src/hotspot/share/opto/callnode.hpp
changeset 47216 71c04702a3d5
parent 43963 6845bb645be5
child 51333 f6641fcf7b7e
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/opto/callnode.hpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,1127 @@
+/*
+ * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifndef SHARE_VM_OPTO_CALLNODE_HPP
+#define SHARE_VM_OPTO_CALLNODE_HPP
+
+#include "opto/connode.hpp"
+#include "opto/mulnode.hpp"
+#include "opto/multnode.hpp"
+#include "opto/opcodes.hpp"
+#include "opto/phaseX.hpp"
+#include "opto/replacednodes.hpp"
+#include "opto/type.hpp"
+
+// Portions of code courtesy of Clifford Click
+
+// Optimization - Graph Style
+
+class Chaitin;
+class NamedCounter;
+class MultiNode;
+class  SafePointNode;
+class   CallNode;
+class     CallJavaNode;
+class       CallStaticJavaNode;
+class       CallDynamicJavaNode;
+class     CallRuntimeNode;
+class       CallLeafNode;
+class         CallLeafNoFPNode;
+class     AllocateNode;
+class       AllocateArrayNode;
+class     BoxLockNode;
+class     LockNode;
+class     UnlockNode;
+class JVMState;
+class OopMap;
+class State;
+class StartNode;
+class MachCallNode;
+class FastLockNode;
+
+//------------------------------StartNode--------------------------------------
+// The method start node
+class StartNode : public MultiNode {
+  virtual uint cmp( const Node &n ) const;
+  virtual uint size_of() const; // Size is bigger
+public:
+  const TypeTuple *_domain;
+  StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
+    init_class_id(Class_Start);
+    init_req(0,this);
+    init_req(1,root);
+  }
+  virtual int Opcode() const;
+  virtual bool pinned() const { return true; };
+  virtual const Type *bottom_type() const;
+  virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
+  virtual const Type* Value(PhaseGVN* phase) const;
+  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+  virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
+  virtual const RegMask &in_RegMask(uint) const;
+  virtual Node *match( const ProjNode *proj, const Matcher *m );
+  virtual uint ideal_reg() const { return 0; }
+#ifndef PRODUCT
+  virtual void  dump_spec(outputStream *st) const;
+  virtual void  dump_compact_spec(outputStream *st) const;
+#endif
+};
+
+//------------------------------StartOSRNode-----------------------------------
+// The method start node for on stack replacement code
+class StartOSRNode : public StartNode {
+public:
+  StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
+  virtual int   Opcode() const;
+  static  const TypeTuple *osr_domain();
+};
+
+
+//------------------------------ParmNode---------------------------------------
+// Incoming parameters
+class ParmNode : public ProjNode {
+  static const char * const names[TypeFunc::Parms+1];
+public:
+  ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
+    init_class_id(Class_Parm);
+  }
+  virtual int Opcode() const;
+  virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
+  virtual uint ideal_reg() const;
+#ifndef PRODUCT
+  virtual void dump_spec(outputStream *st) const;
+  virtual void dump_compact_spec(outputStream *st) const;
+  virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
+#endif
+};
+
+
+//------------------------------ReturnNode-------------------------------------
+// Return from subroutine node
+class ReturnNode : public Node {
+public:
+  ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
+  virtual int Opcode() const;
+  virtual bool  is_CFG() const { return true; }
+  virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
+  virtual bool depends_only_on_test() const { return false; }
+  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+  virtual const Type* Value(PhaseGVN* phase) const;
+  virtual uint ideal_reg() const { return NotAMachineReg; }
+  virtual uint match_edge(uint idx) const;
+#ifndef PRODUCT
+  virtual void dump_req(outputStream *st = tty) const;
+#endif
+};
+
+
+//------------------------------RethrowNode------------------------------------
+// Rethrow of exception at call site.  Ends a procedure before rethrowing;
+// ends the current basic block like a ReturnNode.  Restores registers and
+// unwinds stack.  Rethrow happens in the caller's method.
+class RethrowNode : public Node {
+ public:
+  RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
+  virtual int Opcode() const;
+  virtual bool  is_CFG() const { return true; }
+  virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
+  virtual bool depends_only_on_test() const { return false; }
+  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+  virtual const Type* Value(PhaseGVN* phase) const;
+  virtual uint match_edge(uint idx) const;
+  virtual uint ideal_reg() const { return NotAMachineReg; }
+#ifndef PRODUCT
+  virtual void dump_req(outputStream *st = tty) const;
+#endif
+};
+
+
+//------------------------------TailCallNode-----------------------------------
+// Pop stack frame and jump indirect
+class TailCallNode : public ReturnNode {
+public:
+  TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
+    : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
+    init_req(TypeFunc::Parms, target);
+    init_req(TypeFunc::Parms+1, moop);
+  }
+
+  virtual int Opcode() const;
+  virtual uint match_edge(uint idx) const;
+};
+
+//------------------------------TailJumpNode-----------------------------------
+// Pop stack frame and jump indirect
+class TailJumpNode : public ReturnNode {
+public:
+  TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
+    : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
+    init_req(TypeFunc::Parms, target);
+    init_req(TypeFunc::Parms+1, ex_oop);
+  }
+
+  virtual int Opcode() const;
+  virtual uint match_edge(uint idx) const;
+};
+
+//-------------------------------JVMState-------------------------------------
+// A linked list of JVMState nodes captures the whole interpreter state,
+// plus GC roots, for all active calls at some call site in this compilation
+// unit.  (If there is no inlining, then the list has exactly one link.)
+// This provides a way to map the optimized program back into the interpreter,
+// or to let the GC mark the stack.
+class JVMState : public ResourceObj {
+  friend class VMStructs;
+public:
+  typedef enum {
+    Reexecute_Undefined = -1, // not defined -- will be translated into false later
+    Reexecute_False     =  0, // false       -- do not reexecute
+    Reexecute_True      =  1  // true        -- reexecute the bytecode
+  } ReexecuteState; //Reexecute State
+
+private:
+  JVMState*         _caller;    // List pointer for forming scope chains
+  uint              _depth;     // One more than caller depth, or one.
+  uint              _locoff;    // Offset to locals in input edge mapping
+  uint              _stkoff;    // Offset to stack in input edge mapping
+  uint              _monoff;    // Offset to monitors in input edge mapping
+  uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
+  uint              _endoff;    // Offset to end of input edge mapping
+  uint              _sp;        // Jave Expression Stack Pointer for this state
+  int               _bci;       // Byte Code Index of this JVM point
+  ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
+  ciMethod*         _method;    // Method Pointer
+  SafePointNode*    _map;       // Map node associated with this scope
+public:
+  friend class Compile;
+  friend class PreserveReexecuteState;
+
+  // Because JVMState objects live over the entire lifetime of the
+  // Compile object, they are allocated into the comp_arena, which
+  // does not get resource marked or reset during the compile process
+  void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
+  void operator delete( void * ) { } // fast deallocation
+
+  // Create a new JVMState, ready for abstract interpretation.
+  JVMState(ciMethod* method, JVMState* caller);
+  JVMState(int stack_size);  // root state; has a null method
+
+  // Access functions for the JVM
+  // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
+  //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
+  uint              locoff() const { return _locoff; }
+  uint              stkoff() const { return _stkoff; }
+  uint              argoff() const { return _stkoff + _sp; }
+  uint              monoff() const { return _monoff; }
+  uint              scloff() const { return _scloff; }
+  uint              endoff() const { return _endoff; }
+  uint              oopoff() const { return debug_end(); }
+
+  int            loc_size() const { return stkoff() - locoff(); }
+  int            stk_size() const { return monoff() - stkoff(); }
+  int            mon_size() const { return scloff() - monoff(); }
+  int            scl_size() const { return endoff() - scloff(); }
+
+  bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
+  bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
+  bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
+  bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }
+
+  uint                      sp() const { return _sp; }
+  int                      bci() const { return _bci; }
+  bool        should_reexecute() const { return _reexecute==Reexecute_True; }
+  bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
+  bool              has_method() const { return _method != NULL; }
+  ciMethod*             method() const { assert(has_method(), ""); return _method; }
+  JVMState*             caller() const { return _caller; }
+  SafePointNode*           map() const { return _map; }
+  uint                   depth() const { return _depth; }
+  uint             debug_start() const; // returns locoff of root caller
+  uint               debug_end() const; // returns endoff of self
+  uint              debug_size() const {
+    return loc_size() + sp() + mon_size() + scl_size();
+  }
+  uint        debug_depth()  const; // returns sum of debug_size values at all depths
+
+  // Returns the JVM state at the desired depth (1 == root).
+  JVMState* of_depth(int d) const;
+
+  // Tells if two JVM states have the same call chain (depth, methods, & bcis).
+  bool same_calls_as(const JVMState* that) const;
+
+  // Monitors (monitors are stored as (boxNode, objNode) pairs
+  enum { logMonitorEdges = 1 };
+  int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
+  int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
+  int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
+  int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
+  bool is_monitor_box(uint off)    const {
+    assert(is_mon(off), "should be called only for monitor edge");
+    return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
+  }
+  bool is_monitor_use(uint off)    const { return (is_mon(off)
+                                                   && is_monitor_box(off))
+                                             || (caller() && caller()->is_monitor_use(off)); }
+
+  // Initialization functions for the JVM
+  void              set_locoff(uint off) { _locoff = off; }
+  void              set_stkoff(uint off) { _stkoff = off; }
+  void              set_monoff(uint off) { _monoff = off; }
+  void              set_scloff(uint off) { _scloff = off; }
+  void              set_endoff(uint off) { _endoff = off; }
+  void              set_offsets(uint off) {
+    _locoff = _stkoff = _monoff = _scloff = _endoff = off;
+  }
+  void              set_map(SafePointNode *map) { _map = map; }
+  void              set_sp(uint sp) { _sp = sp; }
+                    // _reexecute is initialized to "undefined" for a new bci
+  void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
+  void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
+
+  // Miscellaneous utility functions
+  JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
+  JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
+  void      set_map_deep(SafePointNode *map);// reset map for all callers
+  void      adapt_position(int delta);       // Adapt offsets in in-array after adding an edge.
+  int       interpreter_frame_size() const;
+
+#ifndef PRODUCT
+  void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
+  void      dump_spec(outputStream *st) const;
+  void      dump_on(outputStream* st) const;
+  void      dump() const {
+    dump_on(tty);
+  }
+#endif
+};
+
+//------------------------------SafePointNode----------------------------------
+// A SafePointNode is a subclass of a MultiNode for convenience (and
+// potential code sharing) only - conceptually it is independent of
+// the Node semantics.
+class SafePointNode : public MultiNode {
+  virtual uint           cmp( const Node &n ) const;
+  virtual uint           size_of() const;       // Size is bigger
+
+public:
+  SafePointNode(uint edges, JVMState* jvms,
+                // A plain safepoint advertises no memory effects (NULL):
+                const TypePtr* adr_type = NULL)
+    : MultiNode( edges ),
+      _jvms(jvms),
+      _oop_map(NULL),
+      _adr_type(adr_type)
+  {
+    init_class_id(Class_SafePoint);
+  }
+
+  OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
+  JVMState* const _jvms;      // Pointer to list of JVM State objects
+  const TypePtr*  _adr_type;  // What type of memory does this node produce?
+  ReplacedNodes   _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map()
+
+  // Many calls take *all* of memory as input,
+  // but some produce a limited subset of that memory as output.
+  // The adr_type reports the call's behavior as a store, not a load.
+
+  virtual JVMState* jvms() const { return _jvms; }
+  void set_jvms(JVMState* s) {
+    *(JVMState**)&_jvms = s;  // override const attribute in the accessor
+  }
+  OopMap *oop_map() const { return _oop_map; }
+  void set_oop_map(OopMap *om) { _oop_map = om; }
+
+ private:
+  void verify_input(JVMState* jvms, uint idx) const {
+    assert(verify_jvms(jvms), "jvms must match");
+    Node* n = in(idx);
+    assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
+           in(idx + 1)->is_top(), "2nd half of long/double");
+  }
+
+ public:
+  // Functionality from old debug nodes which has changed
+  Node *local(JVMState* jvms, uint idx) const {
+    verify_input(jvms, jvms->locoff() + idx);
+    return in(jvms->locoff() + idx);
+  }
+  Node *stack(JVMState* jvms, uint idx) const {
+    verify_input(jvms, jvms->stkoff() + idx);
+    return in(jvms->stkoff() + idx);
+  }
+  Node *argument(JVMState* jvms, uint idx) const {
+    verify_input(jvms, jvms->argoff() + idx);
+    return in(jvms->argoff() + idx);
+  }
+  Node *monitor_box(JVMState* jvms, uint idx) const {
+    assert(verify_jvms(jvms), "jvms must match");
+    return in(jvms->monitor_box_offset(idx));
+  }
+  Node *monitor_obj(JVMState* jvms, uint idx) const {
+    assert(verify_jvms(jvms), "jvms must match");
+    return in(jvms->monitor_obj_offset(idx));
+  }
+
+  void  set_local(JVMState* jvms, uint idx, Node *c);
+
+  void  set_stack(JVMState* jvms, uint idx, Node *c) {
+    assert(verify_jvms(jvms), "jvms must match");
+    set_req(jvms->stkoff() + idx, c);
+  }
+  void  set_argument(JVMState* jvms, uint idx, Node *c) {
+    assert(verify_jvms(jvms), "jvms must match");
+    set_req(jvms->argoff() + idx, c);
+  }
+  void ensure_stack(JVMState* jvms, uint stk_size) {
+    assert(verify_jvms(jvms), "jvms must match");
+    int grow_by = (int)stk_size - (int)jvms->stk_size();
+    if (grow_by > 0)  grow_stack(jvms, grow_by);
+  }
+  void grow_stack(JVMState* jvms, uint grow_by);
+  // Handle monitor stack
+  void push_monitor( const FastLockNode *lock );
+  void pop_monitor ();
+  Node *peek_monitor_box() const;
+  Node *peek_monitor_obj() const;
+
+  // Access functions for the JVM
+  Node *control  () const { return in(TypeFunc::Control  ); }
+  Node *i_o      () const { return in(TypeFunc::I_O      ); }
+  Node *memory   () const { return in(TypeFunc::Memory   ); }
+  Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
+  Node *frameptr () const { return in(TypeFunc::FramePtr ); }
+
+  void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
+  void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
+  void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
+
+  MergeMemNode* merged_memory() const {
+    return in(TypeFunc::Memory)->as_MergeMem();
+  }
+
+  // The parser marks useless maps as dead when it's done with them:
+  bool is_killed() { return in(TypeFunc::Control) == NULL; }
+
+  // Exception states bubbling out of subgraphs such as inlined calls
+  // are recorded here.  (There might be more than one, hence the "next".)
+  // This feature is used only for safepoints which serve as "maps"
+  // for JVM states during parsing, intrinsic expansion, etc.
+  SafePointNode*         next_exception() const;
+  void               set_next_exception(SafePointNode* n);
+  bool                   has_exceptions() const { return next_exception() != NULL; }
+
+  // Helper methods to operate on replaced nodes
+  ReplacedNodes replaced_nodes() const {
+    return _replaced_nodes;
+  }
+
+  void set_replaced_nodes(ReplacedNodes replaced_nodes) {
+    _replaced_nodes = replaced_nodes;
+  }
+
+  void clone_replaced_nodes() {
+    _replaced_nodes.clone();
+  }
+  void record_replaced_node(Node* initial, Node* improved) {
+    _replaced_nodes.record(initial, improved);
+  }
+  void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) {
+    _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx);
+  }
+  void delete_replaced_nodes() {
+    _replaced_nodes.reset();
+  }
+  void apply_replaced_nodes(uint idx) {
+    _replaced_nodes.apply(this, idx);
+  }
+  void merge_replaced_nodes_with(SafePointNode* sfpt) {
+    _replaced_nodes.merge_with(sfpt->_replaced_nodes);
+  }
+  bool has_replaced_nodes() const {
+    return !_replaced_nodes.is_empty();
+  }
+
+  // Standard Node stuff
+  virtual int            Opcode() const;
+  virtual bool           pinned() const { return true; }
+  virtual const Type*    Value(PhaseGVN* phase) const;
+  virtual const Type    *bottom_type() const { return Type::CONTROL; }
+  virtual const TypePtr *adr_type() const { return _adr_type; }
+  virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
+  virtual Node*          Identity(PhaseGVN* phase);
+  virtual uint           ideal_reg() const { return 0; }
+  virtual const RegMask &in_RegMask(uint) const;
+  virtual const RegMask &out_RegMask() const;
+  virtual uint           match_edge(uint idx) const;
+
+  static  bool           needs_polling_address_input();
+
+#ifndef PRODUCT
+  virtual void           dump_spec(outputStream *st) const;
+  virtual void           related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
+#endif
+};
+
+//------------------------------SafePointScalarObjectNode----------------------
+// A SafePointScalarObjectNode represents the state of a scalarized object
+// at a safepoint.
+
+class SafePointScalarObjectNode: public TypeNode {
+  uint _first_index; // First input edge relative index of a SafePoint node where
+                     // states of the scalarized object fields are collected.
+                     // It is relative to the last (youngest) jvms->_scloff.
+  uint _n_fields;    // Number of non-static fields of the scalarized object.
+  DEBUG_ONLY(AllocateNode* _alloc;)
+
+  virtual uint hash() const ; // { return NO_HASH; }
+  virtual uint cmp( const Node &n ) const;
+
+  uint first_index() const { return _first_index; }
+
+public:
+  SafePointScalarObjectNode(const TypeOopPtr* tp,
+#ifdef ASSERT
+                            AllocateNode* alloc,
+#endif
+                            uint first_index, uint n_fields);
+  virtual int Opcode() const;
+  virtual uint           ideal_reg() const;
+  virtual const RegMask &in_RegMask(uint) const;
+  virtual const RegMask &out_RegMask() const;
+  virtual uint           match_edge(uint idx) const;
+
+  uint first_index(JVMState* jvms) const {
+    assert(jvms != NULL, "missed JVMS");
+    return jvms->scloff() + _first_index;
+  }
+  uint n_fields()    const { return _n_fields; }
+
+#ifdef ASSERT
+  AllocateNode* alloc() const { return _alloc; }
+#endif
+
+  virtual uint size_of() const { return sizeof(*this); }
+
+  // Assumes that "this" is an argument to a safepoint node "s", and that
+  // "new_call" is being created to correspond to "s".  But the difference
+  // between the start index of the jvmstates of "new_call" and "s" is
+  // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
+  // corresponds appropriately to "this" in "new_call".  Assumes that
+  // "sosn_map" is a map, specific to the translation of "s" to "new_call",
+  // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
+  SafePointScalarObjectNode* clone(Dict* sosn_map) const;
+
+#ifndef PRODUCT
+  virtual void              dump_spec(outputStream *st) const;
+#endif
+};
+
+
+// Simple container for the outgoing projections of a call.  Useful
+// for serious surgery on calls.
+class CallProjections : public StackObj {
+public:
+  Node* fallthrough_proj;
+  Node* fallthrough_catchproj;
+  Node* fallthrough_memproj;
+  Node* fallthrough_ioproj;
+  Node* catchall_catchproj;
+  Node* catchall_memproj;
+  Node* catchall_ioproj;
+  Node* resproj;
+  Node* exobj;
+};
+
+class CallGenerator;
+
+//------------------------------CallNode---------------------------------------
+// Call nodes now subsume the function of debug nodes at callsites, so they
+// contain the functionality of a full scope chain of debug nodes.
+class CallNode : public SafePointNode {
+  friend class VMStructs;
+
+protected:
+  bool may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr *t_oop, PhaseTransform *phase);
+
+public:
+  const TypeFunc *_tf;        // Function type
+  address      _entry_point;  // Address of method being called
+  float        _cnt;          // Estimate of number of times called
+  CallGenerator* _generator;  // corresponding CallGenerator for some late inline calls
+  const char *_name;           // Printable name, if _method is NULL
+
+  CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
+    : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
+      _tf(tf),
+      _entry_point(addr),
+      _cnt(COUNT_UNKNOWN),
+      _generator(NULL),
+      _name(NULL)
+  {
+    init_class_id(Class_Call);
+  }
+
+  const TypeFunc* tf()         const { return _tf; }
+  const address  entry_point() const { return _entry_point; }
+  const float    cnt()         const { return _cnt; }
+  CallGenerator* generator()   const { return _generator; }
+
+  void set_tf(const TypeFunc* tf)       { _tf = tf; }
+  void set_entry_point(address p)       { _entry_point = p; }
+  void set_cnt(float c)                 { _cnt = c; }
+  void set_generator(CallGenerator* cg) { _generator = cg; }
+
+  virtual const Type *bottom_type() const;
+  virtual const Type* Value(PhaseGVN* phase) const;
+  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+  virtual Node* Identity(PhaseGVN* phase) { return this; }
+  virtual uint        cmp( const Node &n ) const;
+  virtual uint        size_of() const = 0;
+  virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
+  virtual Node       *match( const ProjNode *proj, const Matcher *m );
+  virtual uint        ideal_reg() const { return NotAMachineReg; }
+  // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
+  // for some macro nodes whose expansion does not have a safepoint on the fast path.
+  virtual bool        guaranteed_safepoint()  { return true; }
+  // For macro nodes, the JVMState gets modified during expansion. If calls
+  // use MachConstantBase, it gets modified during matching. So when cloning
+  // the node the JVMState must be cloned. Default is not to clone.
+  virtual void clone_jvms(Compile* C) {
+    if (C->needs_clone_jvms() && jvms() != NULL) {
+      set_jvms(jvms()->clone_deep(C));
+      jvms()->set_map_deep(this);
+    }
+  }
+
+  // Returns true if the call may modify n
+  virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase);
+  // Does this node have a use of n other than in debug information?
+  bool                has_non_debug_use(Node *n);
+  // Returns the unique CheckCastPP of a call
+  // or result projection is there are several CheckCastPP
+  // or returns NULL if there is no one.
+  Node *result_cast();
+  // Does this node returns pointer?
+  bool returns_pointer() const {
+    const TypeTuple *r = tf()->range();
+    return (r->cnt() > TypeFunc::Parms &&
+            r->field_at(TypeFunc::Parms)->isa_ptr());
+  }
+
+  // Collect all the interesting edges from a call for use in
+  // replacing the call by something else.  Used by macro expansion
+  // and the late inlining support.
+  void extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts = true);
+
+  virtual uint match_edge(uint idx) const;
+
+  bool is_call_to_arraycopystub() const;
+
+#ifndef PRODUCT
+  virtual void        dump_req(outputStream *st = tty) const;
+  virtual void        dump_spec(outputStream *st) const;
+#endif
+};
+
+
+//------------------------------CallJavaNode-----------------------------------
+// Make a static or dynamic subroutine call node using Java calling
+// convention.  (The "Java" calling convention is the compiler's calling
+// convention, as opposed to the interpreter's or that of native C.)
+class CallJavaNode : public CallNode {
+  friend class VMStructs;
+protected:
+  virtual uint cmp( const Node &n ) const;
+  virtual uint size_of() const; // Size is bigger
+
+  bool    _optimized_virtual;
+  bool    _method_handle_invoke;
+  bool    _override_symbolic_info; // Override symbolic call site info from bytecode
+  ciMethod* _method;               // Method being direct called
+public:
+  const int       _bci;         // Byte Code Index of call byte code
+  CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
+    : CallNode(tf, addr, TypePtr::BOTTOM),
+      _method(method), _bci(bci),
+      _optimized_virtual(false),
+      _method_handle_invoke(false),
+      _override_symbolic_info(false)
+  {
+    init_class_id(Class_CallJava);
+  }
+
+  virtual int   Opcode() const;
+  ciMethod* method() const                 { return _method; }
+  void  set_method(ciMethod *m)            { _method = m; }
+  void  set_optimized_virtual(bool f)      { _optimized_virtual = f; }
+  bool  is_optimized_virtual() const       { return _optimized_virtual; }
+  void  set_method_handle_invoke(bool f)   { _method_handle_invoke = f; }
+  bool  is_method_handle_invoke() const    { return _method_handle_invoke; }
+  void  set_override_symbolic_info(bool f) { _override_symbolic_info = f; }
+  bool  override_symbolic_info() const     { return _override_symbolic_info; }
+
+#ifndef PRODUCT
+  virtual void  dump_spec(outputStream *st) const;
+  virtual void  dump_compact_spec(outputStream *st) const;
+#endif
+};
+
+//------------------------------CallStaticJavaNode-----------------------------
+// Make a direct subroutine call using Java calling convention (for static
+// calls and optimized virtual calls, plus calls to wrappers for run-time
+// routines); generates static stub.
+class CallStaticJavaNode : public CallJavaNode {
+  virtual uint cmp( const Node &n ) const;
+  virtual uint size_of() const; // Size is bigger
+public:
+  CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method, int bci)
+    : CallJavaNode(tf, addr, method, bci) {
+    init_class_id(Class_CallStaticJava);
+    if (C->eliminate_boxing() && (method != NULL) && method->is_boxing_method()) {
+      init_flags(Flag_is_macro);
+      C->add_macro_node(this);
+    }
+    _is_scalar_replaceable = false;
+    _is_non_escaping = false;
+  }
+  CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
+                     const TypePtr* adr_type)
+    : CallJavaNode(tf, addr, NULL, bci) {
+    init_class_id(Class_CallStaticJava);
+    // This node calls a runtime stub, which often has narrow memory effects.
+    _adr_type = adr_type;
+    _is_scalar_replaceable = false;
+    _is_non_escaping = false;
+    _name = name;
+  }
+
+  // Result of Escape Analysis
+  bool _is_scalar_replaceable;
+  bool _is_non_escaping;
+
+  // If this is an uncommon trap, return the request code, else zero.
+  int uncommon_trap_request() const;
+  static int extract_uncommon_trap_request(const Node* call);
+
+  bool is_boxing_method() const {
+    return is_macro() && (method() != NULL) && method()->is_boxing_method();
+  }
+  // Later inlining modifies the JVMState, so we need to clone it
+  // when the call node is cloned (because it is macro node).
+  virtual void  clone_jvms(Compile* C) {
+    if ((jvms() != NULL) && is_boxing_method()) {
+      set_jvms(jvms()->clone_deep(C));
+      jvms()->set_map_deep(this);
+    }
+  }
+
+  virtual int         Opcode() const;
+#ifndef PRODUCT
+  virtual void        dump_spec(outputStream *st) const;
+  virtual void        dump_compact_spec(outputStream *st) const;
+#endif
+};
+
+//------------------------------CallDynamicJavaNode----------------------------
+// Make a dispatched call using Java calling convention.
+class CallDynamicJavaNode : public CallJavaNode {
+  virtual uint cmp( const Node &n ) const;
+  virtual uint size_of() const; // Size is bigger
+public:
+  CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
+    init_class_id(Class_CallDynamicJava);
+  }
+
+  int _vtable_index;
+  virtual int   Opcode() const;
+#ifndef PRODUCT
+  virtual void  dump_spec(outputStream *st) const;
+#endif
+};
+
+//------------------------------CallRuntimeNode--------------------------------
+// Make a direct subroutine call node into compiled C++ code.
+class CallRuntimeNode : public CallNode {
+  virtual uint cmp( const Node &n ) const;
+  virtual uint size_of() const; // Size is bigger
+public:
+  CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
+                  const TypePtr* adr_type)
+    : CallNode(tf, addr, adr_type)
+  {
+    init_class_id(Class_CallRuntime);
+    _name = name;
+  }
+
+  virtual int   Opcode() const;
+  virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
+
+#ifndef PRODUCT
+  virtual void  dump_spec(outputStream *st) const;
+#endif
+};
+
+//------------------------------CallLeafNode-----------------------------------
+// Make a direct subroutine call node into compiled C++ code, without
+// safepoints
+class CallLeafNode : public CallRuntimeNode {
+public:
+  CallLeafNode(const TypeFunc* tf, address addr, const char* name,
+               const TypePtr* adr_type)
+    : CallRuntimeNode(tf, addr, name, adr_type)
+  {
+    init_class_id(Class_CallLeaf);
+  }
+  virtual int   Opcode() const;
+  virtual bool        guaranteed_safepoint()  { return false; }
+#ifndef PRODUCT
+  virtual void  dump_spec(outputStream *st) const;
+#endif
+};
+
+//------------------------------CallLeafNoFPNode-------------------------------
+// CallLeafNode, not using floating point or using it in the same manner as
+// the generated code
+class CallLeafNoFPNode : public CallLeafNode {
+public:
+  CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
+                   const TypePtr* adr_type)
+    : CallLeafNode(tf, addr, name, adr_type)
+  {
+  }
+  virtual int   Opcode() const;
+};
+
+
+//------------------------------Allocate---------------------------------------
+// High-level memory allocation
+//
+//  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
+//  get expanded into a code sequence containing a call.  Unlike other CallNodes,
+//  they have 2 memory projections and 2 i_o projections (which are distinguished by
+//  the _is_io_use flag in the projection.)  This is needed when expanding the node in
+//  order to differentiate the uses of the projection on the normal control path from
+//  those on the exception return path.
+//
+class AllocateNode : public CallNode {
+public:
+  enum {
+    // Output:
+    RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
+    // Inputs:
+    AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
+    KlassNode,                        // type (maybe dynamic) of the obj.
+    InitialTest,                      // slow-path test (may be constant)
+    ALength,                          // array length (or TOP if none)
+    ParmLimit
+  };
+
+  static const TypeFunc* alloc_type(const Type* t) {
+    const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
+    fields[AllocSize]   = TypeInt::POS;
+    fields[KlassNode]   = TypeInstPtr::NOTNULL;
+    fields[InitialTest] = TypeInt::BOOL;
+    fields[ALength]     = t;  // length (can be a bad length)
+
+    const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
+
+    // create result type (range)
+    fields = TypeTuple::fields(1);
+    fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
+
+    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
+
+    return TypeFunc::make(domain, range);
+  }
+
+  // Result of Escape Analysis
+  bool _is_scalar_replaceable;
+  bool _is_non_escaping;
+  // True when MemBar for new is redundant with MemBar at initialzer exit
+  bool _is_allocation_MemBar_redundant;
+
+  virtual uint size_of() const; // Size is bigger
+  AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
+               Node *size, Node *klass_node, Node *initial_test);
+  // Expansion modifies the JVMState, so we need to clone it
+  virtual void  clone_jvms(Compile* C) {
+    if (jvms() != NULL) {
+      set_jvms(jvms()->clone_deep(C));
+      jvms()->set_map_deep(this);
+    }
+  }
+  virtual int Opcode() const;
+  virtual uint ideal_reg() const { return Op_RegP; }
+  virtual bool        guaranteed_safepoint()  { return false; }
+
+  // allocations do not modify their arguments
+  virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { return false;}
+
+  // Pattern-match a possible usage of AllocateNode.
+  // Return null if no allocation is recognized.
+  // The operand is the pointer produced by the (possible) allocation.
+  // It must be a projection of the Allocate or its subsequent CastPP.
+  // (Note:  This function is defined in file graphKit.cpp, near
+  // GraphKit::new_instance/new_array, whose output it recognizes.)
+  // The 'ptr' may not have an offset unless the 'offset' argument is given.
+  static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
+
+  // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
+  // an offset, which is reported back to the caller.
+  // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
+  static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
+                                        intptr_t& offset);
+
+  // Dig the klass operand out of a (possible) allocation site.
+  static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
+    AllocateNode* allo = Ideal_allocation(ptr, phase);
+    return (allo == NULL) ? NULL : allo->in(KlassNode);
+  }
+
+  // Conservatively small estimate of offset of first non-header byte.
+  int minimum_header_size() {
+    return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
+                                instanceOopDesc::base_offset_in_bytes();
+  }
+
+  // Return the corresponding initialization barrier (or null if none).
+  // Walks out edges to find it...
+  // (Note: Both InitializeNode::allocation and AllocateNode::initialization
+  // are defined in graphKit.cpp, which sets up the bidirectional relation.)
+  InitializeNode* initialization();
+
+  // Convenience for initialization->maybe_set_complete(phase)
+  bool maybe_set_complete(PhaseGVN* phase);
+
+  // Return true if allocation doesn't escape thread, its escape state
+  // needs be noEscape or ArgEscape. InitializeNode._does_not_escape
+  // is true when its allocation's escape state is noEscape or
+  // ArgEscape. In case allocation's InitializeNode is NULL, check
+  // AlllocateNode._is_non_escaping flag.
+  // AlllocateNode._is_non_escaping is true when its escape state is
+  // noEscape.
+  bool does_not_escape_thread() {
+    InitializeNode* init = NULL;
+    return _is_non_escaping || (((init = initialization()) != NULL) && init->does_not_escape());
+  }
+
+  // If object doesn't escape in <.init> method and there is memory barrier
+  // inserted at exit of its <.init>, memory barrier for new is not necessary.
+  // Inovke this method when MemBar at exit of initializer and post-dominate
+  // allocation node.
+  void compute_MemBar_redundancy(ciMethod* initializer);
+  bool is_allocation_MemBar_redundant() { return _is_allocation_MemBar_redundant; }
+};
+
+//------------------------------AllocateArray---------------------------------
+//
+// High-level array allocation
+//
+class AllocateArrayNode : public AllocateNode {
+public:
+  AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
+                    Node* size, Node* klass_node, Node* initial_test,
+                    Node* count_val
+                    )
+    : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
+                   initial_test)
+  {
+    init_class_id(Class_AllocateArray);
+    set_req(AllocateNode::ALength,        count_val);
+  }
+  virtual int Opcode() const;
+  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+
+  // Dig the length operand out of a array allocation site.
+  Node* Ideal_length() {
+    return in(AllocateNode::ALength);
+  }
+
+  // Dig the length operand out of a array allocation site and narrow the
+  // type with a CastII, if necesssary
+  Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
+
+  // Pattern-match a possible usage of AllocateArrayNode.
+  // Return null if no allocation is recognized.
+  static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
+    AllocateNode* allo = Ideal_allocation(ptr, phase);
+    return (allo == NULL || !allo->is_AllocateArray())
+           ? NULL : allo->as_AllocateArray();
+  }
+};
+
+//------------------------------AbstractLockNode-----------------------------------
+class AbstractLockNode: public CallNode {
+private:
+  enum {
+    Regular = 0,  // Normal lock
+    NonEscObj,    // Lock is used for non escaping object
+    Coarsened,    // Lock was coarsened
+    Nested        // Nested lock
+  } _kind;
+#ifndef PRODUCT
+  NamedCounter* _counter;
+  static const char* _kind_names[Nested+1];
+#endif
+
+protected:
+  // helper functions for lock elimination
+  //
+
+  bool find_matching_unlock(const Node* ctrl, LockNode* lock,
+                            GrowableArray<AbstractLockNode*> &lock_ops);
+  bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
+                                       GrowableArray<AbstractLockNode*> &lock_ops);
+  bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
+                               GrowableArray<AbstractLockNode*> &lock_ops);
+  LockNode *find_matching_lock(UnlockNode* unlock);
+
+  // Update the counter to indicate that this lock was eliminated.
+  void set_eliminated_lock_counter() PRODUCT_RETURN;
+
+public:
+  AbstractLockNode(const TypeFunc *tf)
+    : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
+      _kind(Regular)
+  {
+#ifndef PRODUCT
+    _counter = NULL;
+#endif
+  }
+  virtual int Opcode() const = 0;
+  Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
+  Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
+  Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
+  void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
+
+  const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
+
+  virtual uint size_of() const { return sizeof(*this); }
+
+  bool is_eliminated()  const { return (_kind != Regular); }
+  bool is_non_esc_obj() const { return (_kind == NonEscObj); }
+  bool is_coarsened()   const { return (_kind == Coarsened); }
+  bool is_nested()      const { return (_kind == Nested); }
+
+  const char * kind_as_string() const;
+  void log_lock_optimization(Compile* c, const char * tag) const;
+
+  void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
+  void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
+  void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
+
+  // locking does not modify its arguments
+  virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase){ return false;}
+
+#ifndef PRODUCT
+  void create_lock_counter(JVMState* s);
+  NamedCounter* counter() const { return _counter; }
+  virtual void dump_spec(outputStream* st) const;
+  virtual void dump_compact_spec(outputStream* st) const;
+  virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
+#endif
+};
+
+//------------------------------Lock---------------------------------------
+// High-level lock operation
+//
+// This is a subclass of CallNode because it is a macro node which gets expanded
+// into a code sequence containing a call.  This node takes 3 "parameters":
+//    0  -  object to lock
+//    1 -   a BoxLockNode
+//    2 -   a FastLockNode
+//
+class LockNode : public AbstractLockNode {
+public:
+
+  static const TypeFunc *lock_type() {
+    // create input type (domain)
+    const Type **fields = TypeTuple::fields(3);
+    fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
+    fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
+    fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
+    const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
+
+    // create result type (range)
+    fields = TypeTuple::fields(0);
+
+    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
+
+    return TypeFunc::make(domain,range);
+  }
+
+  virtual int Opcode() const;
+  virtual uint size_of() const; // Size is bigger
+  LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
+    init_class_id(Class_Lock);
+    init_flags(Flag_is_macro);
+    C->add_macro_node(this);
+  }
+  virtual bool        guaranteed_safepoint()  { return false; }
+
+  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+  // Expansion modifies the JVMState, so we need to clone it
+  virtual void  clone_jvms(Compile* C) {
+    if (jvms() != NULL) {
+      set_jvms(jvms()->clone_deep(C));
+      jvms()->set_map_deep(this);
+    }
+  }
+
+  bool is_nested_lock_region(); // Is this Lock nested?
+  bool is_nested_lock_region(Compile * c); // Why isn't this Lock nested?
+};
+
+//------------------------------Unlock---------------------------------------
+// High-level unlock operation
+class UnlockNode : public AbstractLockNode {
+private:
+#ifdef ASSERT
+  JVMState* const _dbg_jvms;      // Pointer to list of JVM State objects
+#endif
+public:
+  virtual int Opcode() const;
+  virtual uint size_of() const; // Size is bigger
+  UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf )
+#ifdef ASSERT
+    , _dbg_jvms(NULL)
+#endif
+  {
+    init_class_id(Class_Unlock);
+    init_flags(Flag_is_macro);
+    C->add_macro_node(this);
+  }
+  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+  // unlock is never a safepoint
+  virtual bool        guaranteed_safepoint()  { return false; }
+#ifdef ASSERT
+  void set_dbg_jvms(JVMState* s) {
+    *(JVMState**)&_dbg_jvms = s;  // override const attribute in the accessor
+  }
+  JVMState* dbg_jvms() const { return _dbg_jvms; }
+#else
+  JVMState* dbg_jvms() const { return NULL; }
+#endif
+};
+#endif // SHARE_VM_OPTO_CALLNODE_HPP