--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/memory/heapInspection.cpp Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,784 @@
+/*
+ * Copyright (c) 2002, 2016, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "classfile/classLoaderData.hpp"
+#include "classfile/moduleEntry.hpp"
+#include "classfile/systemDictionary.hpp"
+#include "gc/shared/collectedHeap.hpp"
+#include "gc/shared/genCollectedHeap.hpp"
+#include "memory/heapInspection.hpp"
+#include "memory/resourceArea.hpp"
+#include "oops/oop.inline.hpp"
+#include "runtime/os.hpp"
+#include "utilities/globalDefinitions.hpp"
+#include "utilities/macros.hpp"
+#include "utilities/stack.inline.hpp"
+#if INCLUDE_ALL_GCS
+#include "gc/parallel/parallelScavengeHeap.hpp"
+#endif // INCLUDE_ALL_GCS
+
+// HeapInspection
+
+int KlassSizeStats::count(oop x) {
+ return (HeapWordSize * (((x) != NULL) ? (x)->size() : 0));
+}
+
+int KlassSizeStats::count_array(objArrayOop x) {
+ return (HeapWordSize * (((x) != NULL) ? (x)->size() : 0));
+}
+
+inline KlassInfoEntry::~KlassInfoEntry() {
+ if (_subclasses != NULL) {
+ delete _subclasses;
+ }
+}
+
+inline void KlassInfoEntry::add_subclass(KlassInfoEntry* cie) {
+ if (_subclasses == NULL) {
+ _subclasses = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<KlassInfoEntry*>(4, true);
+ }
+ _subclasses->append(cie);
+}
+
+int KlassInfoEntry::compare(KlassInfoEntry* e1, KlassInfoEntry* e2) {
+ if(e1->_instance_words > e2->_instance_words) {
+ return -1;
+ } else if(e1->_instance_words < e2->_instance_words) {
+ return 1;
+ }
+ // Sort alphabetically, note 'Z' < '[' < 'a', but it's better to group
+ // the array classes before all the instance classes.
+ ResourceMark rm;
+ const char* name1 = e1->klass()->external_name();
+ const char* name2 = e2->klass()->external_name();
+ bool d1 = (name1[0] == '[');
+ bool d2 = (name2[0] == '[');
+ if (d1 && !d2) {
+ return -1;
+ } else if (d2 && !d1) {
+ return 1;
+ } else {
+ return strcmp(name1, name2);
+ }
+}
+
+const char* KlassInfoEntry::name() const {
+ const char* name;
+ if (_klass->name() != NULL) {
+ name = _klass->external_name();
+ } else {
+ if (_klass == Universe::boolArrayKlassObj()) name = "<boolArrayKlass>"; else
+ if (_klass == Universe::charArrayKlassObj()) name = "<charArrayKlass>"; else
+ if (_klass == Universe::singleArrayKlassObj()) name = "<singleArrayKlass>"; else
+ if (_klass == Universe::doubleArrayKlassObj()) name = "<doubleArrayKlass>"; else
+ if (_klass == Universe::byteArrayKlassObj()) name = "<byteArrayKlass>"; else
+ if (_klass == Universe::shortArrayKlassObj()) name = "<shortArrayKlass>"; else
+ if (_klass == Universe::intArrayKlassObj()) name = "<intArrayKlass>"; else
+ if (_klass == Universe::longArrayKlassObj()) name = "<longArrayKlass>"; else
+ name = "<no name>";
+ }
+ return name;
+}
+
+void KlassInfoEntry::print_on(outputStream* st) const {
+ ResourceMark rm;
+
+ // simplify the formatting (ILP32 vs LP64) - always cast the numbers to 64-bit
+ ModuleEntry* module = _klass->module();
+ if (module->is_named()) {
+ st->print_cr(INT64_FORMAT_W(13) " " UINT64_FORMAT_W(13) " %s (%s@%s)",
+ (int64_t)_instance_count,
+ (uint64_t)_instance_words * HeapWordSize,
+ name(),
+ module->name()->as_C_string(),
+ module->version() != NULL ? module->version()->as_C_string() : "");
+ } else {
+ st->print_cr(INT64_FORMAT_W(13) " " UINT64_FORMAT_W(13) " %s",
+ (int64_t)_instance_count,
+ (uint64_t)_instance_words * HeapWordSize,
+ name());
+ }
+}
+
+KlassInfoEntry* KlassInfoBucket::lookup(Klass* const k) {
+ KlassInfoEntry* elt = _list;
+ while (elt != NULL) {
+ if (elt->is_equal(k)) {
+ return elt;
+ }
+ elt = elt->next();
+ }
+ elt = new (std::nothrow) KlassInfoEntry(k, list());
+ // We may be out of space to allocate the new entry.
+ if (elt != NULL) {
+ set_list(elt);
+ }
+ return elt;
+}
+
+void KlassInfoBucket::iterate(KlassInfoClosure* cic) {
+ KlassInfoEntry* elt = _list;
+ while (elt != NULL) {
+ cic->do_cinfo(elt);
+ elt = elt->next();
+ }
+}
+
+void KlassInfoBucket::empty() {
+ KlassInfoEntry* elt = _list;
+ _list = NULL;
+ while (elt != NULL) {
+ KlassInfoEntry* next = elt->next();
+ delete elt;
+ elt = next;
+ }
+}
+
+void KlassInfoTable::AllClassesFinder::do_klass(Klass* k) {
+ // This has the SIDE EFFECT of creating a KlassInfoEntry
+ // for <k>, if one doesn't exist yet.
+ _table->lookup(k);
+}
+
+KlassInfoTable::KlassInfoTable(bool add_all_classes) {
+ _size_of_instances_in_words = 0;
+ _size = 0;
+ _ref = (HeapWord*) Universe::boolArrayKlassObj();
+ _buckets =
+ (KlassInfoBucket*) AllocateHeap(sizeof(KlassInfoBucket) * _num_buckets,
+ mtInternal, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
+ if (_buckets != NULL) {
+ _size = _num_buckets;
+ for (int index = 0; index < _size; index++) {
+ _buckets[index].initialize();
+ }
+ if (add_all_classes) {
+ AllClassesFinder finder(this);
+ ClassLoaderDataGraph::classes_do(&finder);
+ }
+ }
+}
+
+KlassInfoTable::~KlassInfoTable() {
+ if (_buckets != NULL) {
+ for (int index = 0; index < _size; index++) {
+ _buckets[index].empty();
+ }
+ FREE_C_HEAP_ARRAY(KlassInfoBucket, _buckets);
+ _size = 0;
+ }
+}
+
+uint KlassInfoTable::hash(const Klass* p) {
+ return (uint)(((uintptr_t)p - (uintptr_t)_ref) >> 2);
+}
+
+KlassInfoEntry* KlassInfoTable::lookup(Klass* k) {
+ uint idx = hash(k) % _size;
+ assert(_buckets != NULL, "Allocation failure should have been caught");
+ KlassInfoEntry* e = _buckets[idx].lookup(k);
+ // Lookup may fail if this is a new klass for which we
+ // could not allocate space for an new entry.
+ assert(e == NULL || k == e->klass(), "must be equal");
+ return e;
+}
+
+// Return false if the entry could not be recorded on account
+// of running out of space required to create a new entry.
+bool KlassInfoTable::record_instance(const oop obj) {
+ Klass* k = obj->klass();
+ KlassInfoEntry* elt = lookup(k);
+ // elt may be NULL if it's a new klass for which we
+ // could not allocate space for a new entry in the hashtable.
+ if (elt != NULL) {
+ elt->set_count(elt->count() + 1);
+ elt->set_words(elt->words() + obj->size());
+ _size_of_instances_in_words += obj->size();
+ return true;
+ } else {
+ return false;
+ }
+}
+
+void KlassInfoTable::iterate(KlassInfoClosure* cic) {
+ assert(_size == 0 || _buckets != NULL, "Allocation failure should have been caught");
+ for (int index = 0; index < _size; index++) {
+ _buckets[index].iterate(cic);
+ }
+}
+
+size_t KlassInfoTable::size_of_instances_in_words() const {
+ return _size_of_instances_in_words;
+}
+
+int KlassInfoHisto::sort_helper(KlassInfoEntry** e1, KlassInfoEntry** e2) {
+ return (*e1)->compare(*e1,*e2);
+}
+
+KlassInfoHisto::KlassInfoHisto(KlassInfoTable* cit) :
+ _cit(cit) {
+ _elements = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<KlassInfoEntry*>(_histo_initial_size, true);
+}
+
+KlassInfoHisto::~KlassInfoHisto() {
+ delete _elements;
+}
+
+void KlassInfoHisto::add(KlassInfoEntry* cie) {
+ elements()->append(cie);
+}
+
+void KlassInfoHisto::sort() {
+ elements()->sort(KlassInfoHisto::sort_helper);
+}
+
+void KlassInfoHisto::print_elements(outputStream* st) const {
+ // simplify the formatting (ILP32 vs LP64) - store the sum in 64-bit
+ int64_t total = 0;
+ uint64_t totalw = 0;
+ for(int i=0; i < elements()->length(); i++) {
+ st->print("%4d: ", i+1);
+ elements()->at(i)->print_on(st);
+ total += elements()->at(i)->count();
+ totalw += elements()->at(i)->words();
+ }
+ st->print_cr("Total " INT64_FORMAT_W(13) " " UINT64_FORMAT_W(13),
+ total, totalw * HeapWordSize);
+}
+
+#define MAKE_COL_NAME(field, name, help) #name,
+#define MAKE_COL_HELP(field, name, help) help,
+
+static const char *name_table[] = {
+ HEAP_INSPECTION_COLUMNS_DO(MAKE_COL_NAME)
+};
+
+static const char *help_table[] = {
+ HEAP_INSPECTION_COLUMNS_DO(MAKE_COL_HELP)
+};
+
+bool KlassInfoHisto::is_selected(const char *col_name) {
+ if (_selected_columns == NULL) {
+ return true;
+ }
+ if (strcmp(_selected_columns, col_name) == 0) {
+ return true;
+ }
+
+ const char *start = strstr(_selected_columns, col_name);
+ if (start == NULL) {
+ return false;
+ }
+
+ // The following must be true, because _selected_columns != col_name
+ if (start > _selected_columns && start[-1] != ',') {
+ return false;
+ }
+ char x = start[strlen(col_name)];
+ if (x != ',' && x != '\0') {
+ return false;
+ }
+
+ return true;
+}
+
+void KlassInfoHisto::print_title(outputStream* st, bool csv_format,
+ bool selected[], int width_table[],
+ const char *name_table[]) {
+ if (csv_format) {
+ st->print("Index,Super");
+ for (int c=0; c<KlassSizeStats::_num_columns; c++) {
+ if (selected[c]) {st->print(",%s", name_table[c]);}
+ }
+ st->print(",ClassName");
+ } else {
+ st->print("Index Super");
+ for (int c = 0; c < KlassSizeStats::_num_columns; c++) {
+ if (selected[c]) {
+ st->print("%*s", width_table[c], name_table[c]);
+ }
+ }
+ st->print(" ClassName");
+ }
+
+ if (is_selected("ClassLoader")) {
+ st->print(",ClassLoader");
+ }
+ st->cr();
+}
+
+class HierarchyClosure : public KlassInfoClosure {
+private:
+ GrowableArray<KlassInfoEntry*> *_elements;
+public:
+ HierarchyClosure(GrowableArray<KlassInfoEntry*> *_elements) : _elements(_elements) {}
+
+ void do_cinfo(KlassInfoEntry* cie) {
+ // ignore array classes
+ if (cie->klass()->is_instance_klass()) {
+ _elements->append(cie);
+ }
+ }
+};
+
+void KlassHierarchy::print_class_hierarchy(outputStream* st, bool print_interfaces,
+ bool print_subclasses, char* classname) {
+ ResourceMark rm;
+ Stack <KlassInfoEntry*, mtClass> class_stack;
+ GrowableArray<KlassInfoEntry*> elements;
+
+ // Add all classes to the KlassInfoTable, which allows for quick lookup.
+ // A KlassInfoEntry will be created for each class.
+ KlassInfoTable cit(true);
+ if (cit.allocation_failed()) {
+ st->print_cr("ERROR: Ran out of C-heap; hierarchy not generated");
+ return;
+ }
+
+ // Add all created KlassInfoEntry instances to the elements array for easy
+ // iteration, and to allow each KlassInfoEntry instance to have a unique index.
+ HierarchyClosure hc(&elements);
+ cit.iterate(&hc);
+
+ for(int i = 0; i < elements.length(); i++) {
+ KlassInfoEntry* cie = elements.at(i);
+ Klass* super = cie->klass()->super();
+
+ // Set the index for the class.
+ cie->set_index(i + 1);
+
+ // Add the class to the subclass array of its superclass.
+ if (super != NULL) {
+ KlassInfoEntry* super_cie = cit.lookup(super);
+ assert(super_cie != NULL, "could not lookup superclass");
+ super_cie->add_subclass(cie);
+ }
+ }
+
+ // Set the do_print flag for each class that should be printed.
+ for(int i = 0; i < elements.length(); i++) {
+ KlassInfoEntry* cie = elements.at(i);
+ if (classname == NULL) {
+ // We are printing all classes.
+ cie->set_do_print(true);
+ } else {
+ // We are only printing the hierarchy of a specific class.
+ if (strcmp(classname, cie->klass()->external_name()) == 0) {
+ KlassHierarchy::set_do_print_for_class_hierarchy(cie, &cit, print_subclasses);
+ }
+ }
+ }
+
+ // Now we do a depth first traversal of the class hierachry. The class_stack will
+ // maintain the list of classes we still need to process. Start things off
+ // by priming it with java.lang.Object.
+ KlassInfoEntry* jlo_cie = cit.lookup(SystemDictionary::Object_klass());
+ assert(jlo_cie != NULL, "could not lookup java.lang.Object");
+ class_stack.push(jlo_cie);
+
+ // Repeatedly pop the top item off the stack, print its class info,
+ // and push all of its subclasses on to the stack. Do this until there
+ // are no classes left on the stack.
+ while (!class_stack.is_empty()) {
+ KlassInfoEntry* curr_cie = class_stack.pop();
+ if (curr_cie->do_print()) {
+ print_class(st, curr_cie, print_interfaces);
+ if (curr_cie->subclasses() != NULL) {
+ // Current class has subclasses, so push all of them onto the stack.
+ for (int i = 0; i < curr_cie->subclasses()->length(); i++) {
+ KlassInfoEntry* cie = curr_cie->subclasses()->at(i);
+ if (cie->do_print()) {
+ class_stack.push(cie);
+ }
+ }
+ }
+ }
+ }
+
+ st->flush();
+}
+
+// Sets the do_print flag for every superclass and subclass of the specified class.
+void KlassHierarchy::set_do_print_for_class_hierarchy(KlassInfoEntry* cie, KlassInfoTable* cit,
+ bool print_subclasses) {
+ // Set do_print for all superclasses of this class.
+ Klass* super = ((InstanceKlass*)cie->klass())->java_super();
+ while (super != NULL) {
+ KlassInfoEntry* super_cie = cit->lookup(super);
+ super_cie->set_do_print(true);
+ super = super->super();
+ }
+
+ // Set do_print for this class and all of its subclasses.
+ Stack <KlassInfoEntry*, mtClass> class_stack;
+ class_stack.push(cie);
+ while (!class_stack.is_empty()) {
+ KlassInfoEntry* curr_cie = class_stack.pop();
+ curr_cie->set_do_print(true);
+ if (print_subclasses && curr_cie->subclasses() != NULL) {
+ // Current class has subclasses, so push all of them onto the stack.
+ for (int i = 0; i < curr_cie->subclasses()->length(); i++) {
+ KlassInfoEntry* cie = curr_cie->subclasses()->at(i);
+ class_stack.push(cie);
+ }
+ }
+ }
+}
+
+static void print_indent(outputStream* st, int indent) {
+ while (indent != 0) {
+ st->print("|");
+ indent--;
+ if (indent != 0) {
+ st->print(" ");
+ }
+ }
+}
+
+// Print the class name and its unique ClassLoader identifer.
+static void print_classname(outputStream* st, Klass* klass) {
+ oop loader_oop = klass->class_loader_data()->class_loader();
+ st->print("%s/", klass->external_name());
+ if (loader_oop == NULL) {
+ st->print("null");
+ } else {
+ st->print(INTPTR_FORMAT, p2i(klass->class_loader_data()));
+ }
+}
+
+static void print_interface(outputStream* st, Klass* intf_klass, const char* intf_type, int indent) {
+ print_indent(st, indent);
+ st->print(" implements ");
+ print_classname(st, intf_klass);
+ st->print(" (%s intf)\n", intf_type);
+}
+
+void KlassHierarchy::print_class(outputStream* st, KlassInfoEntry* cie, bool print_interfaces) {
+ ResourceMark rm;
+ InstanceKlass* klass = (InstanceKlass*)cie->klass();
+ int indent = 0;
+
+ // Print indentation with proper indicators of superclass.
+ Klass* super = klass->super();
+ while (super != NULL) {
+ super = super->super();
+ indent++;
+ }
+ print_indent(st, indent);
+ if (indent != 0) st->print("--");
+
+ // Print the class name, its unique ClassLoader identifer, and if it is an interface.
+ print_classname(st, klass);
+ if (klass->is_interface()) {
+ st->print(" (intf)");
+ }
+ st->print("\n");
+
+ // Print any interfaces the class has.
+ if (print_interfaces) {
+ Array<Klass*>* local_intfs = klass->local_interfaces();
+ Array<Klass*>* trans_intfs = klass->transitive_interfaces();
+ for (int i = 0; i < local_intfs->length(); i++) {
+ print_interface(st, local_intfs->at(i), "declared", indent);
+ }
+ for (int i = 0; i < trans_intfs->length(); i++) {
+ Klass* trans_interface = trans_intfs->at(i);
+ // Only print transitive interfaces if they are not also declared.
+ if (!local_intfs->contains(trans_interface)) {
+ print_interface(st, trans_interface, "inherited", indent);
+ }
+ }
+ }
+}
+
+void KlassInfoHisto::print_class_stats(outputStream* st,
+ bool csv_format, const char *columns) {
+ ResourceMark rm;
+ KlassSizeStats sz, sz_sum;
+ int i;
+ julong *col_table = (julong*)(&sz);
+ julong *colsum_table = (julong*)(&sz_sum);
+ int width_table[KlassSizeStats::_num_columns];
+ bool selected[KlassSizeStats::_num_columns];
+
+ _selected_columns = columns;
+
+ memset(&sz_sum, 0, sizeof(sz_sum));
+ for (int c=0; c<KlassSizeStats::_num_columns; c++) {
+ selected[c] = is_selected(name_table[c]);
+ }
+
+ for(i=0; i < elements()->length(); i++) {
+ elements()->at(i)->set_index(i+1);
+ }
+
+ // First iteration is for accumulating stats totals in colsum_table[].
+ // Second iteration is for printing stats for each class.
+ for (int pass=1; pass<=2; pass++) {
+ if (pass == 2) {
+ print_title(st, csv_format, selected, width_table, name_table);
+ }
+ for(i=0; i < elements()->length(); i++) {
+ KlassInfoEntry* e = (KlassInfoEntry*)elements()->at(i);
+ const Klass* k = e->klass();
+
+ // Get the stats for this class.
+ memset(&sz, 0, sizeof(sz));
+ sz._inst_count = e->count();
+ sz._inst_bytes = HeapWordSize * e->words();
+ k->collect_statistics(&sz);
+ sz._total_bytes = sz._ro_bytes + sz._rw_bytes;
+
+ if (pass == 1) {
+ // Add the stats for this class to the overall totals.
+ for (int c=0; c<KlassSizeStats::_num_columns; c++) {
+ colsum_table[c] += col_table[c];
+ }
+ } else {
+ int super_index = -1;
+ // Print the stats for this class.
+ if (k->is_instance_klass()) {
+ Klass* super = k->super();
+ if (super) {
+ KlassInfoEntry* super_e = _cit->lookup(super);
+ if (super_e) {
+ super_index = super_e->index();
+ }
+ }
+ }
+
+ if (csv_format) {
+ st->print("%ld,%d", e->index(), super_index);
+ for (int c=0; c<KlassSizeStats::_num_columns; c++) {
+ if (selected[c]) {st->print("," JULONG_FORMAT, col_table[c]);}
+ }
+ st->print(",%s",e->name());
+ } else {
+ st->print("%5ld %5d", e->index(), super_index);
+ for (int c=0; c<KlassSizeStats::_num_columns; c++) {
+ if (selected[c]) {print_julong(st, width_table[c], col_table[c]);}
+ }
+ st->print(" %s", e->name());
+ }
+ if (is_selected("ClassLoader")) {
+ ClassLoaderData* loader_data = k->class_loader_data();
+ st->print(",");
+ loader_data->print_value_on(st);
+ }
+ st->cr();
+ }
+ }
+
+ if (pass == 1) {
+ // Calculate the minimum width needed for the column by accounting for the
+ // column header width and the width of the largest value in the column.
+ for (int c=0; c<KlassSizeStats::_num_columns; c++) {
+ width_table[c] = col_width(colsum_table[c], name_table[c]);
+ }
+ }
+ }
+
+ sz_sum._inst_size = 0;
+
+ // Print the column totals.
+ if (csv_format) {
+ st->print(",");
+ for (int c=0; c<KlassSizeStats::_num_columns; c++) {
+ if (selected[c]) {st->print("," JULONG_FORMAT, colsum_table[c]);}
+ }
+ } else {
+ st->print(" ");
+ for (int c=0; c<KlassSizeStats::_num_columns; c++) {
+ if (selected[c]) {print_julong(st, width_table[c], colsum_table[c]);}
+ }
+ st->print(" Total");
+ if (sz_sum._total_bytes > 0) {
+ st->cr();
+ st->print(" ");
+ for (int c=0; c<KlassSizeStats::_num_columns; c++) {
+ if (selected[c]) {
+ switch (c) {
+ case KlassSizeStats::_index_inst_size:
+ case KlassSizeStats::_index_inst_count:
+ case KlassSizeStats::_index_method_count:
+ st->print("%*s", width_table[c], "-");
+ break;
+ default:
+ {
+ double perc = (double)(100) * (double)(colsum_table[c]) / (double)sz_sum._total_bytes;
+ st->print("%*.1f%%", width_table[c]-1, perc);
+ }
+ }
+ }
+ }
+ }
+ }
+ st->cr();
+
+ if (!csv_format) {
+ print_title(st, csv_format, selected, width_table, name_table);
+ }
+}
+
+julong KlassInfoHisto::annotations_bytes(Array<AnnotationArray*>* p) const {
+ julong bytes = 0;
+ if (p != NULL) {
+ for (int i = 0; i < p->length(); i++) {
+ bytes += count_bytes_array(p->at(i));
+ }
+ bytes += count_bytes_array(p);
+ }
+ return bytes;
+}
+
+void KlassInfoHisto::print_histo_on(outputStream* st, bool print_stats,
+ bool csv_format, const char *columns) {
+ if (print_stats) {
+ print_class_stats(st, csv_format, columns);
+ } else {
+ st->print_cr(" num #instances #bytes class name (module)");
+ st->print_cr("-------------------------------------------------------");
+ print_elements(st);
+ }
+}
+
+class HistoClosure : public KlassInfoClosure {
+ private:
+ KlassInfoHisto* _cih;
+ public:
+ HistoClosure(KlassInfoHisto* cih) : _cih(cih) {}
+
+ void do_cinfo(KlassInfoEntry* cie) {
+ _cih->add(cie);
+ }
+};
+
+class RecordInstanceClosure : public ObjectClosure {
+ private:
+ KlassInfoTable* _cit;
+ size_t _missed_count;
+ BoolObjectClosure* _filter;
+ public:
+ RecordInstanceClosure(KlassInfoTable* cit, BoolObjectClosure* filter) :
+ _cit(cit), _missed_count(0), _filter(filter) {}
+
+ void do_object(oop obj) {
+ if (should_visit(obj)) {
+ if (!_cit->record_instance(obj)) {
+ _missed_count++;
+ }
+ }
+ }
+
+ size_t missed_count() { return _missed_count; }
+
+ private:
+ bool should_visit(oop obj) {
+ return _filter == NULL || _filter->do_object_b(obj);
+ }
+};
+
+size_t HeapInspection::populate_table(KlassInfoTable* cit, BoolObjectClosure *filter) {
+ ResourceMark rm;
+
+ RecordInstanceClosure ric(cit, filter);
+ Universe::heap()->object_iterate(&ric);
+ return ric.missed_count();
+}
+
+void HeapInspection::heap_inspection(outputStream* st) {
+ ResourceMark rm;
+
+ if (_print_help) {
+ for (int c=0; c<KlassSizeStats::_num_columns; c++) {
+ st->print("%s:\n\t", name_table[c]);
+ const int max_col = 60;
+ int col = 0;
+ for (const char *p = help_table[c]; *p; p++,col++) {
+ if (col >= max_col && *p == ' ') {
+ st->print("\n\t");
+ col = 0;
+ } else {
+ st->print("%c", *p);
+ }
+ }
+ st->print_cr(".\n");
+ }
+ return;
+ }
+
+ KlassInfoTable cit(_print_class_stats);
+ if (!cit.allocation_failed()) {
+ // populate table with object allocation info
+ size_t missed_count = populate_table(&cit);
+ if (missed_count != 0) {
+ st->print_cr("WARNING: Ran out of C-heap; undercounted " SIZE_FORMAT
+ " total instances in data below",
+ missed_count);
+ }
+
+ // Sort and print klass instance info
+ KlassInfoHisto histo(&cit);
+ HistoClosure hc(&histo);
+
+ cit.iterate(&hc);
+
+ histo.sort();
+ histo.print_histo_on(st, _print_class_stats, _csv_format, _columns);
+ } else {
+ st->print_cr("ERROR: Ran out of C-heap; histogram not generated");
+ }
+ st->flush();
+}
+
+class FindInstanceClosure : public ObjectClosure {
+ private:
+ Klass* _klass;
+ GrowableArray<oop>* _result;
+
+ public:
+ FindInstanceClosure(Klass* k, GrowableArray<oop>* result) : _klass(k), _result(result) {};
+
+ void do_object(oop obj) {
+ if (obj->is_a(_klass)) {
+ _result->append(obj);
+ }
+ }
+};
+
+void HeapInspection::find_instances_at_safepoint(Klass* k, GrowableArray<oop>* result) {
+ assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
+ assert(Heap_lock->is_locked(), "should have the Heap_lock");
+
+ // Ensure that the heap is parsable
+ Universe::heap()->ensure_parsability(false); // no need to retire TALBs
+
+ // Iterate over objects in the heap
+ FindInstanceClosure fic(k, result);
+ // If this operation encounters a bad object when using CMS,
+ // consider using safe_object_iterate() which avoids metadata
+ // objects that may contain bad references.
+ Universe::heap()->object_iterate(&fic);
+}