src/hotspot/share/memory/metaspace.cpp
changeset 47216 71c04702a3d5
parent 46810 7dad333205cd
child 47543 198cb8e20aef
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/memory/metaspace.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,4309 @@
+/*
+ * Copyright (c) 2011, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+#include "precompiled.hpp"
+#include "aot/aotLoader.hpp"
+#include "gc/shared/collectedHeap.hpp"
+#include "gc/shared/collectorPolicy.hpp"
+#include "gc/shared/gcLocker.hpp"
+#include "logging/log.hpp"
+#include "logging/logStream.hpp"
+#include "memory/allocation.hpp"
+#include "memory/binaryTreeDictionary.hpp"
+#include "memory/filemap.hpp"
+#include "memory/freeList.hpp"
+#include "memory/metachunk.hpp"
+#include "memory/metaspace.hpp"
+#include "memory/metaspaceGCThresholdUpdater.hpp"
+#include "memory/metaspaceShared.hpp"
+#include "memory/metaspaceTracer.hpp"
+#include "memory/resourceArea.hpp"
+#include "memory/universe.hpp"
+#include "runtime/atomic.hpp"
+#include "runtime/globals.hpp"
+#include "runtime/init.hpp"
+#include "runtime/java.hpp"
+#include "runtime/mutex.hpp"
+#include "runtime/orderAccess.inline.hpp"
+#include "services/memTracker.hpp"
+#include "services/memoryService.hpp"
+#include "utilities/align.hpp"
+#include "utilities/copy.hpp"
+#include "utilities/debug.hpp"
+#include "utilities/macros.hpp"
+
+typedef BinaryTreeDictionary<Metablock, FreeList<Metablock> > BlockTreeDictionary;
+typedef BinaryTreeDictionary<Metachunk, FreeList<Metachunk> > ChunkTreeDictionary;
+
+// Set this constant to enable slow integrity checking of the free chunk lists
+const bool metaspace_slow_verify = false;
+
+size_t const allocation_from_dictionary_limit = 4 * K;
+
+MetaWord* last_allocated = 0;
+
+size_t Metaspace::_compressed_class_space_size;
+const MetaspaceTracer* Metaspace::_tracer = NULL;
+
+DEBUG_ONLY(bool Metaspace::_frozen = false;)
+
+// Used in declarations in SpaceManager and ChunkManager
+enum ChunkIndex {
+  ZeroIndex = 0,
+  SpecializedIndex = ZeroIndex,
+  SmallIndex = SpecializedIndex + 1,
+  MediumIndex = SmallIndex + 1,
+  HumongousIndex = MediumIndex + 1,
+  NumberOfFreeLists = 3,
+  NumberOfInUseLists = 4
+};
+
+// Helper, returns a descriptive name for the given index.
+static const char* chunk_size_name(ChunkIndex index) {
+  switch (index) {
+    case SpecializedIndex:
+      return "specialized";
+    case SmallIndex:
+      return "small";
+    case MediumIndex:
+      return "medium";
+    case HumongousIndex:
+      return "humongous";
+    default:
+      return "Invalid index";
+  }
+}
+
+enum ChunkSizes {    // in words.
+  ClassSpecializedChunk = 128,
+  SpecializedChunk = 128,
+  ClassSmallChunk = 256,
+  SmallChunk = 512,
+  ClassMediumChunk = 4 * K,
+  MediumChunk = 8 * K
+};
+
+static ChunkIndex next_chunk_index(ChunkIndex i) {
+  assert(i < NumberOfInUseLists, "Out of bound");
+  return (ChunkIndex) (i+1);
+}
+
+volatile intptr_t MetaspaceGC::_capacity_until_GC = 0;
+uint MetaspaceGC::_shrink_factor = 0;
+bool MetaspaceGC::_should_concurrent_collect = false;
+
+typedef class FreeList<Metachunk> ChunkList;
+
+// Manages the global free lists of chunks.
+class ChunkManager : public CHeapObj<mtInternal> {
+  friend class TestVirtualSpaceNodeTest;
+
+  // Free list of chunks of different sizes.
+  //   SpecializedChunk
+  //   SmallChunk
+  //   MediumChunk
+  ChunkList _free_chunks[NumberOfFreeLists];
+
+  // Return non-humongous chunk list by its index.
+  ChunkList* free_chunks(ChunkIndex index);
+
+  // Returns non-humongous chunk list for the given chunk word size.
+  ChunkList* find_free_chunks_list(size_t word_size);
+
+  //   HumongousChunk
+  ChunkTreeDictionary _humongous_dictionary;
+
+  // Returns the humongous chunk dictionary.
+  ChunkTreeDictionary* humongous_dictionary() {
+    return &_humongous_dictionary;
+  }
+
+  // Size, in metaspace words, of all chunks managed by this ChunkManager
+  size_t _free_chunks_total;
+  // Number of chunks in this ChunkManager
+  size_t _free_chunks_count;
+
+  // Update counters after a chunk was added or removed removed.
+  void account_for_added_chunk(const Metachunk* c);
+  void account_for_removed_chunk(const Metachunk* c);
+
+  // Debug support
+
+  size_t sum_free_chunks();
+  size_t sum_free_chunks_count();
+
+  void locked_verify_free_chunks_total();
+  void slow_locked_verify_free_chunks_total() {
+    if (metaspace_slow_verify) {
+      locked_verify_free_chunks_total();
+    }
+  }
+  void locked_verify_free_chunks_count();
+  void slow_locked_verify_free_chunks_count() {
+    if (metaspace_slow_verify) {
+      locked_verify_free_chunks_count();
+    }
+  }
+  void verify_free_chunks_count();
+
+  struct ChunkManagerStatistics {
+    size_t num_by_type[NumberOfFreeLists];
+    size_t single_size_by_type[NumberOfFreeLists];
+    size_t total_size_by_type[NumberOfFreeLists];
+    size_t num_humongous_chunks;
+    size_t total_size_humongous_chunks;
+  };
+
+  void locked_get_statistics(ChunkManagerStatistics* stat) const;
+  void get_statistics(ChunkManagerStatistics* stat) const;
+  static void print_statistics(const ChunkManagerStatistics* stat, outputStream* out);
+
+ public:
+
+  ChunkManager(size_t specialized_size, size_t small_size, size_t medium_size)
+      : _free_chunks_total(0), _free_chunks_count(0) {
+    _free_chunks[SpecializedIndex].set_size(specialized_size);
+    _free_chunks[SmallIndex].set_size(small_size);
+    _free_chunks[MediumIndex].set_size(medium_size);
+  }
+
+  // add or delete (return) a chunk to the global freelist.
+  Metachunk* chunk_freelist_allocate(size_t word_size);
+
+  // Map a size to a list index assuming that there are lists
+  // for special, small, medium, and humongous chunks.
+  ChunkIndex list_index(size_t size);
+
+  // Map a given index to the chunk size.
+  size_t size_by_index(ChunkIndex index) const;
+
+  // Take a chunk from the ChunkManager. The chunk is expected to be in
+  // the chunk manager (the freelist if non-humongous, the dictionary if
+  // humongous).
+  void remove_chunk(Metachunk* chunk);
+
+  // Return a single chunk of type index to the ChunkManager.
+  void return_single_chunk(ChunkIndex index, Metachunk* chunk);
+
+  // Add the simple linked list of chunks to the freelist of chunks
+  // of type index.
+  void return_chunk_list(ChunkIndex index, Metachunk* chunk);
+
+  // Total of the space in the free chunks list
+  size_t free_chunks_total_words();
+  size_t free_chunks_total_bytes();
+
+  // Number of chunks in the free chunks list
+  size_t free_chunks_count();
+
+  // Remove from a list by size.  Selects list based on size of chunk.
+  Metachunk* free_chunks_get(size_t chunk_word_size);
+
+#define index_bounds_check(index)                                         \
+  assert(index == SpecializedIndex ||                                     \
+         index == SmallIndex ||                                           \
+         index == MediumIndex ||                                          \
+         index == HumongousIndex, "Bad index: %d", (int) index)
+
+  size_t num_free_chunks(ChunkIndex index) const {
+    index_bounds_check(index);
+
+    if (index == HumongousIndex) {
+      return _humongous_dictionary.total_free_blocks();
+    }
+
+    ssize_t count = _free_chunks[index].count();
+    return count == -1 ? 0 : (size_t) count;
+  }
+
+  size_t size_free_chunks_in_bytes(ChunkIndex index) const {
+    index_bounds_check(index);
+
+    size_t word_size = 0;
+    if (index == HumongousIndex) {
+      word_size = _humongous_dictionary.total_size();
+    } else {
+      const size_t size_per_chunk_in_words = _free_chunks[index].size();
+      word_size = size_per_chunk_in_words * num_free_chunks(index);
+    }
+
+    return word_size * BytesPerWord;
+  }
+
+  MetaspaceChunkFreeListSummary chunk_free_list_summary() const {
+    return MetaspaceChunkFreeListSummary(num_free_chunks(SpecializedIndex),
+                                         num_free_chunks(SmallIndex),
+                                         num_free_chunks(MediumIndex),
+                                         num_free_chunks(HumongousIndex),
+                                         size_free_chunks_in_bytes(SpecializedIndex),
+                                         size_free_chunks_in_bytes(SmallIndex),
+                                         size_free_chunks_in_bytes(MediumIndex),
+                                         size_free_chunks_in_bytes(HumongousIndex));
+  }
+
+  // Debug support
+  void verify();
+  void slow_verify() {
+    if (metaspace_slow_verify) {
+      verify();
+    }
+  }
+  void locked_verify();
+  void slow_locked_verify() {
+    if (metaspace_slow_verify) {
+      locked_verify();
+    }
+  }
+  void verify_free_chunks_total();
+
+  void locked_print_free_chunks(outputStream* st);
+  void locked_print_sum_free_chunks(outputStream* st);
+
+  void print_on(outputStream* st) const;
+
+  // Prints composition for both non-class and (if available)
+  // class chunk manager.
+  static void print_all_chunkmanagers(outputStream* out);
+};
+
+class SmallBlocks : public CHeapObj<mtClass> {
+  const static uint _small_block_max_size = sizeof(TreeChunk<Metablock,  FreeList<Metablock> >)/HeapWordSize;
+  const static uint _small_block_min_size = sizeof(Metablock)/HeapWordSize;
+
+ private:
+  FreeList<Metablock> _small_lists[_small_block_max_size - _small_block_min_size];
+
+  FreeList<Metablock>& list_at(size_t word_size) {
+    assert(word_size >= _small_block_min_size, "There are no metaspace objects less than %u words", _small_block_min_size);
+    return _small_lists[word_size - _small_block_min_size];
+  }
+
+ public:
+  SmallBlocks() {
+    for (uint i = _small_block_min_size; i < _small_block_max_size; i++) {
+      uint k = i - _small_block_min_size;
+      _small_lists[k].set_size(i);
+    }
+  }
+
+  size_t total_size() const {
+    size_t result = 0;
+    for (uint i = _small_block_min_size; i < _small_block_max_size; i++) {
+      uint k = i - _small_block_min_size;
+      result = result + _small_lists[k].count() * _small_lists[k].size();
+    }
+    return result;
+  }
+
+  static uint small_block_max_size() { return _small_block_max_size; }
+  static uint small_block_min_size() { return _small_block_min_size; }
+
+  MetaWord* get_block(size_t word_size) {
+    if (list_at(word_size).count() > 0) {
+      MetaWord* new_block = (MetaWord*) list_at(word_size).get_chunk_at_head();
+      return new_block;
+    } else {
+      return NULL;
+    }
+  }
+  void return_block(Metablock* free_chunk, size_t word_size) {
+    list_at(word_size).return_chunk_at_head(free_chunk, false);
+    assert(list_at(word_size).count() > 0, "Should have a chunk");
+  }
+
+  void print_on(outputStream* st) const {
+    st->print_cr("SmallBlocks:");
+    for (uint i = _small_block_min_size; i < _small_block_max_size; i++) {
+      uint k = i - _small_block_min_size;
+      st->print_cr("small_lists size " SIZE_FORMAT " count " SIZE_FORMAT, _small_lists[k].size(), _small_lists[k].count());
+    }
+  }
+};
+
+// Used to manage the free list of Metablocks (a block corresponds
+// to the allocation of a quantum of metadata).
+class BlockFreelist : public CHeapObj<mtClass> {
+  BlockTreeDictionary* const _dictionary;
+  SmallBlocks* _small_blocks;
+
+  // Only allocate and split from freelist if the size of the allocation
+  // is at least 1/4th the size of the available block.
+  const static int WasteMultiplier = 4;
+
+  // Accessors
+  BlockTreeDictionary* dictionary() const { return _dictionary; }
+  SmallBlocks* small_blocks() {
+    if (_small_blocks == NULL) {
+      _small_blocks = new SmallBlocks();
+    }
+    return _small_blocks;
+  }
+
+ public:
+  BlockFreelist();
+  ~BlockFreelist();
+
+  // Get and return a block to the free list
+  MetaWord* get_block(size_t word_size);
+  void return_block(MetaWord* p, size_t word_size);
+
+  size_t total_size() const  {
+    size_t result = dictionary()->total_size();
+    if (_small_blocks != NULL) {
+      result = result + _small_blocks->total_size();
+    }
+    return result;
+  }
+
+  static size_t min_dictionary_size()   { return TreeChunk<Metablock, FreeList<Metablock> >::min_size(); }
+  void print_on(outputStream* st) const;
+};
+
+// A VirtualSpaceList node.
+class VirtualSpaceNode : public CHeapObj<mtClass> {
+  friend class VirtualSpaceList;
+
+  // Link to next VirtualSpaceNode
+  VirtualSpaceNode* _next;
+
+  // total in the VirtualSpace
+  MemRegion _reserved;
+  ReservedSpace _rs;
+  VirtualSpace _virtual_space;
+  MetaWord* _top;
+  // count of chunks contained in this VirtualSpace
+  uintx _container_count;
+
+  // Convenience functions to access the _virtual_space
+  char* low()  const { return virtual_space()->low(); }
+  char* high() const { return virtual_space()->high(); }
+
+  // The first Metachunk will be allocated at the bottom of the
+  // VirtualSpace
+  Metachunk* first_chunk() { return (Metachunk*) bottom(); }
+
+  // Committed but unused space in the virtual space
+  size_t free_words_in_vs() const;
+ public:
+
+  VirtualSpaceNode(size_t byte_size);
+  VirtualSpaceNode(ReservedSpace rs) : _top(NULL), _next(NULL), _rs(rs), _container_count(0) {}
+  ~VirtualSpaceNode();
+
+  // Convenience functions for logical bottom and end
+  MetaWord* bottom() const { return (MetaWord*) _virtual_space.low(); }
+  MetaWord* end() const { return (MetaWord*) _virtual_space.high(); }
+
+  bool contains(const void* ptr) { return ptr >= low() && ptr < high(); }
+
+  size_t reserved_words() const  { return _virtual_space.reserved_size() / BytesPerWord; }
+  size_t committed_words() const { return _virtual_space.actual_committed_size() / BytesPerWord; }
+
+  bool is_pre_committed() const { return _virtual_space.special(); }
+
+  // address of next available space in _virtual_space;
+  // Accessors
+  VirtualSpaceNode* next() { return _next; }
+  void set_next(VirtualSpaceNode* v) { _next = v; }
+
+  void set_reserved(MemRegion const v) { _reserved = v; }
+  void set_top(MetaWord* v) { _top = v; }
+
+  // Accessors
+  MemRegion* reserved() { return &_reserved; }
+  VirtualSpace* virtual_space() const { return (VirtualSpace*) &_virtual_space; }
+
+  // Returns true if "word_size" is available in the VirtualSpace
+  bool is_available(size_t word_size) { return word_size <= pointer_delta(end(), _top, sizeof(MetaWord)); }
+
+  MetaWord* top() const { return _top; }
+  void inc_top(size_t word_size) { _top += word_size; }
+
+  uintx container_count() { return _container_count; }
+  void inc_container_count();
+  void dec_container_count();
+#ifdef ASSERT
+  uintx container_count_slow();
+  void verify_container_count();
+#endif
+
+  // used and capacity in this single entry in the list
+  size_t used_words_in_vs() const;
+  size_t capacity_words_in_vs() const;
+
+  bool initialize();
+
+  // get space from the virtual space
+  Metachunk* take_from_committed(size_t chunk_word_size);
+
+  // Allocate a chunk from the virtual space and return it.
+  Metachunk* get_chunk_vs(size_t chunk_word_size);
+
+  // Expands/shrinks the committed space in a virtual space.  Delegates
+  // to Virtualspace
+  bool expand_by(size_t min_words, size_t preferred_words);
+
+  // In preparation for deleting this node, remove all the chunks
+  // in the node from any freelist.
+  void purge(ChunkManager* chunk_manager);
+
+  // If an allocation doesn't fit in the current node a new node is created.
+  // Allocate chunks out of the remaining committed space in this node
+  // to avoid wasting that memory.
+  // This always adds up because all the chunk sizes are multiples of
+  // the smallest chunk size.
+  void retire(ChunkManager* chunk_manager);
+
+#ifdef ASSERT
+  // Debug support
+  void mangle();
+#endif
+
+  void print_on(outputStream* st) const;
+};
+
+#define assert_is_aligned(value, alignment)                  \
+  assert(is_aligned((value), (alignment)),                   \
+         SIZE_FORMAT_HEX " is not aligned to "               \
+         SIZE_FORMAT, (size_t)(uintptr_t)value, (alignment))
+
+// Decide if large pages should be committed when the memory is reserved.
+static bool should_commit_large_pages_when_reserving(size_t bytes) {
+  if (UseLargePages && UseLargePagesInMetaspace && !os::can_commit_large_page_memory()) {
+    size_t words = bytes / BytesPerWord;
+    bool is_class = false; // We never reserve large pages for the class space.
+    if (MetaspaceGC::can_expand(words, is_class) &&
+        MetaspaceGC::allowed_expansion() >= words) {
+      return true;
+    }
+  }
+
+  return false;
+}
+
+  // byte_size is the size of the associated virtualspace.
+VirtualSpaceNode::VirtualSpaceNode(size_t bytes) : _top(NULL), _next(NULL), _rs(), _container_count(0) {
+  assert_is_aligned(bytes, Metaspace::reserve_alignment());
+  bool large_pages = should_commit_large_pages_when_reserving(bytes);
+  _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
+
+  if (_rs.is_reserved()) {
+    assert(_rs.base() != NULL, "Catch if we get a NULL address");
+    assert(_rs.size() != 0, "Catch if we get a 0 size");
+    assert_is_aligned(_rs.base(), Metaspace::reserve_alignment());
+    assert_is_aligned(_rs.size(), Metaspace::reserve_alignment());
+
+    MemTracker::record_virtual_memory_type((address)_rs.base(), mtClass);
+  }
+}
+
+void VirtualSpaceNode::purge(ChunkManager* chunk_manager) {
+  Metachunk* chunk = first_chunk();
+  Metachunk* invalid_chunk = (Metachunk*) top();
+  while (chunk < invalid_chunk ) {
+    assert(chunk->is_tagged_free(), "Should be tagged free");
+    MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
+    chunk_manager->remove_chunk(chunk);
+    assert(chunk->next() == NULL &&
+           chunk->prev() == NULL,
+           "Was not removed from its list");
+    chunk = (Metachunk*) next;
+  }
+}
+
+#ifdef ASSERT
+uintx VirtualSpaceNode::container_count_slow() {
+  uintx count = 0;
+  Metachunk* chunk = first_chunk();
+  Metachunk* invalid_chunk = (Metachunk*) top();
+  while (chunk < invalid_chunk ) {
+    MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
+    // Don't count the chunks on the free lists.  Those are
+    // still part of the VirtualSpaceNode but not currently
+    // counted.
+    if (!chunk->is_tagged_free()) {
+      count++;
+    }
+    chunk = (Metachunk*) next;
+  }
+  return count;
+}
+#endif
+
+// List of VirtualSpaces for metadata allocation.
+class VirtualSpaceList : public CHeapObj<mtClass> {
+  friend class VirtualSpaceNode;
+
+  enum VirtualSpaceSizes {
+    VirtualSpaceSize = 256 * K
+  };
+
+  // Head of the list
+  VirtualSpaceNode* _virtual_space_list;
+  // virtual space currently being used for allocations
+  VirtualSpaceNode* _current_virtual_space;
+
+  // Is this VirtualSpaceList used for the compressed class space
+  bool _is_class;
+
+  // Sum of reserved and committed memory in the virtual spaces
+  size_t _reserved_words;
+  size_t _committed_words;
+
+  // Number of virtual spaces
+  size_t _virtual_space_count;
+
+  ~VirtualSpaceList();
+
+  VirtualSpaceNode* virtual_space_list() const { return _virtual_space_list; }
+
+  void set_virtual_space_list(VirtualSpaceNode* v) {
+    _virtual_space_list = v;
+  }
+  void set_current_virtual_space(VirtualSpaceNode* v) {
+    _current_virtual_space = v;
+  }
+
+  void link_vs(VirtualSpaceNode* new_entry);
+
+  // Get another virtual space and add it to the list.  This
+  // is typically prompted by a failed attempt to allocate a chunk
+  // and is typically followed by the allocation of a chunk.
+  bool create_new_virtual_space(size_t vs_word_size);
+
+  // Chunk up the unused committed space in the current
+  // virtual space and add the chunks to the free list.
+  void retire_current_virtual_space();
+
+ public:
+  VirtualSpaceList(size_t word_size);
+  VirtualSpaceList(ReservedSpace rs);
+
+  size_t free_bytes();
+
+  Metachunk* get_new_chunk(size_t chunk_word_size,
+                           size_t suggested_commit_granularity);
+
+  bool expand_node_by(VirtualSpaceNode* node,
+                      size_t min_words,
+                      size_t preferred_words);
+
+  bool expand_by(size_t min_words,
+                 size_t preferred_words);
+
+  VirtualSpaceNode* current_virtual_space() {
+    return _current_virtual_space;
+  }
+
+  bool is_class() const { return _is_class; }
+
+  bool initialization_succeeded() { return _virtual_space_list != NULL; }
+
+  size_t reserved_words()  { return _reserved_words; }
+  size_t reserved_bytes()  { return reserved_words() * BytesPerWord; }
+  size_t committed_words() { return _committed_words; }
+  size_t committed_bytes() { return committed_words() * BytesPerWord; }
+
+  void inc_reserved_words(size_t v);
+  void dec_reserved_words(size_t v);
+  void inc_committed_words(size_t v);
+  void dec_committed_words(size_t v);
+  void inc_virtual_space_count();
+  void dec_virtual_space_count();
+
+  bool contains(const void* ptr);
+
+  // Unlink empty VirtualSpaceNodes and free it.
+  void purge(ChunkManager* chunk_manager);
+
+  void print_on(outputStream* st) const;
+
+  class VirtualSpaceListIterator : public StackObj {
+    VirtualSpaceNode* _virtual_spaces;
+   public:
+    VirtualSpaceListIterator(VirtualSpaceNode* virtual_spaces) :
+      _virtual_spaces(virtual_spaces) {}
+
+    bool repeat() {
+      return _virtual_spaces != NULL;
+    }
+
+    VirtualSpaceNode* get_next() {
+      VirtualSpaceNode* result = _virtual_spaces;
+      if (_virtual_spaces != NULL) {
+        _virtual_spaces = _virtual_spaces->next();
+      }
+      return result;
+    }
+  };
+};
+
+class Metadebug : AllStatic {
+  // Debugging support for Metaspaces
+  static int _allocation_fail_alot_count;
+
+ public:
+
+  static void init_allocation_fail_alot_count();
+#ifdef ASSERT
+  static bool test_metadata_failure();
+#endif
+};
+
+int Metadebug::_allocation_fail_alot_count = 0;
+
+//  SpaceManager - used by Metaspace to handle allocations
+class SpaceManager : public CHeapObj<mtClass> {
+  friend class Metaspace;
+  friend class Metadebug;
+
+ private:
+
+  // protects allocations
+  Mutex* const _lock;
+
+  // Type of metadata allocated.
+  Metaspace::MetadataType _mdtype;
+
+  // List of chunks in use by this SpaceManager.  Allocations
+  // are done from the current chunk.  The list is used for deallocating
+  // chunks when the SpaceManager is freed.
+  Metachunk* _chunks_in_use[NumberOfInUseLists];
+  Metachunk* _current_chunk;
+
+  // Maximum number of small chunks to allocate to a SpaceManager
+  static uint const _small_chunk_limit;
+
+  // Sum of all space in allocated chunks
+  size_t _allocated_blocks_words;
+
+  // Sum of all allocated chunks
+  size_t _allocated_chunks_words;
+  size_t _allocated_chunks_count;
+
+  // Free lists of blocks are per SpaceManager since they
+  // are assumed to be in chunks in use by the SpaceManager
+  // and all chunks in use by a SpaceManager are freed when
+  // the class loader using the SpaceManager is collected.
+  BlockFreelist* _block_freelists;
+
+  // protects virtualspace and chunk expansions
+  static const char*  _expand_lock_name;
+  static const int    _expand_lock_rank;
+  static Mutex* const _expand_lock;
+
+ private:
+  // Accessors
+  Metachunk* chunks_in_use(ChunkIndex index) const { return _chunks_in_use[index]; }
+  void set_chunks_in_use(ChunkIndex index, Metachunk* v) {
+    _chunks_in_use[index] = v;
+  }
+
+  BlockFreelist* block_freelists() const { return _block_freelists; }
+
+  Metaspace::MetadataType mdtype() { return _mdtype; }
+
+  VirtualSpaceList* vs_list()   const { return Metaspace::get_space_list(_mdtype); }
+  ChunkManager* chunk_manager() const { return Metaspace::get_chunk_manager(_mdtype); }
+
+  Metachunk* current_chunk() const { return _current_chunk; }
+  void set_current_chunk(Metachunk* v) {
+    _current_chunk = v;
+  }
+
+  Metachunk* find_current_chunk(size_t word_size);
+
+  // Add chunk to the list of chunks in use
+  void add_chunk(Metachunk* v, bool make_current);
+  void retire_current_chunk();
+
+  Mutex* lock() const { return _lock; }
+
+ protected:
+  void initialize();
+
+ public:
+  SpaceManager(Metaspace::MetadataType mdtype,
+               Mutex* lock);
+  ~SpaceManager();
+
+  enum ChunkMultiples {
+    MediumChunkMultiple = 4
+  };
+
+  static size_t specialized_chunk_size(bool is_class) { return is_class ? ClassSpecializedChunk : SpecializedChunk; }
+  static size_t small_chunk_size(bool is_class)       { return is_class ? ClassSmallChunk : SmallChunk; }
+  static size_t medium_chunk_size(bool is_class)      { return is_class ? ClassMediumChunk : MediumChunk; }
+
+  static size_t smallest_chunk_size(bool is_class)    { return specialized_chunk_size(is_class); }
+
+  // Accessors
+  bool is_class() const { return _mdtype == Metaspace::ClassType; }
+
+  size_t specialized_chunk_size() const { return specialized_chunk_size(is_class()); }
+  size_t small_chunk_size()       const { return small_chunk_size(is_class()); }
+  size_t medium_chunk_size()      const { return medium_chunk_size(is_class()); }
+
+  size_t smallest_chunk_size()    const { return smallest_chunk_size(is_class()); }
+
+  size_t medium_chunk_bunch()     const { return medium_chunk_size() * MediumChunkMultiple; }
+
+  size_t allocated_blocks_words() const { return _allocated_blocks_words; }
+  size_t allocated_blocks_bytes() const { return _allocated_blocks_words * BytesPerWord; }
+  size_t allocated_chunks_words() const { return _allocated_chunks_words; }
+  size_t allocated_chunks_bytes() const { return _allocated_chunks_words * BytesPerWord; }
+  size_t allocated_chunks_count() const { return _allocated_chunks_count; }
+
+  bool is_humongous(size_t word_size) { return word_size > medium_chunk_size(); }
+
+  static Mutex* expand_lock() { return _expand_lock; }
+
+  // Increment the per Metaspace and global running sums for Metachunks
+  // by the given size.  This is used when a Metachunk to added to
+  // the in-use list.
+  void inc_size_metrics(size_t words);
+  // Increment the per Metaspace and global running sums Metablocks by the given
+  // size.  This is used when a Metablock is allocated.
+  void inc_used_metrics(size_t words);
+  // Delete the portion of the running sums for this SpaceManager. That is,
+  // the globals running sums for the Metachunks and Metablocks are
+  // decremented for all the Metachunks in-use by this SpaceManager.
+  void dec_total_from_size_metrics();
+
+  // Adjust the initial chunk size to match one of the fixed chunk list sizes,
+  // or return the unadjusted size if the requested size is humongous.
+  static size_t adjust_initial_chunk_size(size_t requested, bool is_class_space);
+  size_t adjust_initial_chunk_size(size_t requested) const;
+
+  // Get the initial chunks size for this metaspace type.
+  size_t get_initial_chunk_size(Metaspace::MetaspaceType type) const;
+
+  size_t sum_capacity_in_chunks_in_use() const;
+  size_t sum_used_in_chunks_in_use() const;
+  size_t sum_free_in_chunks_in_use() const;
+  size_t sum_waste_in_chunks_in_use() const;
+  size_t sum_waste_in_chunks_in_use(ChunkIndex index ) const;
+
+  size_t sum_count_in_chunks_in_use();
+  size_t sum_count_in_chunks_in_use(ChunkIndex i);
+
+  Metachunk* get_new_chunk(size_t chunk_word_size);
+
+  // Block allocation and deallocation.
+  // Allocates a block from the current chunk
+  MetaWord* allocate(size_t word_size);
+  // Allocates a block from a small chunk
+  MetaWord* get_small_chunk_and_allocate(size_t word_size);
+
+  // Helper for allocations
+  MetaWord* allocate_work(size_t word_size);
+
+  // Returns a block to the per manager freelist
+  void deallocate(MetaWord* p, size_t word_size);
+
+  // Based on the allocation size and a minimum chunk size,
+  // returned chunk size (for expanding space for chunk allocation).
+  size_t calc_chunk_size(size_t allocation_word_size);
+
+  // Called when an allocation from the current chunk fails.
+  // Gets a new chunk (may require getting a new virtual space),
+  // and allocates from that chunk.
+  MetaWord* grow_and_allocate(size_t word_size);
+
+  // Notify memory usage to MemoryService.
+  void track_metaspace_memory_usage();
+
+  // debugging support.
+
+  void dump(outputStream* const out) const;
+  void print_on(outputStream* st) const;
+  void locked_print_chunks_in_use_on(outputStream* st) const;
+
+  void verify();
+  void verify_chunk_size(Metachunk* chunk);
+#ifdef ASSERT
+  void verify_allocated_blocks_words();
+#endif
+
+  // This adjusts the size given to be greater than the minimum allocation size in
+  // words for data in metaspace.  Esentially the minimum size is currently 3 words.
+  size_t get_allocation_word_size(size_t word_size) {
+    size_t byte_size = word_size * BytesPerWord;
+
+    size_t raw_bytes_size = MAX2(byte_size, sizeof(Metablock));
+    raw_bytes_size = align_up(raw_bytes_size, Metachunk::object_alignment());
+
+    size_t raw_word_size = raw_bytes_size / BytesPerWord;
+    assert(raw_word_size * BytesPerWord == raw_bytes_size, "Size problem");
+
+    return raw_word_size;
+  }
+};
+
+uint const SpaceManager::_small_chunk_limit = 4;
+
+const char* SpaceManager::_expand_lock_name =
+  "SpaceManager chunk allocation lock";
+const int SpaceManager::_expand_lock_rank = Monitor::leaf - 1;
+Mutex* const SpaceManager::_expand_lock =
+  new Mutex(SpaceManager::_expand_lock_rank,
+            SpaceManager::_expand_lock_name,
+            Mutex::_allow_vm_block_flag,
+            Monitor::_safepoint_check_never);
+
+void VirtualSpaceNode::inc_container_count() {
+  assert_lock_strong(SpaceManager::expand_lock());
+  _container_count++;
+}
+
+void VirtualSpaceNode::dec_container_count() {
+  assert_lock_strong(SpaceManager::expand_lock());
+  _container_count--;
+}
+
+#ifdef ASSERT
+void VirtualSpaceNode::verify_container_count() {
+  assert(_container_count == container_count_slow(),
+         "Inconsistency in container_count _container_count " UINTX_FORMAT
+         " container_count_slow() " UINTX_FORMAT, _container_count, container_count_slow());
+}
+#endif
+
+// BlockFreelist methods
+
+BlockFreelist::BlockFreelist() : _dictionary(new BlockTreeDictionary()), _small_blocks(NULL) {}
+
+BlockFreelist::~BlockFreelist() {
+  delete _dictionary;
+  if (_small_blocks != NULL) {
+    delete _small_blocks;
+  }
+}
+
+void BlockFreelist::return_block(MetaWord* p, size_t word_size) {
+  assert(word_size >= SmallBlocks::small_block_min_size(), "never return dark matter");
+
+  Metablock* free_chunk = ::new (p) Metablock(word_size);
+  if (word_size < SmallBlocks::small_block_max_size()) {
+    small_blocks()->return_block(free_chunk, word_size);
+  } else {
+  dictionary()->return_chunk(free_chunk);
+}
+  log_trace(gc, metaspace, freelist, blocks)("returning block at " INTPTR_FORMAT " size = "
+            SIZE_FORMAT, p2i(free_chunk), word_size);
+}
+
+MetaWord* BlockFreelist::get_block(size_t word_size) {
+  assert(word_size >= SmallBlocks::small_block_min_size(), "never get dark matter");
+
+  // Try small_blocks first.
+  if (word_size < SmallBlocks::small_block_max_size()) {
+    // Don't create small_blocks() until needed.  small_blocks() allocates the small block list for
+    // this space manager.
+    MetaWord* new_block = (MetaWord*) small_blocks()->get_block(word_size);
+    if (new_block != NULL) {
+      log_trace(gc, metaspace, freelist, blocks)("getting block at " INTPTR_FORMAT " size = " SIZE_FORMAT,
+              p2i(new_block), word_size);
+      return new_block;
+    }
+  }
+
+  if (word_size < BlockFreelist::min_dictionary_size()) {
+    // If allocation in small blocks fails, this is Dark Matter.  Too small for dictionary.
+    return NULL;
+  }
+
+  Metablock* free_block = dictionary()->get_chunk(word_size);
+  if (free_block == NULL) {
+    return NULL;
+  }
+
+  const size_t block_size = free_block->size();
+  if (block_size > WasteMultiplier * word_size) {
+    return_block((MetaWord*)free_block, block_size);
+    return NULL;
+  }
+
+  MetaWord* new_block = (MetaWord*)free_block;
+  assert(block_size >= word_size, "Incorrect size of block from freelist");
+  const size_t unused = block_size - word_size;
+  if (unused >= SmallBlocks::small_block_min_size()) {
+    return_block(new_block + word_size, unused);
+  }
+
+  log_trace(gc, metaspace, freelist, blocks)("getting block at " INTPTR_FORMAT " size = " SIZE_FORMAT,
+            p2i(new_block), word_size);
+  return new_block;
+}
+
+void BlockFreelist::print_on(outputStream* st) const {
+  dictionary()->print_free_lists(st);
+  if (_small_blocks != NULL) {
+    _small_blocks->print_on(st);
+  }
+}
+
+// VirtualSpaceNode methods
+
+VirtualSpaceNode::~VirtualSpaceNode() {
+  _rs.release();
+#ifdef ASSERT
+  size_t word_size = sizeof(*this) / BytesPerWord;
+  Copy::fill_to_words((HeapWord*) this, word_size, 0xf1f1f1f1);
+#endif
+}
+
+size_t VirtualSpaceNode::used_words_in_vs() const {
+  return pointer_delta(top(), bottom(), sizeof(MetaWord));
+}
+
+// Space committed in the VirtualSpace
+size_t VirtualSpaceNode::capacity_words_in_vs() const {
+  return pointer_delta(end(), bottom(), sizeof(MetaWord));
+}
+
+size_t VirtualSpaceNode::free_words_in_vs() const {
+  return pointer_delta(end(), top(), sizeof(MetaWord));
+}
+
+// Allocates the chunk from the virtual space only.
+// This interface is also used internally for debugging.  Not all
+// chunks removed here are necessarily used for allocation.
+Metachunk* VirtualSpaceNode::take_from_committed(size_t chunk_word_size) {
+  // Bottom of the new chunk
+  MetaWord* chunk_limit = top();
+  assert(chunk_limit != NULL, "Not safe to call this method");
+
+  // The virtual spaces are always expanded by the
+  // commit granularity to enforce the following condition.
+  // Without this the is_available check will not work correctly.
+  assert(_virtual_space.committed_size() == _virtual_space.actual_committed_size(),
+      "The committed memory doesn't match the expanded memory.");
+
+  if (!is_available(chunk_word_size)) {
+    LogTarget(Debug, gc, metaspace, freelist) lt;
+    if (lt.is_enabled()) {
+      LogStream ls(lt);
+      ls.print("VirtualSpaceNode::take_from_committed() not available " SIZE_FORMAT " words ", chunk_word_size);
+      // Dump some information about the virtual space that is nearly full
+      print_on(&ls);
+    }
+    return NULL;
+  }
+
+  // Take the space  (bump top on the current virtual space).
+  inc_top(chunk_word_size);
+
+  // Initialize the chunk
+  Metachunk* result = ::new (chunk_limit) Metachunk(chunk_word_size, this);
+  return result;
+}
+
+
+// Expand the virtual space (commit more of the reserved space)
+bool VirtualSpaceNode::expand_by(size_t min_words, size_t preferred_words) {
+  size_t min_bytes = min_words * BytesPerWord;
+  size_t preferred_bytes = preferred_words * BytesPerWord;
+
+  size_t uncommitted = virtual_space()->reserved_size() - virtual_space()->actual_committed_size();
+
+  if (uncommitted < min_bytes) {
+    return false;
+  }
+
+  size_t commit = MIN2(preferred_bytes, uncommitted);
+  bool result = virtual_space()->expand_by(commit, false);
+
+  assert(result, "Failed to commit memory");
+
+  return result;
+}
+
+Metachunk* VirtualSpaceNode::get_chunk_vs(size_t chunk_word_size) {
+  assert_lock_strong(SpaceManager::expand_lock());
+  Metachunk* result = take_from_committed(chunk_word_size);
+  if (result != NULL) {
+    inc_container_count();
+  }
+  return result;
+}
+
+bool VirtualSpaceNode::initialize() {
+
+  if (!_rs.is_reserved()) {
+    return false;
+  }
+
+  // These are necessary restriction to make sure that the virtual space always
+  // grows in steps of Metaspace::commit_alignment(). If both base and size are
+  // aligned only the middle alignment of the VirtualSpace is used.
+  assert_is_aligned(_rs.base(), Metaspace::commit_alignment());
+  assert_is_aligned(_rs.size(), Metaspace::commit_alignment());
+
+  // ReservedSpaces marked as special will have the entire memory
+  // pre-committed. Setting a committed size will make sure that
+  // committed_size and actual_committed_size agrees.
+  size_t pre_committed_size = _rs.special() ? _rs.size() : 0;
+
+  bool result = virtual_space()->initialize_with_granularity(_rs, pre_committed_size,
+                                            Metaspace::commit_alignment());
+  if (result) {
+    assert(virtual_space()->committed_size() == virtual_space()->actual_committed_size(),
+        "Checking that the pre-committed memory was registered by the VirtualSpace");
+
+    set_top((MetaWord*)virtual_space()->low());
+    set_reserved(MemRegion((HeapWord*)_rs.base(),
+                 (HeapWord*)(_rs.base() + _rs.size())));
+
+    assert(reserved()->start() == (HeapWord*) _rs.base(),
+           "Reserved start was not set properly " PTR_FORMAT
+           " != " PTR_FORMAT, p2i(reserved()->start()), p2i(_rs.base()));
+    assert(reserved()->word_size() == _rs.size() / BytesPerWord,
+           "Reserved size was not set properly " SIZE_FORMAT
+           " != " SIZE_FORMAT, reserved()->word_size(),
+           _rs.size() / BytesPerWord);
+  }
+
+  return result;
+}
+
+void VirtualSpaceNode::print_on(outputStream* st) const {
+  size_t used = used_words_in_vs();
+  size_t capacity = capacity_words_in_vs();
+  VirtualSpace* vs = virtual_space();
+  st->print_cr("   space @ " PTR_FORMAT " " SIZE_FORMAT "K, " SIZE_FORMAT_W(3) "%% used "
+           "[" PTR_FORMAT ", " PTR_FORMAT ", "
+           PTR_FORMAT ", " PTR_FORMAT ")",
+           p2i(vs), capacity / K,
+           capacity == 0 ? 0 : used * 100 / capacity,
+           p2i(bottom()), p2i(top()), p2i(end()),
+           p2i(vs->high_boundary()));
+}
+
+#ifdef ASSERT
+void VirtualSpaceNode::mangle() {
+  size_t word_size = capacity_words_in_vs();
+  Copy::fill_to_words((HeapWord*) low(), word_size, 0xf1f1f1f1);
+}
+#endif // ASSERT
+
+// VirtualSpaceList methods
+// Space allocated from the VirtualSpace
+
+VirtualSpaceList::~VirtualSpaceList() {
+  VirtualSpaceListIterator iter(virtual_space_list());
+  while (iter.repeat()) {
+    VirtualSpaceNode* vsl = iter.get_next();
+    delete vsl;
+  }
+}
+
+void VirtualSpaceList::inc_reserved_words(size_t v) {
+  assert_lock_strong(SpaceManager::expand_lock());
+  _reserved_words = _reserved_words + v;
+}
+void VirtualSpaceList::dec_reserved_words(size_t v) {
+  assert_lock_strong(SpaceManager::expand_lock());
+  _reserved_words = _reserved_words - v;
+}
+
+#define assert_committed_below_limit()                        \
+  assert(MetaspaceAux::committed_bytes() <= MaxMetaspaceSize, \
+         "Too much committed memory. Committed: " SIZE_FORMAT \
+         " limit (MaxMetaspaceSize): " SIZE_FORMAT,           \
+         MetaspaceAux::committed_bytes(), MaxMetaspaceSize);
+
+void VirtualSpaceList::inc_committed_words(size_t v) {
+  assert_lock_strong(SpaceManager::expand_lock());
+  _committed_words = _committed_words + v;
+
+  assert_committed_below_limit();
+}
+void VirtualSpaceList::dec_committed_words(size_t v) {
+  assert_lock_strong(SpaceManager::expand_lock());
+  _committed_words = _committed_words - v;
+
+  assert_committed_below_limit();
+}
+
+void VirtualSpaceList::inc_virtual_space_count() {
+  assert_lock_strong(SpaceManager::expand_lock());
+  _virtual_space_count++;
+}
+void VirtualSpaceList::dec_virtual_space_count() {
+  assert_lock_strong(SpaceManager::expand_lock());
+  _virtual_space_count--;
+}
+
+void ChunkManager::remove_chunk(Metachunk* chunk) {
+  size_t word_size = chunk->word_size();
+  ChunkIndex index = list_index(word_size);
+  if (index != HumongousIndex) {
+    free_chunks(index)->remove_chunk(chunk);
+  } else {
+    humongous_dictionary()->remove_chunk(chunk);
+  }
+
+  // Chunk has been removed from the chunks free list, update counters.
+  account_for_removed_chunk(chunk);
+}
+
+// Walk the list of VirtualSpaceNodes and delete
+// nodes with a 0 container_count.  Remove Metachunks in
+// the node from their respective freelists.
+void VirtualSpaceList::purge(ChunkManager* chunk_manager) {
+  assert(SafepointSynchronize::is_at_safepoint(), "must be called at safepoint for contains to work");
+  assert_lock_strong(SpaceManager::expand_lock());
+  // Don't use a VirtualSpaceListIterator because this
+  // list is being changed and a straightforward use of an iterator is not safe.
+  VirtualSpaceNode* purged_vsl = NULL;
+  VirtualSpaceNode* prev_vsl = virtual_space_list();
+  VirtualSpaceNode* next_vsl = prev_vsl;
+  while (next_vsl != NULL) {
+    VirtualSpaceNode* vsl = next_vsl;
+    DEBUG_ONLY(vsl->verify_container_count();)
+    next_vsl = vsl->next();
+    // Don't free the current virtual space since it will likely
+    // be needed soon.
+    if (vsl->container_count() == 0 && vsl != current_virtual_space()) {
+      // Unlink it from the list
+      if (prev_vsl == vsl) {
+        // This is the case of the current node being the first node.
+        assert(vsl == virtual_space_list(), "Expected to be the first node");
+        set_virtual_space_list(vsl->next());
+      } else {
+        prev_vsl->set_next(vsl->next());
+      }
+
+      vsl->purge(chunk_manager);
+      dec_reserved_words(vsl->reserved_words());
+      dec_committed_words(vsl->committed_words());
+      dec_virtual_space_count();
+      purged_vsl = vsl;
+      delete vsl;
+    } else {
+      prev_vsl = vsl;
+    }
+  }
+#ifdef ASSERT
+  if (purged_vsl != NULL) {
+    // List should be stable enough to use an iterator here.
+    VirtualSpaceListIterator iter(virtual_space_list());
+    while (iter.repeat()) {
+      VirtualSpaceNode* vsl = iter.get_next();
+      assert(vsl != purged_vsl, "Purge of vsl failed");
+    }
+  }
+#endif
+}
+
+
+// This function looks at the mmap regions in the metaspace without locking.
+// The chunks are added with store ordering and not deleted except for at
+// unloading time during a safepoint.
+bool VirtualSpaceList::contains(const void* ptr) {
+  // List should be stable enough to use an iterator here because removing virtual
+  // space nodes is only allowed at a safepoint.
+  VirtualSpaceListIterator iter(virtual_space_list());
+  while (iter.repeat()) {
+    VirtualSpaceNode* vsn = iter.get_next();
+    if (vsn->contains(ptr)) {
+      return true;
+    }
+  }
+  return false;
+}
+
+void VirtualSpaceList::retire_current_virtual_space() {
+  assert_lock_strong(SpaceManager::expand_lock());
+
+  VirtualSpaceNode* vsn = current_virtual_space();
+
+  ChunkManager* cm = is_class() ? Metaspace::chunk_manager_class() :
+                                  Metaspace::chunk_manager_metadata();
+
+  vsn->retire(cm);
+}
+
+void VirtualSpaceNode::retire(ChunkManager* chunk_manager) {
+  DEBUG_ONLY(verify_container_count();)
+  for (int i = (int)MediumIndex; i >= (int)ZeroIndex; --i) {
+    ChunkIndex index = (ChunkIndex)i;
+    size_t chunk_size = chunk_manager->size_by_index(index);
+
+    while (free_words_in_vs() >= chunk_size) {
+      Metachunk* chunk = get_chunk_vs(chunk_size);
+      assert(chunk != NULL, "allocation should have been successful");
+
+      chunk_manager->return_single_chunk(index, chunk);
+    }
+    DEBUG_ONLY(verify_container_count();)
+  }
+  assert(free_words_in_vs() == 0, "should be empty now");
+}
+
+VirtualSpaceList::VirtualSpaceList(size_t word_size) :
+                                   _is_class(false),
+                                   _virtual_space_list(NULL),
+                                   _current_virtual_space(NULL),
+                                   _reserved_words(0),
+                                   _committed_words(0),
+                                   _virtual_space_count(0) {
+  MutexLockerEx cl(SpaceManager::expand_lock(),
+                   Mutex::_no_safepoint_check_flag);
+  create_new_virtual_space(word_size);
+}
+
+VirtualSpaceList::VirtualSpaceList(ReservedSpace rs) :
+                                   _is_class(true),
+                                   _virtual_space_list(NULL),
+                                   _current_virtual_space(NULL),
+                                   _reserved_words(0),
+                                   _committed_words(0),
+                                   _virtual_space_count(0) {
+  MutexLockerEx cl(SpaceManager::expand_lock(),
+                   Mutex::_no_safepoint_check_flag);
+  VirtualSpaceNode* class_entry = new VirtualSpaceNode(rs);
+  bool succeeded = class_entry->initialize();
+  if (succeeded) {
+    link_vs(class_entry);
+  }
+}
+
+size_t VirtualSpaceList::free_bytes() {
+  return virtual_space_list()->free_words_in_vs() * BytesPerWord;
+}
+
+// Allocate another meta virtual space and add it to the list.
+bool VirtualSpaceList::create_new_virtual_space(size_t vs_word_size) {
+  assert_lock_strong(SpaceManager::expand_lock());
+
+  if (is_class()) {
+    assert(false, "We currently don't support more than one VirtualSpace for"
+                  " the compressed class space. The initialization of the"
+                  " CCS uses another code path and should not hit this path.");
+    return false;
+  }
+
+  if (vs_word_size == 0) {
+    assert(false, "vs_word_size should always be at least _reserve_alignment large.");
+    return false;
+  }
+
+  // Reserve the space
+  size_t vs_byte_size = vs_word_size * BytesPerWord;
+  assert_is_aligned(vs_byte_size, Metaspace::reserve_alignment());
+
+  // Allocate the meta virtual space and initialize it.
+  VirtualSpaceNode* new_entry = new VirtualSpaceNode(vs_byte_size);
+  if (!new_entry->initialize()) {
+    delete new_entry;
+    return false;
+  } else {
+    assert(new_entry->reserved_words() == vs_word_size,
+        "Reserved memory size differs from requested memory size");
+    // ensure lock-free iteration sees fully initialized node
+    OrderAccess::storestore();
+    link_vs(new_entry);
+    return true;
+  }
+}
+
+void VirtualSpaceList::link_vs(VirtualSpaceNode* new_entry) {
+  if (virtual_space_list() == NULL) {
+      set_virtual_space_list(new_entry);
+  } else {
+    current_virtual_space()->set_next(new_entry);
+  }
+  set_current_virtual_space(new_entry);
+  inc_reserved_words(new_entry->reserved_words());
+  inc_committed_words(new_entry->committed_words());
+  inc_virtual_space_count();
+#ifdef ASSERT
+  new_entry->mangle();
+#endif
+  LogTarget(Trace, gc, metaspace) lt;
+  if (lt.is_enabled()) {
+    LogStream ls(lt);
+    VirtualSpaceNode* vsl = current_virtual_space();
+    ResourceMark rm;
+    vsl->print_on(&ls);
+  }
+}
+
+bool VirtualSpaceList::expand_node_by(VirtualSpaceNode* node,
+                                      size_t min_words,
+                                      size_t preferred_words) {
+  size_t before = node->committed_words();
+
+  bool result = node->expand_by(min_words, preferred_words);
+
+  size_t after = node->committed_words();
+
+  // after and before can be the same if the memory was pre-committed.
+  assert(after >= before, "Inconsistency");
+  inc_committed_words(after - before);
+
+  return result;
+}
+
+bool VirtualSpaceList::expand_by(size_t min_words, size_t preferred_words) {
+  assert_is_aligned(min_words,       Metaspace::commit_alignment_words());
+  assert_is_aligned(preferred_words, Metaspace::commit_alignment_words());
+  assert(min_words <= preferred_words, "Invalid arguments");
+
+  if (!MetaspaceGC::can_expand(min_words, this->is_class())) {
+    return  false;
+  }
+
+  size_t allowed_expansion_words = MetaspaceGC::allowed_expansion();
+  if (allowed_expansion_words < min_words) {
+    return false;
+  }
+
+  size_t max_expansion_words = MIN2(preferred_words, allowed_expansion_words);
+
+  // Commit more memory from the the current virtual space.
+  bool vs_expanded = expand_node_by(current_virtual_space(),
+                                    min_words,
+                                    max_expansion_words);
+  if (vs_expanded) {
+    return true;
+  }
+  retire_current_virtual_space();
+
+  // Get another virtual space.
+  size_t grow_vs_words = MAX2((size_t)VirtualSpaceSize, preferred_words);
+  grow_vs_words = align_up(grow_vs_words, Metaspace::reserve_alignment_words());
+
+  if (create_new_virtual_space(grow_vs_words)) {
+    if (current_virtual_space()->is_pre_committed()) {
+      // The memory was pre-committed, so we are done here.
+      assert(min_words <= current_virtual_space()->committed_words(),
+          "The new VirtualSpace was pre-committed, so it"
+          "should be large enough to fit the alloc request.");
+      return true;
+    }
+
+    return expand_node_by(current_virtual_space(),
+                          min_words,
+                          max_expansion_words);
+  }
+
+  return false;
+}
+
+Metachunk* VirtualSpaceList::get_new_chunk(size_t chunk_word_size, size_t suggested_commit_granularity) {
+
+  // Allocate a chunk out of the current virtual space.
+  Metachunk* next = current_virtual_space()->get_chunk_vs(chunk_word_size);
+
+  if (next != NULL) {
+    return next;
+  }
+
+  // The expand amount is currently only determined by the requested sizes
+  // and not how much committed memory is left in the current virtual space.
+
+  size_t min_word_size       = align_up(chunk_word_size,              Metaspace::commit_alignment_words());
+  size_t preferred_word_size = align_up(suggested_commit_granularity, Metaspace::commit_alignment_words());
+  if (min_word_size >= preferred_word_size) {
+    // Can happen when humongous chunks are allocated.
+    preferred_word_size = min_word_size;
+  }
+
+  bool expanded = expand_by(min_word_size, preferred_word_size);
+  if (expanded) {
+    next = current_virtual_space()->get_chunk_vs(chunk_word_size);
+    assert(next != NULL, "The allocation was expected to succeed after the expansion");
+  }
+
+   return next;
+}
+
+void VirtualSpaceList::print_on(outputStream* st) const {
+  VirtualSpaceListIterator iter(virtual_space_list());
+  while (iter.repeat()) {
+    VirtualSpaceNode* node = iter.get_next();
+    node->print_on(st);
+  }
+}
+
+// MetaspaceGC methods
+
+// VM_CollectForMetadataAllocation is the vm operation used to GC.
+// Within the VM operation after the GC the attempt to allocate the metadata
+// should succeed.  If the GC did not free enough space for the metaspace
+// allocation, the HWM is increased so that another virtualspace will be
+// allocated for the metadata.  With perm gen the increase in the perm
+// gen had bounds, MinMetaspaceExpansion and MaxMetaspaceExpansion.  The
+// metaspace policy uses those as the small and large steps for the HWM.
+//
+// After the GC the compute_new_size() for MetaspaceGC is called to
+// resize the capacity of the metaspaces.  The current implementation
+// is based on the flags MinMetaspaceFreeRatio and MaxMetaspaceFreeRatio used
+// to resize the Java heap by some GC's.  New flags can be implemented
+// if really needed.  MinMetaspaceFreeRatio is used to calculate how much
+// free space is desirable in the metaspace capacity to decide how much
+// to increase the HWM.  MaxMetaspaceFreeRatio is used to decide how much
+// free space is desirable in the metaspace capacity before decreasing
+// the HWM.
+
+// Calculate the amount to increase the high water mark (HWM).
+// Increase by a minimum amount (MinMetaspaceExpansion) so that
+// another expansion is not requested too soon.  If that is not
+// enough to satisfy the allocation, increase by MaxMetaspaceExpansion.
+// If that is still not enough, expand by the size of the allocation
+// plus some.
+size_t MetaspaceGC::delta_capacity_until_GC(size_t bytes) {
+  size_t min_delta = MinMetaspaceExpansion;
+  size_t max_delta = MaxMetaspaceExpansion;
+  size_t delta = align_up(bytes, Metaspace::commit_alignment());
+
+  if (delta <= min_delta) {
+    delta = min_delta;
+  } else if (delta <= max_delta) {
+    // Don't want to hit the high water mark on the next
+    // allocation so make the delta greater than just enough
+    // for this allocation.
+    delta = max_delta;
+  } else {
+    // This allocation is large but the next ones are probably not
+    // so increase by the minimum.
+    delta = delta + min_delta;
+  }
+
+  assert_is_aligned(delta, Metaspace::commit_alignment());
+
+  return delta;
+}
+
+size_t MetaspaceGC::capacity_until_GC() {
+  size_t value = (size_t)OrderAccess::load_ptr_acquire(&_capacity_until_GC);
+  assert(value >= MetaspaceSize, "Not initialized properly?");
+  return value;
+}
+
+bool MetaspaceGC::inc_capacity_until_GC(size_t v, size_t* new_cap_until_GC, size_t* old_cap_until_GC) {
+  assert_is_aligned(v, Metaspace::commit_alignment());
+
+  size_t capacity_until_GC = (size_t) _capacity_until_GC;
+  size_t new_value = capacity_until_GC + v;
+
+  if (new_value < capacity_until_GC) {
+    // The addition wrapped around, set new_value to aligned max value.
+    new_value = align_down(max_uintx, Metaspace::commit_alignment());
+  }
+
+  intptr_t expected = (intptr_t) capacity_until_GC;
+  intptr_t actual = Atomic::cmpxchg_ptr((intptr_t) new_value, &_capacity_until_GC, expected);
+
+  if (expected != actual) {
+    return false;
+  }
+
+  if (new_cap_until_GC != NULL) {
+    *new_cap_until_GC = new_value;
+  }
+  if (old_cap_until_GC != NULL) {
+    *old_cap_until_GC = capacity_until_GC;
+  }
+  return true;
+}
+
+size_t MetaspaceGC::dec_capacity_until_GC(size_t v) {
+  assert_is_aligned(v, Metaspace::commit_alignment());
+
+  return (size_t)Atomic::add_ptr(-(intptr_t)v, &_capacity_until_GC);
+}
+
+void MetaspaceGC::initialize() {
+  // Set the high-water mark to MaxMetapaceSize during VM initializaton since
+  // we can't do a GC during initialization.
+  _capacity_until_GC = MaxMetaspaceSize;
+}
+
+void MetaspaceGC::post_initialize() {
+  // Reset the high-water mark once the VM initialization is done.
+  _capacity_until_GC = MAX2(MetaspaceAux::committed_bytes(), MetaspaceSize);
+}
+
+bool MetaspaceGC::can_expand(size_t word_size, bool is_class) {
+  // Check if the compressed class space is full.
+  if (is_class && Metaspace::using_class_space()) {
+    size_t class_committed = MetaspaceAux::committed_bytes(Metaspace::ClassType);
+    if (class_committed + word_size * BytesPerWord > CompressedClassSpaceSize) {
+      return false;
+    }
+  }
+
+  // Check if the user has imposed a limit on the metaspace memory.
+  size_t committed_bytes = MetaspaceAux::committed_bytes();
+  if (committed_bytes + word_size * BytesPerWord > MaxMetaspaceSize) {
+    return false;
+  }
+
+  return true;
+}
+
+size_t MetaspaceGC::allowed_expansion() {
+  size_t committed_bytes = MetaspaceAux::committed_bytes();
+  size_t capacity_until_gc = capacity_until_GC();
+
+  assert(capacity_until_gc >= committed_bytes,
+         "capacity_until_gc: " SIZE_FORMAT " < committed_bytes: " SIZE_FORMAT,
+         capacity_until_gc, committed_bytes);
+
+  size_t left_until_max  = MaxMetaspaceSize - committed_bytes;
+  size_t left_until_GC = capacity_until_gc - committed_bytes;
+  size_t left_to_commit = MIN2(left_until_GC, left_until_max);
+
+  return left_to_commit / BytesPerWord;
+}
+
+void MetaspaceGC::compute_new_size() {
+  assert(_shrink_factor <= 100, "invalid shrink factor");
+  uint current_shrink_factor = _shrink_factor;
+  _shrink_factor = 0;
+
+  // Using committed_bytes() for used_after_gc is an overestimation, since the
+  // chunk free lists are included in committed_bytes() and the memory in an
+  // un-fragmented chunk free list is available for future allocations.
+  // However, if the chunk free lists becomes fragmented, then the memory may
+  // not be available for future allocations and the memory is therefore "in use".
+  // Including the chunk free lists in the definition of "in use" is therefore
+  // necessary. Not including the chunk free lists can cause capacity_until_GC to
+  // shrink below committed_bytes() and this has caused serious bugs in the past.
+  const size_t used_after_gc = MetaspaceAux::committed_bytes();
+  const size_t capacity_until_GC = MetaspaceGC::capacity_until_GC();
+
+  const double minimum_free_percentage = MinMetaspaceFreeRatio / 100.0;
+  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
+
+  const double min_tmp = used_after_gc / maximum_used_percentage;
+  size_t minimum_desired_capacity =
+    (size_t)MIN2(min_tmp, double(max_uintx));
+  // Don't shrink less than the initial generation size
+  minimum_desired_capacity = MAX2(minimum_desired_capacity,
+                                  MetaspaceSize);
+
+  log_trace(gc, metaspace)("MetaspaceGC::compute_new_size: ");
+  log_trace(gc, metaspace)("    minimum_free_percentage: %6.2f  maximum_used_percentage: %6.2f",
+                           minimum_free_percentage, maximum_used_percentage);
+  log_trace(gc, metaspace)("     used_after_gc       : %6.1fKB", used_after_gc / (double) K);
+
+
+  size_t shrink_bytes = 0;
+  if (capacity_until_GC < minimum_desired_capacity) {
+    // If we have less capacity below the metaspace HWM, then
+    // increment the HWM.
+    size_t expand_bytes = minimum_desired_capacity - capacity_until_GC;
+    expand_bytes = align_up(expand_bytes, Metaspace::commit_alignment());
+    // Don't expand unless it's significant
+    if (expand_bytes >= MinMetaspaceExpansion) {
+      size_t new_capacity_until_GC = 0;
+      bool succeeded = MetaspaceGC::inc_capacity_until_GC(expand_bytes, &new_capacity_until_GC);
+      assert(succeeded, "Should always succesfully increment HWM when at safepoint");
+
+      Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
+                                               new_capacity_until_GC,
+                                               MetaspaceGCThresholdUpdater::ComputeNewSize);
+      log_trace(gc, metaspace)("    expanding:  minimum_desired_capacity: %6.1fKB  expand_bytes: %6.1fKB  MinMetaspaceExpansion: %6.1fKB  new metaspace HWM:  %6.1fKB",
+                               minimum_desired_capacity / (double) K,
+                               expand_bytes / (double) K,
+                               MinMetaspaceExpansion / (double) K,
+                               new_capacity_until_GC / (double) K);
+    }
+    return;
+  }
+
+  // No expansion, now see if we want to shrink
+  // We would never want to shrink more than this
+  assert(capacity_until_GC >= minimum_desired_capacity,
+         SIZE_FORMAT " >= " SIZE_FORMAT,
+         capacity_until_GC, minimum_desired_capacity);
+  size_t max_shrink_bytes = capacity_until_GC - minimum_desired_capacity;
+
+  // Should shrinking be considered?
+  if (MaxMetaspaceFreeRatio < 100) {
+    const double maximum_free_percentage = MaxMetaspaceFreeRatio / 100.0;
+    const double minimum_used_percentage = 1.0 - maximum_free_percentage;
+    const double max_tmp = used_after_gc / minimum_used_percentage;
+    size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
+    maximum_desired_capacity = MAX2(maximum_desired_capacity,
+                                    MetaspaceSize);
+    log_trace(gc, metaspace)("    maximum_free_percentage: %6.2f  minimum_used_percentage: %6.2f",
+                             maximum_free_percentage, minimum_used_percentage);
+    log_trace(gc, metaspace)("    minimum_desired_capacity: %6.1fKB  maximum_desired_capacity: %6.1fKB",
+                             minimum_desired_capacity / (double) K, maximum_desired_capacity / (double) K);
+
+    assert(minimum_desired_capacity <= maximum_desired_capacity,
+           "sanity check");
+
+    if (capacity_until_GC > maximum_desired_capacity) {
+      // Capacity too large, compute shrinking size
+      shrink_bytes = capacity_until_GC - maximum_desired_capacity;
+      // We don't want shrink all the way back to initSize if people call
+      // System.gc(), because some programs do that between "phases" and then
+      // we'd just have to grow the heap up again for the next phase.  So we
+      // damp the shrinking: 0% on the first call, 10% on the second call, 40%
+      // on the third call, and 100% by the fourth call.  But if we recompute
+      // size without shrinking, it goes back to 0%.
+      shrink_bytes = shrink_bytes / 100 * current_shrink_factor;
+
+      shrink_bytes = align_down(shrink_bytes, Metaspace::commit_alignment());
+
+      assert(shrink_bytes <= max_shrink_bytes,
+             "invalid shrink size " SIZE_FORMAT " not <= " SIZE_FORMAT,
+             shrink_bytes, max_shrink_bytes);
+      if (current_shrink_factor == 0) {
+        _shrink_factor = 10;
+      } else {
+        _shrink_factor = MIN2(current_shrink_factor * 4, (uint) 100);
+      }
+      log_trace(gc, metaspace)("    shrinking:  initThreshold: %.1fK  maximum_desired_capacity: %.1fK",
+                               MetaspaceSize / (double) K, maximum_desired_capacity / (double) K);
+      log_trace(gc, metaspace)("    shrink_bytes: %.1fK  current_shrink_factor: %d  new shrink factor: %d  MinMetaspaceExpansion: %.1fK",
+                               shrink_bytes / (double) K, current_shrink_factor, _shrink_factor, MinMetaspaceExpansion / (double) K);
+    }
+  }
+
+  // Don't shrink unless it's significant
+  if (shrink_bytes >= MinMetaspaceExpansion &&
+      ((capacity_until_GC - shrink_bytes) >= MetaspaceSize)) {
+    size_t new_capacity_until_GC = MetaspaceGC::dec_capacity_until_GC(shrink_bytes);
+    Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
+                                             new_capacity_until_GC,
+                                             MetaspaceGCThresholdUpdater::ComputeNewSize);
+  }
+}
+
+// Metadebug methods
+
+void Metadebug::init_allocation_fail_alot_count() {
+  if (MetadataAllocationFailALot) {
+    _allocation_fail_alot_count =
+      1+(long)((double)MetadataAllocationFailALotInterval*os::random()/(max_jint+1.0));
+  }
+}
+
+#ifdef ASSERT
+bool Metadebug::test_metadata_failure() {
+  if (MetadataAllocationFailALot &&
+      Threads::is_vm_complete()) {
+    if (_allocation_fail_alot_count > 0) {
+      _allocation_fail_alot_count--;
+    } else {
+      log_trace(gc, metaspace, freelist)("Metadata allocation failing for MetadataAllocationFailALot");
+      init_allocation_fail_alot_count();
+      return true;
+    }
+  }
+  return false;
+}
+#endif
+
+// ChunkManager methods
+
+size_t ChunkManager::free_chunks_total_words() {
+  return _free_chunks_total;
+}
+
+size_t ChunkManager::free_chunks_total_bytes() {
+  return free_chunks_total_words() * BytesPerWord;
+}
+
+// Update internal accounting after a chunk was added
+void ChunkManager::account_for_added_chunk(const Metachunk* c) {
+  assert_lock_strong(SpaceManager::expand_lock());
+  _free_chunks_count ++;
+  _free_chunks_total += c->word_size();
+}
+
+// Update internal accounting after a chunk was removed
+void ChunkManager::account_for_removed_chunk(const Metachunk* c) {
+  assert_lock_strong(SpaceManager::expand_lock());
+  assert(_free_chunks_count >= 1,
+    "ChunkManager::_free_chunks_count: about to go negative (" SIZE_FORMAT ").", _free_chunks_count);
+  assert(_free_chunks_total >= c->word_size(),
+    "ChunkManager::_free_chunks_total: about to go negative"
+     "(now: " SIZE_FORMAT ", decrement value: " SIZE_FORMAT ").", _free_chunks_total, c->word_size());
+  _free_chunks_count --;
+  _free_chunks_total -= c->word_size();
+}
+
+size_t ChunkManager::free_chunks_count() {
+#ifdef ASSERT
+  if (!UseConcMarkSweepGC && !SpaceManager::expand_lock()->is_locked()) {
+    MutexLockerEx cl(SpaceManager::expand_lock(),
+                     Mutex::_no_safepoint_check_flag);
+    // This lock is only needed in debug because the verification
+    // of the _free_chunks_totals walks the list of free chunks
+    slow_locked_verify_free_chunks_count();
+  }
+#endif
+  return _free_chunks_count;
+}
+
+ChunkIndex ChunkManager::list_index(size_t size) {
+  if (size_by_index(SpecializedIndex) == size) {
+    return SpecializedIndex;
+  }
+  if (size_by_index(SmallIndex) == size) {
+    return SmallIndex;
+  }
+  const size_t med_size = size_by_index(MediumIndex);
+  if (med_size == size) {
+    return MediumIndex;
+  }
+
+  assert(size > med_size, "Not a humongous chunk");
+  return HumongousIndex;
+}
+
+size_t ChunkManager::size_by_index(ChunkIndex index) const {
+  index_bounds_check(index);
+  assert(index != HumongousIndex, "Do not call for humongous chunks.");
+  return _free_chunks[index].size();
+}
+
+void ChunkManager::locked_verify_free_chunks_total() {
+  assert_lock_strong(SpaceManager::expand_lock());
+  assert(sum_free_chunks() == _free_chunks_total,
+         "_free_chunks_total " SIZE_FORMAT " is not the"
+         " same as sum " SIZE_FORMAT, _free_chunks_total,
+         sum_free_chunks());
+}
+
+void ChunkManager::verify_free_chunks_total() {
+  MutexLockerEx cl(SpaceManager::expand_lock(),
+                     Mutex::_no_safepoint_check_flag);
+  locked_verify_free_chunks_total();
+}
+
+void ChunkManager::locked_verify_free_chunks_count() {
+  assert_lock_strong(SpaceManager::expand_lock());
+  assert(sum_free_chunks_count() == _free_chunks_count,
+         "_free_chunks_count " SIZE_FORMAT " is not the"
+         " same as sum " SIZE_FORMAT, _free_chunks_count,
+         sum_free_chunks_count());
+}
+
+void ChunkManager::verify_free_chunks_count() {
+#ifdef ASSERT
+  MutexLockerEx cl(SpaceManager::expand_lock(),
+                     Mutex::_no_safepoint_check_flag);
+  locked_verify_free_chunks_count();
+#endif
+}
+
+void ChunkManager::verify() {
+  MutexLockerEx cl(SpaceManager::expand_lock(),
+                     Mutex::_no_safepoint_check_flag);
+  locked_verify();
+}
+
+void ChunkManager::locked_verify() {
+  locked_verify_free_chunks_count();
+  locked_verify_free_chunks_total();
+}
+
+void ChunkManager::locked_print_free_chunks(outputStream* st) {
+  assert_lock_strong(SpaceManager::expand_lock());
+  st->print_cr("Free chunk total " SIZE_FORMAT "  count " SIZE_FORMAT,
+                _free_chunks_total, _free_chunks_count);
+}
+
+void ChunkManager::locked_print_sum_free_chunks(outputStream* st) {
+  assert_lock_strong(SpaceManager::expand_lock());
+  st->print_cr("Sum free chunk total " SIZE_FORMAT "  count " SIZE_FORMAT,
+                sum_free_chunks(), sum_free_chunks_count());
+}
+
+ChunkList* ChunkManager::free_chunks(ChunkIndex index) {
+  assert(index == SpecializedIndex || index == SmallIndex || index == MediumIndex,
+         "Bad index: %d", (int)index);
+
+  return &_free_chunks[index];
+}
+
+// These methods that sum the free chunk lists are used in printing
+// methods that are used in product builds.
+size_t ChunkManager::sum_free_chunks() {
+  assert_lock_strong(SpaceManager::expand_lock());
+  size_t result = 0;
+  for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
+    ChunkList* list = free_chunks(i);
+
+    if (list == NULL) {
+      continue;
+    }
+
+    result = result + list->count() * list->size();
+  }
+  result = result + humongous_dictionary()->total_size();
+  return result;
+}
+
+size_t ChunkManager::sum_free_chunks_count() {
+  assert_lock_strong(SpaceManager::expand_lock());
+  size_t count = 0;
+  for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
+    ChunkList* list = free_chunks(i);
+    if (list == NULL) {
+      continue;
+    }
+    count = count + list->count();
+  }
+  count = count + humongous_dictionary()->total_free_blocks();
+  return count;
+}
+
+ChunkList* ChunkManager::find_free_chunks_list(size_t word_size) {
+  ChunkIndex index = list_index(word_size);
+  assert(index < HumongousIndex, "No humongous list");
+  return free_chunks(index);
+}
+
+Metachunk* ChunkManager::free_chunks_get(size_t word_size) {
+  assert_lock_strong(SpaceManager::expand_lock());
+
+  slow_locked_verify();
+
+  Metachunk* chunk = NULL;
+  if (list_index(word_size) != HumongousIndex) {
+    ChunkList* free_list = find_free_chunks_list(word_size);
+    assert(free_list != NULL, "Sanity check");
+
+    chunk = free_list->head();
+
+    if (chunk == NULL) {
+      return NULL;
+    }
+
+    // Remove the chunk as the head of the list.
+    free_list->remove_chunk(chunk);
+
+    log_trace(gc, metaspace, freelist)("ChunkManager::free_chunks_get: free_list " PTR_FORMAT " head " PTR_FORMAT " size " SIZE_FORMAT,
+                                       p2i(free_list), p2i(chunk), chunk->word_size());
+  } else {
+    chunk = humongous_dictionary()->get_chunk(word_size);
+
+    if (chunk == NULL) {
+      return NULL;
+    }
+
+    log_debug(gc, metaspace, alloc)("Free list allocate humongous chunk size " SIZE_FORMAT " for requested size " SIZE_FORMAT " waste " SIZE_FORMAT,
+                                    chunk->word_size(), word_size, chunk->word_size() - word_size);
+  }
+
+  // Chunk has been removed from the chunk manager; update counters.
+  account_for_removed_chunk(chunk);
+
+  // Remove it from the links to this freelist
+  chunk->set_next(NULL);
+  chunk->set_prev(NULL);
+#ifdef ASSERT
+  // Chunk is no longer on any freelist. Setting to false make container_count_slow()
+  // work.
+  chunk->set_is_tagged_free(false);
+#endif
+  chunk->container()->inc_container_count();
+
+  slow_locked_verify();
+  return chunk;
+}
+
+Metachunk* ChunkManager::chunk_freelist_allocate(size_t word_size) {
+  assert_lock_strong(SpaceManager::expand_lock());
+  slow_locked_verify();
+
+  // Take from the beginning of the list
+  Metachunk* chunk = free_chunks_get(word_size);
+  if (chunk == NULL) {
+    return NULL;
+  }
+
+  assert((word_size <= chunk->word_size()) ||
+         (list_index(chunk->word_size()) == HumongousIndex),
+         "Non-humongous variable sized chunk");
+  LogTarget(Debug, gc, metaspace, freelist) lt;
+  if (lt.is_enabled()) {
+    size_t list_count;
+    if (list_index(word_size) < HumongousIndex) {
+      ChunkList* list = find_free_chunks_list(word_size);
+      list_count = list->count();
+    } else {
+      list_count = humongous_dictionary()->total_count();
+    }
+    LogStream ls(lt);
+    ls.print("ChunkManager::chunk_freelist_allocate: " PTR_FORMAT " chunk " PTR_FORMAT "  size " SIZE_FORMAT " count " SIZE_FORMAT " ",
+             p2i(this), p2i(chunk), chunk->word_size(), list_count);
+    ResourceMark rm;
+    locked_print_free_chunks(&ls);
+  }
+
+  return chunk;
+}
+
+void ChunkManager::return_single_chunk(ChunkIndex index, Metachunk* chunk) {
+  assert_lock_strong(SpaceManager::expand_lock());
+  assert(chunk != NULL, "Expected chunk.");
+  assert(chunk->container() != NULL, "Container should have been set.");
+  assert(chunk->is_tagged_free() == false, "Chunk should be in use.");
+  index_bounds_check(index);
+
+  // Note: mangle *before* returning the chunk to the freelist or dictionary. It does not
+  // matter for the freelist (non-humongous chunks), but the humongous chunk dictionary
+  // keeps tree node pointers in the chunk payload area which mangle will overwrite.
+  NOT_PRODUCT(chunk->mangle(badMetaWordVal);)
+
+  if (index != HumongousIndex) {
+    // Return non-humongous chunk to freelist.
+    ChunkList* list = free_chunks(index);
+    assert(list->size() == chunk->word_size(), "Wrong chunk type.");
+    list->return_chunk_at_head(chunk);
+    log_trace(gc, metaspace, freelist)("returned one %s chunk at " PTR_FORMAT " to freelist.",
+        chunk_size_name(index), p2i(chunk));
+  } else {
+    // Return humongous chunk to dictionary.
+    assert(chunk->word_size() > free_chunks(MediumIndex)->size(), "Wrong chunk type.");
+    assert(chunk->word_size() % free_chunks(SpecializedIndex)->size() == 0,
+           "Humongous chunk has wrong alignment.");
+    _humongous_dictionary.return_chunk(chunk);
+    log_trace(gc, metaspace, freelist)("returned one %s chunk at " PTR_FORMAT " (word size " SIZE_FORMAT ") to freelist.",
+        chunk_size_name(index), p2i(chunk), chunk->word_size());
+  }
+  chunk->container()->dec_container_count();
+  DEBUG_ONLY(chunk->set_is_tagged_free(true);)
+
+  // Chunk has been added; update counters.
+  account_for_added_chunk(chunk);
+
+}
+
+void ChunkManager::return_chunk_list(ChunkIndex index, Metachunk* chunks) {
+  index_bounds_check(index);
+  if (chunks == NULL) {
+    return;
+  }
+  LogTarget(Trace, gc, metaspace, freelist) log;
+  if (log.is_enabled()) { // tracing
+    log.print("returning list of %s chunks...", chunk_size_name(index));
+  }
+  unsigned num_chunks_returned = 0;
+  size_t size_chunks_returned = 0;
+  Metachunk* cur = chunks;
+  while (cur != NULL) {
+    // Capture the next link before it is changed
+    // by the call to return_chunk_at_head();
+    Metachunk* next = cur->next();
+    if (log.is_enabled()) { // tracing
+      num_chunks_returned ++;
+      size_chunks_returned += cur->word_size();
+    }
+    return_single_chunk(index, cur);
+    cur = next;
+  }
+  if (log.is_enabled()) { // tracing
+    log.print("returned %u %s chunks to freelist, total word size " SIZE_FORMAT ".",
+        num_chunks_returned, chunk_size_name(index), size_chunks_returned);
+    if (index != HumongousIndex) {
+      log.print("updated freelist count: " SIZE_FORMAT ".", free_chunks(index)->size());
+    } else {
+      log.print("updated dictionary count " SIZE_FORMAT ".", _humongous_dictionary.total_count());
+    }
+  }
+}
+
+void ChunkManager::print_on(outputStream* out) const {
+  _humongous_dictionary.report_statistics(out);
+}
+
+void ChunkManager::locked_get_statistics(ChunkManagerStatistics* stat) const {
+  assert_lock_strong(SpaceManager::expand_lock());
+  for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
+    stat->num_by_type[i] = num_free_chunks(i);
+    stat->single_size_by_type[i] = size_by_index(i);
+    stat->total_size_by_type[i] = size_free_chunks_in_bytes(i);
+  }
+  stat->num_humongous_chunks = num_free_chunks(HumongousIndex);
+  stat->total_size_humongous_chunks = size_free_chunks_in_bytes(HumongousIndex);
+}
+
+void ChunkManager::get_statistics(ChunkManagerStatistics* stat) const {
+  MutexLockerEx cl(SpaceManager::expand_lock(),
+                   Mutex::_no_safepoint_check_flag);
+  locked_get_statistics(stat);
+}
+
+void ChunkManager::print_statistics(const ChunkManagerStatistics* stat, outputStream* out) {
+  size_t total = 0;
+  for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
+    out->print_cr("  " SIZE_FORMAT " %s (" SIZE_FORMAT " bytes) chunks, total " SIZE_FORMAT " bytes",
+                 stat->num_by_type[i], chunk_size_name(i),
+                 stat->single_size_by_type[i],
+                 stat->total_size_by_type[i]);
+    total += stat->total_size_by_type[i];
+  }
+  out->print_cr("  " SIZE_FORMAT " humongous chunks, total " SIZE_FORMAT " bytes",
+               stat->num_humongous_chunks, stat->total_size_humongous_chunks);
+  total += stat->total_size_humongous_chunks;
+  out->print_cr("  total size: " SIZE_FORMAT ".", total);
+}
+
+void ChunkManager::print_all_chunkmanagers(outputStream* out) {
+  // Note: keep lock protection only to retrieving statistics; keep printing
+  // out of lock protection
+  ChunkManagerStatistics stat;
+  out->print_cr("Chunkmanager (non-class):");
+  const ChunkManager* const non_class_cm = Metaspace::chunk_manager_metadata();
+  if (non_class_cm != NULL) {
+    non_class_cm->get_statistics(&stat);
+    ChunkManager::print_statistics(&stat, out);
+  } else {
+    out->print_cr("unavailable.");
+  }
+  out->print_cr("Chunkmanager (class):");
+  const ChunkManager* const class_cm = Metaspace::chunk_manager_class();
+  if (class_cm != NULL) {
+    class_cm->get_statistics(&stat);
+    ChunkManager::print_statistics(&stat, out);
+  } else {
+    out->print_cr("unavailable.");
+  }
+}
+
+// SpaceManager methods
+
+size_t SpaceManager::adjust_initial_chunk_size(size_t requested, bool is_class_space) {
+  size_t chunk_sizes[] = {
+      specialized_chunk_size(is_class_space),
+      small_chunk_size(is_class_space),
+      medium_chunk_size(is_class_space)
+  };
+
+  // Adjust up to one of the fixed chunk sizes ...
+  for (size_t i = 0; i < ARRAY_SIZE(chunk_sizes); i++) {
+    if (requested <= chunk_sizes[i]) {
+      return chunk_sizes[i];
+    }
+  }
+
+  // ... or return the size as a humongous chunk.
+  return requested;
+}
+
+size_t SpaceManager::adjust_initial_chunk_size(size_t requested) const {
+  return adjust_initial_chunk_size(requested, is_class());
+}
+
+size_t SpaceManager::get_initial_chunk_size(Metaspace::MetaspaceType type) const {
+  size_t requested;
+
+  if (is_class()) {
+    switch (type) {
+    case Metaspace::BootMetaspaceType:       requested = Metaspace::first_class_chunk_word_size(); break;
+    case Metaspace::AnonymousMetaspaceType:  requested = ClassSpecializedChunk; break;
+    case Metaspace::ReflectionMetaspaceType: requested = ClassSpecializedChunk; break;
+    default:                                 requested = ClassSmallChunk; break;
+    }
+  } else {
+    switch (type) {
+    case Metaspace::BootMetaspaceType:       requested = Metaspace::first_chunk_word_size(); break;
+    case Metaspace::AnonymousMetaspaceType:  requested = SpecializedChunk; break;
+    case Metaspace::ReflectionMetaspaceType: requested = SpecializedChunk; break;
+    default:                                 requested = SmallChunk; break;
+    }
+  }
+
+  // Adjust to one of the fixed chunk sizes (unless humongous)
+  const size_t adjusted = adjust_initial_chunk_size(requested);
+
+  assert(adjusted != 0, "Incorrect initial chunk size. Requested: "
+         SIZE_FORMAT " adjusted: " SIZE_FORMAT, requested, adjusted);
+
+  return adjusted;
+}
+
+size_t SpaceManager::sum_free_in_chunks_in_use() const {
+  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
+  size_t free = 0;
+  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
+    Metachunk* chunk = chunks_in_use(i);
+    while (chunk != NULL) {
+      free += chunk->free_word_size();
+      chunk = chunk->next();
+    }
+  }
+  return free;
+}
+
+size_t SpaceManager::sum_waste_in_chunks_in_use() const {
+  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
+  size_t result = 0;
+  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
+   result += sum_waste_in_chunks_in_use(i);
+  }
+
+  return result;
+}
+
+size_t SpaceManager::sum_waste_in_chunks_in_use(ChunkIndex index) const {
+  size_t result = 0;
+  Metachunk* chunk = chunks_in_use(index);
+  // Count the free space in all the chunk but not the
+  // current chunk from which allocations are still being done.
+  while (chunk != NULL) {
+    if (chunk != current_chunk()) {
+      result += chunk->free_word_size();
+    }
+    chunk = chunk->next();
+  }
+  return result;
+}
+
+size_t SpaceManager::sum_capacity_in_chunks_in_use() const {
+  // For CMS use "allocated_chunks_words()" which does not need the
+  // Metaspace lock.  For the other collectors sum over the
+  // lists.  Use both methods as a check that "allocated_chunks_words()"
+  // is correct.  That is, sum_capacity_in_chunks() is too expensive
+  // to use in the product and allocated_chunks_words() should be used
+  // but allow for  checking that allocated_chunks_words() returns the same
+  // value as sum_capacity_in_chunks_in_use() which is the definitive
+  // answer.
+  if (UseConcMarkSweepGC) {
+    return allocated_chunks_words();
+  } else {
+    MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
+    size_t sum = 0;
+    for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
+      Metachunk* chunk = chunks_in_use(i);
+      while (chunk != NULL) {
+        sum += chunk->word_size();
+        chunk = chunk->next();
+      }
+    }
+  return sum;
+  }
+}
+
+size_t SpaceManager::sum_count_in_chunks_in_use() {
+  size_t count = 0;
+  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
+    count = count + sum_count_in_chunks_in_use(i);
+  }
+
+  return count;
+}
+
+size_t SpaceManager::sum_count_in_chunks_in_use(ChunkIndex i) {
+  size_t count = 0;
+  Metachunk* chunk = chunks_in_use(i);
+  while (chunk != NULL) {
+    count++;
+    chunk = chunk->next();
+  }
+  return count;
+}
+
+
+size_t SpaceManager::sum_used_in_chunks_in_use() const {
+  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
+  size_t used = 0;
+  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
+    Metachunk* chunk = chunks_in_use(i);
+    while (chunk != NULL) {
+      used += chunk->used_word_size();
+      chunk = chunk->next();
+    }
+  }
+  return used;
+}
+
+void SpaceManager::locked_print_chunks_in_use_on(outputStream* st) const {
+
+  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
+    Metachunk* chunk = chunks_in_use(i);
+    st->print("SpaceManager: %s " PTR_FORMAT,
+                 chunk_size_name(i), p2i(chunk));
+    if (chunk != NULL) {
+      st->print_cr(" free " SIZE_FORMAT,
+                   chunk->free_word_size());
+    } else {
+      st->cr();
+    }
+  }
+
+  chunk_manager()->locked_print_free_chunks(st);
+  chunk_manager()->locked_print_sum_free_chunks(st);
+}
+
+size_t SpaceManager::calc_chunk_size(size_t word_size) {
+
+  // Decide between a small chunk and a medium chunk.  Up to
+  // _small_chunk_limit small chunks can be allocated.
+  // After that a medium chunk is preferred.
+  size_t chunk_word_size;
+  if (chunks_in_use(MediumIndex) == NULL &&
+      sum_count_in_chunks_in_use(SmallIndex) < _small_chunk_limit) {
+    chunk_word_size = (size_t) small_chunk_size();
+    if (word_size + Metachunk::overhead() > small_chunk_size()) {
+      chunk_word_size = medium_chunk_size();
+    }
+  } else {
+    chunk_word_size = medium_chunk_size();
+  }
+
+  // Might still need a humongous chunk.  Enforce
+  // humongous allocations sizes to be aligned up to
+  // the smallest chunk size.
+  size_t if_humongous_sized_chunk =
+    align_up(word_size + Metachunk::overhead(),
+                  smallest_chunk_size());
+  chunk_word_size =
+    MAX2((size_t) chunk_word_size, if_humongous_sized_chunk);
+
+  assert(!SpaceManager::is_humongous(word_size) ||
+         chunk_word_size == if_humongous_sized_chunk,
+         "Size calculation is wrong, word_size " SIZE_FORMAT
+         " chunk_word_size " SIZE_FORMAT,
+         word_size, chunk_word_size);
+  Log(gc, metaspace, alloc) log;
+  if (log.is_debug() && SpaceManager::is_humongous(word_size)) {
+    log.debug("Metadata humongous allocation:");
+    log.debug("  word_size " PTR_FORMAT, word_size);
+    log.debug("  chunk_word_size " PTR_FORMAT, chunk_word_size);
+    log.debug("    chunk overhead " PTR_FORMAT, Metachunk::overhead());
+  }
+  return chunk_word_size;
+}
+
+void SpaceManager::track_metaspace_memory_usage() {
+  if (is_init_completed()) {
+    if (is_class()) {
+      MemoryService::track_compressed_class_memory_usage();
+    }
+    MemoryService::track_metaspace_memory_usage();
+  }
+}
+
+MetaWord* SpaceManager::grow_and_allocate(size_t word_size) {
+  assert(vs_list()->current_virtual_space() != NULL,
+         "Should have been set");
+  assert(current_chunk() == NULL ||
+         current_chunk()->allocate(word_size) == NULL,
+         "Don't need to expand");
+  MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
+
+  if (log_is_enabled(Trace, gc, metaspace, freelist)) {
+    size_t words_left = 0;
+    size_t words_used = 0;
+    if (current_chunk() != NULL) {
+      words_left = current_chunk()->free_word_size();
+      words_used = current_chunk()->used_word_size();
+    }
+    log_trace(gc, metaspace, freelist)("SpaceManager::grow_and_allocate for " SIZE_FORMAT " words " SIZE_FORMAT " words used " SIZE_FORMAT " words left",
+                                       word_size, words_used, words_left);
+  }
+
+  // Get another chunk
+  size_t chunk_word_size = calc_chunk_size(word_size);
+  Metachunk* next = get_new_chunk(chunk_word_size);
+
+  MetaWord* mem = NULL;
+
+  // If a chunk was available, add it to the in-use chunk list
+  // and do an allocation from it.
+  if (next != NULL) {
+    // Add to this manager's list of chunks in use.
+    add_chunk(next, false);
+    mem = next->allocate(word_size);
+  }
+
+  // Track metaspace memory usage statistic.
+  track_metaspace_memory_usage();
+
+  return mem;
+}
+
+void SpaceManager::print_on(outputStream* st) const {
+
+  for (ChunkIndex i = ZeroIndex;
+       i < NumberOfInUseLists ;
+       i = next_chunk_index(i) ) {
+    st->print_cr("  chunks_in_use " PTR_FORMAT " chunk size " SIZE_FORMAT,
+                 p2i(chunks_in_use(i)),
+                 chunks_in_use(i) == NULL ? 0 : chunks_in_use(i)->word_size());
+  }
+  st->print_cr("    waste:  Small " SIZE_FORMAT " Medium " SIZE_FORMAT
+               " Humongous " SIZE_FORMAT,
+               sum_waste_in_chunks_in_use(SmallIndex),
+               sum_waste_in_chunks_in_use(MediumIndex),
+               sum_waste_in_chunks_in_use(HumongousIndex));
+  // block free lists
+  if (block_freelists() != NULL) {
+    st->print_cr("total in block free lists " SIZE_FORMAT,
+      block_freelists()->total_size());
+  }
+}
+
+SpaceManager::SpaceManager(Metaspace::MetadataType mdtype,
+                           Mutex* lock) :
+  _mdtype(mdtype),
+  _allocated_blocks_words(0),
+  _allocated_chunks_words(0),
+  _allocated_chunks_count(0),
+  _block_freelists(NULL),
+  _lock(lock)
+{
+  initialize();
+}
+
+void SpaceManager::inc_size_metrics(size_t words) {
+  assert_lock_strong(SpaceManager::expand_lock());
+  // Total of allocated Metachunks and allocated Metachunks count
+  // for each SpaceManager
+  _allocated_chunks_words = _allocated_chunks_words + words;
+  _allocated_chunks_count++;
+  // Global total of capacity in allocated Metachunks
+  MetaspaceAux::inc_capacity(mdtype(), words);
+  // Global total of allocated Metablocks.
+  // used_words_slow() includes the overhead in each
+  // Metachunk so include it in the used when the
+  // Metachunk is first added (so only added once per
+  // Metachunk).
+  MetaspaceAux::inc_used(mdtype(), Metachunk::overhead());
+}
+
+void SpaceManager::inc_used_metrics(size_t words) {
+  // Add to the per SpaceManager total
+  Atomic::add_ptr(words, &_allocated_blocks_words);
+  // Add to the global total
+  MetaspaceAux::inc_used(mdtype(), words);
+}
+
+void SpaceManager::dec_total_from_size_metrics() {
+  MetaspaceAux::dec_capacity(mdtype(), allocated_chunks_words());
+  MetaspaceAux::dec_used(mdtype(), allocated_blocks_words());
+  // Also deduct the overhead per Metachunk
+  MetaspaceAux::dec_used(mdtype(), allocated_chunks_count() * Metachunk::overhead());
+}
+
+void SpaceManager::initialize() {
+  Metadebug::init_allocation_fail_alot_count();
+  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
+    _chunks_in_use[i] = NULL;
+  }
+  _current_chunk = NULL;
+  log_trace(gc, metaspace, freelist)("SpaceManager(): " PTR_FORMAT, p2i(this));
+}
+
+SpaceManager::~SpaceManager() {
+  // This call this->_lock which can't be done while holding expand_lock()
+  assert(sum_capacity_in_chunks_in_use() == allocated_chunks_words(),
+         "sum_capacity_in_chunks_in_use() " SIZE_FORMAT
+         " allocated_chunks_words() " SIZE_FORMAT,
+         sum_capacity_in_chunks_in_use(), allocated_chunks_words());
+
+  MutexLockerEx fcl(SpaceManager::expand_lock(),
+                    Mutex::_no_safepoint_check_flag);
+
+  chunk_manager()->slow_locked_verify();
+
+  dec_total_from_size_metrics();
+
+  Log(gc, metaspace, freelist) log;
+  if (log.is_trace()) {
+    log.trace("~SpaceManager(): " PTR_FORMAT, p2i(this));
+    ResourceMark rm;
+    LogStream ls(log.trace());
+    locked_print_chunks_in_use_on(&ls);
+    if (block_freelists() != NULL) {
+      block_freelists()->print_on(&ls);
+    }
+  }
+
+  // Add all the chunks in use by this space manager
+  // to the global list of free chunks.
+
+  // Follow each list of chunks-in-use and add them to the
+  // free lists.  Each list is NULL terminated.
+
+  for (ChunkIndex i = ZeroIndex; i <= HumongousIndex; i = next_chunk_index(i)) {
+    Metachunk* chunks = chunks_in_use(i);
+    chunk_manager()->return_chunk_list(i, chunks);
+    set_chunks_in_use(i, NULL);
+  }
+
+  chunk_manager()->slow_locked_verify();
+
+  if (_block_freelists != NULL) {
+    delete _block_freelists;
+  }
+}
+
+void SpaceManager::deallocate(MetaWord* p, size_t word_size) {
+  assert_lock_strong(_lock);
+  // Allocations and deallocations are in raw_word_size
+  size_t raw_word_size = get_allocation_word_size(word_size);
+  // Lazily create a block_freelist
+  if (block_freelists() == NULL) {
+    _block_freelists = new BlockFreelist();
+  }
+  block_freelists()->return_block(p, raw_word_size);
+}
+
+// Adds a chunk to the list of chunks in use.
+void SpaceManager::add_chunk(Metachunk* new_chunk, bool make_current) {
+
+  assert(new_chunk != NULL, "Should not be NULL");
+  assert(new_chunk->next() == NULL, "Should not be on a list");
+
+  new_chunk->reset_empty();
+
+  // Find the correct list and and set the current
+  // chunk for that list.
+  ChunkIndex index = chunk_manager()->list_index(new_chunk->word_size());
+
+  if (index != HumongousIndex) {
+    retire_current_chunk();
+    set_current_chunk(new_chunk);
+    new_chunk->set_next(chunks_in_use(index));
+    set_chunks_in_use(index, new_chunk);
+  } else {
+    // For null class loader data and DumpSharedSpaces, the first chunk isn't
+    // small, so small will be null.  Link this first chunk as the current
+    // chunk.
+    if (make_current) {
+      // Set as the current chunk but otherwise treat as a humongous chunk.
+      set_current_chunk(new_chunk);
+    }
+    // Link at head.  The _current_chunk only points to a humongous chunk for
+    // the null class loader metaspace (class and data virtual space managers)
+    // any humongous chunks so will not point to the tail
+    // of the humongous chunks list.
+    new_chunk->set_next(chunks_in_use(HumongousIndex));
+    set_chunks_in_use(HumongousIndex, new_chunk);
+
+    assert(new_chunk->word_size() > medium_chunk_size(), "List inconsistency");
+  }
+
+  // Add to the running sum of capacity
+  inc_size_metrics(new_chunk->word_size());
+
+  assert(new_chunk->is_empty(), "Not ready for reuse");
+  Log(gc, metaspace, freelist) log;
+  if (log.is_trace()) {
+    log.trace("SpaceManager::add_chunk: " SIZE_FORMAT ") ", sum_count_in_chunks_in_use());
+    ResourceMark rm;
+    LogStream ls(log.trace());
+    new_chunk->print_on(&ls);
+    chunk_manager()->locked_print_free_chunks(&ls);
+  }
+}
+
+void SpaceManager::retire_current_chunk() {
+  if (current_chunk() != NULL) {
+    size_t remaining_words = current_chunk()->free_word_size();
+    if (remaining_words >= BlockFreelist::min_dictionary_size()) {
+      MetaWord* ptr = current_chunk()->allocate(remaining_words);
+      deallocate(ptr, remaining_words);
+      inc_used_metrics(remaining_words);
+    }
+  }
+}
+
+Metachunk* SpaceManager::get_new_chunk(size_t chunk_word_size) {
+  // Get a chunk from the chunk freelist
+  Metachunk* next = chunk_manager()->chunk_freelist_allocate(chunk_word_size);
+
+  if (next == NULL) {
+    next = vs_list()->get_new_chunk(chunk_word_size,
+                                    medium_chunk_bunch());
+  }
+
+  Log(gc, metaspace, alloc) log;
+  if (log.is_debug() && next != NULL &&
+      SpaceManager::is_humongous(next->word_size())) {
+    log.debug("  new humongous chunk word size " PTR_FORMAT, next->word_size());
+  }
+
+  return next;
+}
+
+/*
+ * The policy is to allocate up to _small_chunk_limit small chunks
+ * after which only medium chunks are allocated.  This is done to
+ * reduce fragmentation.  In some cases, this can result in a lot
+ * of small chunks being allocated to the point where it's not
+ * possible to expand.  If this happens, there may be no medium chunks
+ * available and OOME would be thrown.  Instead of doing that,
+ * if the allocation request size fits in a small chunk, an attempt
+ * will be made to allocate a small chunk.
+ */
+MetaWord* SpaceManager::get_small_chunk_and_allocate(size_t word_size) {
+  size_t raw_word_size = get_allocation_word_size(word_size);
+
+  if (raw_word_size + Metachunk::overhead() > small_chunk_size()) {
+    return NULL;
+  }
+
+  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
+  MutexLockerEx cl1(expand_lock(), Mutex::_no_safepoint_check_flag);
+
+  Metachunk* chunk = chunk_manager()->chunk_freelist_allocate(small_chunk_size());
+
+  MetaWord* mem = NULL;
+
+  if (chunk != NULL) {
+    // Add chunk to the in-use chunk list and do an allocation from it.
+    // Add to this manager's list of chunks in use.
+    add_chunk(chunk, false);
+    mem = chunk->allocate(raw_word_size);
+
+    inc_used_metrics(raw_word_size);
+
+    // Track metaspace memory usage statistic.
+    track_metaspace_memory_usage();
+  }
+
+  return mem;
+}
+
+MetaWord* SpaceManager::allocate(size_t word_size) {
+  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
+  size_t raw_word_size = get_allocation_word_size(word_size);
+  BlockFreelist* fl =  block_freelists();
+  MetaWord* p = NULL;
+  // Allocation from the dictionary is expensive in the sense that
+  // the dictionary has to be searched for a size.  Don't allocate
+  // from the dictionary until it starts to get fat.  Is this
+  // a reasonable policy?  Maybe an skinny dictionary is fast enough
+  // for allocations.  Do some profiling.  JJJ
+  if (fl != NULL && fl->total_size() > allocation_from_dictionary_limit) {
+    p = fl->get_block(raw_word_size);
+  }
+  if (p == NULL) {
+    p = allocate_work(raw_word_size);
+  }
+
+  return p;
+}
+
+// Returns the address of spaced allocated for "word_size".
+// This methods does not know about blocks (Metablocks)
+MetaWord* SpaceManager::allocate_work(size_t word_size) {
+  assert_lock_strong(_lock);
+#ifdef ASSERT
+  if (Metadebug::test_metadata_failure()) {
+    return NULL;
+  }
+#endif
+  // Is there space in the current chunk?
+  MetaWord* result = NULL;
+
+  if (current_chunk() != NULL) {
+    result = current_chunk()->allocate(word_size);
+  }
+
+  if (result == NULL) {
+    result = grow_and_allocate(word_size);
+  }
+
+  if (result != NULL) {
+    inc_used_metrics(word_size);
+    assert(result != (MetaWord*) chunks_in_use(MediumIndex),
+           "Head of the list is being allocated");
+  }
+
+  return result;
+}
+
+void SpaceManager::verify() {
+  // If there are blocks in the dictionary, then
+  // verification of chunks does not work since
+  // being in the dictionary alters a chunk.
+  if (block_freelists() != NULL && block_freelists()->total_size() == 0) {
+    for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
+      Metachunk* curr = chunks_in_use(i);
+      while (curr != NULL) {
+        curr->verify();
+        verify_chunk_size(curr);
+        curr = curr->next();
+      }
+    }
+  }
+}
+
+void SpaceManager::verify_chunk_size(Metachunk* chunk) {
+  assert(is_humongous(chunk->word_size()) ||
+         chunk->word_size() == medium_chunk_size() ||
+         chunk->word_size() == small_chunk_size() ||
+         chunk->word_size() == specialized_chunk_size(),
+         "Chunk size is wrong");
+  return;
+}
+
+#ifdef ASSERT
+void SpaceManager::verify_allocated_blocks_words() {
+  // Verification is only guaranteed at a safepoint.
+  assert(SafepointSynchronize::is_at_safepoint() || !Universe::is_fully_initialized(),
+    "Verification can fail if the applications is running");
+  assert(allocated_blocks_words() == sum_used_in_chunks_in_use(),
+         "allocation total is not consistent " SIZE_FORMAT
+         " vs " SIZE_FORMAT,
+         allocated_blocks_words(), sum_used_in_chunks_in_use());
+}
+
+#endif
+
+void SpaceManager::dump(outputStream* const out) const {
+  size_t curr_total = 0;
+  size_t waste = 0;
+  uint i = 0;
+  size_t used = 0;
+  size_t capacity = 0;
+
+  // Add up statistics for all chunks in this SpaceManager.
+  for (ChunkIndex index = ZeroIndex;
+       index < NumberOfInUseLists;
+       index = next_chunk_index(index)) {
+    for (Metachunk* curr = chunks_in_use(index);
+         curr != NULL;
+         curr = curr->next()) {
+      out->print("%d) ", i++);
+      curr->print_on(out);
+      curr_total += curr->word_size();
+      used += curr->used_word_size();
+      capacity += curr->word_size();
+      waste += curr->free_word_size() + curr->overhead();;
+    }
+  }
+
+  if (log_is_enabled(Trace, gc, metaspace, freelist)) {
+    if (block_freelists() != NULL) block_freelists()->print_on(out);
+  }
+
+  size_t free = current_chunk() == NULL ? 0 : current_chunk()->free_word_size();
+  // Free space isn't wasted.
+  waste -= free;
+
+  out->print_cr("total of all chunks "  SIZE_FORMAT " used " SIZE_FORMAT
+                " free " SIZE_FORMAT " capacity " SIZE_FORMAT
+                " waste " SIZE_FORMAT, curr_total, used, free, capacity, waste);
+}
+
+// MetaspaceAux
+
+
+size_t MetaspaceAux::_capacity_words[] = {0, 0};
+size_t MetaspaceAux::_used_words[] = {0, 0};
+
+size_t MetaspaceAux::free_bytes(Metaspace::MetadataType mdtype) {
+  VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
+  return list == NULL ? 0 : list->free_bytes();
+}
+
+size_t MetaspaceAux::free_bytes() {
+  return free_bytes(Metaspace::ClassType) + free_bytes(Metaspace::NonClassType);
+}
+
+void MetaspaceAux::dec_capacity(Metaspace::MetadataType mdtype, size_t words) {
+  assert_lock_strong(SpaceManager::expand_lock());
+  assert(words <= capacity_words(mdtype),
+         "About to decrement below 0: words " SIZE_FORMAT
+         " is greater than _capacity_words[%u] " SIZE_FORMAT,
+         words, mdtype, capacity_words(mdtype));
+  _capacity_words[mdtype] -= words;
+}
+
+void MetaspaceAux::inc_capacity(Metaspace::MetadataType mdtype, size_t words) {
+  assert_lock_strong(SpaceManager::expand_lock());
+  // Needs to be atomic
+  _capacity_words[mdtype] += words;
+}
+
+void MetaspaceAux::dec_used(Metaspace::MetadataType mdtype, size_t words) {
+  assert(words <= used_words(mdtype),
+         "About to decrement below 0: words " SIZE_FORMAT
+         " is greater than _used_words[%u] " SIZE_FORMAT,
+         words, mdtype, used_words(mdtype));
+  // For CMS deallocation of the Metaspaces occurs during the
+  // sweep which is a concurrent phase.  Protection by the expand_lock()
+  // is not enough since allocation is on a per Metaspace basis
+  // and protected by the Metaspace lock.
+  jlong minus_words = (jlong) - (jlong) words;
+  Atomic::add_ptr(minus_words, &_used_words[mdtype]);
+}
+
+void MetaspaceAux::inc_used(Metaspace::MetadataType mdtype, size_t words) {
+  // _used_words tracks allocations for
+  // each piece of metadata.  Those allocations are
+  // generally done concurrently by different application
+  // threads so must be done atomically.
+  Atomic::add_ptr(words, &_used_words[mdtype]);
+}
+
+size_t MetaspaceAux::used_bytes_slow(Metaspace::MetadataType mdtype) {
+  size_t used = 0;
+  ClassLoaderDataGraphMetaspaceIterator iter;
+  while (iter.repeat()) {
+    Metaspace* msp = iter.get_next();
+    // Sum allocated_blocks_words for each metaspace
+    if (msp != NULL) {
+      used += msp->used_words_slow(mdtype);
+    }
+  }
+  return used * BytesPerWord;
+}
+
+size_t MetaspaceAux::free_bytes_slow(Metaspace::MetadataType mdtype) {
+  size_t free = 0;
+  ClassLoaderDataGraphMetaspaceIterator iter;
+  while (iter.repeat()) {
+    Metaspace* msp = iter.get_next();
+    if (msp != NULL) {
+      free += msp->free_words_slow(mdtype);
+    }
+  }
+  return free * BytesPerWord;
+}
+
+size_t MetaspaceAux::capacity_bytes_slow(Metaspace::MetadataType mdtype) {
+  if ((mdtype == Metaspace::ClassType) && !Metaspace::using_class_space()) {
+    return 0;
+  }
+  // Don't count the space in the freelists.  That space will be
+  // added to the capacity calculation as needed.
+  size_t capacity = 0;
+  ClassLoaderDataGraphMetaspaceIterator iter;
+  while (iter.repeat()) {
+    Metaspace* msp = iter.get_next();
+    if (msp != NULL) {
+      capacity += msp->capacity_words_slow(mdtype);
+    }
+  }
+  return capacity * BytesPerWord;
+}
+
+size_t MetaspaceAux::capacity_bytes_slow() {
+#ifdef PRODUCT
+  // Use capacity_bytes() in PRODUCT instead of this function.
+  guarantee(false, "Should not call capacity_bytes_slow() in the PRODUCT");
+#endif
+  size_t class_capacity = capacity_bytes_slow(Metaspace::ClassType);
+  size_t non_class_capacity = capacity_bytes_slow(Metaspace::NonClassType);
+  assert(capacity_bytes() == class_capacity + non_class_capacity,
+         "bad accounting: capacity_bytes() " SIZE_FORMAT
+         " class_capacity + non_class_capacity " SIZE_FORMAT
+         " class_capacity " SIZE_FORMAT " non_class_capacity " SIZE_FORMAT,
+         capacity_bytes(), class_capacity + non_class_capacity,
+         class_capacity, non_class_capacity);
+
+  return class_capacity + non_class_capacity;
+}
+
+size_t MetaspaceAux::reserved_bytes(Metaspace::MetadataType mdtype) {
+  VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
+  return list == NULL ? 0 : list->reserved_bytes();
+}
+
+size_t MetaspaceAux::committed_bytes(Metaspace::MetadataType mdtype) {
+  VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
+  return list == NULL ? 0 : list->committed_bytes();
+}
+
+size_t MetaspaceAux::min_chunk_size_words() { return Metaspace::first_chunk_word_size(); }
+
+size_t MetaspaceAux::free_chunks_total_words(Metaspace::MetadataType mdtype) {
+  ChunkManager* chunk_manager = Metaspace::get_chunk_manager(mdtype);
+  if (chunk_manager == NULL) {
+    return 0;
+  }
+  chunk_manager->slow_verify();
+  return chunk_manager->free_chunks_total_words();
+}
+
+size_t MetaspaceAux::free_chunks_total_bytes(Metaspace::MetadataType mdtype) {
+  return free_chunks_total_words(mdtype) * BytesPerWord;
+}
+
+size_t MetaspaceAux::free_chunks_total_words() {
+  return free_chunks_total_words(Metaspace::ClassType) +
+         free_chunks_total_words(Metaspace::NonClassType);
+}
+
+size_t MetaspaceAux::free_chunks_total_bytes() {
+  return free_chunks_total_words() * BytesPerWord;
+}
+
+bool MetaspaceAux::has_chunk_free_list(Metaspace::MetadataType mdtype) {
+  return Metaspace::get_chunk_manager(mdtype) != NULL;
+}
+
+MetaspaceChunkFreeListSummary MetaspaceAux::chunk_free_list_summary(Metaspace::MetadataType mdtype) {
+  if (!has_chunk_free_list(mdtype)) {
+    return MetaspaceChunkFreeListSummary();
+  }
+
+  const ChunkManager* cm = Metaspace::get_chunk_manager(mdtype);
+  return cm->chunk_free_list_summary();
+}
+
+void MetaspaceAux::print_metaspace_change(size_t prev_metadata_used) {
+  log_info(gc, metaspace)("Metaspace: "  SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
+                          prev_metadata_used/K, used_bytes()/K, reserved_bytes()/K);
+}
+
+void MetaspaceAux::print_on(outputStream* out) {
+  Metaspace::MetadataType nct = Metaspace::NonClassType;
+
+  out->print_cr(" Metaspace       "
+                "used "      SIZE_FORMAT "K, "
+                "capacity "  SIZE_FORMAT "K, "
+                "committed " SIZE_FORMAT "K, "
+                "reserved "  SIZE_FORMAT "K",
+                used_bytes()/K,
+                capacity_bytes()/K,
+                committed_bytes()/K,
+                reserved_bytes()/K);
+
+  if (Metaspace::using_class_space()) {
+    Metaspace::MetadataType ct = Metaspace::ClassType;
+    out->print_cr("  class space    "
+                  "used "      SIZE_FORMAT "K, "
+                  "capacity "  SIZE_FORMAT "K, "
+                  "committed " SIZE_FORMAT "K, "
+                  "reserved "  SIZE_FORMAT "K",
+                  used_bytes(ct)/K,
+                  capacity_bytes(ct)/K,
+                  committed_bytes(ct)/K,
+                  reserved_bytes(ct)/K);
+  }
+}
+
+// Print information for class space and data space separately.
+// This is almost the same as above.
+void MetaspaceAux::print_on(outputStream* out, Metaspace::MetadataType mdtype) {
+  size_t free_chunks_capacity_bytes = free_chunks_total_bytes(mdtype);
+  size_t capacity_bytes = capacity_bytes_slow(mdtype);
+  size_t used_bytes = used_bytes_slow(mdtype);
+  size_t free_bytes = free_bytes_slow(mdtype);
+  size_t used_and_free = used_bytes + free_bytes +
+                           free_chunks_capacity_bytes;
+  out->print_cr("  Chunk accounting: used in chunks " SIZE_FORMAT
+             "K + unused in chunks " SIZE_FORMAT "K  + "
+             " capacity in free chunks " SIZE_FORMAT "K = " SIZE_FORMAT
+             "K  capacity in allocated chunks " SIZE_FORMAT "K",
+             used_bytes / K,
+             free_bytes / K,
+             free_chunks_capacity_bytes / K,
+             used_and_free / K,
+             capacity_bytes / K);
+  // Accounting can only be correct if we got the values during a safepoint
+  assert(!SafepointSynchronize::is_at_safepoint() || used_and_free == capacity_bytes, "Accounting is wrong");
+}
+
+// Print total fragmentation for class metaspaces
+void MetaspaceAux::print_class_waste(outputStream* out) {
+  assert(Metaspace::using_class_space(), "class metaspace not used");
+  size_t cls_specialized_waste = 0, cls_small_waste = 0, cls_medium_waste = 0;
+  size_t cls_specialized_count = 0, cls_small_count = 0, cls_medium_count = 0, cls_humongous_count = 0;
+  ClassLoaderDataGraphMetaspaceIterator iter;
+  while (iter.repeat()) {
+    Metaspace* msp = iter.get_next();
+    if (msp != NULL) {
+      cls_specialized_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
+      cls_specialized_count += msp->class_vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
+      cls_small_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SmallIndex);
+      cls_small_count += msp->class_vsm()->sum_count_in_chunks_in_use(SmallIndex);
+      cls_medium_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(MediumIndex);
+      cls_medium_count += msp->class_vsm()->sum_count_in_chunks_in_use(MediumIndex);
+      cls_humongous_count += msp->class_vsm()->sum_count_in_chunks_in_use(HumongousIndex);
+    }
+  }
+  out->print_cr(" class: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
+                SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
+                SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
+                "large count " SIZE_FORMAT,
+                cls_specialized_count, cls_specialized_waste,
+                cls_small_count, cls_small_waste,
+                cls_medium_count, cls_medium_waste, cls_humongous_count);
+}
+
+// Print total fragmentation for data and class metaspaces separately
+void MetaspaceAux::print_waste(outputStream* out) {
+  size_t specialized_waste = 0, small_waste = 0, medium_waste = 0;
+  size_t specialized_count = 0, small_count = 0, medium_count = 0, humongous_count = 0;
+
+  ClassLoaderDataGraphMetaspaceIterator iter;
+  while (iter.repeat()) {
+    Metaspace* msp = iter.get_next();
+    if (msp != NULL) {
+      specialized_waste += msp->vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
+      specialized_count += msp->vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
+      small_waste += msp->vsm()->sum_waste_in_chunks_in_use(SmallIndex);
+      small_count += msp->vsm()->sum_count_in_chunks_in_use(SmallIndex);
+      medium_waste += msp->vsm()->sum_waste_in_chunks_in_use(MediumIndex);
+      medium_count += msp->vsm()->sum_count_in_chunks_in_use(MediumIndex);
+      humongous_count += msp->vsm()->sum_count_in_chunks_in_use(HumongousIndex);
+    }
+  }
+  out->print_cr("Total fragmentation waste (words) doesn't count free space");
+  out->print_cr("  data: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
+                        SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
+                        SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
+                        "large count " SIZE_FORMAT,
+             specialized_count, specialized_waste, small_count,
+             small_waste, medium_count, medium_waste, humongous_count);
+  if (Metaspace::using_class_space()) {
+    print_class_waste(out);
+  }
+}
+
+// Dump global metaspace things from the end of ClassLoaderDataGraph
+void MetaspaceAux::dump(outputStream* out) {
+  out->print_cr("All Metaspace:");
+  out->print("data space: "); print_on(out, Metaspace::NonClassType);
+  out->print("class space: "); print_on(out, Metaspace::ClassType);
+  print_waste(out);
+}
+
+void MetaspaceAux::verify_free_chunks() {
+  Metaspace::chunk_manager_metadata()->verify();
+  if (Metaspace::using_class_space()) {
+    Metaspace::chunk_manager_class()->verify();
+  }
+}
+
+void MetaspaceAux::verify_capacity() {
+#ifdef ASSERT
+  size_t running_sum_capacity_bytes = capacity_bytes();
+  // For purposes of the running sum of capacity, verify against capacity
+  size_t capacity_in_use_bytes = capacity_bytes_slow();
+  assert(running_sum_capacity_bytes == capacity_in_use_bytes,
+         "capacity_words() * BytesPerWord " SIZE_FORMAT
+         " capacity_bytes_slow()" SIZE_FORMAT,
+         running_sum_capacity_bytes, capacity_in_use_bytes);
+  for (Metaspace::MetadataType i = Metaspace::ClassType;
+       i < Metaspace:: MetadataTypeCount;
+       i = (Metaspace::MetadataType)(i + 1)) {
+    size_t capacity_in_use_bytes = capacity_bytes_slow(i);
+    assert(capacity_bytes(i) == capacity_in_use_bytes,
+           "capacity_bytes(%u) " SIZE_FORMAT
+           " capacity_bytes_slow(%u)" SIZE_FORMAT,
+           i, capacity_bytes(i), i, capacity_in_use_bytes);
+  }
+#endif
+}
+
+void MetaspaceAux::verify_used() {
+#ifdef ASSERT
+  size_t running_sum_used_bytes = used_bytes();
+  // For purposes of the running sum of used, verify against used
+  size_t used_in_use_bytes = used_bytes_slow();
+  assert(used_bytes() == used_in_use_bytes,
+         "used_bytes() " SIZE_FORMAT
+         " used_bytes_slow()" SIZE_FORMAT,
+         used_bytes(), used_in_use_bytes);
+  for (Metaspace::MetadataType i = Metaspace::ClassType;
+       i < Metaspace:: MetadataTypeCount;
+       i = (Metaspace::MetadataType)(i + 1)) {
+    size_t used_in_use_bytes = used_bytes_slow(i);
+    assert(used_bytes(i) == used_in_use_bytes,
+           "used_bytes(%u) " SIZE_FORMAT
+           " used_bytes_slow(%u)" SIZE_FORMAT,
+           i, used_bytes(i), i, used_in_use_bytes);
+  }
+#endif
+}
+
+void MetaspaceAux::verify_metrics() {
+  verify_capacity();
+  verify_used();
+}
+
+
+// Metaspace methods
+
+size_t Metaspace::_first_chunk_word_size = 0;
+size_t Metaspace::_first_class_chunk_word_size = 0;
+
+size_t Metaspace::_commit_alignment = 0;
+size_t Metaspace::_reserve_alignment = 0;
+
+Metaspace::Metaspace(Mutex* lock, MetaspaceType type) {
+  initialize(lock, type);
+}
+
+Metaspace::~Metaspace() {
+  delete _vsm;
+  if (using_class_space()) {
+    delete _class_vsm;
+  }
+}
+
+VirtualSpaceList* Metaspace::_space_list = NULL;
+VirtualSpaceList* Metaspace::_class_space_list = NULL;
+
+ChunkManager* Metaspace::_chunk_manager_metadata = NULL;
+ChunkManager* Metaspace::_chunk_manager_class = NULL;
+
+#define VIRTUALSPACEMULTIPLIER 2
+
+#ifdef _LP64
+static const uint64_t UnscaledClassSpaceMax = (uint64_t(max_juint) + 1);
+
+void Metaspace::set_narrow_klass_base_and_shift(address metaspace_base, address cds_base) {
+  assert(!DumpSharedSpaces, "narrow_klass is set by MetaspaceShared class.");
+  // Figure out the narrow_klass_base and the narrow_klass_shift.  The
+  // narrow_klass_base is the lower of the metaspace base and the cds base
+  // (if cds is enabled).  The narrow_klass_shift depends on the distance
+  // between the lower base and higher address.
+  address lower_base;
+  address higher_address;
+#if INCLUDE_CDS
+  if (UseSharedSpaces) {
+    higher_address = MAX2((address)(cds_base + MetaspaceShared::core_spaces_size()),
+                          (address)(metaspace_base + compressed_class_space_size()));
+    lower_base = MIN2(metaspace_base, cds_base);
+  } else
+#endif
+  {
+    higher_address = metaspace_base + compressed_class_space_size();
+    lower_base = metaspace_base;
+
+    uint64_t klass_encoding_max = UnscaledClassSpaceMax << LogKlassAlignmentInBytes;
+    // If compressed class space fits in lower 32G, we don't need a base.
+    if (higher_address <= (address)klass_encoding_max) {
+      lower_base = 0; // Effectively lower base is zero.
+    }
+  }
+
+  Universe::set_narrow_klass_base(lower_base);
+
+  if ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax) {
+    Universe::set_narrow_klass_shift(0);
+  } else {
+    assert(!UseSharedSpaces, "Cannot shift with UseSharedSpaces");
+    Universe::set_narrow_klass_shift(LogKlassAlignmentInBytes);
+  }
+  AOTLoader::set_narrow_klass_shift();
+}
+
+#if INCLUDE_CDS
+// Return TRUE if the specified metaspace_base and cds_base are close enough
+// to work with compressed klass pointers.
+bool Metaspace::can_use_cds_with_metaspace_addr(char* metaspace_base, address cds_base) {
+  assert(cds_base != 0 && UseSharedSpaces, "Only use with CDS");
+  assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
+  address lower_base = MIN2((address)metaspace_base, cds_base);
+  address higher_address = MAX2((address)(cds_base + MetaspaceShared::core_spaces_size()),
+                                (address)(metaspace_base + compressed_class_space_size()));
+  return ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax);
+}
+#endif
+
+// Try to allocate the metaspace at the requested addr.
+void Metaspace::allocate_metaspace_compressed_klass_ptrs(char* requested_addr, address cds_base) {
+  assert(!DumpSharedSpaces, "compress klass space is allocated by MetaspaceShared class.");
+  assert(using_class_space(), "called improperly");
+  assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
+  assert(compressed_class_space_size() < KlassEncodingMetaspaceMax,
+         "Metaspace size is too big");
+  assert_is_aligned(requested_addr, _reserve_alignment);
+  assert_is_aligned(cds_base, _reserve_alignment);
+  assert_is_aligned(compressed_class_space_size(), _reserve_alignment);
+
+  // Don't use large pages for the class space.
+  bool large_pages = false;
+
+#if !(defined(AARCH64) || defined(AIX))
+  ReservedSpace metaspace_rs = ReservedSpace(compressed_class_space_size(),
+                                             _reserve_alignment,
+                                             large_pages,
+                                             requested_addr);
+#else // AARCH64
+  ReservedSpace metaspace_rs;
+
+  // Our compressed klass pointers may fit nicely into the lower 32
+  // bits.
+  if ((uint64_t)requested_addr + compressed_class_space_size() < 4*G) {
+    metaspace_rs = ReservedSpace(compressed_class_space_size(),
+                                 _reserve_alignment,
+                                 large_pages,
+                                 requested_addr);
+  }
+
+  if (! metaspace_rs.is_reserved()) {
+    // Aarch64: Try to align metaspace so that we can decode a compressed
+    // klass with a single MOVK instruction.  We can do this iff the
+    // compressed class base is a multiple of 4G.
+    // Aix: Search for a place where we can find memory. If we need to load
+    // the base, 4G alignment is helpful, too.
+    size_t increment = AARCH64_ONLY(4*)G;
+    for (char *a = align_up(requested_addr, increment);
+         a < (char*)(1024*G);
+         a += increment) {
+      if (a == (char *)(32*G)) {
+        // Go faster from here on. Zero-based is no longer possible.
+        increment = 4*G;
+      }
+
+#if INCLUDE_CDS
+      if (UseSharedSpaces
+          && ! can_use_cds_with_metaspace_addr(a, cds_base)) {
+        // We failed to find an aligned base that will reach.  Fall
+        // back to using our requested addr.
+        metaspace_rs = ReservedSpace(compressed_class_space_size(),
+                                     _reserve_alignment,
+                                     large_pages,
+                                     requested_addr);
+        break;
+      }
+#endif
+
+      metaspace_rs = ReservedSpace(compressed_class_space_size(),
+                                   _reserve_alignment,
+                                   large_pages,
+                                   a);
+      if (metaspace_rs.is_reserved())
+        break;
+    }
+  }
+
+#endif // AARCH64
+
+  if (!metaspace_rs.is_reserved()) {
+#if INCLUDE_CDS
+    if (UseSharedSpaces) {
+      size_t increment = align_up(1*G, _reserve_alignment);
+
+      // Keep trying to allocate the metaspace, increasing the requested_addr
+      // by 1GB each time, until we reach an address that will no longer allow
+      // use of CDS with compressed klass pointers.
+      char *addr = requested_addr;
+      while (!metaspace_rs.is_reserved() && (addr + increment > addr) &&
+             can_use_cds_with_metaspace_addr(addr + increment, cds_base)) {
+        addr = addr + increment;
+        metaspace_rs = ReservedSpace(compressed_class_space_size(),
+                                     _reserve_alignment, large_pages, addr);
+      }
+    }
+#endif
+    // If no successful allocation then try to allocate the space anywhere.  If
+    // that fails then OOM doom.  At this point we cannot try allocating the
+    // metaspace as if UseCompressedClassPointers is off because too much
+    // initialization has happened that depends on UseCompressedClassPointers.
+    // So, UseCompressedClassPointers cannot be turned off at this point.
+    if (!metaspace_rs.is_reserved()) {
+      metaspace_rs = ReservedSpace(compressed_class_space_size(),
+                                   _reserve_alignment, large_pages);
+      if (!metaspace_rs.is_reserved()) {
+        vm_exit_during_initialization(err_msg("Could not allocate metaspace: " SIZE_FORMAT " bytes",
+                                              compressed_class_space_size()));
+      }
+    }
+  }
+
+  // If we got here then the metaspace got allocated.
+  MemTracker::record_virtual_memory_type((address)metaspace_rs.base(), mtClass);
+
+#if INCLUDE_CDS
+  // Verify that we can use shared spaces.  Otherwise, turn off CDS.
+  if (UseSharedSpaces && !can_use_cds_with_metaspace_addr(metaspace_rs.base(), cds_base)) {
+    FileMapInfo::stop_sharing_and_unmap(
+        "Could not allocate metaspace at a compatible address");
+  }
+#endif
+  set_narrow_klass_base_and_shift((address)metaspace_rs.base(),
+                                  UseSharedSpaces ? (address)cds_base : 0);
+
+  initialize_class_space(metaspace_rs);
+
+  LogTarget(Trace, gc, metaspace) lt;
+  if (lt.is_enabled()) {
+    ResourceMark rm;
+    LogStream ls(lt);
+    print_compressed_class_space(&ls, requested_addr);
+  }
+}
+
+void Metaspace::print_compressed_class_space(outputStream* st, const char* requested_addr) {
+  st->print_cr("Narrow klass base: " PTR_FORMAT ", Narrow klass shift: %d",
+               p2i(Universe::narrow_klass_base()), Universe::narrow_klass_shift());
+  if (_class_space_list != NULL) {
+    address base = (address)_class_space_list->current_virtual_space()->bottom();
+    st->print("Compressed class space size: " SIZE_FORMAT " Address: " PTR_FORMAT,
+                 compressed_class_space_size(), p2i(base));
+    if (requested_addr != 0) {
+      st->print(" Req Addr: " PTR_FORMAT, p2i(requested_addr));
+    }
+    st->cr();
+  }
+}
+
+// For UseCompressedClassPointers the class space is reserved above the top of
+// the Java heap.  The argument passed in is at the base of the compressed space.
+void Metaspace::initialize_class_space(ReservedSpace rs) {
+  // The reserved space size may be bigger because of alignment, esp with UseLargePages
+  assert(rs.size() >= CompressedClassSpaceSize,
+         SIZE_FORMAT " != " SIZE_FORMAT, rs.size(), CompressedClassSpaceSize);
+  assert(using_class_space(), "Must be using class space");
+  _class_space_list = new VirtualSpaceList(rs);
+  _chunk_manager_class = new ChunkManager(ClassSpecializedChunk, ClassSmallChunk, ClassMediumChunk);
+
+  if (!_class_space_list->initialization_succeeded()) {
+    vm_exit_during_initialization("Failed to setup compressed class space virtual space list.");
+  }
+}
+
+#endif
+
+void Metaspace::ergo_initialize() {
+  if (DumpSharedSpaces) {
+    // Using large pages when dumping the shared archive is currently not implemented.
+    FLAG_SET_ERGO(bool, UseLargePagesInMetaspace, false);
+  }
+
+  size_t page_size = os::vm_page_size();
+  if (UseLargePages && UseLargePagesInMetaspace) {
+    page_size = os::large_page_size();
+  }
+
+  _commit_alignment  = page_size;
+  _reserve_alignment = MAX2(page_size, (size_t)os::vm_allocation_granularity());
+
+  // Do not use FLAG_SET_ERGO to update MaxMetaspaceSize, since this will
+  // override if MaxMetaspaceSize was set on the command line or not.
+  // This information is needed later to conform to the specification of the
+  // java.lang.management.MemoryUsage API.
+  //
+  // Ideally, we would be able to set the default value of MaxMetaspaceSize in
+  // globals.hpp to the aligned value, but this is not possible, since the
+  // alignment depends on other flags being parsed.
+  MaxMetaspaceSize = align_down_bounded(MaxMetaspaceSize, _reserve_alignment);
+
+  if (MetaspaceSize > MaxMetaspaceSize) {
+    MetaspaceSize = MaxMetaspaceSize;
+  }
+
+  MetaspaceSize = align_down_bounded(MetaspaceSize, _commit_alignment);
+
+  assert(MetaspaceSize <= MaxMetaspaceSize, "MetaspaceSize should be limited by MaxMetaspaceSize");
+
+  MinMetaspaceExpansion = align_down_bounded(MinMetaspaceExpansion, _commit_alignment);
+  MaxMetaspaceExpansion = align_down_bounded(MaxMetaspaceExpansion, _commit_alignment);
+
+  CompressedClassSpaceSize = align_down_bounded(CompressedClassSpaceSize, _reserve_alignment);
+  set_compressed_class_space_size(CompressedClassSpaceSize);
+}
+
+void Metaspace::global_initialize() {
+  MetaspaceGC::initialize();
+
+#if INCLUDE_CDS
+  if (DumpSharedSpaces) {
+    MetaspaceShared::initialize_shared_rs();
+  } else if (UseSharedSpaces) {
+    // If using shared space, open the file that contains the shared space
+    // and map in the memory before initializing the rest of metaspace (so
+    // the addresses don't conflict)
+    address cds_address = NULL;
+    FileMapInfo* mapinfo = new FileMapInfo();
+
+    // Open the shared archive file, read and validate the header. If
+    // initialization fails, shared spaces [UseSharedSpaces] are
+    // disabled and the file is closed.
+    // Map in spaces now also
+    if (mapinfo->initialize() && MetaspaceShared::map_shared_spaces(mapinfo)) {
+      size_t cds_total = MetaspaceShared::core_spaces_size();
+      cds_address = (address)mapinfo->header()->region_addr(0);
+#ifdef _LP64
+      if (using_class_space()) {
+        char* cds_end = (char*)(cds_address + cds_total);
+        cds_end = (char *)align_up(cds_end, _reserve_alignment);
+        // If UseCompressedClassPointers is set then allocate the metaspace area
+        // above the heap and above the CDS area (if it exists).
+        allocate_metaspace_compressed_klass_ptrs(cds_end, cds_address);
+        // map_heap_regions() compares the current narrow oop and klass encodings
+        // with the archived ones, so it must be done after all encodings are determined.
+        mapinfo->map_heap_regions();
+      }
+#endif // _LP64
+    } else {
+      assert(!mapinfo->is_open() && !UseSharedSpaces,
+             "archive file not closed or shared spaces not disabled.");
+    }
+  }
+#endif // INCLUDE_CDS
+
+#ifdef _LP64
+  if (!UseSharedSpaces && using_class_space()) {
+    if (DumpSharedSpaces) {
+      // Already initialized inside MetaspaceShared::initialize_shared_rs()
+    } else {
+      char* base = (char*)align_up(Universe::heap()->reserved_region().end(), _reserve_alignment);
+      allocate_metaspace_compressed_klass_ptrs(base, 0);
+    }
+  }
+#endif // _LP64
+
+  // Initialize these before initializing the VirtualSpaceList
+  _first_chunk_word_size = InitialBootClassLoaderMetaspaceSize / BytesPerWord;
+  _first_chunk_word_size = align_word_size_up(_first_chunk_word_size);
+  // Make the first class chunk bigger than a medium chunk so it's not put
+  // on the medium chunk list.   The next chunk will be small and progress
+  // from there.  This size calculated by -version.
+  _first_class_chunk_word_size = MIN2((size_t)MediumChunk*6,
+                                     (CompressedClassSpaceSize/BytesPerWord)*2);
+  _first_class_chunk_word_size = align_word_size_up(_first_class_chunk_word_size);
+  // Arbitrarily set the initial virtual space to a multiple
+  // of the boot class loader size.
+  size_t word_size = VIRTUALSPACEMULTIPLIER * _first_chunk_word_size;
+  word_size = align_up(word_size, Metaspace::reserve_alignment_words());
+
+  // Initialize the list of virtual spaces.
+  _space_list = new VirtualSpaceList(word_size);
+  _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
+
+  if (!_space_list->initialization_succeeded()) {
+    vm_exit_during_initialization("Unable to setup metadata virtual space list.", NULL);
+  }
+
+  _tracer = new MetaspaceTracer();
+}
+
+void Metaspace::post_initialize() {
+  MetaspaceGC::post_initialize();
+}
+
+void Metaspace::initialize_first_chunk(MetaspaceType type, MetadataType mdtype) {
+  Metachunk* chunk = get_initialization_chunk(type, mdtype);
+  if (chunk != NULL) {
+    // Add to this manager's list of chunks in use and current_chunk().
+    get_space_manager(mdtype)->add_chunk(chunk, true);
+  }
+}
+
+Metachunk* Metaspace::get_initialization_chunk(MetaspaceType type, MetadataType mdtype) {
+  size_t chunk_word_size = get_space_manager(mdtype)->get_initial_chunk_size(type);
+
+  // Get a chunk from the chunk freelist
+  Metachunk* chunk = get_chunk_manager(mdtype)->chunk_freelist_allocate(chunk_word_size);
+
+  if (chunk == NULL) {
+    chunk = get_space_list(mdtype)->get_new_chunk(chunk_word_size,
+                                                  get_space_manager(mdtype)->medium_chunk_bunch());
+  }
+
+  return chunk;
+}
+
+void Metaspace::verify_global_initialization() {
+  assert(space_list() != NULL, "Metadata VirtualSpaceList has not been initialized");
+  assert(chunk_manager_metadata() != NULL, "Metadata ChunkManager has not been initialized");
+
+  if (using_class_space()) {
+    assert(class_space_list() != NULL, "Class VirtualSpaceList has not been initialized");
+    assert(chunk_manager_class() != NULL, "Class ChunkManager has not been initialized");
+  }
+}
+
+void Metaspace::initialize(Mutex* lock, MetaspaceType type) {
+  verify_global_initialization();
+
+  // Allocate SpaceManager for metadata objects.
+  _vsm = new SpaceManager(NonClassType, lock);
+
+  if (using_class_space()) {
+    // Allocate SpaceManager for classes.
+    _class_vsm = new SpaceManager(ClassType, lock);
+  }
+
+  MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
+
+  // Allocate chunk for metadata objects
+  initialize_first_chunk(type, NonClassType);
+
+  // Allocate chunk for class metadata objects
+  if (using_class_space()) {
+    initialize_first_chunk(type, ClassType);
+  }
+}
+
+size_t Metaspace::align_word_size_up(size_t word_size) {
+  size_t byte_size = word_size * wordSize;
+  return ReservedSpace::allocation_align_size_up(byte_size) / wordSize;
+}
+
+MetaWord* Metaspace::allocate(size_t word_size, MetadataType mdtype) {
+  assert(!_frozen, "sanity");
+  // Don't use class_vsm() unless UseCompressedClassPointers is true.
+  if (is_class_space_allocation(mdtype)) {
+    return  class_vsm()->allocate(word_size);
+  } else {
+    return  vsm()->allocate(word_size);
+  }
+}
+
+MetaWord* Metaspace::expand_and_allocate(size_t word_size, MetadataType mdtype) {
+  assert(!_frozen, "sanity");
+  size_t delta_bytes = MetaspaceGC::delta_capacity_until_GC(word_size * BytesPerWord);
+  assert(delta_bytes > 0, "Must be");
+
+  size_t before = 0;
+  size_t after = 0;
+  MetaWord* res;
+  bool incremented;
+
+  // Each thread increments the HWM at most once. Even if the thread fails to increment
+  // the HWM, an allocation is still attempted. This is because another thread must then
+  // have incremented the HWM and therefore the allocation might still succeed.
+  do {
+    incremented = MetaspaceGC::inc_capacity_until_GC(delta_bytes, &after, &before);
+    res = allocate(word_size, mdtype);
+  } while (!incremented && res == NULL);
+
+  if (incremented) {
+    tracer()->report_gc_threshold(before, after,
+                                  MetaspaceGCThresholdUpdater::ExpandAndAllocate);
+    log_trace(gc, metaspace)("Increase capacity to GC from " SIZE_FORMAT " to " SIZE_FORMAT, before, after);
+  }
+
+  return res;
+}
+
+size_t Metaspace::used_words_slow(MetadataType mdtype) const {
+  if (mdtype == ClassType) {
+    return using_class_space() ? class_vsm()->sum_used_in_chunks_in_use() : 0;
+  } else {
+    return vsm()->sum_used_in_chunks_in_use();  // includes overhead!
+  }
+}
+
+size_t Metaspace::free_words_slow(MetadataType mdtype) const {
+  assert(!_frozen, "sanity");
+  if (mdtype == ClassType) {
+    return using_class_space() ? class_vsm()->sum_free_in_chunks_in_use() : 0;
+  } else {
+    return vsm()->sum_free_in_chunks_in_use();
+  }
+}
+
+// Space capacity in the Metaspace.  It includes
+// space in the list of chunks from which allocations
+// have been made. Don't include space in the global freelist and
+// in the space available in the dictionary which
+// is already counted in some chunk.
+size_t Metaspace::capacity_words_slow(MetadataType mdtype) const {
+  if (mdtype == ClassType) {
+    return using_class_space() ? class_vsm()->sum_capacity_in_chunks_in_use() : 0;
+  } else {
+    return vsm()->sum_capacity_in_chunks_in_use();
+  }
+}
+
+size_t Metaspace::used_bytes_slow(MetadataType mdtype) const {
+  return used_words_slow(mdtype) * BytesPerWord;
+}
+
+size_t Metaspace::capacity_bytes_slow(MetadataType mdtype) const {
+  return capacity_words_slow(mdtype) * BytesPerWord;
+}
+
+size_t Metaspace::allocated_blocks_bytes() const {
+  return vsm()->allocated_blocks_bytes() +
+      (using_class_space() ? class_vsm()->allocated_blocks_bytes() : 0);
+}
+
+size_t Metaspace::allocated_chunks_bytes() const {
+  return vsm()->allocated_chunks_bytes() +
+      (using_class_space() ? class_vsm()->allocated_chunks_bytes() : 0);
+}
+
+void Metaspace::deallocate(MetaWord* ptr, size_t word_size, bool is_class) {
+  assert(!_frozen, "sanity");
+  assert(!SafepointSynchronize::is_at_safepoint()
+         || Thread::current()->is_VM_thread(), "should be the VM thread");
+
+  MutexLockerEx ml(vsm()->lock(), Mutex::_no_safepoint_check_flag);
+
+  if (is_class && using_class_space()) {
+    class_vsm()->deallocate(ptr, word_size);
+  } else {
+    vsm()->deallocate(ptr, word_size);
+  }
+}
+
+MetaWord* Metaspace::allocate(ClassLoaderData* loader_data, size_t word_size,
+                              MetaspaceObj::Type type, TRAPS) {
+  assert(!_frozen, "sanity");
+  if (HAS_PENDING_EXCEPTION) {
+    assert(false, "Should not allocate with exception pending");
+    return NULL;  // caller does a CHECK_NULL too
+  }
+
+  assert(loader_data != NULL, "Should never pass around a NULL loader_data. "
+        "ClassLoaderData::the_null_class_loader_data() should have been used.");
+
+  MetadataType mdtype = (type == MetaspaceObj::ClassType) ? ClassType : NonClassType;
+
+  // Try to allocate metadata.
+  MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
+
+  if (result == NULL) {
+    tracer()->report_metaspace_allocation_failure(loader_data, word_size, type, mdtype);
+
+    // Allocation failed.
+    if (is_init_completed()) {
+      // Only start a GC if the bootstrapping has completed.
+
+      // Try to clean out some memory and retry.
+      result = Universe::heap()->collector_policy()->satisfy_failed_metadata_allocation(
+          loader_data, word_size, mdtype);
+    }
+  }
+
+  if (result == NULL) {
+    SpaceManager* sm;
+    if (is_class_space_allocation(mdtype)) {
+      sm = loader_data->metaspace_non_null()->class_vsm();
+    } else {
+      sm = loader_data->metaspace_non_null()->vsm();
+    }
+
+    result = sm->get_small_chunk_and_allocate(word_size);
+
+    if (result == NULL) {
+      report_metadata_oome(loader_data, word_size, type, mdtype, CHECK_NULL);
+    }
+  }
+
+  // Zero initialize.
+  Copy::fill_to_words((HeapWord*)result, word_size, 0);
+
+  return result;
+}
+
+size_t Metaspace::class_chunk_size(size_t word_size) {
+  assert(using_class_space(), "Has to use class space");
+  return class_vsm()->calc_chunk_size(word_size);
+}
+
+void Metaspace::report_metadata_oome(ClassLoaderData* loader_data, size_t word_size, MetaspaceObj::Type type, MetadataType mdtype, TRAPS) {
+  tracer()->report_metadata_oom(loader_data, word_size, type, mdtype);
+
+  // If result is still null, we are out of memory.
+  Log(gc, metaspace, freelist) log;
+  if (log.is_info()) {
+    log.info("Metaspace (%s) allocation failed for size " SIZE_FORMAT,
+             is_class_space_allocation(mdtype) ? "class" : "data", word_size);
+    ResourceMark rm;
+    if (log.is_debug()) {
+      if (loader_data->metaspace_or_null() != NULL) {
+        LogStream ls(log.debug());
+        loader_data->dump(&ls);
+      }
+    }
+    LogStream ls(log.info());
+    MetaspaceAux::dump(&ls);
+    ChunkManager::print_all_chunkmanagers(&ls);
+  }
+
+  bool out_of_compressed_class_space = false;
+  if (is_class_space_allocation(mdtype)) {
+    Metaspace* metaspace = loader_data->metaspace_non_null();
+    out_of_compressed_class_space =
+      MetaspaceAux::committed_bytes(Metaspace::ClassType) +
+      (metaspace->class_chunk_size(word_size) * BytesPerWord) >
+      CompressedClassSpaceSize;
+  }
+
+  // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support
+  const char* space_string = out_of_compressed_class_space ?
+    "Compressed class space" : "Metaspace";
+
+  report_java_out_of_memory(space_string);
+
+  if (JvmtiExport::should_post_resource_exhausted()) {
+    JvmtiExport::post_resource_exhausted(
+        JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR,
+        space_string);
+  }
+
+  if (!is_init_completed()) {
+    vm_exit_during_initialization("OutOfMemoryError", space_string);
+  }
+
+  if (out_of_compressed_class_space) {
+    THROW_OOP(Universe::out_of_memory_error_class_metaspace());
+  } else {
+    THROW_OOP(Universe::out_of_memory_error_metaspace());
+  }
+}
+
+const char* Metaspace::metadata_type_name(Metaspace::MetadataType mdtype) {
+  switch (mdtype) {
+    case Metaspace::ClassType: return "Class";
+    case Metaspace::NonClassType: return "Metadata";
+    default:
+      assert(false, "Got bad mdtype: %d", (int) mdtype);
+      return NULL;
+  }
+}
+
+void Metaspace::purge(MetadataType mdtype) {
+  get_space_list(mdtype)->purge(get_chunk_manager(mdtype));
+}
+
+void Metaspace::purge() {
+  MutexLockerEx cl(SpaceManager::expand_lock(),
+                   Mutex::_no_safepoint_check_flag);
+  purge(NonClassType);
+  if (using_class_space()) {
+    purge(ClassType);
+  }
+}
+
+void Metaspace::print_on(outputStream* out) const {
+  // Print both class virtual space counts and metaspace.
+  if (Verbose) {
+    vsm()->print_on(out);
+    if (using_class_space()) {
+      class_vsm()->print_on(out);
+    }
+  }
+}
+
+bool Metaspace::contains(const void* ptr) {
+  if (UseSharedSpaces && MetaspaceShared::is_in_shared_space(ptr)) {
+    return true;
+  }
+  return contains_non_shared(ptr);
+}
+
+bool Metaspace::contains_non_shared(const void* ptr) {
+  if (using_class_space() && get_space_list(ClassType)->contains(ptr)) {
+     return true;
+  }
+
+  return get_space_list(NonClassType)->contains(ptr);
+}
+
+void Metaspace::verify() {
+  vsm()->verify();
+  if (using_class_space()) {
+    class_vsm()->verify();
+  }
+}
+
+void Metaspace::dump(outputStream* const out) const {
+  out->print_cr("\nVirtual space manager: " INTPTR_FORMAT, p2i(vsm()));
+  vsm()->dump(out);
+  if (using_class_space()) {
+    out->print_cr("\nClass space manager: " INTPTR_FORMAT, p2i(class_vsm()));
+    class_vsm()->dump(out);
+  }
+}
+
+/////////////// Unit tests ///////////////
+
+#ifndef PRODUCT
+
+class TestMetaspaceAuxTest : AllStatic {
+ public:
+  static void test_reserved() {
+    size_t reserved = MetaspaceAux::reserved_bytes();
+
+    assert(reserved > 0, "assert");
+
+    size_t committed  = MetaspaceAux::committed_bytes();
+    assert(committed <= reserved, "assert");
+
+    size_t reserved_metadata = MetaspaceAux::reserved_bytes(Metaspace::NonClassType);
+    assert(reserved_metadata > 0, "assert");
+    assert(reserved_metadata <= reserved, "assert");
+
+    if (UseCompressedClassPointers) {
+      size_t reserved_class    = MetaspaceAux::reserved_bytes(Metaspace::ClassType);
+      assert(reserved_class > 0, "assert");
+      assert(reserved_class < reserved, "assert");
+    }
+  }
+
+  static void test_committed() {
+    size_t committed = MetaspaceAux::committed_bytes();
+
+    assert(committed > 0, "assert");
+
+    size_t reserved  = MetaspaceAux::reserved_bytes();
+    assert(committed <= reserved, "assert");
+
+    size_t committed_metadata = MetaspaceAux::committed_bytes(Metaspace::NonClassType);
+    assert(committed_metadata > 0, "assert");
+    assert(committed_metadata <= committed, "assert");
+
+    if (UseCompressedClassPointers) {
+      size_t committed_class    = MetaspaceAux::committed_bytes(Metaspace::ClassType);
+      assert(committed_class > 0, "assert");
+      assert(committed_class < committed, "assert");
+    }
+  }
+
+  static void test_virtual_space_list_large_chunk() {
+    VirtualSpaceList* vs_list = new VirtualSpaceList(os::vm_allocation_granularity());
+    MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
+    // A size larger than VirtualSpaceSize (256k) and add one page to make it _not_ be
+    // vm_allocation_granularity aligned on Windows.
+    size_t large_size = (size_t)(2*256*K + (os::vm_page_size()/BytesPerWord));
+    large_size += (os::vm_page_size()/BytesPerWord);
+    vs_list->get_new_chunk(large_size, 0);
+  }
+
+  static void test() {
+    test_reserved();
+    test_committed();
+    test_virtual_space_list_large_chunk();
+  }
+};
+
+void TestMetaspaceAux_test() {
+  TestMetaspaceAuxTest::test();
+}
+
+class TestVirtualSpaceNodeTest {
+  static void chunk_up(size_t words_left, size_t& num_medium_chunks,
+                                          size_t& num_small_chunks,
+                                          size_t& num_specialized_chunks) {
+    num_medium_chunks = words_left / MediumChunk;
+    words_left = words_left % MediumChunk;
+
+    num_small_chunks = words_left / SmallChunk;
+    words_left = words_left % SmallChunk;
+    // how many specialized chunks can we get?
+    num_specialized_chunks = words_left / SpecializedChunk;
+    assert(words_left % SpecializedChunk == 0, "should be nothing left");
+  }
+
+ public:
+  static void test() {
+    MutexLockerEx ml(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
+    const size_t vsn_test_size_words = MediumChunk  * 4;
+    const size_t vsn_test_size_bytes = vsn_test_size_words * BytesPerWord;
+
+    // The chunk sizes must be multiples of eachother, or this will fail
+    STATIC_ASSERT(MediumChunk % SmallChunk == 0);
+    STATIC_ASSERT(SmallChunk % SpecializedChunk == 0);
+
+    { // No committed memory in VSN
+      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
+      VirtualSpaceNode vsn(vsn_test_size_bytes);
+      vsn.initialize();
+      vsn.retire(&cm);
+      assert(cm.sum_free_chunks_count() == 0, "did not commit any memory in the VSN");
+    }
+
+    { // All of VSN is committed, half is used by chunks
+      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
+      VirtualSpaceNode vsn(vsn_test_size_bytes);
+      vsn.initialize();
+      vsn.expand_by(vsn_test_size_words, vsn_test_size_words);
+      vsn.get_chunk_vs(MediumChunk);
+      vsn.get_chunk_vs(MediumChunk);
+      vsn.retire(&cm);
+      assert(cm.sum_free_chunks_count() == 2, "should have been memory left for 2 medium chunks");
+      assert(cm.sum_free_chunks() == 2*MediumChunk, "sizes should add up");
+    }
+
+    const size_t page_chunks = 4 * (size_t)os::vm_page_size() / BytesPerWord;
+    // This doesn't work for systems with vm_page_size >= 16K.
+    if (page_chunks < MediumChunk) {
+      // 4 pages of VSN is committed, some is used by chunks
+      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
+      VirtualSpaceNode vsn(vsn_test_size_bytes);
+
+      vsn.initialize();
+      vsn.expand_by(page_chunks, page_chunks);
+      vsn.get_chunk_vs(SmallChunk);
+      vsn.get_chunk_vs(SpecializedChunk);
+      vsn.retire(&cm);
+
+      // committed - used = words left to retire
+      const size_t words_left = page_chunks - SmallChunk - SpecializedChunk;
+
+      size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
+      chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);
+
+      assert(num_medium_chunks == 0, "should not get any medium chunks");
+      assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
+      assert(cm.sum_free_chunks() == words_left, "sizes should add up");
+    }
+
+    { // Half of VSN is committed, a humongous chunk is used
+      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
+      VirtualSpaceNode vsn(vsn_test_size_bytes);
+      vsn.initialize();
+      vsn.expand_by(MediumChunk * 2, MediumChunk * 2);
+      vsn.get_chunk_vs(MediumChunk + SpecializedChunk); // Humongous chunks will be aligned up to MediumChunk + SpecializedChunk
+      vsn.retire(&cm);
+
+      const size_t words_left = MediumChunk * 2 - (MediumChunk + SpecializedChunk);
+      size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
+      chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);
+
+      assert(num_medium_chunks == 0, "should not get any medium chunks");
+      assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
+      assert(cm.sum_free_chunks() == words_left, "sizes should add up");
+    }
+
+  }
+
+#define assert_is_available_positive(word_size) \
+  assert(vsn.is_available(word_size), \
+         #word_size ": " PTR_FORMAT " bytes were not available in " \
+         "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
+         (uintptr_t)(word_size * BytesPerWord), p2i(vsn.bottom()), p2i(vsn.end()));
+
+#define assert_is_available_negative(word_size) \
+  assert(!vsn.is_available(word_size), \
+         #word_size ": " PTR_FORMAT " bytes should not be available in " \
+         "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
+         (uintptr_t)(word_size * BytesPerWord), p2i(vsn.bottom()), p2i(vsn.end()));
+
+  static void test_is_available_positive() {
+    // Reserve some memory.
+    VirtualSpaceNode vsn(os::vm_allocation_granularity());
+    assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
+
+    // Commit some memory.
+    size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
+    bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
+    assert(expanded, "Failed to commit");
+
+    // Check that is_available accepts the committed size.
+    assert_is_available_positive(commit_word_size);
+
+    // Check that is_available accepts half the committed size.
+    size_t expand_word_size = commit_word_size / 2;
+    assert_is_available_positive(expand_word_size);
+  }
+
+  static void test_is_available_negative() {
+    // Reserve some memory.
+    VirtualSpaceNode vsn(os::vm_allocation_granularity());
+    assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
+
+    // Commit some memory.
+    size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
+    bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
+    assert(expanded, "Failed to commit");
+
+    // Check that is_available doesn't accept a too large size.
+    size_t two_times_commit_word_size = commit_word_size * 2;
+    assert_is_available_negative(two_times_commit_word_size);
+  }
+
+  static void test_is_available_overflow() {
+    // Reserve some memory.
+    VirtualSpaceNode vsn(os::vm_allocation_granularity());
+    assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
+
+    // Commit some memory.
+    size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
+    bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
+    assert(expanded, "Failed to commit");
+
+    // Calculate a size that will overflow the virtual space size.
+    void* virtual_space_max = (void*)(uintptr_t)-1;
+    size_t bottom_to_max = pointer_delta(virtual_space_max, vsn.bottom(), 1);
+    size_t overflow_size = bottom_to_max + BytesPerWord;
+    size_t overflow_word_size = overflow_size / BytesPerWord;
+
+    // Check that is_available can handle the overflow.
+    assert_is_available_negative(overflow_word_size);
+  }
+
+  static void test_is_available() {
+    TestVirtualSpaceNodeTest::test_is_available_positive();
+    TestVirtualSpaceNodeTest::test_is_available_negative();
+    TestVirtualSpaceNodeTest::test_is_available_overflow();
+  }
+};
+
+void TestVirtualSpaceNode_test() {
+  TestVirtualSpaceNodeTest::test();
+  TestVirtualSpaceNodeTest::test_is_available();
+}
+
+// The following test is placed here instead of a gtest / unittest file
+// because the ChunkManager class is only available in this file.
+void ChunkManager_test_list_index() {
+  ChunkManager manager(ClassSpecializedChunk, ClassSmallChunk, ClassMediumChunk);
+
+  // Test previous bug where a query for a humongous class metachunk,
+  // incorrectly matched the non-class medium metachunk size.
+  {
+    assert(MediumChunk > ClassMediumChunk, "Precondition for test");
+
+    ChunkIndex index = manager.list_index(MediumChunk);
+
+    assert(index == HumongousIndex,
+           "Requested size is larger than ClassMediumChunk,"
+           " so should return HumongousIndex. Got index: %d", (int)index);
+  }
+
+  // Check the specified sizes as well.
+  {
+    ChunkIndex index = manager.list_index(ClassSpecializedChunk);
+    assert(index == SpecializedIndex, "Wrong index returned. Got index: %d", (int)index);
+  }
+  {
+    ChunkIndex index = manager.list_index(ClassSmallChunk);
+    assert(index == SmallIndex, "Wrong index returned. Got index: %d", (int)index);
+  }
+  {
+    ChunkIndex index = manager.list_index(ClassMediumChunk);
+    assert(index == MediumIndex, "Wrong index returned. Got index: %d", (int)index);
+  }
+  {
+    ChunkIndex index = manager.list_index(ClassMediumChunk + 1);
+    assert(index == HumongousIndex, "Wrong index returned. Got index: %d", (int)index);
+  }
+}
+
+#endif // !PRODUCT
+
+#ifdef ASSERT
+
+// ChunkManagerReturnTest stresses taking/returning chunks from the ChunkManager. It takes and
+// returns chunks from/to the ChunkManager while keeping track of the expected ChunkManager
+// content.
+class ChunkManagerReturnTestImpl {
+
+  VirtualSpaceNode _vsn;
+  ChunkManager _cm;
+
+  // The expected content of the chunk manager.
+  unsigned _chunks_in_chunkmanager;
+  size_t _words_in_chunkmanager;
+
+  // A fixed size pool of chunks. Chunks may be in the chunk manager (free) or not (in use).
+  static const int num_chunks = 256;
+  Metachunk* _pool[num_chunks];
+
+  // Helper, return a random position into the chunk pool.
+  static int get_random_position() {
+    return os::random() % num_chunks;
+  }
+
+  // Asserts that ChunkManager counters match expectations.
+  void assert_counters() {
+    assert(_vsn.container_count() == num_chunks - _chunks_in_chunkmanager, "vsn counter mismatch.");
+    assert(_cm.free_chunks_count() == _chunks_in_chunkmanager, "cm counter mismatch.");
+    assert(_cm.free_chunks_total_words() == _words_in_chunkmanager, "cm counter mismatch.");
+  }
+
+  // Get a random chunk size. Equal chance to get spec/med/small chunk size or
+  // a humongous chunk size. The latter itself is random in the range of [med+spec..4*med).
+  size_t get_random_chunk_size() {
+    const size_t sizes [] = { SpecializedChunk, SmallChunk, MediumChunk };
+    const int rand = os::random() % 4;
+    if (rand < 3) {
+      return sizes[rand];
+    } else {
+      // Note: this affects the max. size of space (see _vsn initialization in ctor).
+      return align_up(MediumChunk + 1 + (os::random() % (MediumChunk * 4)), SpecializedChunk);
+    }
+  }
+
+  // Starting at pool index <start>+1, find the next chunk tagged as either free or in use, depending
+  // on <is_free>. Search wraps. Returns its position, or -1 if no matching chunk was found.
+  int next_matching_chunk(int start, bool is_free) const {
+    assert(start >= 0 && start < num_chunks, "invalid parameter");
+    int pos = start;
+    do {
+      if (++pos == num_chunks) {
+        pos = 0;
+      }
+      if (_pool[pos]->is_tagged_free() == is_free) {
+        return pos;
+      }
+    } while (pos != start);
+    return -1;
+  }
+
+  // A structure to keep information about a chunk list including which
+  // chunks are part of this list. This is needed to keep information about a chunk list
+  // we will to return to the ChunkManager, because the original list will be destroyed.
+  struct AChunkList {
+    Metachunk* head;
+    Metachunk* all[num_chunks];
+    size_t size;
+    int num;
+    ChunkIndex index;
+  };
+
+  // Assemble, from the in-use chunks (not in the chunk manager) in the pool,
+  // a random chunk list of max. length <list_size> of chunks with the same
+  // ChunkIndex (chunk size).
+  // Returns false if list cannot be assembled. List is returned in the <out>
+  // structure. Returned list may be smaller than <list_size>.
+  bool assemble_random_chunklist(AChunkList* out, int list_size) {
+    // Choose a random in-use chunk from the pool...
+    const int headpos = next_matching_chunk(get_random_position(), false);
+    if (headpos == -1) {
+      return false;
+    }
+    Metachunk* const head = _pool[headpos];
+    out->all[0] = head;
+    assert(head->is_tagged_free() == false, "Chunk state mismatch");
+    // ..then go from there, chain it up with up to list_size - 1 number of other
+    // in-use chunks of the same index.
+    const ChunkIndex index = _cm.list_index(head->word_size());
+    int num_added = 1;
+    size_t size_added = head->word_size();
+    int pos = headpos;
+    Metachunk* tail = head;
+    do {
+      pos = next_matching_chunk(pos, false);
+      if (pos != headpos) {
+        Metachunk* c = _pool[pos];
+        assert(c->is_tagged_free() == false, "Chunk state mismatch");
+        if (index == _cm.list_index(c->word_size())) {
+          tail->set_next(c);
+          c->set_prev(tail);
+          tail = c;
+          out->all[num_added] = c;
+          num_added ++;
+          size_added += c->word_size();
+        }
+      }
+    } while (num_added < list_size && pos != headpos);
+    out->head = head;
+    out->index = index;
+    out->size = size_added;
+    out->num = num_added;
+    return true;
+  }
+
+  // Take a single random chunk from the ChunkManager.
+  bool take_single_random_chunk_from_chunkmanager() {
+    assert_counters();
+    _cm.locked_verify();
+    int pos = next_matching_chunk(get_random_position(), true);
+    if (pos == -1) {
+      return false;
+    }
+    Metachunk* c = _pool[pos];
+    assert(c->is_tagged_free(), "Chunk state mismatch");
+    // Note: instead of using ChunkManager::remove_chunk on this one chunk, we call
+    // ChunkManager::free_chunks_get() with this chunk's word size. We really want
+    // to exercise ChunkManager::free_chunks_get() because that one gets called for
+    // normal chunk allocation.
+    Metachunk* c2 = _cm.free_chunks_get(c->word_size());
+    assert(c2 != NULL, "Unexpected.");
+    assert(!c2->is_tagged_free(), "Chunk state mismatch");
+    assert(c2->next() == NULL && c2->prev() == NULL, "Chunk should be outside of a list.");
+    _chunks_in_chunkmanager --;
+    _words_in_chunkmanager -= c->word_size();
+    assert_counters();
+    _cm.locked_verify();
+    return true;
+  }
+
+  // Returns a single random chunk to the chunk manager. Returns false if that
+  // was not possible (all chunks are already in the chunk manager).
+  bool return_single_random_chunk_to_chunkmanager() {
+    assert_counters();
+    _cm.locked_verify();
+    int pos = next_matching_chunk(get_random_position(), false);
+    if (pos == -1) {
+      return false;
+    }
+    Metachunk* c = _pool[pos];
+    assert(c->is_tagged_free() == false, "wrong chunk information");
+    _cm.return_single_chunk(_cm.list_index(c->word_size()), c);
+    _chunks_in_chunkmanager ++;
+    _words_in_chunkmanager += c->word_size();
+    assert(c->is_tagged_free() == true, "wrong chunk information");
+    assert_counters();
+    _cm.locked_verify();
+    return true;
+  }
+
+  // Return a random chunk list to the chunk manager. Returns the length of the
+  // returned list.
+  int return_random_chunk_list_to_chunkmanager(int list_size) {
+    assert_counters();
+    _cm.locked_verify();
+    AChunkList aChunkList;
+    if (!assemble_random_chunklist(&aChunkList, list_size)) {
+      return 0;
+    }
+    // Before returning chunks are returned, they should be tagged in use.
+    for (int i = 0; i < aChunkList.num; i ++) {
+      assert(!aChunkList.all[i]->is_tagged_free(), "chunk state mismatch.");
+    }
+    _cm.return_chunk_list(aChunkList.index, aChunkList.head);
+    _chunks_in_chunkmanager += aChunkList.num;
+    _words_in_chunkmanager += aChunkList.size;
+    // After all chunks are returned, check that they are now tagged free.
+    for (int i = 0; i < aChunkList.num; i ++) {
+      assert(aChunkList.all[i]->is_tagged_free(), "chunk state mismatch.");
+    }
+    assert_counters();
+    _cm.locked_verify();
+    return aChunkList.num;
+  }
+
+public:
+
+  ChunkManagerReturnTestImpl()
+    : _vsn(align_up(MediumChunk * num_chunks * 5 * sizeof(MetaWord), Metaspace::reserve_alignment()))
+    , _cm(SpecializedChunk, SmallChunk, MediumChunk)
+    , _chunks_in_chunkmanager(0)
+    , _words_in_chunkmanager(0)
+  {
+    MutexLockerEx ml(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
+    // Allocate virtual space and allocate random chunks. Keep these chunks in the _pool. These chunks are
+    // "in use", because not yet added to any chunk manager.
+    _vsn.initialize();
+    _vsn.expand_by(_vsn.reserved_words(), _vsn.reserved_words());
+    for (int i = 0; i < num_chunks; i ++) {
+      const size_t size = get_random_chunk_size();
+      _pool[i] = _vsn.get_chunk_vs(size);
+      assert(_pool[i] != NULL, "allocation failed");
+    }
+    assert_counters();
+    _cm.locked_verify();
+  }
+
+  // Test entry point.
+  // Return some chunks to the chunk manager (return phase). Take some chunks out (take phase). Repeat.
+  // Chunks are choosen randomly. Number of chunks to return or taken are choosen randomly, but affected
+  // by the <phase_length_factor> argument: a factor of 0.0 will cause the test to quickly alternate between
+  // returning and taking, whereas a factor of 1.0 will take/return all chunks from/to the
+  // chunks manager, thereby emptying or filling it completely.
+  void do_test(float phase_length_factor) {
+    MutexLockerEx ml(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
+    assert_counters();
+    // Execute n operations, and operation being the move of a single chunk to/from the chunk manager.
+    const int num_max_ops = num_chunks * 100;
+    int num_ops = num_max_ops;
+    const int average_phase_length = (int)(phase_length_factor * num_chunks);
+    int num_ops_until_switch = MAX2(1, (average_phase_length + os::random() % 8 - 4));
+    bool return_phase = true;
+    while (num_ops > 0) {
+      int chunks_moved = 0;
+      if (return_phase) {
+        // Randomly switch between returning a single chunk or a random length chunk list.
+        if (os::random() % 2 == 0) {
+          if (return_single_random_chunk_to_chunkmanager()) {
+            chunks_moved = 1;
+          }
+        } else {
+          const int list_length = MAX2(1, (os::random() % num_ops_until_switch));
+          chunks_moved = return_random_chunk_list_to_chunkmanager(list_length);
+        }
+      } else {
+        // Breath out.
+        if (take_single_random_chunk_from_chunkmanager()) {
+          chunks_moved = 1;
+        }
+      }
+      num_ops -= chunks_moved;
+      num_ops_until_switch -= chunks_moved;
+      if (chunks_moved == 0 || num_ops_until_switch <= 0) {
+        return_phase = !return_phase;
+        num_ops_until_switch = MAX2(1, (average_phase_length + os::random() % 8 - 4));
+      }
+    }
+  }
+};
+
+void* setup_chunkmanager_returntests() {
+  ChunkManagerReturnTestImpl* p = new ChunkManagerReturnTestImpl();
+  return p;
+}
+
+void teardown_chunkmanager_returntests(void* p) {
+  delete (ChunkManagerReturnTestImpl*) p;
+}
+
+void run_chunkmanager_returntests(void* p, float phase_length) {
+  ChunkManagerReturnTestImpl* test = (ChunkManagerReturnTestImpl*) p;
+  test->do_test(phase_length);
+}
+
+// The following test is placed here instead of a gtest / unittest file
+// because the ChunkManager class is only available in this file.
+class SpaceManagerTest : AllStatic {
+  friend void SpaceManager_test_adjust_initial_chunk_size();
+
+  static void test_adjust_initial_chunk_size(bool is_class) {
+    const size_t smallest = SpaceManager::smallest_chunk_size(is_class);
+    const size_t normal   = SpaceManager::small_chunk_size(is_class);
+    const size_t medium   = SpaceManager::medium_chunk_size(is_class);
+
+#define test_adjust_initial_chunk_size(value, expected, is_class_value)          \
+    do {                                                                         \
+      size_t v = value;                                                          \
+      size_t e = expected;                                                       \
+      assert(SpaceManager::adjust_initial_chunk_size(v, (is_class_value)) == e,  \
+             "Expected: " SIZE_FORMAT " got: " SIZE_FORMAT, e, v);               \
+    } while (0)
+
+    // Smallest (specialized)
+    test_adjust_initial_chunk_size(1,            smallest, is_class);
+    test_adjust_initial_chunk_size(smallest - 1, smallest, is_class);
+    test_adjust_initial_chunk_size(smallest,     smallest, is_class);
+
+    // Small
+    test_adjust_initial_chunk_size(smallest + 1, normal, is_class);
+    test_adjust_initial_chunk_size(normal - 1,   normal, is_class);
+    test_adjust_initial_chunk_size(normal,       normal, is_class);
+
+    // Medium
+    test_adjust_initial_chunk_size(normal + 1, medium, is_class);
+    test_adjust_initial_chunk_size(medium - 1, medium, is_class);
+    test_adjust_initial_chunk_size(medium,     medium, is_class);
+
+    // Humongous
+    test_adjust_initial_chunk_size(medium + 1, medium + 1, is_class);
+
+#undef test_adjust_initial_chunk_size
+  }
+
+  static void test_adjust_initial_chunk_size() {
+    test_adjust_initial_chunk_size(false);
+    test_adjust_initial_chunk_size(true);
+  }
+};
+
+void SpaceManager_test_adjust_initial_chunk_size() {
+  SpaceManagerTest::test_adjust_initial_chunk_size();
+}
+
+#endif // ASSERT