl(limit);
+        if( is_member(phase->get_loop(limit_c) ) )
+          continue;             // Both inputs are loop varying; cannot RCE
+      }
+
+      if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
+        continue;
+      }
+      // Yeah!  Found a test like 'trip+off vs limit'
+      // Test is an IfNode, has 2 projections.  If BOTH are in the loop
+      // we need loop unswitching instead of iteration splitting.
+      if( is_loop_exit(iff) )
+        return true;            // Found reason to split iterations
+    } // End of is IF
+  }
+
+  return false;
+}
+
+//------------------------------policy_peel_only-------------------------------
+// Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
+// for unrolling loops with NO array accesses.
+bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
+  // check for vectorized loops, any peeling done was already applied
+  if (_head->is_CountedLoop() && _head->as_CountedLoop()->do_unroll_only()) return false;
+
+  for( uint i = 0; i < _body.size(); i++ )
+    if( _body[i]->is_Mem() )
+      return false;
+
+  // No memory accesses at all!
+  return true;
+}
+
+//------------------------------clone_up_backedge_goo--------------------------
+// If Node n lives in the back_ctrl block and cannot float, we clone a private
+// version of n in preheader_ctrl block and return that, otherwise return n.
+Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones ) {
+  if( get_ctrl(n) != back_ctrl ) return n;
+
+  // Only visit once
+  if (visited.test_set(n->_idx)) {
+    Node *x = clones.find(n->_idx);
+    if (x != NULL)
+      return x;
+    return n;
+  }
+
+  Node *x = NULL;               // If required, a clone of 'n'
+  // Check for 'n' being pinned in the backedge.
+  if( n->in(0) && n->in(0) == back_ctrl ) {
+    assert(clones.find(n->_idx) == NULL, "dead loop");
+    x = n->clone();             // Clone a copy of 'n' to preheader
+    clones.push(x, n->_idx);
+    x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
+  }
+
+  // Recursive fixup any other input edges into x.
+  // If there are no changes we can just return 'n', otherwise
+  // we need to clone a private copy and change it.
+  for( uint i = 1; i < n->req(); i++ ) {
+    Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i), visited, clones );
+    if( g != n->in(i) ) {
+      if( !x ) {
+        assert(clones.find(n->_idx) == NULL, "dead loop");
+        x = n->clone();
+        clones.push(x, n->_idx);
+      }
+      x->set_req(i, g);
+    }
+  }
+  if( x ) {                     // x can legally float to pre-header location
+    register_new_node( x, preheader_ctrl );
+    return x;
+  } else {                      // raise n to cover LCA of uses
+    set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
+  }
+  return n;
+}
+
+bool PhaseIdealLoop::cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop) {
+  Node* castii = new CastIINode(incr, TypeInt::INT, true);
+  castii->set_req(0, ctrl);
+  register_new_node(castii, ctrl);
+  for (DUIterator_Fast imax, i = incr->fast_outs(imax); i < imax; i++) {
+    Node* n = incr->fast_out(i);
+    if (n->is_Phi() && n->in(0) == loop) {
+      int nrep = n->replace_edge(incr, castii);
+      return true;
+    }
+  }
+  return false;
+}
+
+//------------------------------insert_pre_post_loops--------------------------
+// Insert pre and post loops.  If peel_only is set, the pre-loop can not have
+// more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
+// alignment.  Useful to unroll loops that do no array accesses.
+void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
+
+#ifndef PRODUCT
+  if (TraceLoopOpts) {
+    if (peel_only)
+      tty->print("PeelMainPost ");
+    else
+      tty->print("PreMainPost  ");
+    loop->dump_head();
+  }
+#endif
+  C->set_major_progress();
+
+  // Find common pieces of the loop being guarded with pre & post loops
+  CountedLoopNode *main_head = loop->_head->as_CountedLoop();
+  assert( main_head->is_normal_loop(), "" );
+  CountedLoopEndNode *main_end = main_head->loopexit();
+  guarantee(main_end != NULL, "no loop exit node");
+  assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
+  uint dd_main_head = dom_depth(main_head);
+  uint max = main_head->outcnt();
+
+  Node *pre_header= main_head->in(LoopNode::EntryControl);
+  Node *init      = main_head->init_trip();
+  Node *incr      = main_end ->incr();
+  Node *limit     = main_end ->limit();
+  Node *stride    = main_end ->stride();
+  Node *cmp       = main_end ->cmp_node();
+  BoolTest::mask b_test = main_end->test_trip();
+
+  // Need only 1 user of 'bol' because I will be hacking the loop bounds.
+  Node *bol = main_end->in(CountedLoopEndNode::TestValue);
+  if( bol->outcnt() != 1 ) {
+    bol = bol->clone();
+    register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
+    _igvn.replace_input_of(main_end, CountedLoopEndNode::TestValue, bol);
+  }
+  // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
+  if( cmp->outcnt() != 1 ) {
+    cmp = cmp->clone();
+    register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
+    _igvn.replace_input_of(bol, 1, cmp);
+  }
+
+  // Add the post loop
+  CountedLoopNode *post_head = NULL;
+  Node *main_exit = insert_post_loop(loop, old_new, main_head, main_end, incr, limit, post_head);
+
+  //------------------------------
+  // Step B: Create Pre-Loop.
+
+  // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
+  // loop pre-header illegally has 2 control users (old & new loops).
+  clone_loop( loop, old_new, dd_main_head );
+  CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
+  CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
+  pre_head->set_pre_loop(main_head);
+  Node *pre_incr = old_new[incr->_idx];
+
+  // Reduce the pre-loop trip count.
+  pre_end->_prob = PROB_FAIR;
+
+  // Find the pre-loop normal exit.
+  Node* pre_exit = pre_end->proj_out(false);
+  assert( pre_exit->Opcode() == Op_IfFalse, "" );
+  IfFalseNode *new_pre_exit = new IfFalseNode(pre_end);
+  _igvn.register_new_node_with_optimizer( new_pre_exit );
+  set_idom(new_pre_exit, pre_end, dd_main_head);
+  set_loop(new_pre_exit, loop->_parent);
+
+  // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
+  // pre-loop, the main-loop may not execute at all.  Later in life this
+  // zero-trip guard will become the minimum-trip guard when we unroll
+  // the main-loop.
+  Node *min_opaq = new Opaque1Node(C, limit);
+  Node *min_cmp  = new CmpINode( pre_incr, min_opaq );
+  Node *min_bol  = new BoolNode( min_cmp, b_test );
+  register_new_node( min_opaq, new_pre_exit );
+  register_new_node( min_cmp , new_pre_exit );
+  register_new_node( min_bol , new_pre_exit );
+
+  // Build the IfNode (assume the main-loop is executed always).
+  IfNode *min_iff = new IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
+  _igvn.register_new_node_with_optimizer( min_iff );
+  set_idom(min_iff, new_pre_exit, dd_main_head);
+  set_loop(min_iff, loop->_parent);
+
+  // Plug in the false-path, taken if we need to skip main-loop
+  _igvn.hash_delete( pre_exit );
+  pre_exit->set_req(0, min_iff);
+  set_idom(pre_exit, min_iff, dd_main_head);
+  set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
+  // Make the true-path, must enter the main loop
+  Node *min_taken = new IfTrueNode( min_iff );
+  _igvn.register_new_node_with_optimizer( min_taken );
+  set_idom(min_taken, min_iff, dd_main_head);
+  set_loop(min_taken, loop->_parent);
+  // Plug in the true path
+  _igvn.hash_delete( main_head );
+  main_head->set_req(LoopNode::EntryControl, min_taken);
+  set_idom(main_head, min_taken, dd_main_head);
+
+  Arena *a = Thread::current()->resource_area();
+  VectorSet visited(a);
+  Node_Stack clones(a, main_head->back_control()->outcnt());
+  // Step B3: Make the fall-in values to the main-loop come from the
+  // fall-out values of the pre-loop.
+  for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
+    Node* main_phi = main_head->fast_out(i2);
+    if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
+      Node *pre_phi = old_new[main_phi->_idx];
+      Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
+                                             main_head->init_control(),
+                                             pre_phi->in(LoopNode::LoopBackControl),
+                                             visited, clones);
+      _igvn.hash_delete(main_phi);
+      main_phi->set_req( LoopNode::EntryControl, fallpre );
+    }
+  }
+
+  // Nodes inside the loop may be control dependent on a predicate
+  // that was moved before the preloop. If the back branch of the main
+  // or post loops becomes dead, those nodes won't be dependent on the
+  // test that guards that loop nest anymore which could lead to an
+  // incorrect array access because it executes independently of the
+  // test that was guarding the loop nest. We add a special CastII on
+  // the if branch that enters the loop, between the input induction
+  // variable value and the induction variable Phi to preserve correct
+  // dependencies.
+
+  // CastII for the main loop:
+  bool inserted = cast_incr_before_loop( pre_incr, min_taken, main_head );
+  assert(inserted, "no castII inserted");
+
+  // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
+  // RCE and alignment may change this later.
+  Node *cmp_end = pre_end->cmp_node();
+  assert( cmp_end->in(2) == limit, "" );
+  Node *pre_limit = new AddINode( init, stride );
+
+  // Save the original loop limit in this Opaque1 node for
+  // use by range check elimination.
+  Node *pre_opaq  = new Opaque1Node(C, pre_limit, limit);
+
+  register_new_node( pre_limit, pre_head->in(0) );
+  register_new_node( pre_opaq , pre_head->in(0) );
+
+  // Since no other users of pre-loop compare, I can hack limit directly
+  assert( cmp_end->outcnt() == 1, "no other users" );
+  _igvn.hash_delete(cmp_end);
+  cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
+
+  // Special case for not-equal loop bounds:
+  // Change pre loop test, main loop test, and the
+  // main loop guard test to use lt or gt depending on stride
+  // direction:
+  // positive stride use <
+  // negative stride use >
+  //
+  // not-equal test is kept for post loop to handle case
+  // when init > limit when stride > 0 (and reverse).
+
+  if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
+
+    BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
+    // Modify pre loop end condition
+    Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
+    BoolNode* new_bol0 = new BoolNode(pre_bol->in(1), new_test);
+    register_new_node( new_bol0, pre_head->in(0) );
+    _igvn.replace_input_of(pre_end, CountedLoopEndNode::TestValue, new_bol0);
+    // Modify main loop guard condition
+    assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
+    BoolNode* new_bol1 = new BoolNode(min_bol->in(1), new_test);
+    register_new_node( new_bol1, new_pre_exit );
+    _igvn.hash_delete(min_iff);
+    min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
+    // Modify main loop end condition
+    BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
+    BoolNode* new_bol2 = new BoolNode(main_bol->in(1), new_test);
+    register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
+    _igvn.replace_input_of(main_end, CountedLoopEndNode::TestValue, new_bol2);
+  }
+
+  // Flag main loop
+  main_head->set_main_loop();
+  if( peel_only ) main_head->set_main_no_pre_loop();
+
+  // Subtract a trip count for the pre-loop.
+  main_head->set_trip_count(main_head->trip_count() - 1);
+
+  // It's difficult to be precise about the trip-counts
+  // for the pre/post loops.  They are usually very short,
+  // so guess that 4 trips is a reasonable value.
+  post_head->set_profile_trip_cnt(4.0);
+  pre_head->set_profile_trip_cnt(4.0);
+
+  // Now force out all loop-invariant dominating tests.  The optimizer
+  // finds some, but we _know_ they are all useless.
+  peeled_dom_test_elim(loop,old_new);
+  loop->record_for_igvn();
+}
+
+//------------------------------insert_vector_post_loop------------------------
+// Insert a copy of the atomic unrolled vectorized main loop as a post loop,
+// unroll_policy has already informed us that more unrolling is about to happen to
+// the main loop.  The resultant post loop will serve as a vectorized drain loop.
+void PhaseIdealLoop::insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new) {
+  if (!loop->_head->is_CountedLoop()) return;
+
+  CountedLoopNode *cl = loop->_head->as_CountedLoop();
+
+  // only process vectorized main loops
+  if (!cl->is_vectorized_loop() || !cl->is_main_loop()) return;
+
+  int slp_max_unroll_factor = cl->slp_max_unroll();
+  int cur_unroll = cl->unrolled_count();
+
+  if (slp_max_unroll_factor == 0) return;
+
+  // only process atomic unroll vector loops (not super unrolled after vectorization)
+  if (cur_unroll != slp_max_unroll_factor) return;
+
+  // we only ever process this one time
+  if (cl->has_atomic_post_loop()) return;
+
+#ifndef PRODUCT
+  if (TraceLoopOpts) {
+    tty->print("PostVector  ");
+    loop->dump_head();
+  }
+#endif
+  C->set_major_progress();
+
+  // Find common pieces of the loop being guarded with pre & post loops
+  CountedLoopNode *main_head = loop->_head->as_CountedLoop();
+  CountedLoopEndNode *main_end = main_head->loopexit();
+  guarantee(main_end != NULL, "no loop exit node");
+  // diagnostic to show loop end is not properly formed
+  assert(main_end->outcnt() == 2, "1 true, 1 false path only");
+
+  // mark this loop as processed
+  main_head->mark_has_atomic_post_loop();
+
+  Node *incr = main_end->incr();
+  Node *limit = main_end->limit();
+
+  // In this case we throw away the result as we are not using it to connect anything else.
+  CountedLoopNode *post_head = NULL;
+  insert_post_loop(loop, old_new, main_head, main_end, incr, limit, post_head);
+
+  // It's difficult to be precise about the trip-counts
+  // for post loops.  They are usually very short,
+  // so guess that unit vector trips is a reasonable value.
+  post_head->set_profile_trip_cnt(cur_unroll);
+
+  // Now force out all loop-invariant dominating tests.  The optimizer
+  // finds some, but we _know_ they are all useless.
+  peeled_dom_test_elim(loop, old_new);
+  loop->record_for_igvn();
+}
+
+
+//-------------------------insert_scalar_rced_post_loop------------------------
+// Insert a copy of the rce'd main loop as a post loop,
+// We have not unrolled the main loop, so this is the right time to inject this.
+// Later we will examine the partner of this post loop pair which still has range checks
+// to see inject code which tests at runtime if the range checks are applicable.
+void PhaseIdealLoop::insert_scalar_rced_post_loop(IdealLoopTree *loop, Node_List &old_new) {
+  if (!loop->_head->is_CountedLoop()) return;
+
+  CountedLoopNode *cl = loop->_head->as_CountedLoop();
+
+  // only process RCE'd main loops
+  if (!cl->is_main_loop() || cl->range_checks_present()) return;
+
+#ifndef PRODUCT
+  if (TraceLoopOpts) {
+    tty->print("PostScalarRce  ");
+    loop->dump_head();
+  }
+#endif
+  C->set_major_progress();
+
+  // Find common pieces of the loop being guarded with pre & post loops
+  CountedLoopNode *main_head = loop->_head->as_CountedLoop();
+  CountedLoopEndNode *main_end = main_head->loopexit();
+  guarantee(main_end != NULL, "no loop exit node");
+  // diagnostic to show loop end is not properly formed
+  assert(main_end->outcnt() == 2, "1 true, 1 false path only");
+
+  Node *incr = main_end->incr();
+  Node *limit = main_end->limit();
+
+  // In this case we throw away the result as we are not using it to connect anything else.
+  CountedLoopNode *post_head = NULL;
+  insert_post_loop(loop, old_new, main_head, main_end, incr, limit, post_head);
+
+  // It's difficult to be precise about the trip-counts
+  // for post loops.  They are usually very short,
+  // so guess that unit vector trips is a reasonable value.
+  post_head->set_profile_trip_cnt(4.0);
+  post_head->set_is_rce_post_loop();
+
+  // Now force out all loop-invariant dominating tests.  The optimizer
+  // finds some, but we _know_ they are all useless.
+  peeled_dom_test_elim(loop, old_new);
+  loop->record_for_igvn();
+}
+
+
+//------------------------------insert_post_loop-------------------------------
+// Insert post loops.  Add a post loop to the given loop passed.
+Node *PhaseIdealLoop::insert_post_loop(IdealLoopTree *loop, Node_List &old_new,
+                                       CountedLoopNode *main_head, CountedLoopEndNode *main_end,
+                                       Node *incr, Node *limit, CountedLoopNode *&post_head) {
+
+  //------------------------------
+  // Step A: Create a new post-Loop.
+  Node* main_exit = main_end->proj_out(false);
+  assert(main_exit->Opcode() == Op_IfFalse, "");
+  int dd_main_exit = dom_depth(main_exit);
+
+  // Step A1: Clone the loop body of main. The clone becomes the post-loop.
+  // The main loop pre-header illegally has 2 control users (old & new loops).
+  clone_loop(loop, old_new, dd_main_exit);
+  assert(old_new[main_end->_idx]->Opcode() == Op_CountedLoopEnd, "");
+  post_head = old_new[main_head->_idx]->as_CountedLoop();
+  post_head->set_normal_loop();
+  post_head->set_post_loop(main_head);
+
+  // Reduce the post-loop trip count.
+  CountedLoopEndNode* post_end = old_new[main_end->_idx]->as_CountedLoopEnd();
+  post_end->_prob = PROB_FAIR;
+
+  // Build the main-loop normal exit.
+  IfFalseNode *new_main_exit = new IfFalseNode(main_end);
+  _igvn.register_new_node_with_optimizer(new_main_exit);
+  set_idom(new_main_exit, main_end, dd_main_exit);
+  set_loop(new_main_exit, loop->_parent);
+
+  // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
+  // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
+  // (the previous loop trip-counter exit value) because we will be changing
+  // the exit value (via additional unrolling) so we cannot constant-fold away the zero
+  // trip guard until all unrolling is done.
+  Node *zer_opaq = new Opaque1Node(C, incr);
+  Node *zer_cmp = new CmpINode(zer_opaq, limit);
+  Node *zer_bol = new BoolNode(zer_cmp, main_end->test_trip());
+  register_new_node(zer_opaq, new_main_exit);
+  register_new_node(zer_cmp, new_main_exit);
+  register_new_node(zer_bol, new_main_exit);
+
+  // Build the IfNode
+  IfNode *zer_iff = new IfNode(new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN);
+  _igvn.register_new_node_with_optimizer(zer_iff);
+  set_idom(zer_iff, new_main_exit, dd_main_exit);
+  set_loop(zer_iff, loop->_parent);
+
+  // Plug in the false-path, taken if we need to skip this post-loop
+  _igvn.replace_input_of(main_exit, 0, zer_iff);
+  set_idom(main_exit, zer_iff, dd_main_exit);
+  set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
+  // Make the true-path, must enter this post loop
+  Node *zer_taken = new IfTrueNode(zer_iff);
+  _igvn.register_new_node_with_optimizer(zer_taken);
+  set_idom(zer_taken, zer_iff, dd_main_exit);
+  set_loop(zer_taken, loop->_parent);
+  // Plug in the true path
+  _igvn.hash_delete(post_head);
+  post_head->set_req(LoopNode::EntryControl, zer_taken);
+  set_idom(post_head, zer_taken, dd_main_exit);
+
+  Arena *a = Thread::current()->resource_area();
+  VectorSet visited(a);
+  Node_Stack clones(a, main_head->back_control()->outcnt());
+  // Step A3: Make the fall-in values to the post-loop come from the
+  // fall-out values of the main-loop.
+  for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
+    Node* main_phi = main_head->fast_out(i);
+    if (main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0) {
+      Node *cur_phi = old_new[main_phi->_idx];
+      Node *fallnew = clone_up_backedge_goo(main_head->back_control(),
+                                            post_head->init_control(),
+                                            main_phi->in(LoopNode::LoopBackControl),
+                                            visited, clones);
+      _igvn.hash_delete(cur_phi);
+      cur_phi->set_req(LoopNode::EntryControl, fallnew);
+    }
+  }
+
+  // CastII for the new post loop:
+  bool inserted = cast_incr_before_loop(zer_opaq->in(1), zer_taken, post_head);
+  assert(inserted, "no castII inserted");
+
+  return new_main_exit;
+}
+
+//------------------------------is_invariant-----------------------------
+// Return true if n is invariant
+bool IdealLoopTree::is_invariant(Node* n) const {
+  Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
+  if (n_c->is_top()) return false;
+  return !is_member(_phase->get_loop(n_c));
+}
+
+
+//------------------------------do_unroll--------------------------------------
+// Unroll the loop body one step - make each trip do 2 iterations.
+void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
+  assert(LoopUnrollLimit, "");
+  CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
+  CountedLoopEndNode *loop_end = loop_head->loopexit();
+  assert(loop_end, "");
+#ifndef PRODUCT
+  if (PrintOpto && VerifyLoopOptimizations) {
+    tty->print("Unrolling ");
+    loop->dump_head();
+  } else if (TraceLoopOpts) {
+    if (loop_head->trip_count() < (uint)LoopUnrollLimit) {
+      tty->print("Unroll %d(%2d) ", loop_head->unrolled_count()*2, loop_head->trip_count());
+    } else {
+      tty->print("Unroll %d     ", loop_head->unrolled_count()*2);
+    }
+    loop->dump_head();
+  }
+
+  if (C->do_vector_loop() && (PrintOpto && (VerifyLoopOptimizations || TraceLoopOpts))) {
+    Arena* arena = Thread::current()->resource_area();
+    Node_Stack stack(arena, C->live_nodes() >> 2);
+    Node_List rpo_list;
+    VectorSet visited(arena);
+    visited.set(loop_head->_idx);
+    rpo( loop_head, stack, visited, rpo_list );
+    dump(loop, rpo_list.size(), rpo_list );
+  }
+#endif
+
+  // Remember loop node count before unrolling to detect
+  // if rounds of unroll,optimize are making progress
+  loop_head->set_node_count_before_unroll(loop->_body.size());
+
+  Node *ctrl  = loop_head->in(LoopNode::EntryControl);
+  Node *limit = loop_head->limit();
+  Node *init  = loop_head->init_trip();
+  Node *stride = loop_head->stride();
+
+  Node *opaq = NULL;
+  if (adjust_min_trip) {       // If not maximally unrolling, need adjustment
+    // Search for zero-trip guard.
+
+    // Check the shape of the graph at the loop entry. If an inappropriate
+    // graph shape is encountered, the compiler bails out loop unrolling;
+    // compilation of the method will still succeed.
+    if (!is_canonical_loop_entry(loop_head)) {
+      return;
+    }
+    opaq = ctrl->in(0)->in(1)->in(1)->in(2);
+    // Zero-trip test uses an 'opaque' node which is not shared.
+    assert(opaq->outcnt() == 1 && opaq->in(1) == limit, "");
+  }
+
+  C->set_major_progress();
+
+  Node* new_limit = NULL;
+  int stride_con = stride->get_int();
+  int stride_p = (stride_con > 0) ? stride_con : -stride_con;
+  uint old_trip_count = loop_head->trip_count();
+  // Verify that unroll policy result is still valid.
+  assert(old_trip_count > 1 &&
+      (!adjust_min_trip || stride_p <= (1<<3)*loop_head->unrolled_count()), "sanity");
+
+  // Adjust loop limit to keep valid iterations number after unroll.
+  // Use (limit - stride) instead of (((limit - init)/stride) & (-2))*stride
+  // which may overflow.
+  if (!adjust_min_trip) {
+    assert(old_trip_count > 1 && (old_trip_count & 1) == 0,
+        "odd trip count for maximally unroll");
+    // Don't need to adjust limit for maximally unroll since trip count is even.
+  } else if (loop_head->has_exact_trip_count() && init->is_Con()) {
+    // Loop's limit is constant. Loop's init could be constant when pre-loop
+    // become peeled iteration.
+    jlong init_con = init->get_int();
+    // We can keep old loop limit if iterations count stays the same:
+    //   old_trip_count == new_trip_count * 2
+    // Note: since old_trip_count >= 2 then new_trip_count >= 1
+    // so we also don't need to adjust zero trip test.
+    jlong limit_con  = limit->get_int();
+    // (stride_con*2) not overflow since stride_con <= 8.
+    int new_stride_con = stride_con * 2;
+    int stride_m    = new_stride_con - (stride_con > 0 ? 1 : -1);
+    jlong trip_count = (limit_con - init_con + stride_m)/new_stride_con;
+    // New trip count should satisfy next conditions.
+    assert(trip_count > 0 && (julong)trip_count < (julong)max_juint/2, "sanity");
+    uint new_trip_count = (uint)trip_count;
+    adjust_min_trip = (old_trip_count != new_trip_count*2);
+  }
+
+  if (adjust_min_trip) {
+    // Step 2: Adjust the trip limit if it is called for.
+    // The adjustment amount is -stride. Need to make sure if the
+    // adjustment underflows or overflows, then the main loop is skipped.
+    Node* cmp = loop_end->cmp_node();
+    assert(cmp->in(2) == limit, "sanity");
+    assert(opaq != NULL && opaq->in(1) == limit, "sanity");
+
+    // Verify that policy_unroll result is still valid.
+    const TypeInt* limit_type = _igvn.type(limit)->is_int();
+    assert(stride_con > 0 && ((limit_type->_hi - stride_con) < limit_type->_hi) ||
+        stride_con < 0 && ((limit_type->_lo - stride_con) > limit_type->_lo), "sanity");
+
+    if (limit->is_Con()) {
+      // The check in policy_unroll and the assert above guarantee
+      // no underflow if limit is constant.
+      new_limit = _igvn.intcon(limit->get_int() - stride_con);
+      set_ctrl(new_limit, C->root());
+    } else {
+      // Limit is not constant.
+      if (loop_head->unrolled_count() == 1) { // only for first unroll
+        // Separate limit by Opaque node in case it is an incremented
+        // variable from previous loop to avoid using pre-incremented
+        // value which could increase register pressure.
+        // Otherwise reorg_offsets() optimization will create a separate
+        // Opaque node for each use of trip-counter and as result
+        // zero trip guard limit will be different from loop limit.
+        assert(has_ctrl(opaq), "should have it");
+        Node* opaq_ctrl = get_ctrl(opaq);
+        limit = new Opaque2Node( C, limit );
+        register_new_node( limit, opaq_ctrl );
+      }
+      if ((stride_con > 0 && (java_subtract(limit_type->_lo, stride_con) < limit_type->_lo)) ||
+          (stride_con < 0 && (java_subtract(limit_type->_hi, stride_con) > limit_type->_hi))) {
+        // No underflow.
+        new_limit = new SubINode(limit, stride);
+      } else {
+        // (limit - stride) may underflow.
+        // Clamp the adjustment value with MININT or MAXINT:
+        //
+        //   new_limit = limit-stride
+        //   if (stride > 0)
+        //     new_limit = (limit < new_limit) ? MININT : new_limit;
+        //   else
+        //     new_limit = (limit > new_limit) ? MAXINT : new_limit;
+        //
+        BoolTest::mask bt = loop_end->test_trip();
+        assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
+        Node* adj_max = _igvn.intcon((stride_con > 0) ? min_jint : max_jint);
+        set_ctrl(adj_max, C->root());
+        Node* old_limit = NULL;
+        Node* adj_limit = NULL;
+        Node* bol = limit->is_CMove() ? limit->in(CMoveNode::Condition) : NULL;
+        if (loop_head->unrolled_count() > 1 &&
+            limit->is_CMove() && limit->Opcode() == Op_CMoveI &&
+            limit->in(CMoveNode::IfTrue) == adj_max &&
+            bol->as_Bool()->_test._test == bt &&
+            bol->in(1)->Opcode() == Op_CmpI &&
+            bol->in(1)->in(2) == limit->in(CMoveNode::IfFalse)) {
+          // Loop was unrolled before.
+          // Optimize the limit to avoid nested CMove:
+          // use original limit as old limit.
+          old_limit = bol->in(1)->in(1);
+          // Adjust previous adjusted limit.
+          adj_limit = limit->in(CMoveNode::IfFalse);
+          adj_limit = new SubINode(adj_limit, stride);
+        } else {
+          old_limit = limit;
+          adj_limit = new SubINode(limit, stride);
+        }
+        assert(old_limit != NULL && adj_limit != NULL, "");
+        register_new_node( adj_limit, ctrl ); // adjust amount
+        Node* adj_cmp = new CmpINode(old_limit, adj_limit);
+        register_new_node( adj_cmp, ctrl );
+        Node* adj_bool = new BoolNode(adj_cmp, bt);
+        register_new_node( adj_bool, ctrl );
+        new_limit = new CMoveINode(adj_bool, adj_limit, adj_max, TypeInt::INT);
+      }
+      register_new_node(new_limit, ctrl);
+    }
+    assert(new_limit != NULL, "");
+    // Replace in loop test.
+    assert(loop_end->in(1)->in(1) == cmp, "sanity");
+    if (cmp->outcnt() == 1 && loop_end->in(1)->outcnt() == 1) {
+      // Don't need to create new test since only one user.
+      _igvn.hash_delete(cmp);
+      cmp->set_req(2, new_limit);
+    } else {
+      // Create new test since it is shared.
+      Node* ctrl2 = loop_end->in(0);
+      Node* cmp2  = cmp->clone();
+      cmp2->set_req(2, new_limit);
+      register_new_node(cmp2, ctrl2);
+      Node* bol2 = loop_end->in(1)->clone();
+      bol2->set_req(1, cmp2);
+      register_new_node(bol2, ctrl2);
+      _igvn.replace_input_of(loop_end, 1, bol2);
+    }
+    // Step 3: Find the min-trip test guaranteed before a 'main' loop.
+    // Make it a 1-trip test (means at least 2 trips).
+
+    // Guard test uses an 'opaque' node which is not shared.  Hence I
+    // can edit it's inputs directly.  Hammer in the new limit for the
+    // minimum-trip guard.
+    assert(opaq->outcnt() == 1, "");
+    _igvn.replace_input_of(opaq, 1, new_limit);
+  }
+
+  // Adjust max trip count. The trip count is intentionally rounded
+  // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
+  // the main, unrolled, part of the loop will never execute as it is protected
+  // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
+  // and later determined that part of the unrolled loop was dead.
+  loop_head->set_trip_count(old_trip_count / 2);
+
+  // Double the count of original iterations in the unrolled loop body.
+  loop_head->double_unrolled_count();
+
+  // ---------
+  // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
+  // represents the odd iterations; since the loop trips an even number of
+  // times its backedge is never taken.  Kill the backedge.
+  uint dd = dom_depth(loop_head);
+  clone_loop( loop, old_new, dd );
+
+  // Make backedges of the clone equal to backedges of the original.
+  // Make the fall-in from the original come from the fall-out of the clone.
+  for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
+    Node* phi = loop_head->fast_out(j);
+    if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
+      Node *newphi = old_new[phi->_idx];
+      _igvn.hash_delete( phi );
+      _igvn.hash_delete( newphi );
+
+      phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
+      newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
+      phi   ->set_req(LoopNode::LoopBackControl, C->top());
+    }
+  }
+  Node *clone_head = old_new[loop_head->_idx];
+  _igvn.hash_delete( clone_head );
+  loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
+  clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
+  loop_head ->set_req(LoopNode::LoopBackControl, C->top());
+  loop->_head = clone_head;     // New loop header
+
+  set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
+  set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
+
+  // Kill the clone's backedge
+  Node *newcle = old_new[loop_end->_idx];
+  _igvn.hash_delete( newcle );
+  Node *one = _igvn.intcon(1);
+  set_ctrl(one, C->root());
+  newcle->set_req(1, one);
+  // Force clone into same loop body
+  uint max = loop->_body.size();
+  for( uint k = 0; k < max; k++ ) {
+    Node *old = loop->_body.at(k);
+    Node *nnn = old_new[old->_idx];
+    loop->_body.push(nnn);
+    if (!has_ctrl(old))
+      set_loop(nnn, loop);
+  }
+
+  loop->record_for_igvn();
+
+#ifndef PRODUCT
+  if (C->do_vector_loop() && (PrintOpto && (VerifyLoopOptimizations || TraceLoopOpts))) {
+    tty->print("\nnew loop after unroll\n");       loop->dump_head();
+    for (uint i = 0; i < loop->_body.size(); i++) {
+      loop->_body.at(i)->dump();
+    }
+    if(C->clone_map().is_debug()) {
+      tty->print("\nCloneMap\n");
+      Dict* dict = C->clone_map().dict();
+      DictI i(dict);
+      tty->print_cr("Dict@%p[%d] = ", dict, dict->Size());
+      for (int ii = 0; i.test(); ++i, ++ii) {
+        NodeCloneInfo cl((uint64_t)dict->operator[]((void*)i._key));
+        tty->print("%d->%d:%d,", (int)(intptr_t)i._key, cl.idx(), cl.gen());
+        if (ii % 10 == 9) {
+          tty->print_cr(" ");
+        }
+      }
+      tty->print_cr(" ");
+    }
+  }
+#endif
+
+}
+
+//------------------------------do_maximally_unroll----------------------------
+
+void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
+  CountedLoopNode *cl = loop->_head->as_CountedLoop();
+  assert(cl->has_exact_trip_count(), "trip count is not exact");
+  assert(cl->trip_count() > 0, "");
+#ifndef PRODUCT
+  if (TraceLoopOpts) {
+    tty->print("MaxUnroll  %d ", cl->trip_count());
+    loop->dump_head();
+  }
+#endif
+
+  // If loop is tripping an odd number of times, peel odd iteration
+  if ((cl->trip_count() & 1) == 1) {
+    do_peeling(loop, old_new);
+  }
+
+  // Now its tripping an even number of times remaining.  Double loop body.
+  // Do not adjust pre-guards; they are not needed and do not exist.
+  if (cl->trip_count() > 0) {
+    assert((cl->trip_count() & 1) == 0, "missed peeling");
+    do_unroll(loop, old_new, false);
+  }
+}
+
+void PhaseIdealLoop::mark_reductions(IdealLoopTree *loop) {
+  if (SuperWordReductions == false) return;
+
+  CountedLoopNode* loop_head = loop->_head->as_CountedLoop();
+  if (loop_head->unrolled_count() > 1) {
+    return;
+  }
+
+  Node* trip_phi = loop_head->phi();
+  for (DUIterator_Fast imax, i = loop_head->fast_outs(imax); i < imax; i++) {
+    Node* phi = loop_head->fast_out(i);
+    if (phi->is_Phi() && phi->outcnt() > 0 && phi != trip_phi) {
+      // For definitions which are loop inclusive and not tripcounts.
+      Node* def_node = phi->in(LoopNode::LoopBackControl);
+
+      if (def_node != NULL) {
+        Node* n_ctrl = get_ctrl(def_node);
+        if (n_ctrl != NULL && loop->is_member(get_loop(n_ctrl))) {
+          // Now test it to see if it fits the standard pattern for a reduction operator.
+          int opc = def_node->Opcode();
+          if (opc != ReductionNode::opcode(opc, def_node->bottom_type()->basic_type())) {
+            if (!def_node->is_reduction()) { // Not marked yet
+              // To be a reduction, the arithmetic node must have the phi as input and provide a def to it
+              bool ok = false;
+              for (unsigned j = 1; j < def_node->req(); j++) {
+                Node* in = def_node->in(j);
+                if (in == phi) {
+                  ok = true;
+                  break;
+                }
+              }
+
+              // do nothing if we did not match the initial criteria
+              if (ok == false) {
+                continue;
+              }
+
+              // The result of the reduction must not be used in the loop
+              for (DUIterator_Fast imax, i = def_node->fast_outs(imax); i < imax && ok; i++) {
+                Node* u = def_node->fast_out(i);
+                if (!loop->is_member(get_loop(ctrl_or_self(u)))) {
+                  continue;
+                }
+                if (u == phi) {
+                  continue;
+                }
+                ok = false;
+              }
+
+              // iff the uses conform
+              if (ok) {
+                def_node->add_flag(Node::Flag_is_reduction);
+                loop_head->mark_has_reductions();
+              }
+            }
+          }
+        }
+      }
+    }
+  }
+}
+
+//------------------------------adjust_limit-----------------------------------
+// Helper function for add_constraint().
+Node* PhaseIdealLoop::adjust_limit(int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl) {
+  // Compute "I :: (limit-offset)/scale"
+  Node *con = new SubINode(rc_limit, offset);
+  register_new_node(con, pre_ctrl);
+  Node *X = new DivINode(0, con, scale);
+  register_new_node(X, pre_ctrl);
+
+  // Adjust loop limit
+  loop_limit = (stride_con > 0)
+               ? (Node*)(new MinINode(loop_limit, X))
+               : (Node*)(new MaxINode(loop_limit, X));
+  register_new_node(loop_limit, pre_ctrl);
+  return loop_limit;
+}
+
+//------------------------------add_constraint---------------------------------
+// Constrain the main loop iterations so the conditions:
+//    low_limit <= scale_con * I + offset  <  upper_limit
+// always holds true.  That is, either increase the number of iterations in
+// the pre-loop or the post-loop until the condition holds true in the main
+// loop.  Stride, scale, offset and limit are all loop invariant.  Further,
+// stride and scale are constants (offset and limit often are).
+void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
+  // For positive stride, the pre-loop limit always uses a MAX function
+  // and the main loop a MIN function.  For negative stride these are
+  // reversed.
+
+  // Also for positive stride*scale the affine function is increasing, so the
+  // pre-loop must check for underflow and the post-loop for overflow.
+  // Negative stride*scale reverses this; pre-loop checks for overflow and
+  // post-loop for underflow.
+
+  Node *scale = _igvn.intcon(scale_con);
+  set_ctrl(scale, C->root());
+
+  if ((stride_con^scale_con) >= 0) { // Use XOR to avoid overflow
+    // The overflow limit: scale*I+offset < upper_limit
+    // For main-loop compute
+    //   ( if (scale > 0) /* and stride > 0 */
+    //       I < (upper_limit-offset)/scale
+    //     else /* scale < 0 and stride < 0 */
+    //       I > (upper_limit-offset)/scale
+    //   )
+    //
+    // (upper_limit-offset) may overflow or underflow.
+    // But it is fine since main loop will either have
+    // less iterations or will be skipped in such case.
+    *main_limit = adjust_limit(stride_con, scale, offset, upper_limit, *main_limit, pre_ctrl);
+
+    // The underflow limit: low_limit <= scale*I+offset.
+    // For pre-loop compute
+    //   NOT(scale*I+offset >= low_limit)
+    //   scale*I+offset < low_limit
+    //   ( if (scale > 0) /* and stride > 0 */
+    //       I < (low_limit-offset)/scale
+    //     else /* scale < 0 and stride < 0 */
+    //       I > (low_limit-offset)/scale
+    //   )
+
+    if (low_limit->get_int() == -max_jint) {
+      // We need this guard when scale*pre_limit+offset >= limit
+      // due to underflow. So we need execute pre-loop until
+      // scale*I+offset >= min_int. But (min_int-offset) will
+      // underflow when offset > 0 and X will be > original_limit
+      // when stride > 0. To avoid it we replace positive offset with 0.
+      //
+      // Also (min_int+1 == -max_int) is used instead of min_int here
+      // to avoid problem with scale == -1 (min_int/(-1) == min_int).
+      Node* shift = _igvn.intcon(31);
+      set_ctrl(shift, C->root());
+      Node* sign = new RShiftINode(offset, shift);
+      register_new_node(sign, pre_ctrl);
+      offset = new AndINode(offset, sign);
+      register_new_node(offset, pre_ctrl);
+    } else {
+      assert(low_limit->get_int() == 0, "wrong low limit for range check");
+      // The only problem we have here when offset == min_int
+      // since (0-min_int) == min_int. It may be fine for stride > 0
+      // but for stride < 0 X will be < original_limit. To avoid it
+      // max(pre_limit, original_limit) is used in do_range_check().
+    }
+    // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
+    *pre_limit = adjust_limit((-stride_con), scale, offset, low_limit, *pre_limit, pre_ctrl);
+
+  } else { // stride_con*scale_con < 0
+    // For negative stride*scale pre-loop checks for overflow and
+    // post-loop for underflow.
+    //
+    // The overflow limit: scale*I+offset < upper_limit
+    // For pre-loop compute
+    //   NOT(scale*I+offset < upper_limit)
+    //   scale*I+offset >= upper_limit
+    //   scale*I+offset+1 > upper_limit
+    //   ( if (scale < 0) /* and stride > 0 */
+    //       I < (upper_limit-(offset+1))/scale
+    //     else /* scale > 0 and stride < 0 */
+    //       I > (upper_limit-(offset+1))/scale
+    //   )
+    //
+    // (upper_limit-offset-1) may underflow or overflow.
+    // To avoid it min(pre_limit, original_limit) is used
+    // in do_range_check() for stride > 0 and max() for < 0.
+    Node *one  = _igvn.intcon(1);
+    set_ctrl(one, C->root());
+
+    Node *plus_one = new AddINode(offset, one);
+    register_new_node( plus_one, pre_ctrl );
+    // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
+    *pre_limit = adjust_limit((-stride_con), scale, plus_one, upper_limit, *pre_limit, pre_ctrl);
+
+    if (low_limit->get_int() == -max_jint) {
+      // We need this guard when scale*main_limit+offset >= limit
+      // due to underflow. So we need execute main-loop while
+      // scale*I+offset+1 > min_int. But (min_int-offset-1) will
+      // underflow when (offset+1) > 0 and X will be < main_limit
+      // when scale < 0 (and stride > 0). To avoid it we replace
+      // positive (offset+1) with 0.
+      //
+      // Also (min_int+1 == -max_int) is used instead of min_int here
+      // to avoid problem with scale == -1 (min_int/(-1) == min_int).
+      Node* shift = _igvn.intcon(31);
+      set_ctrl(shift, C->root());
+      Node* sign = new RShiftINode(plus_one, shift);
+      register_new_node(sign, pre_ctrl);
+      plus_one = new AndINode(plus_one, sign);
+      register_new_node(plus_one, pre_ctrl);
+    } else {
+      assert(low_limit->get_int() == 0, "wrong low limit for range check");
+      // The only problem we have here when offset == max_int
+      // since (max_int+1) == min_int and (0-min_int) == min_int.
+      // But it is fine since main loop will either have
+      // less iterations or will be skipped in such case.
+    }
+    // The underflow limit: low_limit <= scale*I+offset.
+    // For main-loop compute
+    //   scale*I+offset+1 > low_limit
+    //   ( if (scale < 0) /* and stride > 0 */
+    //       I < (low_limit-(offset+1))/scale
+    //     else /* scale > 0 and stride < 0 */
+    //       I > (low_limit-(offset+1))/scale
+    //   )
+
+    *main_limit = adjust_limit(stride_con, scale, plus_one, low_limit, *main_limit, pre_ctrl);
+  }
+}
+
+
+//------------------------------is_scaled_iv---------------------------------
+// Return true if exp is a constant times an induction var
+bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
+  if (exp == iv) {
+    if (p_scale != NULL) {
+      *p_scale = 1;
+    }
+    return true;
+  }
+  int opc = exp->Opcode();
+  if (opc == Op_MulI) {
+    if (exp->in(1) == iv && exp->in(2)->is_Con()) {
+      if (p_scale != NULL) {
+        *p_scale = exp->in(2)->get_int();
+      }
+      return true;
+    }
+    if (exp->in(2) == iv && exp->in(1)->is_Con()) {
+      if (p_scale != NULL) {
+        *p_scale = exp->in(1)->get_int();
+      }
+      return true;
+    }
+  } else if (opc == Op_LShiftI) {
+    if (exp->in(1) == iv && exp->in(2)->is_Con()) {
+      if (p_scale != NULL) {
+        *p_scale = 1 << exp->in(2)->get_int();
+      }
+      return true;
+    }
+  }
+  return false;
+}
+
+//-----------------------------is_scaled_iv_plus_offset------------------------------
+// Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
+bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
+  if (is_scaled_iv(exp, iv, p_scale)) {
+    if (p_offset != NULL) {
+      Node *zero = _igvn.intcon(0);
+      set_ctrl(zero, C->root());
+      *p_offset = zero;
+    }
+    return true;
+  }
+  int opc = exp->Opcode();
+  if (opc == Op_AddI) {
+    if (is_scaled_iv(exp->in(1), iv, p_scale)) {
+      if (p_offset != NULL) {
+        *p_offset = exp->in(2);
+      }
+      return true;
+    }
+    if (is_scaled_iv(exp->in(2), iv, p_scale)) {
+      if (p_offset != NULL) {
+        *p_offset = exp->in(1);
+      }
+      return true;
+    }
+    if (exp->in(2)->is_Con()) {
+      Node* offset2 = NULL;
+      if (depth < 2 &&
+          is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
+                                   p_offset != NULL ? &offset2 : NULL, depth+1)) {
+        if (p_offset != NULL) {
+          Node *ctrl_off2 = get_ctrl(offset2);
+          Node* offset = new AddINode(offset2, exp->in(2));
+          register_new_node(offset, ctrl_off2);
+          *p_offset = offset;
+        }
+        return true;
+      }
+    }
+  } else if (opc == Op_SubI) {
+    if (is_scaled_iv(exp->in(1), iv, p_scale)) {
+      if (p_offset != NULL) {
+        Node *zero = _igvn.intcon(0);
+        set_ctrl(zero, C->root());
+        Node *ctrl_off = get_ctrl(exp->in(2));
+        Node* offset = new SubINode(zero, exp->in(2));
+        register_new_node(offset, ctrl_off);
+        *p_offset = offset;
+      }
+      return true;
+    }
+    if (is_scaled_iv(exp->in(2), iv, p_scale)) {
+      if (p_offset != NULL) {
+        *p_scale *= -1;
+        *p_offset = exp->in(1);
+      }
+      return true;
+    }
+  }
+  return false;
+}
+
+//------------------------------do_range_check---------------------------------
+// Eliminate range-checks and other trip-counter vs loop-invariant tests.
+int PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
+#ifndef PRODUCT
+  if (PrintOpto && VerifyLoopOptimizations) {
+    tty->print("Range Check Elimination ");
+    loop->dump_head();
+  } else if (TraceLoopOpts) {
+    tty->print("RangeCheck   ");
+    loop->dump_head();
+  }
+#endif
+  assert(RangeCheckElimination, "");
+  CountedLoopNode *cl = loop->_head->as_CountedLoop();
+  // If we fail before trying to eliminate range checks, set multiversion state
+  int closed_range_checks = 1;
+
+  // protect against stride not being a constant
+  if (!cl->stride_is_con())
+    return closed_range_checks;
+
+  // Find the trip counter; we are iteration splitting based on it
+  Node *trip_counter = cl->phi();
+  // Find the main loop limit; we will trim it's iterations
+  // to not ever trip end tests
+  Node *main_limit = cl->limit();
+
+  // Check graph shape. Cannot optimize a loop if zero-trip
+  // Opaque1 node is optimized away and then another round
+  // of loop opts attempted.
+  if (!is_canonical_loop_entry(cl)) {
+    return closed_range_checks;
+  }
+
+  // Need to find the main-loop zero-trip guard
+  Node *ctrl  = cl->in(LoopNode::EntryControl);
+  Node *iffm = ctrl->in(0);
+  Node *opqzm = iffm->in(1)->in(1)->in(2);
+  assert(opqzm->in(1) == main_limit, "do not understand situation");
+
+  // Find the pre-loop limit; we will expand its iterations to
+  // not ever trip low tests.
+  Node *p_f = iffm->in(0);
+  // pre loop may have been optimized out
+  if (p_f->Opcode() != Op_IfFalse) {
+    return closed_range_checks;
+  }
+  CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
+  assert(pre_end->loopnode()->is_pre_loop(), "");
+  Node *pre_opaq1 = pre_end->limit();
+  // Occasionally it's possible for a pre-loop Opaque1 node to be
+  // optimized away and then another round of loop opts attempted.
+  // We can not optimize this particular loop in that case.
+  if (pre_opaq1->Opcode() != Op_Opaque1)
+    return closed_range_checks;
+  Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
+  Node *pre_limit = pre_opaq->in(1);
+
+  // Where do we put new limit calculations
+  Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
+
+  // Ensure the original loop limit is available from the
+  // pre-loop Opaque1 node.
+  Node *orig_limit = pre_opaq->original_loop_limit();
+  if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
+    return closed_range_checks;
+
+  // Must know if its a count-up or count-down loop
+
+  int stride_con = cl->stride_con();
+  Node *zero = _igvn.intcon(0);
+  Node *one  = _igvn.intcon(1);
+  // Use symmetrical int range [-max_jint,max_jint]
+  Node *mini = _igvn.intcon(-max_jint);
+  set_ctrl(zero, C->root());
+  set_ctrl(one,  C->root());
+  set_ctrl(mini, C->root());
+
+  // Range checks that do not dominate the loop backedge (ie.
+  // conditionally executed) can lengthen the pre loop limit beyond
+  // the original loop limit. To prevent this, the pre limit is
+  // (for stride > 0) MINed with the original loop limit (MAXed
+  // stride < 0) when some range_check (rc) is conditionally
+  // executed.
+  bool conditional_rc = false;
+
+  // Count number of range checks and reduce by load range limits, if zero,
+  // the loop is in canonical form to multiversion.
+  closed_range_checks = 0;
+
+  // Check loop body for tests of trip-counter plus loop-invariant vs loop-variant.
+  for( uint i = 0; i < loop->_body.size(); i++ ) {
+    Node *iff = loop->_body[i];
+    if (iff->Opcode() == Op_If ||
+        iff->Opcode() == Op_RangeCheck) { // Test?
+      // Test is an IfNode, has 2 projections.  If BOTH are in the loop
+      // we need loop unswitching instead of iteration splitting.
+      closed_range_checks++;
+      Node *exit = loop->is_loop_exit(iff);
+      if( !exit ) continue;
+      int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
+
+      // Get boolean condition to test
+      Node *i1 = iff->in(1);
+      if( !i1->is_Bool() ) continue;
+      BoolNode *bol = i1->as_Bool();
+      BoolTest b_test = bol->_test;
+      // Flip sense of test if exit condition is flipped
+      if( flip )
+        b_test = b_test.negate();
+
+      // Get compare
+      Node *cmp = bol->in(1);
+
+      // Look for trip_counter + offset vs limit
+      Node *rc_exp = cmp->in(1);
+      Node *limit  = cmp->in(2);
+      jint scale_con= 1;        // Assume trip counter not scaled
+
+      Node *limit_c = get_ctrl(limit);
+      if( loop->is_member(get_loop(limit_c) ) ) {
+        // Compare might have operands swapped; commute them
+        b_test = b_test.commute();
+        rc_exp = cmp->in(2);
+        limit  = cmp->in(1);
+        limit_c = get_ctrl(limit);
+        if( loop->is_member(get_loop(limit_c) ) )
+          continue;             // Both inputs are loop varying; cannot RCE
+      }
+      // Here we know 'limit' is loop invariant
+
+      // 'limit' maybe pinned below the zero trip test (probably from a
+      // previous round of rce), in which case, it can't be used in the
+      // zero trip test expression which must occur before the zero test's if.
+      if( limit_c == ctrl ) {
+        continue;  // Don't rce this check but continue looking for other candidates.
+      }
+
+      // Check for scaled induction variable plus an offset
+      Node *offset = NULL;
+
+      if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
+        continue;
+      }
+
+      Node *offset_c = get_ctrl(offset);
+      if( loop->is_member( get_loop(offset_c) ) )
+        continue;               // Offset is not really loop invariant
+      // Here we know 'offset' is loop invariant.
+
+      // As above for the 'limit', the 'offset' maybe pinned below the
+      // zero trip test.
+      if( offset_c == ctrl ) {
+        continue; // Don't rce this check but continue looking for other candidates.
+      }
+#ifdef ASSERT
+      if (TraceRangeLimitCheck) {
+        tty->print_cr("RC bool node%s", flip ? " flipped:" : ":");
+        bol->dump(2);
+      }
+#endif
+      // At this point we have the expression as:
+      //   scale_con * trip_counter + offset :: limit
+      // where scale_con, offset and limit are loop invariant.  Trip_counter
+      // monotonically increases by stride_con, a constant.  Both (or either)
+      // stride_con and scale_con can be negative which will flip about the
+      // sense of the test.
+
+      // Adjust pre and main loop limits to guard the correct iteration set
+      if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
+        if( b_test._test == BoolTest::lt ) { // Range checks always use lt
+          // The underflow and overflow limits: 0 <= scale*I+offset < limit
+          add_constraint( stride_con, scale_con, offset, zero, limit, pre_ctrl, &pre_limit, &main_limit );
+          // (0-offset)/scale could be outside of loop iterations range.
+          conditional_rc = true;
+        } else {
+          if (PrintOpto) {
+            tty->print_cr("missed RCE opportunity");
+          }
+          continue;             // In release mode, ignore it
+        }
+      } else {                  // Otherwise work on normal compares
+        switch( b_test._test ) {
+        case BoolTest::gt:
+          // Fall into GE case
+        case BoolTest::ge:
+          // Convert (I*scale+offset) >= Limit to (I*(-scale)+(-offset)) <= -Limit
+          scale_con = -scale_con;
+          offset = new SubINode( zero, offset );
+          register_new_node( offset, pre_ctrl );
+          limit  = new SubINode( zero, limit );
+          register_new_node( limit, pre_ctrl );
+          // Fall into LE case
+        case BoolTest::le:
+          if (b_test._test != BoolTest::gt) {
+            // Convert X <= Y to X < Y+1
+            limit = new AddINode( limit, one );
+            register_new_node( limit, pre_ctrl );
+          }
+          // Fall into LT case
+        case BoolTest::lt:
+          // The underflow and overflow limits: MIN_INT <= scale*I+offset < limit
+          // Note: (MIN_INT+1 == -MAX_INT) is used instead of MIN_INT here
+          // to avoid problem with scale == -1: MIN_INT/(-1) == MIN_INT.
+          add_constraint( stride_con, scale_con, offset, mini, limit, pre_ctrl, &pre_limit, &main_limit );
+          // ((MIN_INT+1)-offset)/scale could be outside of loop iterations range.
+          // Note: negative offset is replaced with 0 but (MIN_INT+1)/scale could
+          // still be outside of loop range.
+          conditional_rc = true;
+          break;
+        default:
+          if (PrintOpto) {
+            tty->print_cr("missed RCE opportunity");
+          }
+          continue;             // Unhandled case
+        }
+      }
+
+      // Kill the eliminated test
+      C->set_major_progress();
+      Node *kill_con = _igvn.intcon( 1-flip );
+      set_ctrl(kill_con, C->root());
+      _igvn.replace_input_of(iff, 1, kill_con);
+      // Find surviving projection
+      assert(iff->is_If(), "");
+      ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
+      // Find loads off the surviving projection; remove their control edge
+      for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
+        Node* cd = dp->fast_out(i); // Control-dependent node
+        if (cd->is_Load() && cd->depends_only_on_test()) {   // Loads can now float around in the loop
+          // Allow the load to float around in the loop, or before it
+          // but NOT before the pre-loop.
+          _igvn.replace_input_of(cd, 0, ctrl); // ctrl, not NULL
+          --i;
+          --imax;
+        }
+      }
+      if (limit->Opcode() == Op_LoadRange) {
+        closed_range_checks--;
+      }
+
+    } // End of is IF
+
+  }
+
+  // Update loop limits
+  if (conditional_rc) {
+    pre_limit = (stride_con > 0) ? (Node*)new MinINode(pre_limit, orig_limit)
+                                 : (Node*)new MaxINode(pre_limit, orig_limit);
+    register_new_node(pre_limit, pre_ctrl);
+  }
+  _igvn.replace_input_of(pre_opaq, 1, pre_limit);
+
+  // Note:: we are making the main loop limit no longer precise;
+  // need to round up based on stride.
+  cl->set_nonexact_trip_count();
+  Node *main_cle = cl->loopexit();
+  Node *main_bol = main_cle->in(1);
+  // Hacking loop bounds; need private copies of exit test
+  if( main_bol->outcnt() > 1 ) {// BoolNode shared?
+    main_bol = main_bol->clone();// Clone a private BoolNode
+    register_new_node( main_bol, main_cle->in(0) );
+    _igvn.replace_input_of(main_cle, 1, main_bol);
+  }
+  Node *main_cmp = main_bol->in(1);
+  if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
+    main_cmp = main_cmp->clone();// Clone a private CmpNode
+    register_new_node( main_cmp, main_cle->in(0) );
+    _igvn.replace_input_of(main_bol, 1, main_cmp);
+  }
+  // Hack the now-private loop bounds
+  _igvn.replace_input_of(main_cmp, 2, main_limit);
+  // The OpaqueNode is unshared by design
+  assert( opqzm->outcnt() == 1, "cannot hack shared node" );
+  _igvn.replace_input_of(opqzm, 1, main_limit);
+
+  return closed_range_checks;
+}
+
+//------------------------------has_range_checks-------------------------------
+// Check to see if RCE cleaned the current loop of range-checks.
+void PhaseIdealLoop::has_range_checks(IdealLoopTree *loop) {
+  assert(RangeCheckElimination, "");
+
+  // skip if not a counted loop
+  if (!loop->is_counted()) return;
+
+  CountedLoopNode *cl = loop->_head->as_CountedLoop();
+
+  // skip this loop if it is already checked
+  if (cl->has_been_range_checked()) return;
+
+  // Now check for existence of range checks
+  for (uint i = 0; i < loop->_body.size(); i++) {
+    Node *iff = loop->_body[i];
+    int iff_opc = iff->Opcode();
+    if (iff_opc == Op_If || iff_opc == Op_RangeCheck) {
+      cl->mark_has_range_checks();
+      break;
+    }
+  }
+  cl->set_has_been_range_checked();
+}
+
+//-------------------------multi_version_post_loops----------------------------
+// Check the range checks that remain, if simple, use the bounds to guard
+// which version to a post loop we execute, one with range checks or one without
+bool PhaseIdealLoop::multi_version_post_loops(IdealLoopTree *rce_loop, IdealLoopTree *legacy_loop) {
+  bool multi_version_succeeded = false;
+  assert(RangeCheckElimination, "");
+  CountedLoopNode *legacy_cl = legacy_loop->_head->as_CountedLoop();
+  assert(legacy_cl->is_post_loop(), "");
+
+  // Check for existence of range checks using the unique instance to make a guard with
+  Unique_Node_List worklist;
+  for (uint i = 0; i < legacy_loop->_body.size(); i++) {
+    Node *iff = legacy_loop->_body[i];
+    int iff_opc = iff->Opcode();
+    if (iff_opc == Op_If || iff_opc == Op_RangeCheck) {
+      worklist.push(iff);
+    }
+  }
+
+  // Find RCE'd post loop so that we can stage its guard.
+  if (!is_canonical_loop_entry(legacy_cl)) return multi_version_succeeded;
+  Node* ctrl = legacy_cl->in(LoopNode::EntryControl);
+  Node* iffm = ctrl->in(0);
+
+  // Now we test that both the post loops are connected
+  Node* post_loop_region = iffm->in(0);
+  if (post_loop_region == NULL) return multi_version_succeeded;
+  if (!post_loop_region->is_Region()) return multi_version_succeeded;
+  Node* covering_region = post_loop_region->in(RegionNode::Control+1);
+  if (covering_region == NULL) return multi_version_succeeded;
+  if (!covering_region->is_Region()) return multi_version_succeeded;
+  Node* p_f = covering_region->in(RegionNode::Control);
+  if (p_f == NULL) return multi_version_succeeded;
+  if (!p_f->is_IfFalse()) return multi_version_succeeded;
+  if (!p_f->in(0)->is_CountedLoopEnd()) return multi_version_succeeded;
+  CountedLoopEndNode* rce_loop_end = p_f->in(0)->as_CountedLoopEnd();
+  if (rce_loop_end == NULL) return multi_version_succeeded;
+  CountedLoopNode* rce_cl = rce_loop_end->loopnode();
+  if (rce_cl == NULL || !rce_cl->is_post_loop()) return multi_version_succeeded;
+  CountedLoopNode *known_rce_cl = rce_loop->_head->as_CountedLoop();
+  if (rce_cl != known_rce_cl) return multi_version_succeeded;
+
+  // Then we fetch the cover entry test
+  ctrl = rce_cl->in(LoopNode::EntryControl);
+  if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return multi_version_succeeded;
+
+#ifndef PRODUCT
+  if (TraceLoopOpts) {
+    tty->print("PostMultiVersion\n");
+    rce_loop->dump_head();
+    legacy_loop->dump_head();
+  }
+#endif
+
+  // Now fetch the limit we want to compare against
+  Node *limit = rce_cl->limit();
+  bool first_time = true;
+
+  // If we got this far, we identified the post loop which has been RCE'd and
+  // we have a work list.  Now we will try to transform the if guard to cause
+  // the loop pair to be multi version executed with the determination left to runtime
+  // or the optimizer if full information is known about the given arrays at compile time.
+  Node *last_min = NULL;
+  multi_version_succeeded = true;
+  while (worklist.size()) {
+    Node* rc_iffm = worklist.pop();
+    if (rc_iffm->is_If()) {
+      Node *rc_bolzm = rc_iffm->in(1);
+      if (rc_bolzm->is_Bool()) {
+        Node *rc_cmpzm = rc_bolzm->in(1);
+        if (rc_cmpzm->is_Cmp()) {
+          Node *rc_left = rc_cmpzm->in(2);
+          if (rc_left->Opcode() != Op_LoadRange) {
+            multi_version_succeeded = false;
+            break;
+          }
+          if (first_time) {
+            last_min = rc_left;
+            first_time = false;
+          } else {
+            Node *cur_min = new MinINode(last_min, rc_left);
+            last_min = cur_min;
+            _igvn.register_new_node_with_optimizer(last_min);
+          }
+        }
+      }
+    }
+  }
+
+  // All we have to do is update the limit of the rce loop
+  // with the min of our expression and the current limit.
+  // We will use this expression to replace the current limit.
+  if (last_min && multi_version_succeeded) {
+    Node *cur_min = new MinINode(last_min, limit);
+    _igvn.register_new_node_with_optimizer(cur_min);
+    Node *cmp_node = rce_loop_end->cmp_node();
+    _igvn.replace_input_of(cmp_node, 2, cur_min);
+    set_idom(cmp_node, cur_min, dom_depth(ctrl));
+    set_ctrl(cur_min, ctrl);
+    set_loop(cur_min, rce_loop->_parent);
+
+    legacy_cl->mark_is_multiversioned();
+    rce_cl->mark_is_multiversioned();
+    multi_version_succeeded = true;
+
+    C->set_major_progress();
+  }
+
+  return multi_version_succeeded;
+}
+
+//-------------------------poison_rce_post_loop--------------------------------
+// Causes the rce'd post loop to be optimized away if multiversioning fails
+void PhaseIdealLoop::poison_rce_post_loop(IdealLoopTree *rce_loop) {
+  CountedLoopNode *rce_cl = rce_loop->_head->as_CountedLoop();
+  Node* ctrl = rce_cl->in(LoopNode::EntryControl);
+  if (ctrl->is_IfTrue() || ctrl->is_IfFalse()) {
+    Node* iffm = ctrl->in(0);
+    if (iffm->is_If()) {
+      Node* cur_bool = iffm->in(1);
+      if (cur_bool->is_Bool()) {
+        Node* cur_cmp = cur_bool->in(1);
+        if (cur_cmp->is_Cmp()) {
+          BoolTest::mask new_test = BoolTest::gt;
+          BoolNode *new_bool = new BoolNode(cur_cmp, new_test);
+          _igvn.replace_node(cur_bool, new_bool);
+          _igvn._worklist.push(new_bool);
+          Node* left_op = cur_cmp->in(1);
+          _igvn.replace_input_of(cur_cmp, 2, left_op);
+          C->set_major_progress();
+        }
+      }
+    }
+  }
+}
+
+//------------------------------DCE_loop_body----------------------------------
+// Remove simplistic dead code from loop body
+void IdealLoopTree::DCE_loop_body() {
+  for( uint i = 0; i < _body.size(); i++ )
+    if( _body.at(i)->outcnt() == 0 )
+      _body.map( i--, _body.pop() );
+}
+
+
+//------------------------------adjust_loop_exit_prob--------------------------
+// Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
+// Replace with a 1-in-10 exit guess.
+void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
+  Node *test = tail();
+  while( test != _head ) {
+    uint top = test->Opcode();
+    if( top == Op_IfTrue || top == Op_IfFalse ) {
+      int test_con = ((ProjNode*)test)->_con;
+      assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
+      IfNode *iff = test->in(0)->as_If();
+      if( iff->outcnt() == 2 ) {        // Ignore dead tests
+        Node *bol = iff->in(1);
+        if( bol && bol->req() > 1 && bol->in(1) &&
+            ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
+             (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
+             (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
+             (bol->in(1)->Opcode() == Op_CompareAndExchangeB ) ||
+             (bol->in(1)->Opcode() == Op_CompareAndExchangeS ) ||
+             (bol->in(1)->Opcode() == Op_CompareAndExchangeI ) ||
+             (bol->in(1)->Opcode() == Op_CompareAndExchangeL ) ||
+             (bol->in(1)->Opcode() == Op_CompareAndExchangeP ) ||
+             (bol->in(1)->Opcode() == Op_CompareAndExchangeN ) ||
+             (bol->in(1)->Opcode() == Op_WeakCompareAndSwapB ) ||
+             (bol->in(1)->Opcode() == Op_WeakCompareAndSwapS ) ||
+             (bol->in(1)->Opcode() == Op_WeakCompareAndSwapI ) ||
+             (bol->in(1)->Opcode() == Op_WeakCompareAndSwapL ) ||
+             (bol->in(1)->Opcode() == Op_WeakCompareAndSwapP ) ||
+             (bol->in(1)->Opcode() == Op_WeakCompareAndSwapN ) ||
+             (bol->in(1)->Opcode() == Op_CompareAndSwapB ) ||
+             (bol->in(1)->Opcode() == Op_CompareAndSwapS ) ||
+             (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
+             (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
+             (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
+             (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
+          return;               // Allocation loops RARELY take backedge
+        // Find the OTHER exit path from the IF
+        Node* ex = iff->proj_out(1-test_con);
+        float p = iff->_prob;
+        if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
+          if( top == Op_IfTrue ) {
+            if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
+              iff->_prob = PROB_STATIC_FREQUENT;
+            }
+          } else {
+            if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
+              iff->_prob = PROB_STATIC_INFREQUENT;
+            }
+          }
+        }
+      }
+    }
+    test = phase->idom(test);
+  }
+}
+
+#ifdef ASSERT
+static CountedLoopNode* locate_pre_from_main(CountedLoopNode *cl) {
+  Node *ctrl  = cl->in(LoopNode::EntryControl);
+  assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
+  Node *iffm = ctrl->in(0);
+  assert(iffm->Opcode() == Op_If, "");
+  Node *p_f = iffm->in(0);
+  assert(p_f->Opcode() == Op_IfFalse, "");
+  CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
+  assert(pre_end->loopnode()->is_pre_loop(), "");
+  return pre_end->loopnode();
+}
+#endif
+
+// Remove the main and post loops and make the pre loop execute all
+// iterations. Useful when the pre loop is found empty.
+void IdealLoopTree::remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase) {
+  CountedLoopEndNode* pre_end = cl->loopexit();
+  Node* pre_cmp = pre_end->cmp_node();
+  if (pre_cmp->in(2)->Opcode() != Op_Opaque1) {
+    // Only safe to remove the main loop if the compiler optimized it
+    // out based on an unknown number of iterations
+    return;
+  }
+
+  // Can we find the main loop?
+  if (_next == NULL) {
+    return;
+  }
+
+  Node* next_head = _next->_head;
+  if (!next_head->is_CountedLoop()) {
+    return;
+  }
+
+  CountedLoopNode* main_head = next_head->as_CountedLoop();
+  if (!main_head->is_main_loop()) {
+    return;
+  }
+
+  assert(locate_pre_from_main(main_head) == cl, "bad main loop");
+  Node* main_iff = main_head->in(LoopNode::EntryControl)->in(0);
+
+  // Remove the Opaque1Node of the pre loop and make it execute all iterations
+  phase->_igvn.replace_input_of(pre_cmp, 2, pre_cmp->in(2)->in(2));
+  // Remove the Opaque1Node of the main loop so it can be optimized out
+  Node* main_cmp = main_iff->in(1)->in(1);
+  assert(main_cmp->in(2)->Opcode() == Op_Opaque1, "main loop has no opaque node?");
+  phase->_igvn.replace_input_of(main_cmp, 2, main_cmp->in(2)->in(1));
+}
+
+//------------------------------policy_do_remove_empty_loop--------------------
+// Micro-benchmark spamming.  Policy is to always remove empty loops.
+// The 'DO' part is to replace the trip counter with the value it will
+// have on the last iteration.  This will break the loop.
+bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
+  // Minimum size must be empty loop
+  if (_body.size() > EMPTY_LOOP_SIZE)
+    return false;
+
+  if (!_head->is_CountedLoop())
+    return false;     // Dead loop
+  CountedLoopNode *cl = _head->as_CountedLoop();
+  if (!cl->is_valid_counted_loop())
+    return false; // Malformed loop
+  if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
+    return false;             // Infinite loop
+
+  if (cl->is_pre_loop()) {
+    // If the loop we are removing is a pre-loop then the main and
+    // post loop can be removed as well
+    remove_main_post_loops(cl, phase);
+  }
+
+#ifdef ASSERT
+  // Ensure only one phi which is the iv.
+  Node* iv = NULL;
+  for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
+    Node* n = cl->fast_out(i);
+    if (n->Opcode() == Op_Phi) {
+      assert(iv == NULL, "Too many phis" );
+      iv = n;
+    }
+  }
+  assert(iv == cl->phi(), "Wrong phi" );
+#endif
+
+  // main and post loops have explicitly created zero trip guard
+  bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
+  if (needs_guard) {
+    // Skip guard if values not overlap.
+    const TypeInt* init_t = phase->_igvn.type(cl->init_trip())->is_int();
+    const TypeInt* limit_t = phase->_igvn.type(cl->limit())->is_int();
+    int  stride_con = cl->stride_con();
+    if (stride_con > 0) {
+      needs_guard = (init_t->_hi >= limit_t->_lo);
+    } else {
+      needs_guard = (init_t->_lo <= limit_t->_hi);
+    }
+  }
+  if (needs_guard) {
+    // Check for an obvious zero trip guard.
+    Node* inctrl = PhaseIdealLoop::skip_loop_predicates(cl->in(LoopNode::EntryControl));
+    if (inctrl->Opcode() == Op_IfTrue || inctrl->Opcode() == Op_IfFalse) {
+      bool maybe_swapped = (inctrl->Opcode() == Op_IfFalse);
+      // The test should look like just the backedge of a CountedLoop
+      Node* iff = inctrl->in(0);
+      if (iff->is_If()) {
+        Node* bol = iff->in(1);
+        if (bol->is_Bool()) {
+          BoolTest test = bol->as_Bool()->_test;
+          if (maybe_swapped) {
+            test._test = test.commute();
+            test._test = test.negate();
+          }
+          if (test._test == cl->loopexit()->test_trip()) {
+            Node* cmp = bol->in(1);
+            int init_idx = maybe_swapped ? 2 : 1;
+            int limit_idx = maybe_swapped ? 1 : 2;
+            if (cmp->is_Cmp() && cmp->in(init_idx) == cl->init_trip() && cmp->in(limit_idx) == cl->limit()) {
+              needs_guard = false;
+            }
+          }
+        }
+      }
+    }
+  }
+
+#ifndef PRODUCT
+  if (PrintOpto) {
+    tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
+    this->dump_head();
+  } else if (TraceLoopOpts) {
+    tty->print("Empty with%s zero trip guard   ", needs_guard ? "out" : "");
+    this->dump_head();
+  }
+#endif
+
+  if (needs_guard) {
+    // Peel the loop to ensure there's a zero trip guard
+    Node_List old_new;
+    phase->do_peeling(this, old_new);
+  }
+
+  // Replace the phi at loop head with the final value of the last
+  // iteration.  Then the CountedLoopEnd will collapse (backedge never
+  // taken) and all loop-invariant uses of the exit values will be correct.
+  Node *phi = cl->phi();
+  Node *exact_limit = phase->exact_limit(this);
+  if (exact_limit != cl->limit()) {
+    // We also need to replace the original limit to collapse loop exit.
+    Node* cmp = cl->loopexit()->cmp_node();
+    assert(cl->limit() == cmp->in(2), "sanity");
+    phase->_igvn._worklist.push(cmp->in(2)); // put limit on worklist
+    phase->_igvn.replace_input_of(cmp, 2, exact_limit); // put cmp on worklist
+  }
+  // Note: the final value after increment should not overflow since
+  // counted loop has limit check predicate.
+  Node *final = new SubINode( exact_limit, cl->stride() );
+  phase->register_new_node(final,cl->in(LoopNode::EntryControl));
+  phase->_igvn.replace_node(phi,final);
+  phase->C->set_major_progress();
+  return true;
+}
+
+//------------------------------policy_do_one_iteration_loop-------------------
+// Convert one iteration loop into normal code.
+bool IdealLoopTree::policy_do_one_iteration_loop( PhaseIdealLoop *phase ) {
+  if (!_head->as_Loop()->is_valid_counted_loop())
+    return false; // Only for counted loop
+
+  CountedLoopNode *cl = _head->as_CountedLoop();
+  if (!cl->has_exact_trip_count() || cl->trip_count() != 1) {
+    return false;
+  }
+
+#ifndef PRODUCT
+  if(TraceLoopOpts) {
+    tty->print("OneIteration ");
+    this->dump_head();
+  }
+#endif
+
+  Node *init_n = cl->init_trip();
+#ifdef ASSERT
+  // Loop boundaries should be constant since trip count is exact.
+  assert(init_n->get_int() + cl->stride_con() >= cl->limit()->get_int(), "should be one iteration");
+#endif
+  // Replace the phi at loop head with the value of the init_trip.
+  // Then the CountedLoopEnd will collapse (backedge will not be taken)
+  // and all loop-invariant uses of the exit values will be correct.
+  phase->_igvn.replace_node(cl->phi(), cl->init_trip());
+  phase->C->set_major_progress();
+  return true;
+}
+
+//=============================================================================
+//------------------------------iteration_split_impl---------------------------
+bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
+  // Compute loop trip count if possible.
+  compute_trip_count(phase);
+
+  // Convert one iteration loop into normal code.
+  if (policy_do_one_iteration_loop(phase))
+    return true;
+
+  // Check and remove empty loops (spam micro-benchmarks)
+  if (policy_do_remove_empty_loop(phase))
+    return true;  // Here we removed an empty loop
+
+  bool should_peel = policy_peeling(phase); // Should we peel?
+
+  bool should_unswitch = policy_unswitching(phase);
+
+  // Non-counted loops may be peeled; exactly 1 iteration is peeled.
+  // This removes loop-invariant tests (usually null checks).
+  if (!_head->is_CountedLoop()) { // Non-counted loop
+    if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
+      // Partial peel succeeded so terminate this round of loop opts
+      return false;
+    }
+    if (should_peel) {            // Should we peel?
+      if (PrintOpto) { tty->print_cr("should_peel"); }
+      phase->do_peeling(this,old_new);
+    } else if (should_unswitch) {
+      phase->do_unswitching(this, old_new);
+    }
+    return true;
+  }
+  CountedLoopNode *cl = _head->as_CountedLoop();
+
+  if (!cl->is_valid_counted_loop()) return true; // Ignore various kinds of broken loops
+
+  // Do nothing special to pre- and post- loops
+  if (cl->is_pre_loop() || cl->is_post_loop()) return true;
+
+  // Compute loop trip count from profile data
+  compute_profile_trip_cnt(phase);
+
+  // Before attempting fancy unrolling, RCE or alignment, see if we want
+  // to completely unroll this loop or do loop unswitching.
+  if (cl->is_normal_loop()) {
+    if (should_unswitch) {
+      phase->do_unswitching(this, old_new);
+      return true;
+    }
+    bool should_maximally_unroll =  policy_maximally_unroll(phase);
+    if (should_maximally_unroll) {
+      // Here we did some unrolling and peeling.  Eventually we will
+      // completely unroll this loop and it will no longer be a loop.
+      phase->do_maximally_unroll(this,old_new);
+      return true;
+    }
+  }
+
+  // Skip next optimizations if running low on nodes. Note that
+  // policy_unswitching and policy_maximally_unroll have this check.
+  int nodes_left = phase->C->max_node_limit() - phase->C->live_nodes();
+  if ((int)(2 * _body.size()) > nodes_left) {
+    return true;
+  }
+
+  // Counted loops may be peeled, may need some iterations run up
+  // front for RCE, and may want to align loop refs to a cache
+  // line.  Thus we clone a full loop up front whose trip count is
+  // at least 1 (if peeling), but may be several more.
+
+  // The main loop will start cache-line aligned with at least 1
+  // iteration of the unrolled body (zero-trip test required) and
+  // will have some range checks removed.
+
+  // A post-loop will finish any odd iterations (leftover after
+  // unrolling), plus any needed for RCE purposes.
+
+  bool should_unroll = policy_unroll(phase);
+
+  bool should_rce = policy_range_check(phase);
+
+  bool should_align = policy_align(phase);
+
+  // If not RCE'ing (iteration splitting) or Aligning, then we do not
+  // need a pre-loop.  We may still need to peel an initial iteration but
+  // we will not be needing an unknown number of pre-iterations.
+  //
+  // Basically, if may_rce_align reports FALSE first time through,
+  // we will not be able to later do RCE or Aligning on this loop.
+  bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
+
+  // If we have any of these conditions (RCE, alignment, unrolling) met, then
+  // we switch to the pre-/main-/post-loop model.  This model also covers
+  // peeling.
+  if (should_rce || should_align || should_unroll) {
+    if (cl->is_normal_loop())  // Convert to 'pre/main/post' loops
+      phase->insert_pre_post_loops(this,old_new, !may_rce_align);
+
+    // Adjust the pre- and main-loop limits to let the pre and post loops run
+    // with full checks, but the main-loop with no checks.  Remove said
+    // checks from the main body.
+    if (should_rce) {
+      if (phase->do_range_check(this, old_new) != 0) {
+        cl->mark_has_range_checks();
+      }
+    } else if (PostLoopMultiversioning) {
+      phase->has_range_checks(this);
+    }
+
+    if (should_unroll && !should_peel && PostLoopMultiversioning) {
+      // Try to setup multiversioning on main loops before they are unrolled
+      if (cl->is_main_loop() && (cl->unrolled_count() == 1)) {
+        phase->insert_scalar_rced_post_loop(this, old_new);
+      }
+    }
+
+    // Double loop body for unrolling.  Adjust the minimum-trip test (will do
+    // twice as many iterations as before) and the main body limit (only do
+    // an even number of trips).  If we are peeling, we might enable some RCE
+    // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
+    // peeling.
+    if (should_unroll && !should_peel) {
+      if (SuperWordLoopUnrollAnalysis) {
+        phase->insert_vector_post_loop(this, old_new);
+      }
+      phase->do_unroll(this, old_new, true);
+    }
+
+    // Adjust the pre-loop limits to align the main body
+    // iterations.
+    if (should_align)
+      Unimplemented();
+
+  } else {                      // Else we have an unchanged counted loop
+    if (should_peel)           // Might want to peel but do nothing else
+      phase->do_peeling(this,old_new);
+  }
+  return true;
+}
+
+
+//=============================================================================
+//------------------------------iteration_split--------------------------------
+bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
+  // Recursively iteration split nested loops
+  if (_child && !_child->iteration_split(phase, old_new))
+    return false;
+
+  // Clean out prior deadwood
+  DCE_loop_body();
+
+
+  // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
+  // Replace with a 1-in-10 exit guess.
+  if (_parent /*not the root loop*/ &&
+      !_irreducible &&
+      // Also ignore the occasional dead backedge
+      !tail()->is_top()) {
+    adjust_loop_exit_prob(phase);
+  }
+
+  // Gate unrolling, RCE and peeling efforts.
+  if (!_child &&                // If not an inner loop, do not split
+      !_irreducible &&
+      _allow_optimizations &&
+      !tail()->is_top()) {     // Also ignore the occasional dead backedge
+    if (!_has_call) {
+        if (!iteration_split_impl(phase, old_new)) {
+          return false;
+        }
+    } else if (policy_unswitching(phase)) {
+      phase->do_unswitching(this, old_new);
+    }
+  }
+
+  // Minor offset re-organization to remove loop-fallout uses of
+  // trip counter when there was no major reshaping.
+  phase->reorg_offsets(this);
+
+  if (_next && !_next->iteration_split(phase, old_new))
+    return false;
+  return true;
+}
+
+
+//=============================================================================
+// Process all the loops in the loop tree and replace any fill
+// patterns with an intrinsic version.
+bool PhaseIdealLoop::do_intrinsify_fill() {
+  bool changed = false;
+  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
+    IdealLoopTree* lpt = iter.current();
+    changed |= intrinsify_fill(lpt);
+  }
+  return changed;
+}
+
+
+// Examine an inner loop looking for a a single store of an invariant
+// value in a unit stride loop,
+bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
+                                     Node*& shift, Node*& con) {
+  const char* msg = NULL;
+  Node* msg_node = NULL;
+
+  store_value = NULL;
+  con = NULL;
+  shift = NULL;
+
+  // Process the loop looking for stores.  If there are multiple
+  // stores or extra control flow give at this point.
+  CountedLoopNode* head = lpt->_head->as_CountedLoop();
+  for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
+    Node* n = lpt->_body.at(i);
+    if (n->outcnt() == 0) continue; // Ignore dead
+    if (n->is_Store()) {
+      if (store != NULL) {
+        msg = "multiple stores";
+        break;
+      }
+      int opc = n->Opcode();
+      if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreNKlass || opc == Op_StoreCM) {
+        msg = "oop fills not handled";
+        break;
+      }
+      Node* value = n->in(MemNode::ValueIn);
+      if (!lpt->is_invariant(value)) {
+        msg  = "variant store value";
+      } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
+        msg = "not array address";
+      }
+      store = n;
+      store_value = value;
+    } else if (n->is_If() && n != head->loopexit()) {
+      msg = "extra control flow";
+      msg_node = n;
+    }
+  }
+
+  if (store == NULL) {
+    // No store in loop
+    return false;
+  }
+
+  if (msg == NULL && head->stride_con() != 1) {
+    // could handle negative strides too
+    if (head->stride_con() < 0) {
+      msg = "negative stride";
+    } else {
+      msg = "non-unit stride";
+    }
+  }
+
+  if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
+    msg = "can't handle store address";
+    msg_node = store->in(MemNode::Address);
+  }
+
+  if (msg == NULL &&
+      (!store->in(MemNode::Memory)->is_Phi() ||
+       store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
+    msg = "store memory isn't proper phi";
+    msg_node = store->in(MemNode::Memory);
+  }
+
+  // Make sure there is an appropriate fill routine
+  BasicType t = store->as_Mem()->memory_type();
+  const char* fill_name;
+  if (msg == NULL &&
+      StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
+    msg = "unsupported store";
+    msg_node = store;
+  }
+
+  if (msg != NULL) {
+#ifndef PRODUCT
+    if (TraceOptimizeFill) {
+      tty->print_cr("not fill intrinsic candidate: %s", msg);
+      if (msg_node != NULL) msg_node->dump();
+    }
+#endif
+    return false;
+  }
+
+  // Make sure the address expression can be handled.  It should be
+  // head->phi * elsize + con.  head->phi might have a ConvI2L(CastII()).
+  Node* elements[4];
+  Node* cast = NULL;
+  Node* conv = NULL;
+  bool found_index = false;
+  int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
+  for (int e = 0; e < count; e++) {
+    Node* n = elements[e];
+    if (n->is_Con() && con == NULL) {
+      con = n;
+    } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
+      Node* value = n->in(1);
+#ifdef _LP64
+      if (value->Opcode() == Op_ConvI2L) {
+        conv = value;
+        value = value->in(1);
+      }
+      if (value->Opcode() == Op_CastII &&
+          value->as_CastII()->has_range_check()) {
+        // Skip range check dependent CastII nodes
+        cast = value;
+        value = value->in(1);
+      }
+#endif
+      if (value != head->phi()) {
+        msg = "unhandled shift in address";
+      } else {
+        if (type2aelembytes(store->as_Mem()->memory_type(), true) != (1 << n->in(2)->get_int())) {
+          msg = "scale doesn't match";
+        } else {
+          found_index = true;
+          shift = n;
+        }
+      }
+    } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
+      conv = n;
+      n = n->in(1);
+      if (n->Opcode() == Op_CastII &&
+          n->as_CastII()->has_range_check()) {
+        // Skip range check dependent CastII nodes
+        cast = n;
+        n = n->in(1);
+      }
+      if (n == head->phi()) {
+        found_index = true;
+      } else {
+        msg = "unhandled input to ConvI2L";
+      }
+    } else if (n == head->phi()) {
+      // no shift, check below for allowed cases
+      found_index = true;
+    } else {
+      msg = "unhandled node in address";
+      msg_node = n;
+    }
+  }
+
+  if (count == -1) {
+    msg = "malformed address expression";
+    msg_node = store;
+  }
+
+  if (!found_index) {
+    msg = "missing use of index";
+  }
+
+  // byte sized items won't have a shift
+  if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
+    msg = "can't find shift";
+    msg_node = store;
+  }
+
+  if (msg != NULL) {
+#ifndef PRODUCT
+    if (TraceOptimizeFill) {
+      tty->print_cr("not fill intrinsic: %s", msg);
+      if (msg_node != NULL) msg_node->dump();
+    }
+#endif
+    return false;
+  }
+
+  // No make sure all the other nodes in the loop can be handled
+  VectorSet ok(Thread::current()->resource_area());
+
+  // store related values are ok
+  ok.set(store->_idx);
+  ok.set(store->in(MemNode::Memory)->_idx);
+
+  CountedLoopEndNode* loop_exit = head->loopexit();
+  guarantee(loop_exit != NULL, "no loop exit node");
+
+  // Loop structure is ok
+  ok.set(head->_idx);
+  ok.set(loop_exit->_idx);
+  ok.set(head->phi()->_idx);
+  ok.set(head->incr()->_idx);
+  ok.set(loop_exit->cmp_node()->_idx);
+  ok.set(loop_exit->in(1)->_idx);
+
+  // Address elements are ok
+  if (con)   ok.set(con->_idx);
+  if (shift) ok.set(shift->_idx);
+  if (cast)  ok.set(cast->_idx);
+  if (conv)  ok.set(conv->_idx);
+
+  for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
+    Node* n = lpt->_body.at(i);
+    if (n->outcnt() == 0) continue; // Ignore dead
+    if (ok.test(n->_idx)) continue;
+    // Backedge projection is ok
+    if (n->is_IfTrue() && n->in(0) == loop_exit) continue;
+    if (!n->is_AddP()) {
+      msg = "unhandled node";
+      msg_node = n;
+      break;
+    }
+  }
+
+  // Make sure no unexpected values are used outside the loop
+  for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
+    Node* n = lpt->_body.at(i);
+    // These values can be replaced with other nodes if they are used
+    // outside the loop.
+    if (n == store || n == loop_exit || n == head->incr() || n == store->in(MemNode::Memory)) continue;
+    for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
+      Node* use = iter.get();
+      if (!lpt->_body.contains(use)) {
+        msg = "node is used outside loop";
+        // lpt->_body.dump();
+        msg_node = n;
+        break;
+      }
+    }
+  }
+
+#ifdef ASSERT
+  if (TraceOptimizeFill) {
+    if (msg != NULL) {
+      tty->print_cr("no fill intrinsic: %s", msg);
+      if (msg_node != NULL) msg_node->dump();
+    } else {
+      tty->print_cr("fill intrinsic for:");
+    }
+    store->dump();
+    if (Verbose) {
+      lpt->_body.dump();
+    }
+  }
+#endif
+
+  return msg == NULL;
+}
+
+
+
+bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
+  // Only for counted inner loops
+  if (!lpt->is_counted() || !lpt->is_inner()) {
+    return false;
+  }
+
+  // Must have constant stride
+  CountedLoopNode* head = lpt->_head->as_CountedLoop();
+  if (!head->is_valid_counted_loop() || !head->is_normal_loop()) {
+    return false;
+  }
+
+  // Check that the body only contains a store of a loop invariant
+  // value that is indexed by the loop phi.
+  Node* store = NULL;
+  Node* store_value = NULL;
+  Node* shift = NULL;
+  Node* offset = NULL;
+  if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
+    return false;
+  }
+
+  Node* exit = head->loopexit()->proj_out(0);
+  if (exit == NULL) {
+    return false;
+  }
+
+#ifndef PRODUCT
+  if (TraceLoopOpts) {
+    tty->print("ArrayFill    ");
+    lpt->dump_head();
+  }
+#endif
+
+  // Now replace the whole loop body by a call to a fill routine that
+  // covers the same region as the loop.
+  Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
+
+  // Build an expression for the beginning of the copy region
+  Node* index = head->init_trip();
+#ifdef _LP64
+  index = new ConvI2LNode(index);
+  _igvn.register_new_node_with_optimizer(index);
+#endif
+  if (shift != NULL) {
+    // byte arrays don't require a shift but others do.
+    index = new LShiftXNode(index, shift->in(2));
+    _igvn.register_new_node_with_optimizer(index);
+  }
+  index = new AddPNode(base, base, index);
+  _igvn.register_new_node_with_optimizer(index);
+  Node* from = new AddPNode(base, index, offset);
+  _igvn.register_new_node_with_optimizer(from);
+  // Compute the number of elements to copy
+  Node* len = new SubINode(head->limit(), head->init_trip());
+  _igvn.register_new_node_with_optimizer(len);
+
+  BasicType t = store->as_Mem()->memory_type();
+  bool aligned = false;
+  if (offset != NULL && head->init_trip()->is_Con()) {
+    int element_size = type2aelembytes(t);
+    aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
+  }
+
+  // Build a call to the fill routine
+  const char* fill_name;
+  address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
+  assert(fill != NULL, "what?");
+
+  // Convert float/double to int/long for fill routines
+  if (t == T_FLOAT) {
+    store_value = new MoveF2INode(store_value);
+    _igvn.register_new_node_with_optimizer(store_value);
+  } else if (t == T_DOUBLE) {
+    store_value = new MoveD2LNode(store_value);
+    _igvn.register_new_node_with_optimizer(store_value);
+  }
+
+  Node* mem_phi = store->in(MemNode::Memory);
+  Node* result_ctrl;
+  Node* result_mem;
+  const TypeFunc* call_type = OptoRuntime::array_fill_Type();
+  CallLeafNode *call = new CallLeafNoFPNode(call_type, fill,
+                                            fill_name, TypeAryPtr::get_array_body_type(t));
+  uint cnt = 0;
+  call->init_req(TypeFunc::Parms + cnt++, from);
+  call->init_req(TypeFunc::Parms + cnt++, store_value);
+#ifdef _LP64
+  len = new ConvI2LNode(len);
+  _igvn.register_new_node_with_optimizer(len);
+#endif
+  call->init_req(TypeFunc::Parms + cnt++, len);
+#ifdef _LP64
+  call->init_req(TypeFunc::Parms + cnt++, C->top());
+#endif
+  call->init_req(TypeFunc::Control,   head->init_control());
+  call->init_req(TypeFunc::I_O,       C->top());       // Does no I/O.
+  call->init_req(TypeFunc::Memory,    mem_phi->in(LoopNode::EntryControl));
+  call->init_req(TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr));
+  call->init_req(TypeFunc::FramePtr,  C->start()->proj_out(TypeFunc::FramePtr));
+  _igvn.register_new_node_with_optimizer(call);
+  result_ctrl = new ProjNode(call,TypeFunc::Control);
+  _igvn.register_new_node_with_optimizer(result_ctrl);
+  result_mem = new ProjNode(call,TypeFunc::Memory);
+  _igvn.register_new_node_with_optimizer(result_mem);
+
+/* Disable following optimization until proper fix (add missing checks).
+
+  // If this fill is tightly coupled to an allocation and overwrites
+  // the whole body, allow it to take over the zeroing.
+  AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
+  if (alloc != NULL && alloc->is_AllocateArray()) {
+    Node* length = alloc->as_AllocateArray()->Ideal_length();
+    if (head->limit() == length &&
+        head->init_trip() == _igvn.intcon(0)) {
+      if (TraceOptimizeFill) {
+        tty->print_cr("Eliminated zeroing in allocation");
+      }
+      alloc->maybe_set_complete(&_igvn);
+    } else {
+#ifdef ASSERT
+      if (TraceOptimizeFill) {
+        tty->print_cr("filling array but bounds don't match");
+        alloc->dump();
+        head->init_trip()->dump();
+        head->limit()->dump();
+        length->dump();
+      }
+#endif
+    }
+  }
+*/
+
+  // Redirect the old control and memory edges that are outside the loop.
+  // Sometimes the memory phi of the head is used as the outgoing
+  // state of the loop.  It's safe in this case to replace it with the
+  // result_mem.
+  _igvn.replace_node(store->in(MemNode::Memory), result_mem);
+  lazy_replace(exit, result_ctrl);
+  _igvn.replace_node(store, result_mem);
+  // Any uses the increment outside of the loop become the loop limit.
+  _igvn.replace_node(head->incr(), head->limit());
+
+  // Disconnect the head from the loop.
+  for (uint i = 0; i < lpt->_body.size(); i++) {
+    Node* n = lpt->_body.at(i);
+    _igvn.replace_node(n, C->top());
+  }
+
+  return true;
+}