src/hotspot/share/opto/escape.cpp
changeset 47216 71c04702a3d5
parent 46630 75aa3e39d02c
child 48595 5d699d81c10c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/opto/escape.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,3536 @@
+/*
+ * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "ci/bcEscapeAnalyzer.hpp"
+#include "compiler/compileLog.hpp"
+#include "libadt/vectset.hpp"
+#include "memory/allocation.hpp"
+#include "memory/resourceArea.hpp"
+#include "opto/c2compiler.hpp"
+#include "opto/arraycopynode.hpp"
+#include "opto/callnode.hpp"
+#include "opto/cfgnode.hpp"
+#include "opto/compile.hpp"
+#include "opto/escape.hpp"
+#include "opto/phaseX.hpp"
+#include "opto/movenode.hpp"
+#include "opto/rootnode.hpp"
+
+ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
+  _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
+  _in_worklist(C->comp_arena()),
+  _next_pidx(0),
+  _collecting(true),
+  _verify(false),
+  _compile(C),
+  _igvn(igvn),
+  _node_map(C->comp_arena()) {
+  // Add unknown java object.
+  add_java_object(C->top(), PointsToNode::GlobalEscape);
+  phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
+  // Add ConP(#NULL) and ConN(#NULL) nodes.
+  Node* oop_null = igvn->zerocon(T_OBJECT);
+  assert(oop_null->_idx < nodes_size(), "should be created already");
+  add_java_object(oop_null, PointsToNode::NoEscape);
+  null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
+  if (UseCompressedOops) {
+    Node* noop_null = igvn->zerocon(T_NARROWOOP);
+    assert(noop_null->_idx < nodes_size(), "should be created already");
+    map_ideal_node(noop_null, null_obj);
+  }
+  _pcmp_neq = NULL; // Should be initialized
+  _pcmp_eq  = NULL;
+}
+
+bool ConnectionGraph::has_candidates(Compile *C) {
+  // EA brings benefits only when the code has allocations and/or locks which
+  // are represented by ideal Macro nodes.
+  int cnt = C->macro_count();
+  for (int i = 0; i < cnt; i++) {
+    Node *n = C->macro_node(i);
+    if (n->is_Allocate())
+      return true;
+    if (n->is_Lock()) {
+      Node* obj = n->as_Lock()->obj_node()->uncast();
+      if (!(obj->is_Parm() || obj->is_Con()))
+        return true;
+    }
+    if (n->is_CallStaticJava() &&
+        n->as_CallStaticJava()->is_boxing_method()) {
+      return true;
+    }
+  }
+  return false;
+}
+
+void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
+  Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
+  ResourceMark rm;
+
+  // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
+  // to create space for them in ConnectionGraph::_nodes[].
+  Node* oop_null = igvn->zerocon(T_OBJECT);
+  Node* noop_null = igvn->zerocon(T_NARROWOOP);
+  ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
+  // Perform escape analysis
+  if (congraph->compute_escape()) {
+    // There are non escaping objects.
+    C->set_congraph(congraph);
+  }
+  // Cleanup.
+  if (oop_null->outcnt() == 0)
+    igvn->hash_delete(oop_null);
+  if (noop_null->outcnt() == 0)
+    igvn->hash_delete(noop_null);
+}
+
+bool ConnectionGraph::compute_escape() {
+  Compile* C = _compile;
+  PhaseGVN* igvn = _igvn;
+
+  // Worklists used by EA.
+  Unique_Node_List delayed_worklist;
+  GrowableArray<Node*> alloc_worklist;
+  GrowableArray<Node*> ptr_cmp_worklist;
+  GrowableArray<Node*> storestore_worklist;
+  GrowableArray<ArrayCopyNode*> arraycopy_worklist;
+  GrowableArray<PointsToNode*>   ptnodes_worklist;
+  GrowableArray<JavaObjectNode*> java_objects_worklist;
+  GrowableArray<JavaObjectNode*> non_escaped_worklist;
+  GrowableArray<FieldNode*>      oop_fields_worklist;
+  DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
+
+  { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
+
+  // 1. Populate Connection Graph (CG) with PointsTo nodes.
+  ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
+  // Initialize worklist
+  if (C->root() != NULL) {
+    ideal_nodes.push(C->root());
+  }
+  // Processed ideal nodes are unique on ideal_nodes list
+  // but several ideal nodes are mapped to the phantom_obj.
+  // To avoid duplicated entries on the following worklists
+  // add the phantom_obj only once to them.
+  ptnodes_worklist.append(phantom_obj);
+  java_objects_worklist.append(phantom_obj);
+  for( uint next = 0; next < ideal_nodes.size(); ++next ) {
+    Node* n = ideal_nodes.at(next);
+    // Create PointsTo nodes and add them to Connection Graph. Called
+    // only once per ideal node since ideal_nodes is Unique_Node list.
+    add_node_to_connection_graph(n, &delayed_worklist);
+    PointsToNode* ptn = ptnode_adr(n->_idx);
+    if (ptn != NULL && ptn != phantom_obj) {
+      ptnodes_worklist.append(ptn);
+      if (ptn->is_JavaObject()) {
+        java_objects_worklist.append(ptn->as_JavaObject());
+        if ((n->is_Allocate() || n->is_CallStaticJava()) &&
+            (ptn->escape_state() < PointsToNode::GlobalEscape)) {
+          // Only allocations and java static calls results are interesting.
+          non_escaped_worklist.append(ptn->as_JavaObject());
+        }
+      } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
+        oop_fields_worklist.append(ptn->as_Field());
+      }
+    }
+    if (n->is_MergeMem()) {
+      // Collect all MergeMem nodes to add memory slices for
+      // scalar replaceable objects in split_unique_types().
+      _mergemem_worklist.append(n->as_MergeMem());
+    } else if (OptimizePtrCompare && n->is_Cmp() &&
+               (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
+      // Collect compare pointers nodes.
+      ptr_cmp_worklist.append(n);
+    } else if (n->is_MemBarStoreStore()) {
+      // Collect all MemBarStoreStore nodes so that depending on the
+      // escape status of the associated Allocate node some of them
+      // may be eliminated.
+      storestore_worklist.append(n);
+    } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
+               (n->req() > MemBarNode::Precedent)) {
+      record_for_optimizer(n);
+#ifdef ASSERT
+    } else if (n->is_AddP()) {
+      // Collect address nodes for graph verification.
+      addp_worklist.append(n);
+#endif
+    } else if (n->is_ArrayCopy()) {
+      // Keep a list of ArrayCopy nodes so if one of its input is non
+      // escaping, we can record a unique type
+      arraycopy_worklist.append(n->as_ArrayCopy());
+    }
+    for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
+      Node* m = n->fast_out(i);   // Get user
+      ideal_nodes.push(m);
+    }
+  }
+  if (non_escaped_worklist.length() == 0) {
+    _collecting = false;
+    return false; // Nothing to do.
+  }
+  // Add final simple edges to graph.
+  while(delayed_worklist.size() > 0) {
+    Node* n = delayed_worklist.pop();
+    add_final_edges(n);
+  }
+  int ptnodes_length = ptnodes_worklist.length();
+
+#ifdef ASSERT
+  if (VerifyConnectionGraph) {
+    // Verify that no new simple edges could be created and all
+    // local vars has edges.
+    _verify = true;
+    for (int next = 0; next < ptnodes_length; ++next) {
+      PointsToNode* ptn = ptnodes_worklist.at(next);
+      add_final_edges(ptn->ideal_node());
+      if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
+        ptn->dump();
+        assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
+      }
+    }
+    _verify = false;
+  }
+#endif
+  // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
+  // processing, calls to CI to resolve symbols (types, fields, methods)
+  // referenced in bytecode. During symbol resolution VM may throw
+  // an exception which CI cleans and converts to compilation failure.
+  if (C->failing())  return false;
+
+  // 2. Finish Graph construction by propagating references to all
+  //    java objects through graph.
+  if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
+                                 java_objects_worklist, oop_fields_worklist)) {
+    // All objects escaped or hit time or iterations limits.
+    _collecting = false;
+    return false;
+  }
+
+  // 3. Adjust scalar_replaceable state of nonescaping objects and push
+  //    scalar replaceable allocations on alloc_worklist for processing
+  //    in split_unique_types().
+  int non_escaped_length = non_escaped_worklist.length();
+  for (int next = 0; next < non_escaped_length; next++) {
+    JavaObjectNode* ptn = non_escaped_worklist.at(next);
+    bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
+    Node* n = ptn->ideal_node();
+    if (n->is_Allocate()) {
+      n->as_Allocate()->_is_non_escaping = noescape;
+    }
+    if (n->is_CallStaticJava()) {
+      n->as_CallStaticJava()->_is_non_escaping = noescape;
+    }
+    if (noescape && ptn->scalar_replaceable()) {
+      adjust_scalar_replaceable_state(ptn);
+      if (ptn->scalar_replaceable()) {
+        alloc_worklist.append(ptn->ideal_node());
+      }
+    }
+  }
+
+#ifdef ASSERT
+  if (VerifyConnectionGraph) {
+    // Verify that graph is complete - no new edges could be added or needed.
+    verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
+                            java_objects_worklist, addp_worklist);
+  }
+  assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
+  assert(null_obj->escape_state() == PointsToNode::NoEscape &&
+         null_obj->edge_count() == 0 &&
+         !null_obj->arraycopy_src() &&
+         !null_obj->arraycopy_dst(), "sanity");
+#endif
+
+  _collecting = false;
+
+  } // TracePhase t3("connectionGraph")
+
+  // 4. Optimize ideal graph based on EA information.
+  bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
+  if (has_non_escaping_obj) {
+    optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
+  }
+
+#ifndef PRODUCT
+  if (PrintEscapeAnalysis) {
+    dump(ptnodes_worklist); // Dump ConnectionGraph
+  }
+#endif
+
+  bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
+#ifdef ASSERT
+  if (VerifyConnectionGraph) {
+    int alloc_length = alloc_worklist.length();
+    for (int next = 0; next < alloc_length; ++next) {
+      Node* n = alloc_worklist.at(next);
+      PointsToNode* ptn = ptnode_adr(n->_idx);
+      assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
+    }
+  }
+#endif
+
+  // 5. Separate memory graph for scalar replaceable allcations.
+  if (has_scalar_replaceable_candidates &&
+      C->AliasLevel() >= 3 && EliminateAllocations) {
+    // Now use the escape information to create unique types for
+    // scalar replaceable objects.
+    split_unique_types(alloc_worklist, arraycopy_worklist);
+    if (C->failing())  return false;
+    C->print_method(PHASE_AFTER_EA, 2);
+
+#ifdef ASSERT
+  } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
+    tty->print("=== No allocations eliminated for ");
+    C->method()->print_short_name();
+    if(!EliminateAllocations) {
+      tty->print(" since EliminateAllocations is off ===");
+    } else if(!has_scalar_replaceable_candidates) {
+      tty->print(" since there are no scalar replaceable candidates ===");
+    } else if(C->AliasLevel() < 3) {
+      tty->print(" since AliasLevel < 3 ===");
+    }
+    tty->cr();
+#endif
+  }
+  return has_non_escaping_obj;
+}
+
+// Utility function for nodes that load an object
+void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
+  // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
+  // ThreadLocal has RawPtr type.
+  const Type* t = _igvn->type(n);
+  if (t->make_ptr() != NULL) {
+    Node* adr = n->in(MemNode::Address);
+#ifdef ASSERT
+    if (!adr->is_AddP()) {
+      assert(_igvn->type(adr)->isa_rawptr(), "sanity");
+    } else {
+      assert((ptnode_adr(adr->_idx) == NULL ||
+              ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
+    }
+#endif
+    add_local_var_and_edge(n, PointsToNode::NoEscape,
+                           adr, delayed_worklist);
+  }
+}
+
+// Populate Connection Graph with PointsTo nodes and create simple
+// connection graph edges.
+void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
+  assert(!_verify, "this method should not be called for verification");
+  PhaseGVN* igvn = _igvn;
+  uint n_idx = n->_idx;
+  PointsToNode* n_ptn = ptnode_adr(n_idx);
+  if (n_ptn != NULL)
+    return; // No need to redefine PointsTo node during first iteration.
+
+  if (n->is_Call()) {
+    // Arguments to allocation and locking don't escape.
+    if (n->is_AbstractLock()) {
+      // Put Lock and Unlock nodes on IGVN worklist to process them during
+      // first IGVN optimization when escape information is still available.
+      record_for_optimizer(n);
+    } else if (n->is_Allocate()) {
+      add_call_node(n->as_Call());
+      record_for_optimizer(n);
+    } else {
+      if (n->is_CallStaticJava()) {
+        const char* name = n->as_CallStaticJava()->_name;
+        if (name != NULL && strcmp(name, "uncommon_trap") == 0)
+          return; // Skip uncommon traps
+      }
+      // Don't mark as processed since call's arguments have to be processed.
+      delayed_worklist->push(n);
+      // Check if a call returns an object.
+      if ((n->as_Call()->returns_pointer() &&
+           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
+          (n->is_CallStaticJava() &&
+           n->as_CallStaticJava()->is_boxing_method())) {
+        add_call_node(n->as_Call());
+      }
+    }
+    return;
+  }
+  // Put this check here to process call arguments since some call nodes
+  // point to phantom_obj.
+  if (n_ptn == phantom_obj || n_ptn == null_obj)
+    return; // Skip predefined nodes.
+
+  int opcode = n->Opcode();
+  switch (opcode) {
+    case Op_AddP: {
+      Node* base = get_addp_base(n);
+      PointsToNode* ptn_base = ptnode_adr(base->_idx);
+      // Field nodes are created for all field types. They are used in
+      // adjust_scalar_replaceable_state() and split_unique_types().
+      // Note, non-oop fields will have only base edges in Connection
+      // Graph because such fields are not used for oop loads and stores.
+      int offset = address_offset(n, igvn);
+      add_field(n, PointsToNode::NoEscape, offset);
+      if (ptn_base == NULL) {
+        delayed_worklist->push(n); // Process it later.
+      } else {
+        n_ptn = ptnode_adr(n_idx);
+        add_base(n_ptn->as_Field(), ptn_base);
+      }
+      break;
+    }
+    case Op_CastX2P: {
+      map_ideal_node(n, phantom_obj);
+      break;
+    }
+    case Op_CastPP:
+    case Op_CheckCastPP:
+    case Op_EncodeP:
+    case Op_DecodeN:
+    case Op_EncodePKlass:
+    case Op_DecodeNKlass: {
+      add_local_var_and_edge(n, PointsToNode::NoEscape,
+                             n->in(1), delayed_worklist);
+      break;
+    }
+    case Op_CMoveP: {
+      add_local_var(n, PointsToNode::NoEscape);
+      // Do not add edges during first iteration because some could be
+      // not defined yet.
+      delayed_worklist->push(n);
+      break;
+    }
+    case Op_ConP:
+    case Op_ConN:
+    case Op_ConNKlass: {
+      // assume all oop constants globally escape except for null
+      PointsToNode::EscapeState es;
+      const Type* t = igvn->type(n);
+      if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
+        es = PointsToNode::NoEscape;
+      } else {
+        es = PointsToNode::GlobalEscape;
+      }
+      add_java_object(n, es);
+      break;
+    }
+    case Op_CreateEx: {
+      // assume that all exception objects globally escape
+      map_ideal_node(n, phantom_obj);
+      break;
+    }
+    case Op_LoadKlass:
+    case Op_LoadNKlass: {
+      // Unknown class is loaded
+      map_ideal_node(n, phantom_obj);
+      break;
+    }
+    case Op_LoadP:
+    case Op_LoadN:
+    case Op_LoadPLocked: {
+      add_objload_to_connection_graph(n, delayed_worklist);
+      break;
+    }
+    case Op_Parm: {
+      map_ideal_node(n, phantom_obj);
+      break;
+    }
+    case Op_PartialSubtypeCheck: {
+      // Produces Null or notNull and is used in only in CmpP so
+      // phantom_obj could be used.
+      map_ideal_node(n, phantom_obj); // Result is unknown
+      break;
+    }
+    case Op_Phi: {
+      // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
+      // ThreadLocal has RawPtr type.
+      const Type* t = n->as_Phi()->type();
+      if (t->make_ptr() != NULL) {
+        add_local_var(n, PointsToNode::NoEscape);
+        // Do not add edges during first iteration because some could be
+        // not defined yet.
+        delayed_worklist->push(n);
+      }
+      break;
+    }
+    case Op_Proj: {
+      // we are only interested in the oop result projection from a call
+      if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
+          n->in(0)->as_Call()->returns_pointer()) {
+        add_local_var_and_edge(n, PointsToNode::NoEscape,
+                               n->in(0), delayed_worklist);
+      }
+      break;
+    }
+    case Op_Rethrow: // Exception object escapes
+    case Op_Return: {
+      if (n->req() > TypeFunc::Parms &&
+          igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
+        // Treat Return value as LocalVar with GlobalEscape escape state.
+        add_local_var_and_edge(n, PointsToNode::GlobalEscape,
+                               n->in(TypeFunc::Parms), delayed_worklist);
+      }
+      break;
+    }
+    case Op_CompareAndExchangeP:
+    case Op_CompareAndExchangeN:
+    case Op_GetAndSetP:
+    case Op_GetAndSetN: {
+      add_objload_to_connection_graph(n, delayed_worklist);
+      // fallthrough
+    }
+    case Op_StoreP:
+    case Op_StoreN:
+    case Op_StoreNKlass:
+    case Op_StorePConditional:
+    case Op_WeakCompareAndSwapP:
+    case Op_WeakCompareAndSwapN:
+    case Op_CompareAndSwapP:
+    case Op_CompareAndSwapN: {
+      Node* adr = n->in(MemNode::Address);
+      const Type *adr_type = igvn->type(adr);
+      adr_type = adr_type->make_ptr();
+      if (adr_type == NULL) {
+        break; // skip dead nodes
+      }
+      if (   adr_type->isa_oopptr()
+          || (   (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
+              && adr_type == TypeRawPtr::NOTNULL
+              && adr->in(AddPNode::Address)->is_Proj()
+              && adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
+        delayed_worklist->push(n); // Process it later.
+#ifdef ASSERT
+        assert(adr->is_AddP(), "expecting an AddP");
+        if (adr_type == TypeRawPtr::NOTNULL) {
+          // Verify a raw address for a store captured by Initialize node.
+          int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
+          assert(offs != Type::OffsetBot, "offset must be a constant");
+        }
+#endif
+      } else {
+        // Ignore copy the displaced header to the BoxNode (OSR compilation).
+        if (adr->is_BoxLock())
+          break;
+        // Stored value escapes in unsafe access.
+        if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
+          // Pointer stores in G1 barriers looks like unsafe access.
+          // Ignore such stores to be able scalar replace non-escaping
+          // allocations.
+          if (UseG1GC && adr->is_AddP()) {
+            Node* base = get_addp_base(adr);
+            if (base->Opcode() == Op_LoadP &&
+                base->in(MemNode::Address)->is_AddP()) {
+              adr = base->in(MemNode::Address);
+              Node* tls = get_addp_base(adr);
+              if (tls->Opcode() == Op_ThreadLocal) {
+                int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
+                if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
+                                     SATBMarkQueue::byte_offset_of_buf())) {
+                  break; // G1 pre barrier previous oop value store.
+                }
+                if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
+                                     DirtyCardQueue::byte_offset_of_buf())) {
+                  break; // G1 post barrier card address store.
+                }
+              }
+            }
+          }
+          delayed_worklist->push(n); // Process unsafe access later.
+          break;
+        }
+#ifdef ASSERT
+        n->dump(1);
+        assert(false, "not unsafe or G1 barrier raw StoreP");
+#endif
+      }
+      break;
+    }
+    case Op_AryEq:
+    case Op_HasNegatives:
+    case Op_StrComp:
+    case Op_StrEquals:
+    case Op_StrIndexOf:
+    case Op_StrIndexOfChar:
+    case Op_StrInflatedCopy:
+    case Op_StrCompressedCopy:
+    case Op_EncodeISOArray: {
+      add_local_var(n, PointsToNode::ArgEscape);
+      delayed_worklist->push(n); // Process it later.
+      break;
+    }
+    case Op_ThreadLocal: {
+      add_java_object(n, PointsToNode::ArgEscape);
+      break;
+    }
+    default:
+      ; // Do nothing for nodes not related to EA.
+  }
+  return;
+}
+
+#ifdef ASSERT
+#define ELSE_FAIL(name)                               \
+      /* Should not be called for not pointer type. */  \
+      n->dump(1);                                       \
+      assert(false, name);                              \
+      break;
+#else
+#define ELSE_FAIL(name) \
+      break;
+#endif
+
+// Add final simple edges to graph.
+void ConnectionGraph::add_final_edges(Node *n) {
+  PointsToNode* n_ptn = ptnode_adr(n->_idx);
+#ifdef ASSERT
+  if (_verify && n_ptn->is_JavaObject())
+    return; // This method does not change graph for JavaObject.
+#endif
+
+  if (n->is_Call()) {
+    process_call_arguments(n->as_Call());
+    return;
+  }
+  assert(n->is_Store() || n->is_LoadStore() ||
+         (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
+         "node should be registered already");
+  int opcode = n->Opcode();
+  switch (opcode) {
+    case Op_AddP: {
+      Node* base = get_addp_base(n);
+      PointsToNode* ptn_base = ptnode_adr(base->_idx);
+      assert(ptn_base != NULL, "field's base should be registered");
+      add_base(n_ptn->as_Field(), ptn_base);
+      break;
+    }
+    case Op_CastPP:
+    case Op_CheckCastPP:
+    case Op_EncodeP:
+    case Op_DecodeN:
+    case Op_EncodePKlass:
+    case Op_DecodeNKlass: {
+      add_local_var_and_edge(n, PointsToNode::NoEscape,
+                             n->in(1), NULL);
+      break;
+    }
+    case Op_CMoveP: {
+      for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
+        Node* in = n->in(i);
+        if (in == NULL)
+          continue;  // ignore NULL
+        Node* uncast_in = in->uncast();
+        if (uncast_in->is_top() || uncast_in == n)
+          continue;  // ignore top or inputs which go back this node
+        PointsToNode* ptn = ptnode_adr(in->_idx);
+        assert(ptn != NULL, "node should be registered");
+        add_edge(n_ptn, ptn);
+      }
+      break;
+    }
+    case Op_LoadP:
+    case Op_LoadN:
+    case Op_LoadPLocked: {
+      // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
+      // ThreadLocal has RawPtr type.
+      const Type* t = _igvn->type(n);
+      if (t->make_ptr() != NULL) {
+        Node* adr = n->in(MemNode::Address);
+        add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
+        break;
+      }
+      ELSE_FAIL("Op_LoadP");
+    }
+    case Op_Phi: {
+      // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
+      // ThreadLocal has RawPtr type.
+      const Type* t = n->as_Phi()->type();
+      if (t->make_ptr() != NULL) {
+        for (uint i = 1; i < n->req(); i++) {
+          Node* in = n->in(i);
+          if (in == NULL)
+            continue;  // ignore NULL
+          Node* uncast_in = in->uncast();
+          if (uncast_in->is_top() || uncast_in == n)
+            continue;  // ignore top or inputs which go back this node
+          PointsToNode* ptn = ptnode_adr(in->_idx);
+          assert(ptn != NULL, "node should be registered");
+          add_edge(n_ptn, ptn);
+        }
+        break;
+      }
+      ELSE_FAIL("Op_Phi");
+    }
+    case Op_Proj: {
+      // we are only interested in the oop result projection from a call
+      if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
+          n->in(0)->as_Call()->returns_pointer()) {
+        add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
+        break;
+      }
+      ELSE_FAIL("Op_Proj");
+    }
+    case Op_Rethrow: // Exception object escapes
+    case Op_Return: {
+      if (n->req() > TypeFunc::Parms &&
+          _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
+        // Treat Return value as LocalVar with GlobalEscape escape state.
+        add_local_var_and_edge(n, PointsToNode::GlobalEscape,
+                               n->in(TypeFunc::Parms), NULL);
+        break;
+      }
+      ELSE_FAIL("Op_Return");
+    }
+    case Op_StoreP:
+    case Op_StoreN:
+    case Op_StoreNKlass:
+    case Op_StorePConditional:
+    case Op_CompareAndExchangeP:
+    case Op_CompareAndExchangeN:
+    case Op_CompareAndSwapP:
+    case Op_CompareAndSwapN:
+    case Op_WeakCompareAndSwapP:
+    case Op_WeakCompareAndSwapN:
+    case Op_GetAndSetP:
+    case Op_GetAndSetN: {
+      Node* adr = n->in(MemNode::Address);
+      const Type *adr_type = _igvn->type(adr);
+      adr_type = adr_type->make_ptr();
+#ifdef ASSERT
+      if (adr_type == NULL) {
+        n->dump(1);
+        assert(adr_type != NULL, "dead node should not be on list");
+        break;
+      }
+#endif
+      if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN ||
+          opcode == Op_CompareAndExchangeN || opcode == Op_CompareAndExchangeP) {
+        add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
+      }
+      if (   adr_type->isa_oopptr()
+          || (   (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
+              && adr_type == TypeRawPtr::NOTNULL
+              && adr->in(AddPNode::Address)->is_Proj()
+              && adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
+        // Point Address to Value
+        PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
+        assert(adr_ptn != NULL &&
+               adr_ptn->as_Field()->is_oop(), "node should be registered");
+        Node *val = n->in(MemNode::ValueIn);
+        PointsToNode* ptn = ptnode_adr(val->_idx);
+        assert(ptn != NULL, "node should be registered");
+        add_edge(adr_ptn, ptn);
+        break;
+      } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
+        // Stored value escapes in unsafe access.
+        Node *val = n->in(MemNode::ValueIn);
+        PointsToNode* ptn = ptnode_adr(val->_idx);
+        assert(ptn != NULL, "node should be registered");
+        set_escape_state(ptn, PointsToNode::GlobalEscape);
+        // Add edge to object for unsafe access with offset.
+        PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
+        assert(adr_ptn != NULL, "node should be registered");
+        if (adr_ptn->is_Field()) {
+          assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
+          add_edge(adr_ptn, ptn);
+        }
+        break;
+      }
+      ELSE_FAIL("Op_StoreP");
+    }
+    case Op_AryEq:
+    case Op_HasNegatives:
+    case Op_StrComp:
+    case Op_StrEquals:
+    case Op_StrIndexOf:
+    case Op_StrIndexOfChar:
+    case Op_StrInflatedCopy:
+    case Op_StrCompressedCopy:
+    case Op_EncodeISOArray: {
+      // char[]/byte[] arrays passed to string intrinsic do not escape but
+      // they are not scalar replaceable. Adjust escape state for them.
+      // Start from in(2) edge since in(1) is memory edge.
+      for (uint i = 2; i < n->req(); i++) {
+        Node* adr = n->in(i);
+        const Type* at = _igvn->type(adr);
+        if (!adr->is_top() && at->isa_ptr()) {
+          assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
+                 at->isa_ptr() != NULL, "expecting a pointer");
+          if (adr->is_AddP()) {
+            adr = get_addp_base(adr);
+          }
+          PointsToNode* ptn = ptnode_adr(adr->_idx);
+          assert(ptn != NULL, "node should be registered");
+          add_edge(n_ptn, ptn);
+        }
+      }
+      break;
+    }
+    default: {
+      // This method should be called only for EA specific nodes which may
+      // miss some edges when they were created.
+#ifdef ASSERT
+      n->dump(1);
+#endif
+      guarantee(false, "unknown node");
+    }
+  }
+  return;
+}
+
+void ConnectionGraph::add_call_node(CallNode* call) {
+  assert(call->returns_pointer(), "only for call which returns pointer");
+  uint call_idx = call->_idx;
+  if (call->is_Allocate()) {
+    Node* k = call->in(AllocateNode::KlassNode);
+    const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
+    assert(kt != NULL, "TypeKlassPtr  required.");
+    ciKlass* cik = kt->klass();
+    PointsToNode::EscapeState es = PointsToNode::NoEscape;
+    bool scalar_replaceable = true;
+    if (call->is_AllocateArray()) {
+      if (!cik->is_array_klass()) { // StressReflectiveCode
+        es = PointsToNode::GlobalEscape;
+      } else {
+        int length = call->in(AllocateNode::ALength)->find_int_con(-1);
+        if (length < 0 || length > EliminateAllocationArraySizeLimit) {
+          // Not scalar replaceable if the length is not constant or too big.
+          scalar_replaceable = false;
+        }
+      }
+    } else {  // Allocate instance
+      if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
+          cik->is_subclass_of(_compile->env()->Reference_klass()) ||
+         !cik->is_instance_klass() || // StressReflectiveCode
+         !cik->as_instance_klass()->can_be_instantiated() ||
+          cik->as_instance_klass()->has_finalizer()) {
+        es = PointsToNode::GlobalEscape;
+      }
+    }
+    add_java_object(call, es);
+    PointsToNode* ptn = ptnode_adr(call_idx);
+    if (!scalar_replaceable && ptn->scalar_replaceable()) {
+      ptn->set_scalar_replaceable(false);
+    }
+  } else if (call->is_CallStaticJava()) {
+    // Call nodes could be different types:
+    //
+    // 1. CallDynamicJavaNode (what happened during call is unknown):
+    //
+    //    - mapped to GlobalEscape JavaObject node if oop is returned;
+    //
+    //    - all oop arguments are escaping globally;
+    //
+    // 2. CallStaticJavaNode (execute bytecode analysis if possible):
+    //
+    //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
+    //
+    //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
+    //    - mapped to NoEscape JavaObject node if non-escaping object allocated
+    //      during call is returned;
+    //    - mapped to ArgEscape LocalVar node pointed to object arguments
+    //      which are returned and does not escape during call;
+    //
+    //    - oop arguments escaping status is defined by bytecode analysis;
+    //
+    // For a static call, we know exactly what method is being called.
+    // Use bytecode estimator to record whether the call's return value escapes.
+    ciMethod* meth = call->as_CallJava()->method();
+    if (meth == NULL) {
+      const char* name = call->as_CallStaticJava()->_name;
+      assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
+      // Returns a newly allocated unescaped object.
+      add_java_object(call, PointsToNode::NoEscape);
+      ptnode_adr(call_idx)->set_scalar_replaceable(false);
+    } else if (meth->is_boxing_method()) {
+      // Returns boxing object
+      PointsToNode::EscapeState es;
+      vmIntrinsics::ID intr = meth->intrinsic_id();
+      if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
+        // It does not escape if object is always allocated.
+        es = PointsToNode::NoEscape;
+      } else {
+        // It escapes globally if object could be loaded from cache.
+        es = PointsToNode::GlobalEscape;
+      }
+      add_java_object(call, es);
+    } else {
+      BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
+      call_analyzer->copy_dependencies(_compile->dependencies());
+      if (call_analyzer->is_return_allocated()) {
+        // Returns a newly allocated unescaped object, simply
+        // update dependency information.
+        // Mark it as NoEscape so that objects referenced by
+        // it's fields will be marked as NoEscape at least.
+        add_java_object(call, PointsToNode::NoEscape);
+        ptnode_adr(call_idx)->set_scalar_replaceable(false);
+      } else {
+        // Determine whether any arguments are returned.
+        const TypeTuple* d = call->tf()->domain();
+        bool ret_arg = false;
+        for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
+          if (d->field_at(i)->isa_ptr() != NULL &&
+              call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
+            ret_arg = true;
+            break;
+          }
+        }
+        if (ret_arg) {
+          add_local_var(call, PointsToNode::ArgEscape);
+        } else {
+          // Returns unknown object.
+          map_ideal_node(call, phantom_obj);
+        }
+      }
+    }
+  } else {
+    // An other type of call, assume the worst case:
+    // returned value is unknown and globally escapes.
+    assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
+    map_ideal_node(call, phantom_obj);
+  }
+}
+
+void ConnectionGraph::process_call_arguments(CallNode *call) {
+    bool is_arraycopy = false;
+    switch (call->Opcode()) {
+#ifdef ASSERT
+    case Op_Allocate:
+    case Op_AllocateArray:
+    case Op_Lock:
+    case Op_Unlock:
+      assert(false, "should be done already");
+      break;
+#endif
+    case Op_ArrayCopy:
+    case Op_CallLeafNoFP:
+      // Most array copies are ArrayCopy nodes at this point but there
+      // are still a few direct calls to the copy subroutines (See
+      // PhaseStringOpts::copy_string())
+      is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
+        call->as_CallLeaf()->is_call_to_arraycopystub();
+      // fall through
+    case Op_CallLeaf: {
+      // Stub calls, objects do not escape but they are not scale replaceable.
+      // Adjust escape state for outgoing arguments.
+      const TypeTuple * d = call->tf()->domain();
+      bool src_has_oops = false;
+      for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
+        const Type* at = d->field_at(i);
+        Node *arg = call->in(i);
+        if (arg == NULL) {
+          continue;
+        }
+        const Type *aat = _igvn->type(arg);
+        if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
+          continue;
+        if (arg->is_AddP()) {
+          //
+          // The inline_native_clone() case when the arraycopy stub is called
+          // after the allocation before Initialize and CheckCastPP nodes.
+          // Or normal arraycopy for object arrays case.
+          //
+          // Set AddP's base (Allocate) as not scalar replaceable since
+          // pointer to the base (with offset) is passed as argument.
+          //
+          arg = get_addp_base(arg);
+        }
+        PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
+        assert(arg_ptn != NULL, "should be registered");
+        PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
+        if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
+          assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
+                 aat->isa_ptr() != NULL, "expecting an Ptr");
+          bool arg_has_oops = aat->isa_oopptr() &&
+                              (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
+                               (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
+          if (i == TypeFunc::Parms) {
+            src_has_oops = arg_has_oops;
+          }
+          //
+          // src or dst could be j.l.Object when other is basic type array:
+          //
+          //   arraycopy(char[],0,Object*,0,size);
+          //   arraycopy(Object*,0,char[],0,size);
+          //
+          // Don't add edges in such cases.
+          //
+          bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
+                                       arg_has_oops && (i > TypeFunc::Parms);
+#ifdef ASSERT
+          if (!(is_arraycopy ||
+                (call->as_CallLeaf()->_name != NULL &&
+                 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
+                  strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
+                  strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
+                  strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
+                  strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
+                  strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
+                  strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
+                  strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
+                  strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
+                  strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
+                  strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
+                  strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
+                  strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
+                  strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
+                  strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
+                  strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
+                  strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
+                  strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
+                  strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
+                  strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
+                  strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
+                  strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
+                  strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0)
+                 ))) {
+            call->dump();
+            fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
+          }
+#endif
+          // Always process arraycopy's destination object since
+          // we need to add all possible edges to references in
+          // source object.
+          if (arg_esc >= PointsToNode::ArgEscape &&
+              !arg_is_arraycopy_dest) {
+            continue;
+          }
+          PointsToNode::EscapeState es = PointsToNode::ArgEscape;
+          if (call->is_ArrayCopy()) {
+            ArrayCopyNode* ac = call->as_ArrayCopy();
+            if (ac->is_clonebasic() ||
+                ac->is_arraycopy_validated() ||
+                ac->is_copyof_validated() ||
+                ac->is_copyofrange_validated()) {
+              es = PointsToNode::NoEscape;
+            }
+          }
+          set_escape_state(arg_ptn, es);
+          if (arg_is_arraycopy_dest) {
+            Node* src = call->in(TypeFunc::Parms);
+            if (src->is_AddP()) {
+              src = get_addp_base(src);
+            }
+            PointsToNode* src_ptn = ptnode_adr(src->_idx);
+            assert(src_ptn != NULL, "should be registered");
+            if (arg_ptn != src_ptn) {
+              // Special arraycopy edge:
+              // A destination object's field can't have the source object
+              // as base since objects escape states are not related.
+              // Only escape state of destination object's fields affects
+              // escape state of fields in source object.
+              add_arraycopy(call, es, src_ptn, arg_ptn);
+            }
+          }
+        }
+      }
+      break;
+    }
+    case Op_CallStaticJava: {
+      // For a static call, we know exactly what method is being called.
+      // Use bytecode estimator to record the call's escape affects
+#ifdef ASSERT
+      const char* name = call->as_CallStaticJava()->_name;
+      assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
+#endif
+      ciMethod* meth = call->as_CallJava()->method();
+      if ((meth != NULL) && meth->is_boxing_method()) {
+        break; // Boxing methods do not modify any oops.
+      }
+      BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
+      // fall-through if not a Java method or no analyzer information
+      if (call_analyzer != NULL) {
+        PointsToNode* call_ptn = ptnode_adr(call->_idx);
+        const TypeTuple* d = call->tf()->domain();
+        for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
+          const Type* at = d->field_at(i);
+          int k = i - TypeFunc::Parms;
+          Node* arg = call->in(i);
+          PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
+          if (at->isa_ptr() != NULL &&
+              call_analyzer->is_arg_returned(k)) {
+            // The call returns arguments.
+            if (call_ptn != NULL) { // Is call's result used?
+              assert(call_ptn->is_LocalVar(), "node should be registered");
+              assert(arg_ptn != NULL, "node should be registered");
+              add_edge(call_ptn, arg_ptn);
+            }
+          }
+          if (at->isa_oopptr() != NULL &&
+              arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
+            if (!call_analyzer->is_arg_stack(k)) {
+              // The argument global escapes
+              set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
+            } else {
+              set_escape_state(arg_ptn, PointsToNode::ArgEscape);
+              if (!call_analyzer->is_arg_local(k)) {
+                // The argument itself doesn't escape, but any fields might
+                set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
+              }
+            }
+          }
+        }
+        if (call_ptn != NULL && call_ptn->is_LocalVar()) {
+          // The call returns arguments.
+          assert(call_ptn->edge_count() > 0, "sanity");
+          if (!call_analyzer->is_return_local()) {
+            // Returns also unknown object.
+            add_edge(call_ptn, phantom_obj);
+          }
+        }
+        break;
+      }
+    }
+    default: {
+      // Fall-through here if not a Java method or no analyzer information
+      // or some other type of call, assume the worst case: all arguments
+      // globally escape.
+      const TypeTuple* d = call->tf()->domain();
+      for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
+        const Type* at = d->field_at(i);
+        if (at->isa_oopptr() != NULL) {
+          Node* arg = call->in(i);
+          if (arg->is_AddP()) {
+            arg = get_addp_base(arg);
+          }
+          assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
+          set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
+        }
+      }
+    }
+  }
+}
+
+
+// Finish Graph construction.
+bool ConnectionGraph::complete_connection_graph(
+                         GrowableArray<PointsToNode*>&   ptnodes_worklist,
+                         GrowableArray<JavaObjectNode*>& non_escaped_worklist,
+                         GrowableArray<JavaObjectNode*>& java_objects_worklist,
+                         GrowableArray<FieldNode*>&      oop_fields_worklist) {
+  // Normally only 1-3 passes needed to build Connection Graph depending
+  // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
+  // Set limit to 20 to catch situation when something did go wrong and
+  // bailout Escape Analysis.
+  // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
+#define CG_BUILD_ITER_LIMIT 20
+
+  // Propagate GlobalEscape and ArgEscape escape states and check that
+  // we still have non-escaping objects. The method pushs on _worklist
+  // Field nodes which reference phantom_object.
+  if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
+    return false; // Nothing to do.
+  }
+  // Now propagate references to all JavaObject nodes.
+  int java_objects_length = java_objects_worklist.length();
+  elapsedTimer time;
+  bool timeout = false;
+  int new_edges = 1;
+  int iterations = 0;
+  do {
+    while ((new_edges > 0) &&
+           (iterations++ < CG_BUILD_ITER_LIMIT)) {
+      double start_time = time.seconds();
+      time.start();
+      new_edges = 0;
+      // Propagate references to phantom_object for nodes pushed on _worklist
+      // by find_non_escaped_objects() and find_field_value().
+      new_edges += add_java_object_edges(phantom_obj, false);
+      for (int next = 0; next < java_objects_length; ++next) {
+        JavaObjectNode* ptn = java_objects_worklist.at(next);
+        new_edges += add_java_object_edges(ptn, true);
+
+#define SAMPLE_SIZE 4
+        if ((next % SAMPLE_SIZE) == 0) {
+          // Each 4 iterations calculate how much time it will take
+          // to complete graph construction.
+          time.stop();
+          // Poll for requests from shutdown mechanism to quiesce compiler
+          // because Connection graph construction may take long time.
+          CompileBroker::maybe_block();
+          double stop_time = time.seconds();
+          double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
+          double time_until_end = time_per_iter * (double)(java_objects_length - next);
+          if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
+            timeout = true;
+            break; // Timeout
+          }
+          start_time = stop_time;
+          time.start();
+        }
+#undef SAMPLE_SIZE
+
+      }
+      if (timeout) break;
+      if (new_edges > 0) {
+        // Update escape states on each iteration if graph was updated.
+        if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
+          return false; // Nothing to do.
+        }
+      }
+      time.stop();
+      if (time.seconds() >= EscapeAnalysisTimeout) {
+        timeout = true;
+        break;
+      }
+    }
+    if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
+      time.start();
+      // Find fields which have unknown value.
+      int fields_length = oop_fields_worklist.length();
+      for (int next = 0; next < fields_length; next++) {
+        FieldNode* field = oop_fields_worklist.at(next);
+        if (field->edge_count() == 0) {
+          new_edges += find_field_value(field);
+          // This code may added new edges to phantom_object.
+          // Need an other cycle to propagate references to phantom_object.
+        }
+      }
+      time.stop();
+      if (time.seconds() >= EscapeAnalysisTimeout) {
+        timeout = true;
+        break;
+      }
+    } else {
+      new_edges = 0; // Bailout
+    }
+  } while (new_edges > 0);
+
+  // Bailout if passed limits.
+  if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
+    Compile* C = _compile;
+    if (C->log() != NULL) {
+      C->log()->begin_elem("connectionGraph_bailout reason='reached ");
+      C->log()->text("%s", timeout ? "time" : "iterations");
+      C->log()->end_elem(" limit'");
+    }
+    assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
+           time.seconds(), iterations, nodes_size(), ptnodes_worklist.length());
+    // Possible infinite build_connection_graph loop,
+    // bailout (no changes to ideal graph were made).
+    return false;
+  }
+#ifdef ASSERT
+  if (Verbose && PrintEscapeAnalysis) {
+    tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
+                  iterations, nodes_size(), ptnodes_worklist.length());
+  }
+#endif
+
+#undef CG_BUILD_ITER_LIMIT
+
+  // Find fields initialized by NULL for non-escaping Allocations.
+  int non_escaped_length = non_escaped_worklist.length();
+  for (int next = 0; next < non_escaped_length; next++) {
+    JavaObjectNode* ptn = non_escaped_worklist.at(next);
+    PointsToNode::EscapeState es = ptn->escape_state();
+    assert(es <= PointsToNode::ArgEscape, "sanity");
+    if (es == PointsToNode::NoEscape) {
+      if (find_init_values(ptn, null_obj, _igvn) > 0) {
+        // Adding references to NULL object does not change escape states
+        // since it does not escape. Also no fields are added to NULL object.
+        add_java_object_edges(null_obj, false);
+      }
+    }
+    Node* n = ptn->ideal_node();
+    if (n->is_Allocate()) {
+      // The object allocated by this Allocate node will never be
+      // seen by an other thread. Mark it so that when it is
+      // expanded no MemBarStoreStore is added.
+      InitializeNode* ini = n->as_Allocate()->initialization();
+      if (ini != NULL)
+        ini->set_does_not_escape();
+    }
+  }
+  return true; // Finished graph construction.
+}
+
+// Propagate GlobalEscape and ArgEscape escape states to all nodes
+// and check that we still have non-escaping java objects.
+bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
+                                               GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
+  GrowableArray<PointsToNode*> escape_worklist;
+  // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
+  int ptnodes_length = ptnodes_worklist.length();
+  for (int next = 0; next < ptnodes_length; ++next) {
+    PointsToNode* ptn = ptnodes_worklist.at(next);
+    if (ptn->escape_state() >= PointsToNode::ArgEscape ||
+        ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
+      escape_worklist.push(ptn);
+    }
+  }
+  // Set escape states to referenced nodes (edges list).
+  while (escape_worklist.length() > 0) {
+    PointsToNode* ptn = escape_worklist.pop();
+    PointsToNode::EscapeState es  = ptn->escape_state();
+    PointsToNode::EscapeState field_es = ptn->fields_escape_state();
+    if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
+        es >= PointsToNode::ArgEscape) {
+      // GlobalEscape or ArgEscape state of field means it has unknown value.
+      if (add_edge(ptn, phantom_obj)) {
+        // New edge was added
+        add_field_uses_to_worklist(ptn->as_Field());
+      }
+    }
+    for (EdgeIterator i(ptn); i.has_next(); i.next()) {
+      PointsToNode* e = i.get();
+      if (e->is_Arraycopy()) {
+        assert(ptn->arraycopy_dst(), "sanity");
+        // Propagate only fields escape state through arraycopy edge.
+        if (e->fields_escape_state() < field_es) {
+          set_fields_escape_state(e, field_es);
+          escape_worklist.push(e);
+        }
+      } else if (es >= field_es) {
+        // fields_escape_state is also set to 'es' if it is less than 'es'.
+        if (e->escape_state() < es) {
+          set_escape_state(e, es);
+          escape_worklist.push(e);
+        }
+      } else {
+        // Propagate field escape state.
+        bool es_changed = false;
+        if (e->fields_escape_state() < field_es) {
+          set_fields_escape_state(e, field_es);
+          es_changed = true;
+        }
+        if ((e->escape_state() < field_es) &&
+            e->is_Field() && ptn->is_JavaObject() &&
+            e->as_Field()->is_oop()) {
+          // Change escape state of referenced fields.
+          set_escape_state(e, field_es);
+          es_changed = true;
+        } else if (e->escape_state() < es) {
+          set_escape_state(e, es);
+          es_changed = true;
+        }
+        if (es_changed) {
+          escape_worklist.push(e);
+        }
+      }
+    }
+  }
+  // Remove escaped objects from non_escaped list.
+  for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
+    JavaObjectNode* ptn = non_escaped_worklist.at(next);
+    if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
+      non_escaped_worklist.delete_at(next);
+    }
+    if (ptn->escape_state() == PointsToNode::NoEscape) {
+      // Find fields in non-escaped allocations which have unknown value.
+      find_init_values(ptn, phantom_obj, NULL);
+    }
+  }
+  return (non_escaped_worklist.length() > 0);
+}
+
+// Add all references to JavaObject node by walking over all uses.
+int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
+  int new_edges = 0;
+  if (populate_worklist) {
+    // Populate _worklist by uses of jobj's uses.
+    for (UseIterator i(jobj); i.has_next(); i.next()) {
+      PointsToNode* use = i.get();
+      if (use->is_Arraycopy())
+        continue;
+      add_uses_to_worklist(use);
+      if (use->is_Field() && use->as_Field()->is_oop()) {
+        // Put on worklist all field's uses (loads) and
+        // related field nodes (same base and offset).
+        add_field_uses_to_worklist(use->as_Field());
+      }
+    }
+  }
+  for (int l = 0; l < _worklist.length(); l++) {
+    PointsToNode* use = _worklist.at(l);
+    if (PointsToNode::is_base_use(use)) {
+      // Add reference from jobj to field and from field to jobj (field's base).
+      use = PointsToNode::get_use_node(use)->as_Field();
+      if (add_base(use->as_Field(), jobj)) {
+        new_edges++;
+      }
+      continue;
+    }
+    assert(!use->is_JavaObject(), "sanity");
+    if (use->is_Arraycopy()) {
+      if (jobj == null_obj) // NULL object does not have field edges
+        continue;
+      // Added edge from Arraycopy node to arraycopy's source java object
+      if (add_edge(use, jobj)) {
+        jobj->set_arraycopy_src();
+        new_edges++;
+      }
+      // and stop here.
+      continue;
+    }
+    if (!add_edge(use, jobj))
+      continue; // No new edge added, there was such edge already.
+    new_edges++;
+    if (use->is_LocalVar()) {
+      add_uses_to_worklist(use);
+      if (use->arraycopy_dst()) {
+        for (EdgeIterator i(use); i.has_next(); i.next()) {
+          PointsToNode* e = i.get();
+          if (e->is_Arraycopy()) {
+            if (jobj == null_obj) // NULL object does not have field edges
+              continue;
+            // Add edge from arraycopy's destination java object to Arraycopy node.
+            if (add_edge(jobj, e)) {
+              new_edges++;
+              jobj->set_arraycopy_dst();
+            }
+          }
+        }
+      }
+    } else {
+      // Added new edge to stored in field values.
+      // Put on worklist all field's uses (loads) and
+      // related field nodes (same base and offset).
+      add_field_uses_to_worklist(use->as_Field());
+    }
+  }
+  _worklist.clear();
+  _in_worklist.Reset();
+  return new_edges;
+}
+
+// Put on worklist all related field nodes.
+void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
+  assert(field->is_oop(), "sanity");
+  int offset = field->offset();
+  add_uses_to_worklist(field);
+  // Loop over all bases of this field and push on worklist Field nodes
+  // with the same offset and base (since they may reference the same field).
+  for (BaseIterator i(field); i.has_next(); i.next()) {
+    PointsToNode* base = i.get();
+    add_fields_to_worklist(field, base);
+    // Check if the base was source object of arraycopy and go over arraycopy's
+    // destination objects since values stored to a field of source object are
+    // accessable by uses (loads) of fields of destination objects.
+    if (base->arraycopy_src()) {
+      for (UseIterator j(base); j.has_next(); j.next()) {
+        PointsToNode* arycp = j.get();
+        if (arycp->is_Arraycopy()) {
+          for (UseIterator k(arycp); k.has_next(); k.next()) {
+            PointsToNode* abase = k.get();
+            if (abase->arraycopy_dst() && abase != base) {
+              // Look for the same arraycopy reference.
+              add_fields_to_worklist(field, abase);
+            }
+          }
+        }
+      }
+    }
+  }
+}
+
+// Put on worklist all related field nodes.
+void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
+  int offset = field->offset();
+  if (base->is_LocalVar()) {
+    for (UseIterator j(base); j.has_next(); j.next()) {
+      PointsToNode* f = j.get();
+      if (PointsToNode::is_base_use(f)) { // Field
+        f = PointsToNode::get_use_node(f);
+        if (f == field || !f->as_Field()->is_oop())
+          continue;
+        int offs = f->as_Field()->offset();
+        if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
+          add_to_worklist(f);
+        }
+      }
+    }
+  } else {
+    assert(base->is_JavaObject(), "sanity");
+    if (// Skip phantom_object since it is only used to indicate that
+        // this field's content globally escapes.
+        (base != phantom_obj) &&
+        // NULL object node does not have fields.
+        (base != null_obj)) {
+      for (EdgeIterator i(base); i.has_next(); i.next()) {
+        PointsToNode* f = i.get();
+        // Skip arraycopy edge since store to destination object field
+        // does not update value in source object field.
+        if (f->is_Arraycopy()) {
+          assert(base->arraycopy_dst(), "sanity");
+          continue;
+        }
+        if (f == field || !f->as_Field()->is_oop())
+          continue;
+        int offs = f->as_Field()->offset();
+        if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
+          add_to_worklist(f);
+        }
+      }
+    }
+  }
+}
+
+// Find fields which have unknown value.
+int ConnectionGraph::find_field_value(FieldNode* field) {
+  // Escaped fields should have init value already.
+  assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
+  int new_edges = 0;
+  for (BaseIterator i(field); i.has_next(); i.next()) {
+    PointsToNode* base = i.get();
+    if (base->is_JavaObject()) {
+      // Skip Allocate's fields which will be processed later.
+      if (base->ideal_node()->is_Allocate())
+        return 0;
+      assert(base == null_obj, "only NULL ptr base expected here");
+    }
+  }
+  if (add_edge(field, phantom_obj)) {
+    // New edge was added
+    new_edges++;
+    add_field_uses_to_worklist(field);
+  }
+  return new_edges;
+}
+
+// Find fields initializing values for allocations.
+int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
+  assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
+  int new_edges = 0;
+  Node* alloc = pta->ideal_node();
+  if (init_val == phantom_obj) {
+    // Do nothing for Allocate nodes since its fields values are
+    // "known" unless they are initialized by arraycopy/clone.
+    if (alloc->is_Allocate() && !pta->arraycopy_dst())
+      return 0;
+    assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
+#ifdef ASSERT
+    if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == NULL) {
+      const char* name = alloc->as_CallStaticJava()->_name;
+      assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
+    }
+#endif
+    // Non-escaped allocation returned from Java or runtime call have
+    // unknown values in fields.
+    for (EdgeIterator i(pta); i.has_next(); i.next()) {
+      PointsToNode* field = i.get();
+      if (field->is_Field() && field->as_Field()->is_oop()) {
+        if (add_edge(field, phantom_obj)) {
+          // New edge was added
+          new_edges++;
+          add_field_uses_to_worklist(field->as_Field());
+        }
+      }
+    }
+    return new_edges;
+  }
+  assert(init_val == null_obj, "sanity");
+  // Do nothing for Call nodes since its fields values are unknown.
+  if (!alloc->is_Allocate())
+    return 0;
+
+  InitializeNode* ini = alloc->as_Allocate()->initialization();
+  bool visited_bottom_offset = false;
+  GrowableArray<int> offsets_worklist;
+
+  // Check if an oop field's initializing value is recorded and add
+  // a corresponding NULL if field's value if it is not recorded.
+  // Connection Graph does not record a default initialization by NULL
+  // captured by Initialize node.
+  //
+  for (EdgeIterator i(pta); i.has_next(); i.next()) {
+    PointsToNode* field = i.get(); // Field (AddP)
+    if (!field->is_Field() || !field->as_Field()->is_oop())
+      continue; // Not oop field
+    int offset = field->as_Field()->offset();
+    if (offset == Type::OffsetBot) {
+      if (!visited_bottom_offset) {
+        // OffsetBot is used to reference array's element,
+        // always add reference to NULL to all Field nodes since we don't
+        // known which element is referenced.
+        if (add_edge(field, null_obj)) {
+          // New edge was added
+          new_edges++;
+          add_field_uses_to_worklist(field->as_Field());
+          visited_bottom_offset = true;
+        }
+      }
+    } else {
+      // Check only oop fields.
+      const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
+      if (adr_type->isa_rawptr()) {
+#ifdef ASSERT
+        // Raw pointers are used for initializing stores so skip it
+        // since it should be recorded already
+        Node* base = get_addp_base(field->ideal_node());
+        assert(adr_type->isa_rawptr() && base->is_Proj() &&
+               (base->in(0) == alloc),"unexpected pointer type");
+#endif
+        continue;
+      }
+      if (!offsets_worklist.contains(offset)) {
+        offsets_worklist.append(offset);
+        Node* value = NULL;
+        if (ini != NULL) {
+          // StoreP::memory_type() == T_ADDRESS
+          BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
+          Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
+          // Make sure initializing store has the same type as this AddP.
+          // This AddP may reference non existing field because it is on a
+          // dead branch of bimorphic call which is not eliminated yet.
+          if (store != NULL && store->is_Store() &&
+              store->as_Store()->memory_type() == ft) {
+            value = store->in(MemNode::ValueIn);
+#ifdef ASSERT
+            if (VerifyConnectionGraph) {
+              // Verify that AddP already points to all objects the value points to.
+              PointsToNode* val = ptnode_adr(value->_idx);
+              assert((val != NULL), "should be processed already");
+              PointsToNode* missed_obj = NULL;
+              if (val->is_JavaObject()) {
+                if (!field->points_to(val->as_JavaObject())) {
+                  missed_obj = val;
+                }
+              } else {
+                if (!val->is_LocalVar() || (val->edge_count() == 0)) {
+                  tty->print_cr("----------init store has invalid value -----");
+                  store->dump();
+                  val->dump();
+                  assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
+                }
+                for (EdgeIterator j(val); j.has_next(); j.next()) {
+                  PointsToNode* obj = j.get();
+                  if (obj->is_JavaObject()) {
+                    if (!field->points_to(obj->as_JavaObject())) {
+                      missed_obj = obj;
+                      break;
+                    }
+                  }
+                }
+              }
+              if (missed_obj != NULL) {
+                tty->print_cr("----------field---------------------------------");
+                field->dump();
+                tty->print_cr("----------missed referernce to object-----------");
+                missed_obj->dump();
+                tty->print_cr("----------object referernced by init store -----");
+                store->dump();
+                val->dump();
+                assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
+              }
+            }
+#endif
+          } else {
+            // There could be initializing stores which follow allocation.
+            // For example, a volatile field store is not collected
+            // by Initialize node.
+            //
+            // Need to check for dependent loads to separate such stores from
+            // stores which follow loads. For now, add initial value NULL so
+            // that compare pointers optimization works correctly.
+          }
+        }
+        if (value == NULL) {
+          // A field's initializing value was not recorded. Add NULL.
+          if (add_edge(field, null_obj)) {
+            // New edge was added
+            new_edges++;
+            add_field_uses_to_worklist(field->as_Field());
+          }
+        }
+      }
+    }
+  }
+  return new_edges;
+}
+
+// Adjust scalar_replaceable state after Connection Graph is built.
+void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
+  // Search for non-escaping objects which are not scalar replaceable
+  // and mark them to propagate the state to referenced objects.
+
+  // 1. An object is not scalar replaceable if the field into which it is
+  // stored has unknown offset (stored into unknown element of an array).
+  //
+  for (UseIterator i(jobj); i.has_next(); i.next()) {
+    PointsToNode* use = i.get();
+    if (use->is_Arraycopy()) {
+      continue;
+    }
+    if (use->is_Field()) {
+      FieldNode* field = use->as_Field();
+      assert(field->is_oop() && field->scalar_replaceable(), "sanity");
+      if (field->offset() == Type::OffsetBot) {
+        jobj->set_scalar_replaceable(false);
+        return;
+      }
+      // 2. An object is not scalar replaceable if the field into which it is
+      // stored has multiple bases one of which is null.
+      if (field->base_count() > 1) {
+        for (BaseIterator i(field); i.has_next(); i.next()) {
+          PointsToNode* base = i.get();
+          if (base == null_obj) {
+            jobj->set_scalar_replaceable(false);
+            return;
+          }
+        }
+      }
+    }
+    assert(use->is_Field() || use->is_LocalVar(), "sanity");
+    // 3. An object is not scalar replaceable if it is merged with other objects.
+    for (EdgeIterator j(use); j.has_next(); j.next()) {
+      PointsToNode* ptn = j.get();
+      if (ptn->is_JavaObject() && ptn != jobj) {
+        // Mark all objects.
+        jobj->set_scalar_replaceable(false);
+         ptn->set_scalar_replaceable(false);
+      }
+    }
+    if (!jobj->scalar_replaceable()) {
+      return;
+    }
+  }
+
+  for (EdgeIterator j(jobj); j.has_next(); j.next()) {
+    if (j.get()->is_Arraycopy()) {
+      continue;
+    }
+
+    // Non-escaping object node should point only to field nodes.
+    FieldNode* field = j.get()->as_Field();
+    int offset = field->as_Field()->offset();
+
+    // 4. An object is not scalar replaceable if it has a field with unknown
+    // offset (array's element is accessed in loop).
+    if (offset == Type::OffsetBot) {
+      jobj->set_scalar_replaceable(false);
+      return;
+    }
+    // 5. Currently an object is not scalar replaceable if a LoadStore node
+    // access its field since the field value is unknown after it.
+    //
+    Node* n = field->ideal_node();
+    for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
+      if (n->fast_out(i)->is_LoadStore()) {
+        jobj->set_scalar_replaceable(false);
+        return;
+      }
+    }
+
+    // 6. Or the address may point to more then one object. This may produce
+    // the false positive result (set not scalar replaceable)
+    // since the flow-insensitive escape analysis can't separate
+    // the case when stores overwrite the field's value from the case
+    // when stores happened on different control branches.
+    //
+    // Note: it will disable scalar replacement in some cases:
+    //
+    //    Point p[] = new Point[1];
+    //    p[0] = new Point(); // Will be not scalar replaced
+    //
+    // but it will save us from incorrect optimizations in next cases:
+    //
+    //    Point p[] = new Point[1];
+    //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
+    //
+    if (field->base_count() > 1) {
+      for (BaseIterator i(field); i.has_next(); i.next()) {
+        PointsToNode* base = i.get();
+        // Don't take into account LocalVar nodes which
+        // may point to only one object which should be also
+        // this field's base by now.
+        if (base->is_JavaObject() && base != jobj) {
+          // Mark all bases.
+          jobj->set_scalar_replaceable(false);
+          base->set_scalar_replaceable(false);
+        }
+      }
+    }
+  }
+}
+
+#ifdef ASSERT
+void ConnectionGraph::verify_connection_graph(
+                         GrowableArray<PointsToNode*>&   ptnodes_worklist,
+                         GrowableArray<JavaObjectNode*>& non_escaped_worklist,
+                         GrowableArray<JavaObjectNode*>& java_objects_worklist,
+                         GrowableArray<Node*>& addp_worklist) {
+  // Verify that graph is complete - no new edges could be added.
+  int java_objects_length = java_objects_worklist.length();
+  int non_escaped_length  = non_escaped_worklist.length();
+  int new_edges = 0;
+  for (int next = 0; next < java_objects_length; ++next) {
+    JavaObjectNode* ptn = java_objects_worklist.at(next);
+    new_edges += add_java_object_edges(ptn, true);
+  }
+  assert(new_edges == 0, "graph was not complete");
+  // Verify that escape state is final.
+  int length = non_escaped_worklist.length();
+  find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
+  assert((non_escaped_length == non_escaped_worklist.length()) &&
+         (non_escaped_length == length) &&
+         (_worklist.length() == 0), "escape state was not final");
+
+  // Verify fields information.
+  int addp_length = addp_worklist.length();
+  for (int next = 0; next < addp_length; ++next ) {
+    Node* n = addp_worklist.at(next);
+    FieldNode* field = ptnode_adr(n->_idx)->as_Field();
+    if (field->is_oop()) {
+      // Verify that field has all bases
+      Node* base = get_addp_base(n);
+      PointsToNode* ptn = ptnode_adr(base->_idx);
+      if (ptn->is_JavaObject()) {
+        assert(field->has_base(ptn->as_JavaObject()), "sanity");
+      } else {
+        assert(ptn->is_LocalVar(), "sanity");
+        for (EdgeIterator i(ptn); i.has_next(); i.next()) {
+          PointsToNode* e = i.get();
+          if (e->is_JavaObject()) {
+            assert(field->has_base(e->as_JavaObject()), "sanity");
+          }
+        }
+      }
+      // Verify that all fields have initializing values.
+      if (field->edge_count() == 0) {
+        tty->print_cr("----------field does not have references----------");
+        field->dump();
+        for (BaseIterator i(field); i.has_next(); i.next()) {
+          PointsToNode* base = i.get();
+          tty->print_cr("----------field has next base---------------------");
+          base->dump();
+          if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
+            tty->print_cr("----------base has fields-------------------------");
+            for (EdgeIterator j(base); j.has_next(); j.next()) {
+              j.get()->dump();
+            }
+            tty->print_cr("----------base has references---------------------");
+            for (UseIterator j(base); j.has_next(); j.next()) {
+              j.get()->dump();
+            }
+          }
+        }
+        for (UseIterator i(field); i.has_next(); i.next()) {
+          i.get()->dump();
+        }
+        assert(field->edge_count() > 0, "sanity");
+      }
+    }
+  }
+}
+#endif
+
+// Optimize ideal graph.
+void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
+                                           GrowableArray<Node*>& storestore_worklist) {
+  Compile* C = _compile;
+  PhaseIterGVN* igvn = _igvn;
+  if (EliminateLocks) {
+    // Mark locks before changing ideal graph.
+    int cnt = C->macro_count();
+    for( int i=0; i < cnt; i++ ) {
+      Node *n = C->macro_node(i);
+      if (n->is_AbstractLock()) { // Lock and Unlock nodes
+        AbstractLockNode* alock = n->as_AbstractLock();
+        if (!alock->is_non_esc_obj()) {
+          if (not_global_escape(alock->obj_node())) {
+            assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
+            // The lock could be marked eliminated by lock coarsening
+            // code during first IGVN before EA. Replace coarsened flag
+            // to eliminate all associated locks/unlocks.
+#ifdef ASSERT
+            alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
+#endif
+            alock->set_non_esc_obj();
+          }
+        }
+      }
+    }
+  }
+
+  if (OptimizePtrCompare) {
+    // Add ConI(#CC_GT) and ConI(#CC_EQ).
+    _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
+    _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
+    // Optimize objects compare.
+    while (ptr_cmp_worklist.length() != 0) {
+      Node *n = ptr_cmp_worklist.pop();
+      Node *res = optimize_ptr_compare(n);
+      if (res != NULL) {
+#ifndef PRODUCT
+        if (PrintOptimizePtrCompare) {
+          tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
+          if (Verbose) {
+            n->dump(1);
+          }
+        }
+#endif
+        igvn->replace_node(n, res);
+      }
+    }
+    // cleanup
+    if (_pcmp_neq->outcnt() == 0)
+      igvn->hash_delete(_pcmp_neq);
+    if (_pcmp_eq->outcnt()  == 0)
+      igvn->hash_delete(_pcmp_eq);
+  }
+
+  // For MemBarStoreStore nodes added in library_call.cpp, check
+  // escape status of associated AllocateNode and optimize out
+  // MemBarStoreStore node if the allocated object never escapes.
+  while (storestore_worklist.length() != 0) {
+    Node *n = storestore_worklist.pop();
+    MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
+    Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
+    assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
+    if (not_global_escape(alloc)) {
+      MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
+      mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
+      mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
+      igvn->register_new_node_with_optimizer(mb);
+      igvn->replace_node(storestore, mb);
+    }
+  }
+}
+
+// Optimize objects compare.
+Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
+  assert(OptimizePtrCompare, "sanity");
+  PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
+  PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
+  JavaObjectNode* jobj1 = unique_java_object(n->in(1));
+  JavaObjectNode* jobj2 = unique_java_object(n->in(2));
+  assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
+  assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
+
+  // Check simple cases first.
+  if (jobj1 != NULL) {
+    if (jobj1->escape_state() == PointsToNode::NoEscape) {
+      if (jobj1 == jobj2) {
+        // Comparing the same not escaping object.
+        return _pcmp_eq;
+      }
+      Node* obj = jobj1->ideal_node();
+      // Comparing not escaping allocation.
+      if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
+          !ptn2->points_to(jobj1)) {
+        return _pcmp_neq; // This includes nullness check.
+      }
+    }
+  }
+  if (jobj2 != NULL) {
+    if (jobj2->escape_state() == PointsToNode::NoEscape) {
+      Node* obj = jobj2->ideal_node();
+      // Comparing not escaping allocation.
+      if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
+          !ptn1->points_to(jobj2)) {
+        return _pcmp_neq; // This includes nullness check.
+      }
+    }
+  }
+  if (jobj1 != NULL && jobj1 != phantom_obj &&
+      jobj2 != NULL && jobj2 != phantom_obj &&
+      jobj1->ideal_node()->is_Con() &&
+      jobj2->ideal_node()->is_Con()) {
+    // Klass or String constants compare. Need to be careful with
+    // compressed pointers - compare types of ConN and ConP instead of nodes.
+    const Type* t1 = jobj1->ideal_node()->get_ptr_type();
+    const Type* t2 = jobj2->ideal_node()->get_ptr_type();
+    if (t1->make_ptr() == t2->make_ptr()) {
+      return _pcmp_eq;
+    } else {
+      return _pcmp_neq;
+    }
+  }
+  if (ptn1->meet(ptn2)) {
+    return NULL; // Sets are not disjoint
+  }
+
+  // Sets are disjoint.
+  bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
+  bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
+  bool set1_has_null_ptr    = ptn1->points_to(null_obj);
+  bool set2_has_null_ptr    = ptn2->points_to(null_obj);
+  if ((set1_has_unknown_ptr && set2_has_null_ptr) ||
+      (set2_has_unknown_ptr && set1_has_null_ptr)) {
+    // Check nullness of unknown object.
+    return NULL;
+  }
+
+  // Disjointness by itself is not sufficient since
+  // alias analysis is not complete for escaped objects.
+  // Disjoint sets are definitely unrelated only when
+  // at least one set has only not escaping allocations.
+  if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
+    if (ptn1->non_escaping_allocation()) {
+      return _pcmp_neq;
+    }
+  }
+  if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
+    if (ptn2->non_escaping_allocation()) {
+      return _pcmp_neq;
+    }
+  }
+  return NULL;
+}
+
+// Connection Graph constuction functions.
+
+void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
+  PointsToNode* ptadr = _nodes.at(n->_idx);
+  if (ptadr != NULL) {
+    assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
+    return;
+  }
+  Compile* C = _compile;
+  ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
+  _nodes.at_put(n->_idx, ptadr);
+}
+
+void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
+  PointsToNode* ptadr = _nodes.at(n->_idx);
+  if (ptadr != NULL) {
+    assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
+    return;
+  }
+  Compile* C = _compile;
+  ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
+  _nodes.at_put(n->_idx, ptadr);
+}
+
+void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
+  PointsToNode* ptadr = _nodes.at(n->_idx);
+  if (ptadr != NULL) {
+    assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
+    return;
+  }
+  bool unsafe = false;
+  bool is_oop = is_oop_field(n, offset, &unsafe);
+  if (unsafe) {
+    es = PointsToNode::GlobalEscape;
+  }
+  Compile* C = _compile;
+  FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
+  _nodes.at_put(n->_idx, field);
+}
+
+void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
+                                    PointsToNode* src, PointsToNode* dst) {
+  assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
+  assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
+  PointsToNode* ptadr = _nodes.at(n->_idx);
+  if (ptadr != NULL) {
+    assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
+    return;
+  }
+  Compile* C = _compile;
+  ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
+  _nodes.at_put(n->_idx, ptadr);
+  // Add edge from arraycopy node to source object.
+  (void)add_edge(ptadr, src);
+  src->set_arraycopy_src();
+  // Add edge from destination object to arraycopy node.
+  (void)add_edge(dst, ptadr);
+  dst->set_arraycopy_dst();
+}
+
+bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
+  const Type* adr_type = n->as_AddP()->bottom_type();
+  BasicType bt = T_INT;
+  if (offset == Type::OffsetBot) {
+    // Check only oop fields.
+    if (!adr_type->isa_aryptr() ||
+        (adr_type->isa_aryptr()->klass() == NULL) ||
+         adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
+      // OffsetBot is used to reference array's element. Ignore first AddP.
+      if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
+        bt = T_OBJECT;
+      }
+    }
+  } else if (offset != oopDesc::klass_offset_in_bytes()) {
+    if (adr_type->isa_instptr()) {
+      ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
+      if (field != NULL) {
+        bt = field->layout_type();
+      } else {
+        // Check for unsafe oop field access
+        if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
+            n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
+            n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN)) {
+          bt = T_OBJECT;
+          (*unsafe) = true;
+        }
+      }
+    } else if (adr_type->isa_aryptr()) {
+      if (offset == arrayOopDesc::length_offset_in_bytes()) {
+        // Ignore array length load.
+      } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
+        // Ignore first AddP.
+      } else {
+        const Type* elemtype = adr_type->isa_aryptr()->elem();
+        bt = elemtype->array_element_basic_type();
+      }
+    } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
+      // Allocation initialization, ThreadLocal field access, unsafe access
+      if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
+          n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
+          n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN)) {
+        bt = T_OBJECT;
+      }
+    }
+  }
+  return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
+}
+
+// Returns unique pointed java object or NULL.
+JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
+  assert(!_collecting, "should not call when contructed graph");
+  // If the node was created after the escape computation we can't answer.
+  uint idx = n->_idx;
+  if (idx >= nodes_size()) {
+    return NULL;
+  }
+  PointsToNode* ptn = ptnode_adr(idx);
+  if (ptn->is_JavaObject()) {
+    return ptn->as_JavaObject();
+  }
+  assert(ptn->is_LocalVar(), "sanity");
+  // Check all java objects it points to.
+  JavaObjectNode* jobj = NULL;
+  for (EdgeIterator i(ptn); i.has_next(); i.next()) {
+    PointsToNode* e = i.get();
+    if (e->is_JavaObject()) {
+      if (jobj == NULL) {
+        jobj = e->as_JavaObject();
+      } else if (jobj != e) {
+        return NULL;
+      }
+    }
+  }
+  return jobj;
+}
+
+// Return true if this node points only to non-escaping allocations.
+bool PointsToNode::non_escaping_allocation() {
+  if (is_JavaObject()) {
+    Node* n = ideal_node();
+    if (n->is_Allocate() || n->is_CallStaticJava()) {
+      return (escape_state() == PointsToNode::NoEscape);
+    } else {
+      return false;
+    }
+  }
+  assert(is_LocalVar(), "sanity");
+  // Check all java objects it points to.
+  for (EdgeIterator i(this); i.has_next(); i.next()) {
+    PointsToNode* e = i.get();
+    if (e->is_JavaObject()) {
+      Node* n = e->ideal_node();
+      if ((e->escape_state() != PointsToNode::NoEscape) ||
+          !(n->is_Allocate() || n->is_CallStaticJava())) {
+        return false;
+      }
+    }
+  }
+  return true;
+}
+
+// Return true if we know the node does not escape globally.
+bool ConnectionGraph::not_global_escape(Node *n) {
+  assert(!_collecting, "should not call during graph construction");
+  // If the node was created after the escape computation we can't answer.
+  uint idx = n->_idx;
+  if (idx >= nodes_size()) {
+    return false;
+  }
+  PointsToNode* ptn = ptnode_adr(idx);
+  PointsToNode::EscapeState es = ptn->escape_state();
+  // If we have already computed a value, return it.
+  if (es >= PointsToNode::GlobalEscape)
+    return false;
+  if (ptn->is_JavaObject()) {
+    return true; // (es < PointsToNode::GlobalEscape);
+  }
+  assert(ptn->is_LocalVar(), "sanity");
+  // Check all java objects it points to.
+  for (EdgeIterator i(ptn); i.has_next(); i.next()) {
+    if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
+      return false;
+  }
+  return true;
+}
+
+
+// Helper functions
+
+// Return true if this node points to specified node or nodes it points to.
+bool PointsToNode::points_to(JavaObjectNode* ptn) const {
+  if (is_JavaObject()) {
+    return (this == ptn);
+  }
+  assert(is_LocalVar() || is_Field(), "sanity");
+  for (EdgeIterator i(this); i.has_next(); i.next()) {
+    if (i.get() == ptn)
+      return true;
+  }
+  return false;
+}
+
+// Return true if one node points to an other.
+bool PointsToNode::meet(PointsToNode* ptn) {
+  if (this == ptn) {
+    return true;
+  } else if (ptn->is_JavaObject()) {
+    return this->points_to(ptn->as_JavaObject());
+  } else if (this->is_JavaObject()) {
+    return ptn->points_to(this->as_JavaObject());
+  }
+  assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
+  int ptn_count =  ptn->edge_count();
+  for (EdgeIterator i(this); i.has_next(); i.next()) {
+    PointsToNode* this_e = i.get();
+    for (int j = 0; j < ptn_count; j++) {
+      if (this_e == ptn->edge(j))
+        return true;
+    }
+  }
+  return false;
+}
+
+#ifdef ASSERT
+// Return true if bases point to this java object.
+bool FieldNode::has_base(JavaObjectNode* jobj) const {
+  for (BaseIterator i(this); i.has_next(); i.next()) {
+    if (i.get() == jobj)
+      return true;
+  }
+  return false;
+}
+#endif
+
+int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
+  const Type *adr_type = phase->type(adr);
+  if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
+      adr->in(AddPNode::Address)->is_Proj() &&
+      adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
+    // We are computing a raw address for a store captured by an Initialize
+    // compute an appropriate address type. AddP cases #3 and #5 (see below).
+    int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
+    assert(offs != Type::OffsetBot ||
+           adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
+           "offset must be a constant or it is initialization of array");
+    return offs;
+  }
+  const TypePtr *t_ptr = adr_type->isa_ptr();
+  assert(t_ptr != NULL, "must be a pointer type");
+  return t_ptr->offset();
+}
+
+Node* ConnectionGraph::get_addp_base(Node *addp) {
+  assert(addp->is_AddP(), "must be AddP");
+  //
+  // AddP cases for Base and Address inputs:
+  // case #1. Direct object's field reference:
+  //     Allocate
+  //       |
+  //     Proj #5 ( oop result )
+  //       |
+  //     CheckCastPP (cast to instance type)
+  //      | |
+  //     AddP  ( base == address )
+  //
+  // case #2. Indirect object's field reference:
+  //      Phi
+  //       |
+  //     CastPP (cast to instance type)
+  //      | |
+  //     AddP  ( base == address )
+  //
+  // case #3. Raw object's field reference for Initialize node:
+  //      Allocate
+  //        |
+  //      Proj #5 ( oop result )
+  //  top   |
+  //     \  |
+  //     AddP  ( base == top )
+  //
+  // case #4. Array's element reference:
+  //   {CheckCastPP | CastPP}
+  //     |  | |
+  //     |  AddP ( array's element offset )
+  //     |  |
+  //     AddP ( array's offset )
+  //
+  // case #5. Raw object's field reference for arraycopy stub call:
+  //          The inline_native_clone() case when the arraycopy stub is called
+  //          after the allocation before Initialize and CheckCastPP nodes.
+  //      Allocate
+  //        |
+  //      Proj #5 ( oop result )
+  //       | |
+  //       AddP  ( base == address )
+  //
+  // case #6. Constant Pool, ThreadLocal, CastX2P or
+  //          Raw object's field reference:
+  //      {ConP, ThreadLocal, CastX2P, raw Load}
+  //  top   |
+  //     \  |
+  //     AddP  ( base == top )
+  //
+  // case #7. Klass's field reference.
+  //      LoadKlass
+  //       | |
+  //       AddP  ( base == address )
+  //
+  // case #8. narrow Klass's field reference.
+  //      LoadNKlass
+  //       |
+  //      DecodeN
+  //       | |
+  //       AddP  ( base == address )
+  //
+  // case #9. Mixed unsafe access
+  //    {instance}
+  //        |
+  //      CheckCastPP (raw)
+  //  top   |
+  //     \  |
+  //     AddP  ( base == top )
+  //
+  Node *base = addp->in(AddPNode::Base);
+  if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9.
+    base = addp->in(AddPNode::Address);
+    while (base->is_AddP()) {
+      // Case #6 (unsafe access) may have several chained AddP nodes.
+      assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
+      base = base->in(AddPNode::Address);
+    }
+    if (base->Opcode() == Op_CheckCastPP &&
+        base->bottom_type()->isa_rawptr() &&
+        _igvn->type(base->in(1))->isa_oopptr()) {
+      base = base->in(1); // Case #9
+    } else {
+      Node* uncast_base = base->uncast();
+      int opcode = uncast_base->Opcode();
+      assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
+             opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
+             (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
+             (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
+    }
+  }
+  return base;
+}
+
+Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
+  assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
+  Node* addp2 = addp->raw_out(0);
+  if (addp->outcnt() == 1 && addp2->is_AddP() &&
+      addp2->in(AddPNode::Base) == n &&
+      addp2->in(AddPNode::Address) == addp) {
+    assert(addp->in(AddPNode::Base) == n, "expecting the same base");
+    //
+    // Find array's offset to push it on worklist first and
+    // as result process an array's element offset first (pushed second)
+    // to avoid CastPP for the array's offset.
+    // Otherwise the inserted CastPP (LocalVar) will point to what
+    // the AddP (Field) points to. Which would be wrong since
+    // the algorithm expects the CastPP has the same point as
+    // as AddP's base CheckCastPP (LocalVar).
+    //
+    //    ArrayAllocation
+    //     |
+    //    CheckCastPP
+    //     |
+    //    memProj (from ArrayAllocation CheckCastPP)
+    //     |  ||
+    //     |  ||   Int (element index)
+    //     |  ||    |   ConI (log(element size))
+    //     |  ||    |   /
+    //     |  ||   LShift
+    //     |  ||  /
+    //     |  AddP (array's element offset)
+    //     |  |
+    //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
+    //     | / /
+    //     AddP (array's offset)
+    //      |
+    //     Load/Store (memory operation on array's element)
+    //
+    return addp2;
+  }
+  return NULL;
+}
+
+//
+// Adjust the type and inputs of an AddP which computes the
+// address of a field of an instance
+//
+bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
+  PhaseGVN* igvn = _igvn;
+  const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
+  assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
+  const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
+  if (t == NULL) {
+    // We are computing a raw address for a store captured by an Initialize
+    // compute an appropriate address type (cases #3 and #5).
+    assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
+    assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
+    intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
+    assert(offs != Type::OffsetBot, "offset must be a constant");
+    t = base_t->add_offset(offs)->is_oopptr();
+  }
+  int inst_id =  base_t->instance_id();
+  assert(!t->is_known_instance() || t->instance_id() == inst_id,
+                             "old type must be non-instance or match new type");
+
+  // The type 't' could be subclass of 'base_t'.
+  // As result t->offset() could be large then base_t's size and it will
+  // cause the failure in add_offset() with narrow oops since TypeOopPtr()
+  // constructor verifies correctness of the offset.
+  //
+  // It could happened on subclass's branch (from the type profiling
+  // inlining) which was not eliminated during parsing since the exactness
+  // of the allocation type was not propagated to the subclass type check.
+  //
+  // Or the type 't' could be not related to 'base_t' at all.
+  // It could happened when CHA type is different from MDO type on a dead path
+  // (for example, from instanceof check) which is not collapsed during parsing.
+  //
+  // Do nothing for such AddP node and don't process its users since
+  // this code branch will go away.
+  //
+  if (!t->is_known_instance() &&
+      !base_t->klass()->is_subtype_of(t->klass())) {
+     return false; // bail out
+  }
+  const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
+  // Do NOT remove the next line: ensure a new alias index is allocated
+  // for the instance type. Note: C++ will not remove it since the call
+  // has side effect.
+  int alias_idx = _compile->get_alias_index(tinst);
+  igvn->set_type(addp, tinst);
+  // record the allocation in the node map
+  set_map(addp, get_map(base->_idx));
+  // Set addp's Base and Address to 'base'.
+  Node *abase = addp->in(AddPNode::Base);
+  Node *adr   = addp->in(AddPNode::Address);
+  if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
+      adr->in(0)->_idx == (uint)inst_id) {
+    // Skip AddP cases #3 and #5.
+  } else {
+    assert(!abase->is_top(), "sanity"); // AddP case #3
+    if (abase != base) {
+      igvn->hash_delete(addp);
+      addp->set_req(AddPNode::Base, base);
+      if (abase == adr) {
+        addp->set_req(AddPNode::Address, base);
+      } else {
+        // AddP case #4 (adr is array's element offset AddP node)
+#ifdef ASSERT
+        const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
+        assert(adr->is_AddP() && atype != NULL &&
+               atype->instance_id() == inst_id, "array's element offset should be processed first");
+#endif
+      }
+      igvn->hash_insert(addp);
+    }
+  }
+  // Put on IGVN worklist since at least addp's type was changed above.
+  record_for_optimizer(addp);
+  return true;
+}
+
+//
+// Create a new version of orig_phi if necessary. Returns either the newly
+// created phi or an existing phi.  Sets create_new to indicate whether a new
+// phi was created.  Cache the last newly created phi in the node map.
+//
+PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
+  Compile *C = _compile;
+  PhaseGVN* igvn = _igvn;
+  new_created = false;
+  int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
+  // nothing to do if orig_phi is bottom memory or matches alias_idx
+  if (phi_alias_idx == alias_idx) {
+    return orig_phi;
+  }
+  // Have we recently created a Phi for this alias index?
+  PhiNode *result = get_map_phi(orig_phi->_idx);
+  if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
+    return result;
+  }
+  // Previous check may fail when the same wide memory Phi was split into Phis
+  // for different memory slices. Search all Phis for this region.
+  if (result != NULL) {
+    Node* region = orig_phi->in(0);
+    for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
+      Node* phi = region->fast_out(i);
+      if (phi->is_Phi() &&
+          C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
+        assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
+        return phi->as_Phi();
+      }
+    }
+  }
+  if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
+    if (C->do_escape_analysis() == true && !C->failing()) {
+      // Retry compilation without escape analysis.
+      // If this is the first failure, the sentinel string will "stick"
+      // to the Compile object, and the C2Compiler will see it and retry.
+      C->record_failure(C2Compiler::retry_no_escape_analysis());
+    }
+    return NULL;
+  }
+  orig_phi_worklist.append_if_missing(orig_phi);
+  const TypePtr *atype = C->get_adr_type(alias_idx);
+  result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
+  C->copy_node_notes_to(result, orig_phi);
+  igvn->set_type(result, result->bottom_type());
+  record_for_optimizer(result);
+  set_map(orig_phi, result);
+  new_created = true;
+  return result;
+}
+
+//
+// Return a new version of Memory Phi "orig_phi" with the inputs having the
+// specified alias index.
+//
+PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
+  assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
+  Compile *C = _compile;
+  PhaseGVN* igvn = _igvn;
+  bool new_phi_created;
+  PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
+  if (!new_phi_created) {
+    return result;
+  }
+  GrowableArray<PhiNode *>  phi_list;
+  GrowableArray<uint>  cur_input;
+  PhiNode *phi = orig_phi;
+  uint idx = 1;
+  bool finished = false;
+  while(!finished) {
+    while (idx < phi->req()) {
+      Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
+      if (mem != NULL && mem->is_Phi()) {
+        PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
+        if (new_phi_created) {
+          // found an phi for which we created a new split, push current one on worklist and begin
+          // processing new one
+          phi_list.push(phi);
+          cur_input.push(idx);
+          phi = mem->as_Phi();
+          result = newphi;
+          idx = 1;
+          continue;
+        } else {
+          mem = newphi;
+        }
+      }
+      if (C->failing()) {
+        return NULL;
+      }
+      result->set_req(idx++, mem);
+    }
+#ifdef ASSERT
+    // verify that the new Phi has an input for each input of the original
+    assert( phi->req() == result->req(), "must have same number of inputs.");
+    assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
+#endif
+    // Check if all new phi's inputs have specified alias index.
+    // Otherwise use old phi.
+    for (uint i = 1; i < phi->req(); i++) {
+      Node* in = result->in(i);
+      assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
+    }
+    // we have finished processing a Phi, see if there are any more to do
+    finished = (phi_list.length() == 0 );
+    if (!finished) {
+      phi = phi_list.pop();
+      idx = cur_input.pop();
+      PhiNode *prev_result = get_map_phi(phi->_idx);
+      prev_result->set_req(idx++, result);
+      result = prev_result;
+    }
+  }
+  return result;
+}
+
+//
+// The next methods are derived from methods in MemNode.
+//
+Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
+  Node *mem = mmem;
+  // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
+  // means an array I have not precisely typed yet.  Do not do any
+  // alias stuff with it any time soon.
+  if (toop->base() != Type::AnyPtr &&
+      !(toop->klass() != NULL &&
+        toop->klass()->is_java_lang_Object() &&
+        toop->offset() == Type::OffsetBot)) {
+    mem = mmem->memory_at(alias_idx);
+    // Update input if it is progress over what we have now
+  }
+  return mem;
+}
+
+//
+// Move memory users to their memory slices.
+//
+void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
+  Compile* C = _compile;
+  PhaseGVN* igvn = _igvn;
+  const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
+  assert(tp != NULL, "ptr type");
+  int alias_idx = C->get_alias_index(tp);
+  int general_idx = C->get_general_index(alias_idx);
+
+  // Move users first
+  for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
+    Node* use = n->fast_out(i);
+    if (use->is_MergeMem()) {
+      MergeMemNode* mmem = use->as_MergeMem();
+      assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
+      if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
+        continue; // Nothing to do
+      }
+      // Replace previous general reference to mem node.
+      uint orig_uniq = C->unique();
+      Node* m = find_inst_mem(n, general_idx, orig_phis);
+      assert(orig_uniq == C->unique(), "no new nodes");
+      mmem->set_memory_at(general_idx, m);
+      --imax;
+      --i;
+    } else if (use->is_MemBar()) {
+      assert(!use->is_Initialize(), "initializing stores should not be moved");
+      if (use->req() > MemBarNode::Precedent &&
+          use->in(MemBarNode::Precedent) == n) {
+        // Don't move related membars.
+        record_for_optimizer(use);
+        continue;
+      }
+      tp = use->as_MemBar()->adr_type()->isa_ptr();
+      if ((tp != NULL && C->get_alias_index(tp) == alias_idx) ||
+          alias_idx == general_idx) {
+        continue; // Nothing to do
+      }
+      // Move to general memory slice.
+      uint orig_uniq = C->unique();
+      Node* m = find_inst_mem(n, general_idx, orig_phis);
+      assert(orig_uniq == C->unique(), "no new nodes");
+      igvn->hash_delete(use);
+      imax -= use->replace_edge(n, m);
+      igvn->hash_insert(use);
+      record_for_optimizer(use);
+      --i;
+#ifdef ASSERT
+    } else if (use->is_Mem()) {
+      if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
+        // Don't move related cardmark.
+        continue;
+      }
+      // Memory nodes should have new memory input.
+      tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
+      assert(tp != NULL, "ptr type");
+      int idx = C->get_alias_index(tp);
+      assert(get_map(use->_idx) != NULL || idx == alias_idx,
+             "Following memory nodes should have new memory input or be on the same memory slice");
+    } else if (use->is_Phi()) {
+      // Phi nodes should be split and moved already.
+      tp = use->as_Phi()->adr_type()->isa_ptr();
+      assert(tp != NULL, "ptr type");
+      int idx = C->get_alias_index(tp);
+      assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
+    } else {
+      use->dump();
+      assert(false, "should not be here");
+#endif
+    }
+  }
+}
+
+//
+// Search memory chain of "mem" to find a MemNode whose address
+// is the specified alias index.
+//
+Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
+  if (orig_mem == NULL)
+    return orig_mem;
+  Compile* C = _compile;
+  PhaseGVN* igvn = _igvn;
+  const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
+  bool is_instance = (toop != NULL) && toop->is_known_instance();
+  Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
+  Node *prev = NULL;
+  Node *result = orig_mem;
+  while (prev != result) {
+    prev = result;
+    if (result == start_mem)
+      break;  // hit one of our sentinels
+    if (result->is_Mem()) {
+      const Type *at = igvn->type(result->in(MemNode::Address));
+      if (at == Type::TOP)
+        break; // Dead
+      assert (at->isa_ptr() != NULL, "pointer type required.");
+      int idx = C->get_alias_index(at->is_ptr());
+      if (idx == alias_idx)
+        break; // Found
+      if (!is_instance && (at->isa_oopptr() == NULL ||
+                           !at->is_oopptr()->is_known_instance())) {
+        break; // Do not skip store to general memory slice.
+      }
+      result = result->in(MemNode::Memory);
+    }
+    if (!is_instance)
+      continue;  // don't search further for non-instance types
+    // skip over a call which does not affect this memory slice
+    if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
+      Node *proj_in = result->in(0);
+      if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
+        break;  // hit one of our sentinels
+      } else if (proj_in->is_Call()) {
+        // ArrayCopy node processed here as well
+        CallNode *call = proj_in->as_Call();
+        if (!call->may_modify(toop, igvn)) {
+          result = call->in(TypeFunc::Memory);
+        }
+      } else if (proj_in->is_Initialize()) {
+        AllocateNode* alloc = proj_in->as_Initialize()->allocation();
+        // Stop if this is the initialization for the object instance which
+        // which contains this memory slice, otherwise skip over it.
+        if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
+          result = proj_in->in(TypeFunc::Memory);
+        }
+      } else if (proj_in->is_MemBar()) {
+        if (proj_in->in(TypeFunc::Memory)->is_MergeMem() &&
+            proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->is_Proj() &&
+            proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->is_ArrayCopy()) {
+          // clone
+          ArrayCopyNode* ac = proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->as_ArrayCopy();
+          if (ac->may_modify(toop, igvn)) {
+            break;
+          }
+        }
+        result = proj_in->in(TypeFunc::Memory);
+      }
+    } else if (result->is_MergeMem()) {
+      MergeMemNode *mmem = result->as_MergeMem();
+      result = step_through_mergemem(mmem, alias_idx, toop);
+      if (result == mmem->base_memory()) {
+        // Didn't find instance memory, search through general slice recursively.
+        result = mmem->memory_at(C->get_general_index(alias_idx));
+        result = find_inst_mem(result, alias_idx, orig_phis);
+        if (C->failing()) {
+          return NULL;
+        }
+        mmem->set_memory_at(alias_idx, result);
+      }
+    } else if (result->is_Phi() &&
+               C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
+      Node *un = result->as_Phi()->unique_input(igvn);
+      if (un != NULL) {
+        orig_phis.append_if_missing(result->as_Phi());
+        result = un;
+      } else {
+        break;
+      }
+    } else if (result->is_ClearArray()) {
+      if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
+        // Can not bypass initialization of the instance
+        // we are looking for.
+        break;
+      }
+      // Otherwise skip it (the call updated 'result' value).
+    } else if (result->Opcode() == Op_SCMemProj) {
+      Node* mem = result->in(0);
+      Node* adr = NULL;
+      if (mem->is_LoadStore()) {
+        adr = mem->in(MemNode::Address);
+      } else {
+        assert(mem->Opcode() == Op_EncodeISOArray ||
+               mem->Opcode() == Op_StrCompressedCopy, "sanity");
+        adr = mem->in(3); // Memory edge corresponds to destination array
+      }
+      const Type *at = igvn->type(adr);
+      if (at != Type::TOP) {
+        assert(at->isa_ptr() != NULL, "pointer type required.");
+        int idx = C->get_alias_index(at->is_ptr());
+        if (idx == alias_idx) {
+          // Assert in debug mode
+          assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
+          break; // In product mode return SCMemProj node
+        }
+      }
+      result = mem->in(MemNode::Memory);
+    } else if (result->Opcode() == Op_StrInflatedCopy) {
+      Node* adr = result->in(3); // Memory edge corresponds to destination array
+      const Type *at = igvn->type(adr);
+      if (at != Type::TOP) {
+        assert(at->isa_ptr() != NULL, "pointer type required.");
+        int idx = C->get_alias_index(at->is_ptr());
+        if (idx == alias_idx) {
+          // Assert in debug mode
+          assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
+          break; // In product mode return SCMemProj node
+        }
+      }
+      result = result->in(MemNode::Memory);
+    }
+  }
+  if (result->is_Phi()) {
+    PhiNode *mphi = result->as_Phi();
+    assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
+    const TypePtr *t = mphi->adr_type();
+    if (!is_instance) {
+      // Push all non-instance Phis on the orig_phis worklist to update inputs
+      // during Phase 4 if needed.
+      orig_phis.append_if_missing(mphi);
+    } else if (C->get_alias_index(t) != alias_idx) {
+      // Create a new Phi with the specified alias index type.
+      result = split_memory_phi(mphi, alias_idx, orig_phis);
+    }
+  }
+  // the result is either MemNode, PhiNode, InitializeNode.
+  return result;
+}
+
+//
+//  Convert the types of unescaped object to instance types where possible,
+//  propagate the new type information through the graph, and update memory
+//  edges and MergeMem inputs to reflect the new type.
+//
+//  We start with allocations (and calls which may be allocations)  on alloc_worklist.
+//  The processing is done in 4 phases:
+//
+//  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
+//            types for the CheckCastPP for allocations where possible.
+//            Propagate the new types through users as follows:
+//               casts and Phi:  push users on alloc_worklist
+//               AddP:  cast Base and Address inputs to the instance type
+//                      push any AddP users on alloc_worklist and push any memnode
+//                      users onto memnode_worklist.
+//  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
+//            search the Memory chain for a store with the appropriate type
+//            address type.  If a Phi is found, create a new version with
+//            the appropriate memory slices from each of the Phi inputs.
+//            For stores, process the users as follows:
+//               MemNode:  push on memnode_worklist
+//               MergeMem: push on mergemem_worklist
+//  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
+//            moving the first node encountered of each  instance type to the
+//            the input corresponding to its alias index.
+//            appropriate memory slice.
+//  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
+//
+// In the following example, the CheckCastPP nodes are the cast of allocation
+// results and the allocation of node 29 is unescaped and eligible to be an
+// instance type.
+//
+// We start with:
+//
+//     7 Parm #memory
+//    10  ConI  "12"
+//    19  CheckCastPP   "Foo"
+//    20  AddP  _ 19 19 10  Foo+12  alias_index=4
+//    29  CheckCastPP   "Foo"
+//    30  AddP  _ 29 29 10  Foo+12  alias_index=4
+//
+//    40  StoreP  25   7  20   ... alias_index=4
+//    50  StoreP  35  40  30   ... alias_index=4
+//    60  StoreP  45  50  20   ... alias_index=4
+//    70  LoadP    _  60  30   ... alias_index=4
+//    80  Phi     75  50  60   Memory alias_index=4
+//    90  LoadP    _  80  30   ... alias_index=4
+//   100  LoadP    _  80  20   ... alias_index=4
+//
+//
+// Phase 1 creates an instance type for node 29 assigning it an instance id of 24
+// and creating a new alias index for node 30.  This gives:
+//
+//     7 Parm #memory
+//    10  ConI  "12"
+//    19  CheckCastPP   "Foo"
+//    20  AddP  _ 19 19 10  Foo+12  alias_index=4
+//    29  CheckCastPP   "Foo"  iid=24
+//    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
+//
+//    40  StoreP  25   7  20   ... alias_index=4
+//    50  StoreP  35  40  30   ... alias_index=6
+//    60  StoreP  45  50  20   ... alias_index=4
+//    70  LoadP    _  60  30   ... alias_index=6
+//    80  Phi     75  50  60   Memory alias_index=4
+//    90  LoadP    _  80  30   ... alias_index=6
+//   100  LoadP    _  80  20   ... alias_index=4
+//
+// In phase 2, new memory inputs are computed for the loads and stores,
+// And a new version of the phi is created.  In phase 4, the inputs to
+// node 80 are updated and then the memory nodes are updated with the
+// values computed in phase 2.  This results in:
+//
+//     7 Parm #memory
+//    10  ConI  "12"
+//    19  CheckCastPP   "Foo"
+//    20  AddP  _ 19 19 10  Foo+12  alias_index=4
+//    29  CheckCastPP   "Foo"  iid=24
+//    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
+//
+//    40  StoreP  25  7   20   ... alias_index=4
+//    50  StoreP  35  7   30   ... alias_index=6
+//    60  StoreP  45  40  20   ... alias_index=4
+//    70  LoadP    _  50  30   ... alias_index=6
+//    80  Phi     75  40  60   Memory alias_index=4
+//   120  Phi     75  50  50   Memory alias_index=6
+//    90  LoadP    _ 120  30   ... alias_index=6
+//   100  LoadP    _  80  20   ... alias_index=4
+//
+void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist, GrowableArray<ArrayCopyNode*> &arraycopy_worklist) {
+  GrowableArray<Node *>  memnode_worklist;
+  GrowableArray<PhiNode *>  orig_phis;
+  PhaseIterGVN  *igvn = _igvn;
+  uint new_index_start = (uint) _compile->num_alias_types();
+  Arena* arena = Thread::current()->resource_area();
+  VectorSet visited(arena);
+  ideal_nodes.clear(); // Reset for use with set_map/get_map.
+  uint unique_old = _compile->unique();
+
+  //  Phase 1:  Process possible allocations from alloc_worklist.
+  //  Create instance types for the CheckCastPP for allocations where possible.
+  //
+  // (Note: don't forget to change the order of the second AddP node on
+  //  the alloc_worklist if the order of the worklist processing is changed,
+  //  see the comment in find_second_addp().)
+  //
+  while (alloc_worklist.length() != 0) {
+    Node *n = alloc_worklist.pop();
+    uint ni = n->_idx;
+    if (n->is_Call()) {
+      CallNode *alloc = n->as_Call();
+      // copy escape information to call node
+      PointsToNode* ptn = ptnode_adr(alloc->_idx);
+      PointsToNode::EscapeState es = ptn->escape_state();
+      // We have an allocation or call which returns a Java object,
+      // see if it is unescaped.
+      if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
+        continue;
+      // Find CheckCastPP for the allocate or for the return value of a call
+      n = alloc->result_cast();
+      if (n == NULL) {            // No uses except Initialize node
+        if (alloc->is_Allocate()) {
+          // Set the scalar_replaceable flag for allocation
+          // so it could be eliminated if it has no uses.
+          alloc->as_Allocate()->_is_scalar_replaceable = true;
+        }
+        if (alloc->is_CallStaticJava()) {
+          // Set the scalar_replaceable flag for boxing method
+          // so it could be eliminated if it has no uses.
+          alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
+        }
+        continue;
+      }
+      if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
+        assert(!alloc->is_Allocate(), "allocation should have unique type");
+        continue;
+      }
+
+      // The inline code for Object.clone() casts the allocation result to
+      // java.lang.Object and then to the actual type of the allocated
+      // object. Detect this case and use the second cast.
+      // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
+      // the allocation result is cast to java.lang.Object and then
+      // to the actual Array type.
+      if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
+          && (alloc->is_AllocateArray() ||
+              igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
+        Node *cast2 = NULL;
+        for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
+          Node *use = n->fast_out(i);
+          if (use->is_CheckCastPP()) {
+            cast2 = use;
+            break;
+          }
+        }
+        if (cast2 != NULL) {
+          n = cast2;
+        } else {
+          // Non-scalar replaceable if the allocation type is unknown statically
+          // (reflection allocation), the object can't be restored during
+          // deoptimization without precise type.
+          continue;
+        }
+      }
+
+      const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
+      if (t == NULL)
+        continue;  // not a TypeOopPtr
+      if (!t->klass_is_exact())
+        continue; // not an unique type
+
+      if (alloc->is_Allocate()) {
+        // Set the scalar_replaceable flag for allocation
+        // so it could be eliminated.
+        alloc->as_Allocate()->_is_scalar_replaceable = true;
+      }
+      if (alloc->is_CallStaticJava()) {
+        // Set the scalar_replaceable flag for boxing method
+        // so it could be eliminated.
+        alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
+      }
+      set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
+      // in order for an object to be scalar-replaceable, it must be:
+      //   - a direct allocation (not a call returning an object)
+      //   - non-escaping
+      //   - eligible to be a unique type
+      //   - not determined to be ineligible by escape analysis
+      set_map(alloc, n);
+      set_map(n, alloc);
+      const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
+      igvn->hash_delete(n);
+      igvn->set_type(n,  tinst);
+      n->raise_bottom_type(tinst);
+      igvn->hash_insert(n);
+      record_for_optimizer(n);
+      if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
+
+        // First, put on the worklist all Field edges from Connection Graph
+        // which is more accurate than putting immediate users from Ideal Graph.
+        for (EdgeIterator e(ptn); e.has_next(); e.next()) {
+          PointsToNode* tgt = e.get();
+          if (tgt->is_Arraycopy()) {
+            continue;
+          }
+          Node* use = tgt->ideal_node();
+          assert(tgt->is_Field() && use->is_AddP(),
+                 "only AddP nodes are Field edges in CG");
+          if (use->outcnt() > 0) { // Don't process dead nodes
+            Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
+            if (addp2 != NULL) {
+              assert(alloc->is_AllocateArray(),"array allocation was expected");
+              alloc_worklist.append_if_missing(addp2);
+            }
+            alloc_worklist.append_if_missing(use);
+          }
+        }
+
+        // An allocation may have an Initialize which has raw stores. Scan
+        // the users of the raw allocation result and push AddP users
+        // on alloc_worklist.
+        Node *raw_result = alloc->proj_out(TypeFunc::Parms);
+        assert (raw_result != NULL, "must have an allocation result");
+        for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
+          Node *use = raw_result->fast_out(i);
+          if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
+            Node* addp2 = find_second_addp(use, raw_result);
+            if (addp2 != NULL) {
+              assert(alloc->is_AllocateArray(),"array allocation was expected");
+              alloc_worklist.append_if_missing(addp2);
+            }
+            alloc_worklist.append_if_missing(use);
+          } else if (use->is_MemBar()) {
+            memnode_worklist.append_if_missing(use);
+          }
+        }
+      }
+    } else if (n->is_AddP()) {
+      JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
+      if (jobj == NULL || jobj == phantom_obj) {
+#ifdef ASSERT
+        ptnode_adr(get_addp_base(n)->_idx)->dump();
+        ptnode_adr(n->_idx)->dump();
+        assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
+#endif
+        _compile->record_failure(C2Compiler::retry_no_escape_analysis());
+        return;
+      }
+      Node *base = get_map(jobj->idx());  // CheckCastPP node
+      if (!split_AddP(n, base)) continue; // wrong type from dead path
+    } else if (n->is_Phi() ||
+               n->is_CheckCastPP() ||
+               n->is_EncodeP() ||
+               n->is_DecodeN() ||
+               (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
+      if (visited.test_set(n->_idx)) {
+        assert(n->is_Phi(), "loops only through Phi's");
+        continue;  // already processed
+      }
+      JavaObjectNode* jobj = unique_java_object(n);
+      if (jobj == NULL || jobj == phantom_obj) {
+#ifdef ASSERT
+        ptnode_adr(n->_idx)->dump();
+        assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
+#endif
+        _compile->record_failure(C2Compiler::retry_no_escape_analysis());
+        return;
+      } else {
+        Node *val = get_map(jobj->idx());   // CheckCastPP node
+        TypeNode *tn = n->as_Type();
+        const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
+        assert(tinst != NULL && tinst->is_known_instance() &&
+               tinst->instance_id() == jobj->idx() , "instance type expected.");
+
+        const Type *tn_type = igvn->type(tn);
+        const TypeOopPtr *tn_t;
+        if (tn_type->isa_narrowoop()) {
+          tn_t = tn_type->make_ptr()->isa_oopptr();
+        } else {
+          tn_t = tn_type->isa_oopptr();
+        }
+        if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
+          if (tn_type->isa_narrowoop()) {
+            tn_type = tinst->make_narrowoop();
+          } else {
+            tn_type = tinst;
+          }
+          igvn->hash_delete(tn);
+          igvn->set_type(tn, tn_type);
+          tn->set_type(tn_type);
+          igvn->hash_insert(tn);
+          record_for_optimizer(n);
+        } else {
+          assert(tn_type == TypePtr::NULL_PTR ||
+                 tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
+                 "unexpected type");
+          continue; // Skip dead path with different type
+        }
+      }
+    } else {
+      debug_only(n->dump();)
+      assert(false, "EA: unexpected node");
+      continue;
+    }
+    // push allocation's users on appropriate worklist
+    for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
+      Node *use = n->fast_out(i);
+      if(use->is_Mem() && use->in(MemNode::Address) == n) {
+        // Load/store to instance's field
+        memnode_worklist.append_if_missing(use);
+      } else if (use->is_MemBar()) {
+        if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
+          memnode_worklist.append_if_missing(use);
+        }
+      } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
+        Node* addp2 = find_second_addp(use, n);
+        if (addp2 != NULL) {
+          alloc_worklist.append_if_missing(addp2);
+        }
+        alloc_worklist.append_if_missing(use);
+      } else if (use->is_Phi() ||
+                 use->is_CheckCastPP() ||
+                 use->is_EncodeNarrowPtr() ||
+                 use->is_DecodeNarrowPtr() ||
+                 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
+        alloc_worklist.append_if_missing(use);
+#ifdef ASSERT
+      } else if (use->is_Mem()) {
+        assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
+      } else if (use->is_MergeMem()) {
+        assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
+      } else if (use->is_SafePoint()) {
+        // Look for MergeMem nodes for calls which reference unique allocation
+        // (through CheckCastPP nodes) even for debug info.
+        Node* m = use->in(TypeFunc::Memory);
+        if (m->is_MergeMem()) {
+          assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
+        }
+      } else if (use->Opcode() == Op_EncodeISOArray) {
+        if (use->in(MemNode::Memory) == n || use->in(3) == n) {
+          // EncodeISOArray overwrites destination array
+          memnode_worklist.append_if_missing(use);
+        }
+      } else {
+        uint op = use->Opcode();
+        if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
+            (use->in(MemNode::Memory) == n)) {
+          // They overwrite memory edge corresponding to destination array,
+          memnode_worklist.append_if_missing(use);
+        } else if (!(op == Op_CmpP || op == Op_Conv2B ||
+              op == Op_CastP2X || op == Op_StoreCM ||
+              op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
+              op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
+              op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
+          n->dump();
+          use->dump();
+          assert(false, "EA: missing allocation reference path");
+        }
+#endif
+      }
+    }
+
+  }
+
+  // Go over all ArrayCopy nodes and if one of the inputs has a unique
+  // type, record it in the ArrayCopy node so we know what memory this
+  // node uses/modified.
+  for (int next = 0; next < arraycopy_worklist.length(); next++) {
+    ArrayCopyNode* ac = arraycopy_worklist.at(next);
+    Node* dest = ac->in(ArrayCopyNode::Dest);
+    if (dest->is_AddP()) {
+      dest = get_addp_base(dest);
+    }
+    JavaObjectNode* jobj = unique_java_object(dest);
+    if (jobj != NULL) {
+      Node *base = get_map(jobj->idx());
+      if (base != NULL) {
+        const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
+        ac->_dest_type = base_t;
+      }
+    }
+    Node* src = ac->in(ArrayCopyNode::Src);
+    if (src->is_AddP()) {
+      src = get_addp_base(src);
+    }
+    jobj = unique_java_object(src);
+    if (jobj != NULL) {
+      Node* base = get_map(jobj->idx());
+      if (base != NULL) {
+        const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
+        ac->_src_type = base_t;
+      }
+    }
+  }
+
+  // New alias types were created in split_AddP().
+  uint new_index_end = (uint) _compile->num_alias_types();
+  assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
+
+  //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
+  //            compute new values for Memory inputs  (the Memory inputs are not
+  //            actually updated until phase 4.)
+  if (memnode_worklist.length() == 0)
+    return;  // nothing to do
+  while (memnode_worklist.length() != 0) {
+    Node *n = memnode_worklist.pop();
+    if (visited.test_set(n->_idx))
+      continue;
+    if (n->is_Phi() || n->is_ClearArray()) {
+      // we don't need to do anything, but the users must be pushed
+    } else if (n->is_MemBar()) { // Initialize, MemBar nodes
+      // we don't need to do anything, but the users must be pushed
+      n = n->as_MemBar()->proj_out(TypeFunc::Memory);
+      if (n == NULL)
+        continue;
+    } else if (n->Opcode() == Op_StrCompressedCopy ||
+               n->Opcode() == Op_EncodeISOArray) {
+      // get the memory projection
+      n = n->find_out_with(Op_SCMemProj);
+      assert(n->Opcode() == Op_SCMemProj, "memory projection required");
+    } else {
+      assert(n->is_Mem(), "memory node required.");
+      Node *addr = n->in(MemNode::Address);
+      const Type *addr_t = igvn->type(addr);
+      if (addr_t == Type::TOP)
+        continue;
+      assert (addr_t->isa_ptr() != NULL, "pointer type required.");
+      int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
+      assert ((uint)alias_idx < new_index_end, "wrong alias index");
+      Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
+      if (_compile->failing()) {
+        return;
+      }
+      if (mem != n->in(MemNode::Memory)) {
+        // We delay the memory edge update since we need old one in
+        // MergeMem code below when instances memory slices are separated.
+        set_map(n, mem);
+      }
+      if (n->is_Load()) {
+        continue;  // don't push users
+      } else if (n->is_LoadStore()) {
+        // get the memory projection
+        n = n->find_out_with(Op_SCMemProj);
+        assert(n->Opcode() == Op_SCMemProj, "memory projection required");
+      }
+    }
+    // push user on appropriate worklist
+    for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
+      Node *use = n->fast_out(i);
+      if (use->is_Phi() || use->is_ClearArray()) {
+        memnode_worklist.append_if_missing(use);
+      } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
+        if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
+          continue;
+        memnode_worklist.append_if_missing(use);
+      } else if (use->is_MemBar()) {
+        if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
+          memnode_worklist.append_if_missing(use);
+        }
+#ifdef ASSERT
+      } else if(use->is_Mem()) {
+        assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
+      } else if (use->is_MergeMem()) {
+        assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
+      } else if (use->Opcode() == Op_EncodeISOArray) {
+        if (use->in(MemNode::Memory) == n || use->in(3) == n) {
+          // EncodeISOArray overwrites destination array
+          memnode_worklist.append_if_missing(use);
+        }
+      } else {
+        uint op = use->Opcode();
+        if ((use->in(MemNode::Memory) == n) &&
+            (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
+          // They overwrite memory edge corresponding to destination array,
+          memnode_worklist.append_if_missing(use);
+        } else if (!(op == Op_StoreCM ||
+              (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
+               strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
+              op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
+              op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
+              op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
+          n->dump();
+          use->dump();
+          assert(false, "EA: missing memory path");
+        }
+#endif
+      }
+    }
+  }
+
+  //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
+  //            Walk each memory slice moving the first node encountered of each
+  //            instance type to the the input corresponding to its alias index.
+  uint length = _mergemem_worklist.length();
+  for( uint next = 0; next < length; ++next ) {
+    MergeMemNode* nmm = _mergemem_worklist.at(next);
+    assert(!visited.test_set(nmm->_idx), "should not be visited before");
+    // Note: we don't want to use MergeMemStream here because we only want to
+    // scan inputs which exist at the start, not ones we add during processing.
+    // Note 2: MergeMem may already contains instance memory slices added
+    // during find_inst_mem() call when memory nodes were processed above.
+    igvn->hash_delete(nmm);
+    uint nslices = MIN2(nmm->req(), new_index_start);
+    for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
+      Node* mem = nmm->in(i);
+      Node* cur = NULL;
+      if (mem == NULL || mem->is_top())
+        continue;
+      // First, update mergemem by moving memory nodes to corresponding slices
+      // if their type became more precise since this mergemem was created.
+      while (mem->is_Mem()) {
+        const Type *at = igvn->type(mem->in(MemNode::Address));
+        if (at != Type::TOP) {
+          assert (at->isa_ptr() != NULL, "pointer type required.");
+          uint idx = (uint)_compile->get_alias_index(at->is_ptr());
+          if (idx == i) {
+            if (cur == NULL)
+              cur = mem;
+          } else {
+            if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
+              nmm->set_memory_at(idx, mem);
+            }
+          }
+        }
+        mem = mem->in(MemNode::Memory);
+      }
+      nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
+      // Find any instance of the current type if we haven't encountered
+      // already a memory slice of the instance along the memory chain.
+      for (uint ni = new_index_start; ni < new_index_end; ni++) {
+        if((uint)_compile->get_general_index(ni) == i) {
+          Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
+          if (nmm->is_empty_memory(m)) {
+            Node* result = find_inst_mem(mem, ni, orig_phis);
+            if (_compile->failing()) {
+              return;
+            }
+            nmm->set_memory_at(ni, result);
+          }
+        }
+      }
+    }
+    // Find the rest of instances values
+    for (uint ni = new_index_start; ni < new_index_end; ni++) {
+      const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
+      Node* result = step_through_mergemem(nmm, ni, tinst);
+      if (result == nmm->base_memory()) {
+        // Didn't find instance memory, search through general slice recursively.
+        result = nmm->memory_at(_compile->get_general_index(ni));
+        result = find_inst_mem(result, ni, orig_phis);
+        if (_compile->failing()) {
+          return;
+        }
+        nmm->set_memory_at(ni, result);
+      }
+    }
+    igvn->hash_insert(nmm);
+    record_for_optimizer(nmm);
+  }
+
+  //  Phase 4:  Update the inputs of non-instance memory Phis and
+  //            the Memory input of memnodes
+  // First update the inputs of any non-instance Phi's from
+  // which we split out an instance Phi.  Note we don't have
+  // to recursively process Phi's encounted on the input memory
+  // chains as is done in split_memory_phi() since they  will
+  // also be processed here.
+  for (int j = 0; j < orig_phis.length(); j++) {
+    PhiNode *phi = orig_phis.at(j);
+    int alias_idx = _compile->get_alias_index(phi->adr_type());
+    igvn->hash_delete(phi);
+    for (uint i = 1; i < phi->req(); i++) {
+      Node *mem = phi->in(i);
+      Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
+      if (_compile->failing()) {
+        return;
+      }
+      if (mem != new_mem) {
+        phi->set_req(i, new_mem);
+      }
+    }
+    igvn->hash_insert(phi);
+    record_for_optimizer(phi);
+  }
+
+  // Update the memory inputs of MemNodes with the value we computed
+  // in Phase 2 and move stores memory users to corresponding memory slices.
+  // Disable memory split verification code until the fix for 6984348.
+  // Currently it produces false negative results since it does not cover all cases.
+#if 0 // ifdef ASSERT
+  visited.Reset();
+  Node_Stack old_mems(arena, _compile->unique() >> 2);
+#endif
+  for (uint i = 0; i < ideal_nodes.size(); i++) {
+    Node*    n = ideal_nodes.at(i);
+    Node* nmem = get_map(n->_idx);
+    assert(nmem != NULL, "sanity");
+    if (n->is_Mem()) {
+#if 0 // ifdef ASSERT
+      Node* old_mem = n->in(MemNode::Memory);
+      if (!visited.test_set(old_mem->_idx)) {
+        old_mems.push(old_mem, old_mem->outcnt());
+      }
+#endif
+      assert(n->in(MemNode::Memory) != nmem, "sanity");
+      if (!n->is_Load()) {
+        // Move memory users of a store first.
+        move_inst_mem(n, orig_phis);
+      }
+      // Now update memory input
+      igvn->hash_delete(n);
+      n->set_req(MemNode::Memory, nmem);
+      igvn->hash_insert(n);
+      record_for_optimizer(n);
+    } else {
+      assert(n->is_Allocate() || n->is_CheckCastPP() ||
+             n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
+    }
+  }
+#if 0 // ifdef ASSERT
+  // Verify that memory was split correctly
+  while (old_mems.is_nonempty()) {
+    Node* old_mem = old_mems.node();
+    uint  old_cnt = old_mems.index();
+    old_mems.pop();
+    assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
+  }
+#endif
+}
+
+#ifndef PRODUCT
+static const char *node_type_names[] = {
+  "UnknownType",
+  "JavaObject",
+  "LocalVar",
+  "Field",
+  "Arraycopy"
+};
+
+static const char *esc_names[] = {
+  "UnknownEscape",
+  "NoEscape",
+  "ArgEscape",
+  "GlobalEscape"
+};
+
+void PointsToNode::dump(bool print_state) const {
+  NodeType nt = node_type();
+  tty->print("%s ", node_type_names[(int) nt]);
+  if (print_state) {
+    EscapeState es = escape_state();
+    EscapeState fields_es = fields_escape_state();
+    tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
+    if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
+      tty->print("NSR ");
+  }
+  if (is_Field()) {
+    FieldNode* f = (FieldNode*)this;
+    if (f->is_oop())
+      tty->print("oop ");
+    if (f->offset() > 0)
+      tty->print("+%d ", f->offset());
+    tty->print("(");
+    for (BaseIterator i(f); i.has_next(); i.next()) {
+      PointsToNode* b = i.get();
+      tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
+    }
+    tty->print(" )");
+  }
+  tty->print("[");
+  for (EdgeIterator i(this); i.has_next(); i.next()) {
+    PointsToNode* e = i.get();
+    tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
+  }
+  tty->print(" [");
+  for (UseIterator i(this); i.has_next(); i.next()) {
+    PointsToNode* u = i.get();
+    bool is_base = false;
+    if (PointsToNode::is_base_use(u)) {
+      is_base = true;
+      u = PointsToNode::get_use_node(u)->as_Field();
+    }
+    tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
+  }
+  tty->print(" ]]  ");
+  if (_node == NULL)
+    tty->print_cr("<null>");
+  else
+    _node->dump();
+}
+
+void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
+  bool first = true;
+  int ptnodes_length = ptnodes_worklist.length();
+  for (int i = 0; i < ptnodes_length; i++) {
+    PointsToNode *ptn = ptnodes_worklist.at(i);
+    if (ptn == NULL || !ptn->is_JavaObject())
+      continue;
+    PointsToNode::EscapeState es = ptn->escape_state();
+    if ((es != PointsToNode::NoEscape) && !Verbose) {
+      continue;
+    }
+    Node* n = ptn->ideal_node();
+    if (n->is_Allocate() || (n->is_CallStaticJava() &&
+                             n->as_CallStaticJava()->is_boxing_method())) {
+      if (first) {
+        tty->cr();
+        tty->print("======== Connection graph for ");
+        _compile->method()->print_short_name();
+        tty->cr();
+        first = false;
+      }
+      ptn->dump();
+      // Print all locals and fields which reference this allocation
+      for (UseIterator j(ptn); j.has_next(); j.next()) {
+        PointsToNode* use = j.get();
+        if (use->is_LocalVar()) {
+          use->dump(Verbose);
+        } else if (Verbose) {
+          use->dump();
+        }
+      }
+      tty->cr();
+    }
+  }
+}
+#endif