src/hotspot/share/interpreter/interpreterRuntime.cpp
changeset 47216 71c04702a3d5
parent 46968 9119841280f4
child 47770 32d741a2b271
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/interpreter/interpreterRuntime.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,1430 @@
+/*
+ * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "classfile/javaClasses.inline.hpp"
+#include "classfile/systemDictionary.hpp"
+#include "classfile/vmSymbols.hpp"
+#include "code/codeCache.hpp"
+#include "compiler/compileBroker.hpp"
+#include "compiler/disassembler.hpp"
+#include "gc/shared/collectedHeap.hpp"
+#include "interpreter/interpreter.hpp"
+#include "interpreter/interpreterRuntime.hpp"
+#include "interpreter/linkResolver.hpp"
+#include "interpreter/templateTable.hpp"
+#include "logging/log.hpp"
+#include "memory/oopFactory.hpp"
+#include "memory/resourceArea.hpp"
+#include "memory/universe.inline.hpp"
+#include "oops/constantPool.hpp"
+#include "oops/instanceKlass.hpp"
+#include "oops/methodData.hpp"
+#include "oops/objArrayKlass.hpp"
+#include "oops/objArrayOop.inline.hpp"
+#include "oops/oop.inline.hpp"
+#include "oops/symbol.hpp"
+#include "prims/jvmtiExport.hpp"
+#include "prims/nativeLookup.hpp"
+#include "runtime/atomic.hpp"
+#include "runtime/biasedLocking.hpp"
+#include "runtime/compilationPolicy.hpp"
+#include "runtime/deoptimization.hpp"
+#include "runtime/fieldDescriptor.hpp"
+#include "runtime/handles.inline.hpp"
+#include "runtime/icache.hpp"
+#include "runtime/interfaceSupport.hpp"
+#include "runtime/java.hpp"
+#include "runtime/jfieldIDWorkaround.hpp"
+#include "runtime/osThread.hpp"
+#include "runtime/sharedRuntime.hpp"
+#include "runtime/stubRoutines.hpp"
+#include "runtime/synchronizer.hpp"
+#include "runtime/threadCritical.hpp"
+#include "utilities/align.hpp"
+#include "utilities/events.hpp"
+#ifdef COMPILER2
+#include "opto/runtime.hpp"
+#endif
+
+class UnlockFlagSaver {
+  private:
+    JavaThread* _thread;
+    bool _do_not_unlock;
+  public:
+    UnlockFlagSaver(JavaThread* t) {
+      _thread = t;
+      _do_not_unlock = t->do_not_unlock_if_synchronized();
+      t->set_do_not_unlock_if_synchronized(false);
+    }
+    ~UnlockFlagSaver() {
+      _thread->set_do_not_unlock_if_synchronized(_do_not_unlock);
+    }
+};
+
+//------------------------------------------------------------------------------------------------------------------------
+// State accessors
+
+void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) {
+  last_frame(thread).interpreter_frame_set_bcp(bcp);
+  if (ProfileInterpreter) {
+    // ProfileTraps uses MDOs independently of ProfileInterpreter.
+    // That is why we must check both ProfileInterpreter and mdo != NULL.
+    MethodData* mdo = last_frame(thread).interpreter_frame_method()->method_data();
+    if (mdo != NULL) {
+      NEEDS_CLEANUP;
+      last_frame(thread).interpreter_frame_set_mdp(mdo->bci_to_dp(last_frame(thread).interpreter_frame_bci()));
+    }
+  }
+}
+
+//------------------------------------------------------------------------------------------------------------------------
+// Constants
+
+
+IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide))
+  // access constant pool
+  ConstantPool* pool = method(thread)->constants();
+  int index = wide ? get_index_u2(thread, Bytecodes::_ldc_w) : get_index_u1(thread, Bytecodes::_ldc);
+  constantTag tag = pool->tag_at(index);
+
+  assert (tag.is_unresolved_klass() || tag.is_klass(), "wrong ldc call");
+  Klass* klass = pool->klass_at(index, CHECK);
+    oop java_class = klass->java_mirror();
+    thread->set_vm_result(java_class);
+IRT_END
+
+IRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* thread, Bytecodes::Code bytecode)) {
+  assert(bytecode == Bytecodes::_fast_aldc ||
+         bytecode == Bytecodes::_fast_aldc_w, "wrong bc");
+  ResourceMark rm(thread);
+  methodHandle m (thread, method(thread));
+  Bytecode_loadconstant ldc(m, bci(thread));
+  oop result = ldc.resolve_constant(CHECK);
+#ifdef ASSERT
+  {
+    // The bytecode wrappers aren't GC-safe so construct a new one
+    Bytecode_loadconstant ldc2(m, bci(thread));
+    oop coop = m->constants()->resolved_references()->obj_at(ldc2.cache_index());
+    assert(result == coop, "expected result for assembly code");
+  }
+#endif
+  thread->set_vm_result(result);
+}
+IRT_END
+
+
+//------------------------------------------------------------------------------------------------------------------------
+// Allocation
+
+IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, ConstantPool* pool, int index))
+  Klass* k = pool->klass_at(index, CHECK);
+  InstanceKlass* klass = InstanceKlass::cast(k);
+
+  // Make sure we are not instantiating an abstract klass
+  klass->check_valid_for_instantiation(true, CHECK);
+
+  // Make sure klass is initialized
+  klass->initialize(CHECK);
+
+  // At this point the class may not be fully initialized
+  // because of recursive initialization. If it is fully
+  // initialized & has_finalized is not set, we rewrite
+  // it into its fast version (Note: no locking is needed
+  // here since this is an atomic byte write and can be
+  // done more than once).
+  //
+  // Note: In case of classes with has_finalized we don't
+  //       rewrite since that saves us an extra check in
+  //       the fast version which then would call the
+  //       slow version anyway (and do a call back into
+  //       Java).
+  //       If we have a breakpoint, then we don't rewrite
+  //       because the _breakpoint bytecode would be lost.
+  oop obj = klass->allocate_instance(CHECK);
+  thread->set_vm_result(obj);
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size))
+  oop obj = oopFactory::new_typeArray(type, size, CHECK);
+  thread->set_vm_result(obj);
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, ConstantPool* pool, int index, jint size))
+  Klass*    klass = pool->klass_at(index, CHECK);
+  objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK);
+  thread->set_vm_result(obj);
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address))
+  // We may want to pass in more arguments - could make this slightly faster
+  ConstantPool* constants = method(thread)->constants();
+  int          i = get_index_u2(thread, Bytecodes::_multianewarray);
+  Klass* klass = constants->klass_at(i, CHECK);
+  int   nof_dims = number_of_dimensions(thread);
+  assert(klass->is_klass(), "not a class");
+  assert(nof_dims >= 1, "multianewarray rank must be nonzero");
+
+  // We must create an array of jints to pass to multi_allocate.
+  ResourceMark rm(thread);
+  const int small_dims = 10;
+  jint dim_array[small_dims];
+  jint *dims = &dim_array[0];
+  if (nof_dims > small_dims) {
+    dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims);
+  }
+  for (int index = 0; index < nof_dims; index++) {
+    // offset from first_size_address is addressed as local[index]
+    int n = Interpreter::local_offset_in_bytes(index)/jintSize;
+    dims[index] = first_size_address[n];
+  }
+  oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK);
+  thread->set_vm_result(obj);
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
+  assert(oopDesc::is_oop(obj), "must be a valid oop");
+  assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
+  InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
+IRT_END
+
+
+// Quicken instance-of and check-cast bytecodes
+IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread))
+  // Force resolving; quicken the bytecode
+  int which = get_index_u2(thread, Bytecodes::_checkcast);
+  ConstantPool* cpool = method(thread)->constants();
+  // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded
+  // program we might have seen an unquick'd bytecode in the interpreter but have another
+  // thread quicken the bytecode before we get here.
+  // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" );
+  Klass* klass = cpool->klass_at(which, CHECK);
+  thread->set_vm_result_2(klass);
+IRT_END
+
+
+//------------------------------------------------------------------------------------------------------------------------
+// Exceptions
+
+void InterpreterRuntime::note_trap_inner(JavaThread* thread, int reason,
+                                         const methodHandle& trap_method, int trap_bci, TRAPS) {
+  if (trap_method.not_null()) {
+    MethodData* trap_mdo = trap_method->method_data();
+    if (trap_mdo == NULL) {
+      Method::build_interpreter_method_data(trap_method, THREAD);
+      if (HAS_PENDING_EXCEPTION) {
+        assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())),
+               "we expect only an OOM error here");
+        CLEAR_PENDING_EXCEPTION;
+      }
+      trap_mdo = trap_method->method_data();
+      // and fall through...
+    }
+    if (trap_mdo != NULL) {
+      // Update per-method count of trap events.  The interpreter
+      // is updating the MDO to simulate the effect of compiler traps.
+      Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason);
+    }
+  }
+}
+
+// Assume the compiler is (or will be) interested in this event.
+// If necessary, create an MDO to hold the information, and record it.
+void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) {
+  assert(ProfileTraps, "call me only if profiling");
+  methodHandle trap_method(thread, method(thread));
+  int trap_bci = trap_method->bci_from(bcp(thread));
+  note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
+}
+
+#ifdef CC_INTERP
+// As legacy note_trap, but we have more arguments.
+IRT_ENTRY(void, InterpreterRuntime::note_trap(JavaThread* thread, int reason, Method *method, int trap_bci))
+  methodHandle trap_method(method);
+  note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
+IRT_END
+
+// Class Deoptimization is not visible in BytecodeInterpreter, so we need a wrapper
+// for each exception.
+void InterpreterRuntime::note_nullCheck_trap(JavaThread* thread, Method *method, int trap_bci)
+  { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_null_check, method, trap_bci); }
+void InterpreterRuntime::note_div0Check_trap(JavaThread* thread, Method *method, int trap_bci)
+  { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_div0_check, method, trap_bci); }
+void InterpreterRuntime::note_rangeCheck_trap(JavaThread* thread, Method *method, int trap_bci)
+  { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_range_check, method, trap_bci); }
+void InterpreterRuntime::note_classCheck_trap(JavaThread* thread, Method *method, int trap_bci)
+  { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_class_check, method, trap_bci); }
+void InterpreterRuntime::note_arrayCheck_trap(JavaThread* thread, Method *method, int trap_bci)
+  { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_array_check, method, trap_bci); }
+#endif // CC_INTERP
+
+
+static Handle get_preinitialized_exception(Klass* k, TRAPS) {
+  // get klass
+  InstanceKlass* klass = InstanceKlass::cast(k);
+  assert(klass->is_initialized(),
+         "this klass should have been initialized during VM initialization");
+  // create instance - do not call constructor since we may have no
+  // (java) stack space left (should assert constructor is empty)
+  Handle exception;
+  oop exception_oop = klass->allocate_instance(CHECK_(exception));
+  exception = Handle(THREAD, exception_oop);
+  if (StackTraceInThrowable) {
+    java_lang_Throwable::fill_in_stack_trace(exception);
+  }
+  return exception;
+}
+
+// Special handling for stack overflow: since we don't have any (java) stack
+// space left we use the pre-allocated & pre-initialized StackOverflowError
+// klass to create an stack overflow error instance.  We do not call its
+// constructor for the same reason (it is empty, anyway).
+IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread))
+  Handle exception = get_preinitialized_exception(
+                                 SystemDictionary::StackOverflowError_klass(),
+                                 CHECK);
+  // Increment counter for hs_err file reporting
+  Atomic::inc(&Exceptions::_stack_overflow_errors);
+  THROW_HANDLE(exception);
+IRT_END
+
+IRT_ENTRY(void, InterpreterRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
+  Handle exception = get_preinitialized_exception(
+                                 SystemDictionary::StackOverflowError_klass(),
+                                 CHECK);
+  java_lang_Throwable::set_message(exception(),
+          Universe::delayed_stack_overflow_error_message());
+  // Increment counter for hs_err file reporting
+  Atomic::inc(&Exceptions::_stack_overflow_errors);
+  THROW_HANDLE(exception);
+IRT_END
+
+IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message))
+  // lookup exception klass
+  TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
+  if (ProfileTraps) {
+    if (s == vmSymbols::java_lang_ArithmeticException()) {
+      note_trap(thread, Deoptimization::Reason_div0_check, CHECK);
+    } else if (s == vmSymbols::java_lang_NullPointerException()) {
+      note_trap(thread, Deoptimization::Reason_null_check, CHECK);
+    }
+  }
+  // create exception
+  Handle exception = Exceptions::new_exception(thread, s, message);
+  thread->set_vm_result(exception());
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj))
+  ResourceMark rm(thread);
+  const char* klass_name = obj->klass()->external_name();
+  // lookup exception klass
+  TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
+  if (ProfileTraps) {
+    note_trap(thread, Deoptimization::Reason_class_check, CHECK);
+  }
+  // create exception, with klass name as detail message
+  Handle exception = Exceptions::new_exception(thread, s, klass_name);
+  thread->set_vm_result(exception());
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, char* name, jint index))
+  char message[jintAsStringSize];
+  // lookup exception klass
+  TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
+  if (ProfileTraps) {
+    note_trap(thread, Deoptimization::Reason_range_check, CHECK);
+  }
+  // create exception
+  sprintf(message, "%d", index);
+  THROW_MSG(s, message);
+IRT_END
+
+IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException(
+  JavaThread* thread, oopDesc* obj))
+
+  ResourceMark rm(thread);
+  char* message = SharedRuntime::generate_class_cast_message(
+    thread, obj->klass());
+
+  if (ProfileTraps) {
+    note_trap(thread, Deoptimization::Reason_class_check, CHECK);
+  }
+
+  // create exception
+  THROW_MSG(vmSymbols::java_lang_ClassCastException(), message);
+IRT_END
+
+// exception_handler_for_exception(...) returns the continuation address,
+// the exception oop (via TLS) and sets the bci/bcp for the continuation.
+// The exception oop is returned to make sure it is preserved over GC (it
+// is only on the stack if the exception was thrown explicitly via athrow).
+// During this operation, the expression stack contains the values for the
+// bci where the exception happened. If the exception was propagated back
+// from a call, the expression stack contains the values for the bci at the
+// invoke w/o arguments (i.e., as if one were inside the call).
+IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception))
+
+  Handle             h_exception(thread, exception);
+  methodHandle       h_method   (thread, method(thread));
+  constantPoolHandle h_constants(thread, h_method->constants());
+  bool               should_repeat;
+  int                handler_bci;
+  int                current_bci = bci(thread);
+
+  if (thread->frames_to_pop_failed_realloc() > 0) {
+    // Allocation of scalar replaced object used in this frame
+    // failed. Unconditionally pop the frame.
+    thread->dec_frames_to_pop_failed_realloc();
+    thread->set_vm_result(h_exception());
+    // If the method is synchronized we already unlocked the monitor
+    // during deoptimization so the interpreter needs to skip it when
+    // the frame is popped.
+    thread->set_do_not_unlock_if_synchronized(true);
+#ifdef CC_INTERP
+    return (address) -1;
+#else
+    return Interpreter::remove_activation_entry();
+#endif
+  }
+
+  // Need to do this check first since when _do_not_unlock_if_synchronized
+  // is set, we don't want to trigger any classloading which may make calls
+  // into java, or surprisingly find a matching exception handler for bci 0
+  // since at this moment the method hasn't been "officially" entered yet.
+  if (thread->do_not_unlock_if_synchronized()) {
+    ResourceMark rm;
+    assert(current_bci == 0,  "bci isn't zero for do_not_unlock_if_synchronized");
+    thread->set_vm_result(exception);
+#ifdef CC_INTERP
+    return (address) -1;
+#else
+    return Interpreter::remove_activation_entry();
+#endif
+  }
+
+  do {
+    should_repeat = false;
+
+    // assertions
+#ifdef ASSERT
+    assert(h_exception.not_null(), "NULL exceptions should be handled by athrow");
+    // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
+    if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) {
+      if (ExitVMOnVerifyError) vm_exit(-1);
+      ShouldNotReachHere();
+    }
+#endif
+
+    // tracing
+    if (log_is_enabled(Info, exceptions)) {
+      ResourceMark rm(thread);
+      stringStream tempst;
+      tempst.print("interpreter method <%s>\n"
+                   " at bci %d for thread " INTPTR_FORMAT,
+                   h_method->print_value_string(), current_bci, p2i(thread));
+      Exceptions::log_exception(h_exception, tempst);
+    }
+// Don't go paging in something which won't be used.
+//     else if (extable->length() == 0) {
+//       // disabled for now - interpreter is not using shortcut yet
+//       // (shortcut is not to call runtime if we have no exception handlers)
+//       // warning("performance bug: should not call runtime if method has no exception handlers");
+//     }
+    // for AbortVMOnException flag
+    Exceptions::debug_check_abort(h_exception);
+
+    // exception handler lookup
+    Klass* klass = h_exception->klass();
+    handler_bci = Method::fast_exception_handler_bci_for(h_method, klass, current_bci, THREAD);
+    if (HAS_PENDING_EXCEPTION) {
+      // We threw an exception while trying to find the exception handler.
+      // Transfer the new exception to the exception handle which will
+      // be set into thread local storage, and do another lookup for an
+      // exception handler for this exception, this time starting at the
+      // BCI of the exception handler which caused the exception to be
+      // thrown (bug 4307310).
+      h_exception = Handle(THREAD, PENDING_EXCEPTION);
+      CLEAR_PENDING_EXCEPTION;
+      if (handler_bci >= 0) {
+        current_bci = handler_bci;
+        should_repeat = true;
+      }
+    }
+  } while (should_repeat == true);
+
+#if INCLUDE_JVMCI
+  if (EnableJVMCI && h_method->method_data() != NULL) {
+    ResourceMark rm(thread);
+    ProfileData* pdata = h_method->method_data()->allocate_bci_to_data(current_bci, NULL);
+    if (pdata != NULL && pdata->is_BitData()) {
+      BitData* bit_data = (BitData*) pdata;
+      bit_data->set_exception_seen();
+    }
+  }
+#endif
+
+  // notify JVMTI of an exception throw; JVMTI will detect if this is a first
+  // time throw or a stack unwinding throw and accordingly notify the debugger
+  if (JvmtiExport::can_post_on_exceptions()) {
+    JvmtiExport::post_exception_throw(thread, h_method(), bcp(thread), h_exception());
+  }
+
+#ifdef CC_INTERP
+  address continuation = (address)(intptr_t) handler_bci;
+#else
+  address continuation = NULL;
+#endif
+  address handler_pc = NULL;
+  if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) {
+    // Forward exception to callee (leaving bci/bcp untouched) because (a) no
+    // handler in this method, or (b) after a stack overflow there is not yet
+    // enough stack space available to reprotect the stack.
+#ifndef CC_INTERP
+    continuation = Interpreter::remove_activation_entry();
+#endif
+#if COMPILER2_OR_JVMCI
+    // Count this for compilation purposes
+    h_method->interpreter_throwout_increment(THREAD);
+#endif
+  } else {
+    // handler in this method => change bci/bcp to handler bci/bcp and continue there
+    handler_pc = h_method->code_base() + handler_bci;
+#ifndef CC_INTERP
+    set_bcp_and_mdp(handler_pc, thread);
+    continuation = Interpreter::dispatch_table(vtos)[*handler_pc];
+#endif
+  }
+  // notify debugger of an exception catch
+  // (this is good for exceptions caught in native methods as well)
+  if (JvmtiExport::can_post_on_exceptions()) {
+    JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL));
+  }
+
+  thread->set_vm_result(h_exception());
+  return continuation;
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread))
+  assert(thread->has_pending_exception(), "must only ne called if there's an exception pending");
+  // nothing to do - eventually we should remove this code entirely (see comments @ call sites)
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread))
+  THROW(vmSymbols::java_lang_AbstractMethodError());
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
+  THROW(vmSymbols::java_lang_IncompatibleClassChangeError());
+IRT_END
+
+
+//------------------------------------------------------------------------------------------------------------------------
+// Fields
+//
+
+void InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode) {
+  Thread* THREAD = thread;
+  // resolve field
+  fieldDescriptor info;
+  constantPoolHandle pool(thread, method(thread)->constants());
+  methodHandle m(thread, method(thread));
+  bool is_put    = (bytecode == Bytecodes::_putfield  || bytecode == Bytecodes::_nofast_putfield ||
+                    bytecode == Bytecodes::_putstatic);
+  bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic);
+
+  {
+    JvmtiHideSingleStepping jhss(thread);
+    LinkResolver::resolve_field_access(info, pool, get_index_u2_cpcache(thread, bytecode),
+                                       m, bytecode, CHECK);
+  } // end JvmtiHideSingleStepping
+
+  // check if link resolution caused cpCache to be updated
+  ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
+  if (cp_cache_entry->is_resolved(bytecode)) return;
+
+  // compute auxiliary field attributes
+  TosState state  = as_TosState(info.field_type());
+
+  // Resolution of put instructions on final fields is delayed. That is required so that
+  // exceptions are thrown at the correct place (when the instruction is actually invoked).
+  // If we do not resolve an instruction in the current pass, leaving the put_code
+  // set to zero will cause the next put instruction to the same field to reresolve.
+
+  // Resolution of put instructions to final instance fields with invalid updates (i.e.,
+  // to final instance fields with updates originating from a method different than <init>)
+  // is inhibited. A putfield instruction targeting an instance final field must throw
+  // an IllegalAccessError if the instruction is not in an instance
+  // initializer method <init>. If resolution were not inhibited, a putfield
+  // in an initializer method could be resolved in the initializer. Subsequent
+  // putfield instructions to the same field would then use cached information.
+  // As a result, those instructions would not pass through the VM. That is,
+  // checks in resolve_field_access() would not be executed for those instructions
+  // and the required IllegalAccessError would not be thrown.
+  //
+  // Also, we need to delay resolving getstatic and putstatic instructions until the
+  // class is initialized.  This is required so that access to the static
+  // field will call the initialization function every time until the class
+  // is completely initialized ala. in 2.17.5 in JVM Specification.
+  InstanceKlass* klass = InstanceKlass::cast(info.field_holder());
+  bool uninitialized_static = is_static && !klass->is_initialized();
+  bool has_initialized_final_update = info.field_holder()->major_version() >= 53 &&
+                                      info.has_initialized_final_update();
+  assert(!(has_initialized_final_update && !info.access_flags().is_final()), "Fields with initialized final updates must be final");
+
+  Bytecodes::Code get_code = (Bytecodes::Code)0;
+  Bytecodes::Code put_code = (Bytecodes::Code)0;
+  if (!uninitialized_static) {
+    get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield);
+    if ((is_put && !has_initialized_final_update) || !info.access_flags().is_final()) {
+      put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
+    }
+  }
+
+  cp_cache_entry->set_field(
+    get_code,
+    put_code,
+    info.field_holder(),
+    info.index(),
+    info.offset(),
+    state,
+    info.access_flags().is_final(),
+    info.access_flags().is_volatile(),
+    pool->pool_holder()
+  );
+}
+
+
+//------------------------------------------------------------------------------------------------------------------------
+// Synchronization
+//
+// The interpreter's synchronization code is factored out so that it can
+// be shared by method invocation and synchronized blocks.
+//%note synchronization_3
+
+//%note monitor_1
+IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem))
+#ifdef ASSERT
+  thread->last_frame().interpreter_frame_verify_monitor(elem);
+#endif
+  if (PrintBiasedLockingStatistics) {
+    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
+  }
+  Handle h_obj(thread, elem->obj());
+  assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
+         "must be NULL or an object");
+  if (UseBiasedLocking) {
+    // Retry fast entry if bias is revoked to avoid unnecessary inflation
+    ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK);
+  } else {
+    ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK);
+  }
+  assert(Universe::heap()->is_in_reserved_or_null(elem->obj()),
+         "must be NULL or an object");
+#ifdef ASSERT
+  thread->last_frame().interpreter_frame_verify_monitor(elem);
+#endif
+IRT_END
+
+
+//%note monitor_1
+IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem))
+#ifdef ASSERT
+  thread->last_frame().interpreter_frame_verify_monitor(elem);
+#endif
+  Handle h_obj(thread, elem->obj());
+  assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
+         "must be NULL or an object");
+  if (elem == NULL || h_obj()->is_unlocked()) {
+    THROW(vmSymbols::java_lang_IllegalMonitorStateException());
+  }
+  ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread);
+  // Free entry. This must be done here, since a pending exception might be installed on
+  // exit. If it is not cleared, the exception handling code will try to unlock the monitor again.
+  elem->set_obj(NULL);
+#ifdef ASSERT
+  thread->last_frame().interpreter_frame_verify_monitor(elem);
+#endif
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread))
+  THROW(vmSymbols::java_lang_IllegalMonitorStateException());
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread))
+  // Returns an illegal exception to install into the current thread. The
+  // pending_exception flag is cleared so normal exception handling does not
+  // trigger. Any current installed exception will be overwritten. This
+  // method will be called during an exception unwind.
+
+  assert(!HAS_PENDING_EXCEPTION, "no pending exception");
+  Handle exception(thread, thread->vm_result());
+  assert(exception() != NULL, "vm result should be set");
+  thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures)
+  if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) {
+    exception = get_preinitialized_exception(
+                       SystemDictionary::IllegalMonitorStateException_klass(),
+                       CATCH);
+  }
+  thread->set_vm_result(exception());
+IRT_END
+
+
+//------------------------------------------------------------------------------------------------------------------------
+// Invokes
+
+IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, Method* method, address bcp))
+  return method->orig_bytecode_at(method->bci_from(bcp));
+IRT_END
+
+IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, Method* method, address bcp, Bytecodes::Code new_code))
+  method->set_orig_bytecode_at(method->bci_from(bcp), new_code);
+IRT_END
+
+IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, Method* method, address bcp))
+  JvmtiExport::post_raw_breakpoint(thread, method, bcp);
+IRT_END
+
+void InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode) {
+  Thread* THREAD = thread;
+  // extract receiver from the outgoing argument list if necessary
+  Handle receiver(thread, NULL);
+  if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface ||
+      bytecode == Bytecodes::_invokespecial) {
+    ResourceMark rm(thread);
+    methodHandle m (thread, method(thread));
+    Bytecode_invoke call(m, bci(thread));
+    Symbol* signature = call.signature();
+    receiver = Handle(thread,
+                  thread->last_frame().interpreter_callee_receiver(signature));
+    assert(Universe::heap()->is_in_reserved_or_null(receiver()),
+           "sanity check");
+    assert(receiver.is_null() ||
+           !Universe::heap()->is_in_reserved(receiver->klass()),
+           "sanity check");
+  }
+
+  // resolve method
+  CallInfo info;
+  constantPoolHandle pool(thread, method(thread)->constants());
+
+  {
+    JvmtiHideSingleStepping jhss(thread);
+    LinkResolver::resolve_invoke(info, receiver, pool,
+                                 get_index_u2_cpcache(thread, bytecode), bytecode,
+                                 CHECK);
+    if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
+      int retry_count = 0;
+      while (info.resolved_method()->is_old()) {
+        // It is very unlikely that method is redefined more than 100 times
+        // in the middle of resolve. If it is looping here more than 100 times
+        // means then there could be a bug here.
+        guarantee((retry_count++ < 100),
+                  "Could not resolve to latest version of redefined method");
+        // method is redefined in the middle of resolve so re-try.
+        LinkResolver::resolve_invoke(info, receiver, pool,
+                                     get_index_u2_cpcache(thread, bytecode), bytecode,
+                                     CHECK);
+      }
+    }
+  } // end JvmtiHideSingleStepping
+
+  // check if link resolution caused cpCache to be updated
+  ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
+  if (cp_cache_entry->is_resolved(bytecode)) return;
+
+#ifdef ASSERT
+  if (bytecode == Bytecodes::_invokeinterface) {
+    if (info.resolved_method()->method_holder() ==
+                                            SystemDictionary::Object_klass()) {
+      // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec
+      // (see also CallInfo::set_interface for details)
+      assert(info.call_kind() == CallInfo::vtable_call ||
+             info.call_kind() == CallInfo::direct_call, "");
+      methodHandle rm = info.resolved_method();
+      assert(rm->is_final() || info.has_vtable_index(),
+             "should have been set already");
+    } else if (!info.resolved_method()->has_itable_index()) {
+      // Resolved something like CharSequence.toString.  Use vtable not itable.
+      assert(info.call_kind() != CallInfo::itable_call, "");
+    } else {
+      // Setup itable entry
+      assert(info.call_kind() == CallInfo::itable_call, "");
+      int index = info.resolved_method()->itable_index();
+      assert(info.itable_index() == index, "");
+    }
+  } else if (bytecode == Bytecodes::_invokespecial) {
+    assert(info.call_kind() == CallInfo::direct_call, "must be direct call");
+  } else {
+    assert(info.call_kind() == CallInfo::direct_call ||
+           info.call_kind() == CallInfo::vtable_call, "");
+  }
+#endif
+  // Get sender or sender's host_klass, and only set cpCache entry to resolved if
+  // it is not an interface.  The receiver for invokespecial calls within interface
+  // methods must be checked for every call.
+  InstanceKlass* sender = pool->pool_holder();
+  sender = sender->is_anonymous() ? sender->host_klass() : sender;
+
+  switch (info.call_kind()) {
+  case CallInfo::direct_call:
+    cp_cache_entry->set_direct_call(
+      bytecode,
+      info.resolved_method(),
+      sender->is_interface());
+    break;
+  case CallInfo::vtable_call:
+    cp_cache_entry->set_vtable_call(
+      bytecode,
+      info.resolved_method(),
+      info.vtable_index());
+    break;
+  case CallInfo::itable_call:
+    cp_cache_entry->set_itable_call(
+      bytecode,
+      info.resolved_method(),
+      info.itable_index());
+    break;
+  default:  ShouldNotReachHere();
+  }
+}
+
+
+// First time execution:  Resolve symbols, create a permanent MethodType object.
+void InterpreterRuntime::resolve_invokehandle(JavaThread* thread) {
+  Thread* THREAD = thread;
+  const Bytecodes::Code bytecode = Bytecodes::_invokehandle;
+
+  // resolve method
+  CallInfo info;
+  constantPoolHandle pool(thread, method(thread)->constants());
+  {
+    JvmtiHideSingleStepping jhss(thread);
+    LinkResolver::resolve_invoke(info, Handle(), pool,
+                                 get_index_u2_cpcache(thread, bytecode), bytecode,
+                                 CHECK);
+  } // end JvmtiHideSingleStepping
+
+  ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
+  cp_cache_entry->set_method_handle(pool, info);
+}
+
+// First time execution:  Resolve symbols, create a permanent CallSite object.
+void InterpreterRuntime::resolve_invokedynamic(JavaThread* thread) {
+  Thread* THREAD = thread;
+  const Bytecodes::Code bytecode = Bytecodes::_invokedynamic;
+
+  //TO DO: consider passing BCI to Java.
+  //  int caller_bci = method(thread)->bci_from(bcp(thread));
+
+  // resolve method
+  CallInfo info;
+  constantPoolHandle pool(thread, method(thread)->constants());
+  int index = get_index_u4(thread, bytecode);
+  {
+    JvmtiHideSingleStepping jhss(thread);
+    LinkResolver::resolve_invoke(info, Handle(), pool,
+                                 index, bytecode, CHECK);
+  } // end JvmtiHideSingleStepping
+
+  ConstantPoolCacheEntry* cp_cache_entry = pool->invokedynamic_cp_cache_entry_at(index);
+  cp_cache_entry->set_dynamic_call(pool, info);
+}
+
+// This function is the interface to the assembly code. It returns the resolved
+// cpCache entry.  This doesn't safepoint, but the helper routines safepoint.
+// This function will check for redefinition!
+IRT_ENTRY(void, InterpreterRuntime::resolve_from_cache(JavaThread* thread, Bytecodes::Code bytecode)) {
+  switch (bytecode) {
+  case Bytecodes::_getstatic:
+  case Bytecodes::_putstatic:
+  case Bytecodes::_getfield:
+  case Bytecodes::_putfield:
+    resolve_get_put(thread, bytecode);
+    break;
+  case Bytecodes::_invokevirtual:
+  case Bytecodes::_invokespecial:
+  case Bytecodes::_invokestatic:
+  case Bytecodes::_invokeinterface:
+    resolve_invoke(thread, bytecode);
+    break;
+  case Bytecodes::_invokehandle:
+    resolve_invokehandle(thread);
+    break;
+  case Bytecodes::_invokedynamic:
+    resolve_invokedynamic(thread);
+    break;
+  default:
+    fatal("unexpected bytecode: %s", Bytecodes::name(bytecode));
+    break;
+  }
+}
+IRT_END
+
+//------------------------------------------------------------------------------------------------------------------------
+// Miscellaneous
+
+
+nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) {
+  nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp);
+  assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests");
+  if (branch_bcp != NULL && nm != NULL) {
+    // This was a successful request for an OSR nmethod.  Because
+    // frequency_counter_overflow_inner ends with a safepoint check,
+    // nm could have been unloaded so look it up again.  It's unsafe
+    // to examine nm directly since it might have been freed and used
+    // for something else.
+    frame fr = thread->last_frame();
+    Method* method =  fr.interpreter_frame_method();
+    int bci = method->bci_from(fr.interpreter_frame_bcp());
+    nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false);
+  }
+#ifndef PRODUCT
+  if (TraceOnStackReplacement) {
+    if (nm != NULL) {
+      tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", p2i(nm->osr_entry()));
+      nm->print();
+    }
+  }
+#endif
+  return nm;
+}
+
+IRT_ENTRY(nmethod*,
+          InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp))
+  // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
+  // flag, in case this method triggers classloading which will call into Java.
+  UnlockFlagSaver fs(thread);
+
+  frame fr = thread->last_frame();
+  assert(fr.is_interpreted_frame(), "must come from interpreter");
+  methodHandle method(thread, fr.interpreter_frame_method());
+  const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci;
+  const int bci = branch_bcp != NULL ? method->bci_from(fr.interpreter_frame_bcp()) : InvocationEntryBci;
+
+  assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
+  nmethod* osr_nm = CompilationPolicy::policy()->event(method, method, branch_bci, bci, CompLevel_none, NULL, thread);
+  assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
+
+  if (osr_nm != NULL) {
+    // We may need to do on-stack replacement which requires that no
+    // monitors in the activation are biased because their
+    // BasicObjectLocks will need to migrate during OSR. Force
+    // unbiasing of all monitors in the activation now (even though
+    // the OSR nmethod might be invalidated) because we don't have a
+    // safepoint opportunity later once the migration begins.
+    if (UseBiasedLocking) {
+      ResourceMark rm;
+      GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
+      for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
+           kptr < fr.interpreter_frame_monitor_begin();
+           kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
+        if( kptr->obj() != NULL ) {
+          objects_to_revoke->append(Handle(THREAD, kptr->obj()));
+        }
+      }
+      BiasedLocking::revoke(objects_to_revoke);
+    }
+  }
+  return osr_nm;
+IRT_END
+
+IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp))
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  int bci = method->bci_from(cur_bcp);
+  MethodData* mdo = method->method_data();
+  if (mdo == NULL)  return 0;
+  return mdo->bci_to_di(bci);
+IRT_END
+
+IRT_ENTRY(void, InterpreterRuntime::profile_method(JavaThread* thread))
+  // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
+  // flag, in case this method triggers classloading which will call into Java.
+  UnlockFlagSaver fs(thread);
+
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  frame fr = thread->last_frame();
+  assert(fr.is_interpreted_frame(), "must come from interpreter");
+  methodHandle method(thread, fr.interpreter_frame_method());
+  Method::build_interpreter_method_data(method, THREAD);
+  if (HAS_PENDING_EXCEPTION) {
+    assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
+    CLEAR_PENDING_EXCEPTION;
+    // and fall through...
+  }
+IRT_END
+
+
+#ifdef ASSERT
+IRT_LEAF(void, InterpreterRuntime::verify_mdp(Method* method, address bcp, address mdp))
+  assert(ProfileInterpreter, "must be profiling interpreter");
+
+  MethodData* mdo = method->method_data();
+  assert(mdo != NULL, "must not be null");
+
+  int bci = method->bci_from(bcp);
+
+  address mdp2 = mdo->bci_to_dp(bci);
+  if (mdp != mdp2) {
+    ResourceMark rm;
+    ResetNoHandleMark rnm; // In a LEAF entry.
+    HandleMark hm;
+    tty->print_cr("FAILED verify : actual mdp %p   expected mdp %p @ bci %d", mdp, mdp2, bci);
+    int current_di = mdo->dp_to_di(mdp);
+    int expected_di  = mdo->dp_to_di(mdp2);
+    tty->print_cr("  actual di %d   expected di %d", current_di, expected_di);
+    int expected_approx_bci = mdo->data_at(expected_di)->bci();
+    int approx_bci = -1;
+    if (current_di >= 0) {
+      approx_bci = mdo->data_at(current_di)->bci();
+    }
+    tty->print_cr("  actual bci is %d  expected bci %d", approx_bci, expected_approx_bci);
+    mdo->print_on(tty);
+    method->print_codes();
+  }
+  assert(mdp == mdp2, "wrong mdp");
+IRT_END
+#endif // ASSERT
+
+IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci))
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  ResourceMark rm(thread);
+  HandleMark hm(thread);
+  frame fr = thread->last_frame();
+  assert(fr.is_interpreted_frame(), "must come from interpreter");
+  MethodData* h_mdo = fr.interpreter_frame_method()->method_data();
+
+  // Grab a lock to ensure atomic access to setting the return bci and
+  // the displacement.  This can block and GC, invalidating all naked oops.
+  MutexLocker ml(RetData_lock);
+
+  // ProfileData is essentially a wrapper around a derived oop, so we
+  // need to take the lock before making any ProfileData structures.
+  ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(fr.interpreter_frame_mdp()));
+  guarantee(data != NULL, "profile data must be valid");
+  RetData* rdata = data->as_RetData();
+  address new_mdp = rdata->fixup_ret(return_bci, h_mdo);
+  fr.interpreter_frame_set_mdp(new_mdp);
+IRT_END
+
+IRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* thread, Method* m))
+  MethodCounters* mcs = Method::build_method_counters(m, thread);
+  if (HAS_PENDING_EXCEPTION) {
+    assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
+    CLEAR_PENDING_EXCEPTION;
+  }
+  return mcs;
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread))
+  // We used to need an explict preserve_arguments here for invoke bytecodes. However,
+  // stack traversal automatically takes care of preserving arguments for invoke, so
+  // this is no longer needed.
+
+  // IRT_END does an implicit safepoint check, hence we are guaranteed to block
+  // if this is called during a safepoint
+
+  if (JvmtiExport::should_post_single_step()) {
+    // We are called during regular safepoints and when the VM is
+    // single stepping. If any thread is marked for single stepping,
+    // then we may have JVMTI work to do.
+    JvmtiExport::at_single_stepping_point(thread, method(thread), bcp(thread));
+  }
+IRT_END
+
+IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj,
+ConstantPoolCacheEntry *cp_entry))
+
+  // check the access_flags for the field in the klass
+
+  InstanceKlass* ik = InstanceKlass::cast(cp_entry->f1_as_klass());
+  int index = cp_entry->field_index();
+  if ((ik->field_access_flags(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return;
+
+  bool is_static = (obj == NULL);
+  HandleMark hm(thread);
+
+  Handle h_obj;
+  if (!is_static) {
+    // non-static field accessors have an object, but we need a handle
+    h_obj = Handle(thread, obj);
+  }
+  InstanceKlass* cp_entry_f1 = InstanceKlass::cast(cp_entry->f1_as_klass());
+  jfieldID fid = jfieldIDWorkaround::to_jfieldID(cp_entry_f1, cp_entry->f2_as_index(), is_static);
+  JvmtiExport::post_field_access(thread, method(thread), bcp(thread), cp_entry_f1, h_obj, fid);
+IRT_END
+
+IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread,
+  oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value))
+
+  Klass* k = cp_entry->f1_as_klass();
+
+  // check the access_flags for the field in the klass
+  InstanceKlass* ik = InstanceKlass::cast(k);
+  int index = cp_entry->field_index();
+  // bail out if field modifications are not watched
+  if ((ik->field_access_flags(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return;
+
+  char sig_type = '\0';
+
+  switch(cp_entry->flag_state()) {
+    case btos: sig_type = 'B'; break;
+    case ztos: sig_type = 'Z'; break;
+    case ctos: sig_type = 'C'; break;
+    case stos: sig_type = 'S'; break;
+    case itos: sig_type = 'I'; break;
+    case ftos: sig_type = 'F'; break;
+    case atos: sig_type = 'L'; break;
+    case ltos: sig_type = 'J'; break;
+    case dtos: sig_type = 'D'; break;
+    default:  ShouldNotReachHere(); return;
+  }
+  bool is_static = (obj == NULL);
+
+  HandleMark hm(thread);
+  jfieldID fid = jfieldIDWorkaround::to_jfieldID(ik, cp_entry->f2_as_index(), is_static);
+  jvalue fvalue;
+#ifdef _LP64
+  fvalue = *value;
+#else
+  // Long/double values are stored unaligned and also noncontiguously with
+  // tagged stacks.  We can't just do a simple assignment even in the non-
+  // J/D cases because a C++ compiler is allowed to assume that a jvalue is
+  // 8-byte aligned, and interpreter stack slots are only 4-byte aligned.
+  // We assume that the two halves of longs/doubles are stored in interpreter
+  // stack slots in platform-endian order.
+  jlong_accessor u;
+  jint* newval = (jint*)value;
+  u.words[0] = newval[0];
+  u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag
+  fvalue.j = u.long_value;
+#endif // _LP64
+
+  Handle h_obj;
+  if (!is_static) {
+    // non-static field accessors have an object, but we need a handle
+    h_obj = Handle(thread, obj);
+  }
+
+  JvmtiExport::post_raw_field_modification(thread, method(thread), bcp(thread), ik, h_obj,
+                                           fid, sig_type, &fvalue);
+IRT_END
+
+IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread))
+  JvmtiExport::post_method_entry(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread))
+  JvmtiExport::post_method_exit(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
+IRT_END
+
+IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc))
+{
+  return (Interpreter::contains(pc) ? 1 : 0);
+}
+IRT_END
+
+
+// Implementation of SignatureHandlerLibrary
+
+#ifndef SHARING_FAST_NATIVE_FINGERPRINTS
+// Dummy definition (else normalization method is defined in CPU
+// dependant code)
+uint64_t InterpreterRuntime::normalize_fast_native_fingerprint(uint64_t fingerprint) {
+  return fingerprint;
+}
+#endif
+
+address SignatureHandlerLibrary::set_handler_blob() {
+  BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size);
+  if (handler_blob == NULL) {
+    return NULL;
+  }
+  address handler = handler_blob->code_begin();
+  _handler_blob = handler_blob;
+  _handler = handler;
+  return handler;
+}
+
+void SignatureHandlerLibrary::initialize() {
+  if (_fingerprints != NULL) {
+    return;
+  }
+  if (set_handler_blob() == NULL) {
+    vm_exit_out_of_memory(blob_size, OOM_MALLOC_ERROR, "native signature handlers");
+  }
+
+  BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer",
+                                      SignatureHandlerLibrary::buffer_size);
+  _buffer = bb->code_begin();
+
+  _fingerprints = new(ResourceObj::C_HEAP, mtCode)GrowableArray<uint64_t>(32, true);
+  _handlers     = new(ResourceObj::C_HEAP, mtCode)GrowableArray<address>(32, true);
+}
+
+address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) {
+  address handler   = _handler;
+  int     insts_size = buffer->pure_insts_size();
+  if (handler + insts_size > _handler_blob->code_end()) {
+    // get a new handler blob
+    handler = set_handler_blob();
+  }
+  if (handler != NULL) {
+    memcpy(handler, buffer->insts_begin(), insts_size);
+    pd_set_handler(handler);
+    ICache::invalidate_range(handler, insts_size);
+    _handler = handler + insts_size;
+  }
+  return handler;
+}
+
+void SignatureHandlerLibrary::add(const methodHandle& method) {
+  if (method->signature_handler() == NULL) {
+    // use slow signature handler if we can't do better
+    int handler_index = -1;
+    // check if we can use customized (fast) signature handler
+    if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) {
+      // use customized signature handler
+      MutexLocker mu(SignatureHandlerLibrary_lock);
+      // make sure data structure is initialized
+      initialize();
+      // lookup method signature's fingerprint
+      uint64_t fingerprint = Fingerprinter(method).fingerprint();
+      // allow CPU dependant code to optimize the fingerprints for the fast handler
+      fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
+      handler_index = _fingerprints->find(fingerprint);
+      // create handler if necessary
+      if (handler_index < 0) {
+        ResourceMark rm;
+        ptrdiff_t align_offset = align_up(_buffer, CodeEntryAlignment) - (address)_buffer;
+        CodeBuffer buffer((address)(_buffer + align_offset),
+                          SignatureHandlerLibrary::buffer_size - align_offset);
+        InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint);
+        // copy into code heap
+        address handler = set_handler(&buffer);
+        if (handler == NULL) {
+          // use slow signature handler (without memorizing it in the fingerprints)
+        } else {
+          // debugging suppport
+          if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
+            ttyLocker ttyl;
+            tty->cr();
+            tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)",
+                          _handlers->length(),
+                          (method->is_static() ? "static" : "receiver"),
+                          method->name_and_sig_as_C_string(),
+                          fingerprint,
+                          buffer.insts_size());
+            if (buffer.insts_size() > 0) {
+              Disassembler::decode(handler, handler + buffer.insts_size());
+            }
+#ifndef PRODUCT
+            address rh_begin = Interpreter::result_handler(method()->result_type());
+            if (CodeCache::contains(rh_begin)) {
+              // else it might be special platform dependent values
+              tty->print_cr(" --- associated result handler ---");
+              address rh_end = rh_begin;
+              while (*(int*)rh_end != 0) {
+                rh_end += sizeof(int);
+              }
+              Disassembler::decode(rh_begin, rh_end);
+            } else {
+              tty->print_cr(" associated result handler: " PTR_FORMAT, p2i(rh_begin));
+            }
+#endif
+          }
+          // add handler to library
+          _fingerprints->append(fingerprint);
+          _handlers->append(handler);
+          // set handler index
+          assert(_fingerprints->length() == _handlers->length(), "sanity check");
+          handler_index = _fingerprints->length() - 1;
+        }
+      }
+      // Set handler under SignatureHandlerLibrary_lock
+      if (handler_index < 0) {
+        // use generic signature handler
+        method->set_signature_handler(Interpreter::slow_signature_handler());
+      } else {
+        // set handler
+        method->set_signature_handler(_handlers->at(handler_index));
+      }
+    } else {
+      CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
+      // use generic signature handler
+      method->set_signature_handler(Interpreter::slow_signature_handler());
+    }
+  }
+#ifdef ASSERT
+  int handler_index = -1;
+  int fingerprint_index = -2;
+  {
+    // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized
+    // in any way if accessed from multiple threads. To avoid races with another
+    // thread which may change the arrays in the above, mutex protected block, we
+    // have to protect this read access here with the same mutex as well!
+    MutexLocker mu(SignatureHandlerLibrary_lock);
+    if (_handlers != NULL) {
+      handler_index = _handlers->find(method->signature_handler());
+      uint64_t fingerprint = Fingerprinter(method).fingerprint();
+      fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
+      fingerprint_index = _fingerprints->find(fingerprint);
+    }
+  }
+  assert(method->signature_handler() == Interpreter::slow_signature_handler() ||
+         handler_index == fingerprint_index, "sanity check");
+#endif // ASSERT
+}
+
+void SignatureHandlerLibrary::add(uint64_t fingerprint, address handler) {
+  int handler_index = -1;
+  // use customized signature handler
+  MutexLocker mu(SignatureHandlerLibrary_lock);
+  // make sure data structure is initialized
+  initialize();
+  fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
+  handler_index = _fingerprints->find(fingerprint);
+  // create handler if necessary
+  if (handler_index < 0) {
+    if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
+      tty->cr();
+      tty->print_cr("argument handler #%d at " PTR_FORMAT " for fingerprint " UINT64_FORMAT,
+                    _handlers->length(),
+                    p2i(handler),
+                    fingerprint);
+    }
+    _fingerprints->append(fingerprint);
+    _handlers->append(handler);
+  } else {
+    if (PrintSignatureHandlers) {
+      tty->cr();
+      tty->print_cr("duplicate argument handler #%d for fingerprint " UINT64_FORMAT "(old: " PTR_FORMAT ", new : " PTR_FORMAT ")",
+                    _handlers->length(),
+                    fingerprint,
+                    p2i(_handlers->at(handler_index)),
+                    p2i(handler));
+    }
+  }
+}
+
+
+BufferBlob*              SignatureHandlerLibrary::_handler_blob = NULL;
+address                  SignatureHandlerLibrary::_handler      = NULL;
+GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL;
+GrowableArray<address>*  SignatureHandlerLibrary::_handlers     = NULL;
+address                  SignatureHandlerLibrary::_buffer       = NULL;
+
+
+IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, Method* method))
+  methodHandle m(thread, method);
+  assert(m->is_native(), "sanity check");
+  // lookup native function entry point if it doesn't exist
+  bool in_base_library;
+  if (!m->has_native_function()) {
+    NativeLookup::lookup(m, in_base_library, CHECK);
+  }
+  // make sure signature handler is installed
+  SignatureHandlerLibrary::add(m);
+  // The interpreter entry point checks the signature handler first,
+  // before trying to fetch the native entry point and klass mirror.
+  // We must set the signature handler last, so that multiple processors
+  // preparing the same method will be sure to see non-null entry & mirror.
+IRT_END
+
+#if defined(IA32) || defined(AMD64) || defined(ARM)
+IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address))
+  if (src_address == dest_address) {
+    return;
+  }
+  ResetNoHandleMark rnm; // In a LEAF entry.
+  HandleMark hm;
+  ResourceMark rm;
+  frame fr = thread->last_frame();
+  assert(fr.is_interpreted_frame(), "");
+  jint bci = fr.interpreter_frame_bci();
+  methodHandle mh(thread, fr.interpreter_frame_method());
+  Bytecode_invoke invoke(mh, bci);
+  ArgumentSizeComputer asc(invoke.signature());
+  int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver
+  Copy::conjoint_jbytes(src_address, dest_address,
+                       size_of_arguments * Interpreter::stackElementSize);
+IRT_END
+#endif
+
+#if INCLUDE_JVMTI
+// This is a support of the JVMTI PopFrame interface.
+// Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument
+// and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters.
+// The member_name argument is a saved reference (in local#0) to the member_name.
+// For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle.
+// FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated.
+IRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* thread, address member_name,
+                                                            Method* method, address bcp))
+  Bytecodes::Code code = Bytecodes::code_at(method, bcp);
+  if (code != Bytecodes::_invokestatic) {
+    return;
+  }
+  ConstantPool* cpool = method->constants();
+  int cp_index = Bytes::get_native_u2(bcp + 1) + ConstantPool::CPCACHE_INDEX_TAG;
+  Symbol* cname = cpool->klass_name_at(cpool->klass_ref_index_at(cp_index));
+  Symbol* mname = cpool->name_ref_at(cp_index);
+
+  if (MethodHandles::has_member_arg(cname, mname)) {
+    oop member_name_oop = (oop) member_name;
+    if (java_lang_invoke_DirectMethodHandle::is_instance(member_name_oop)) {
+      // FIXME: remove after j.l.i.InvokerBytecodeGenerator code shape is updated.
+      member_name_oop = java_lang_invoke_DirectMethodHandle::member(member_name_oop);
+    }
+    thread->set_vm_result(member_name_oop);
+  } else {
+    thread->set_vm_result(NULL);
+  }
+IRT_END
+#endif // INCLUDE_JVMTI
+
+#ifndef PRODUCT
+// This must be a IRT_LEAF function because the interpreter must save registers on x86 to
+// call this, which changes rsp and makes the interpreter's expression stack not walkable.
+// The generated code still uses call_VM because that will set up the frame pointer for
+// bcp and method.
+IRT_LEAF(intptr_t, InterpreterRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
+  const frame f = thread->last_frame();
+  assert(f.is_interpreted_frame(), "must be an interpreted frame");
+  methodHandle mh(thread, f.interpreter_frame_method());
+  BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
+  return preserve_this_value;
+IRT_END
+#endif // !PRODUCT