src/hotspot/share/gc/shared/adaptiveSizePolicy.cpp
changeset 47216 71c04702a3d5
parent 38216 250794c6f95f
child 48157 7c4d43c26352
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/gc/shared/adaptiveSizePolicy.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,631 @@
+/*
+ * Copyright (c) 2004, 2016, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "gc/shared/adaptiveSizePolicy.hpp"
+#include "gc/shared/collectorPolicy.hpp"
+#include "gc/shared/gcCause.hpp"
+#include "gc/shared/workgroup.hpp"
+#include "logging/log.hpp"
+#include "runtime/timer.hpp"
+#include "utilities/ostream.hpp"
+elapsedTimer AdaptiveSizePolicy::_minor_timer;
+elapsedTimer AdaptiveSizePolicy::_major_timer;
+bool AdaptiveSizePolicy::_debug_perturbation = false;
+
+// The throughput goal is implemented as
+//      _throughput_goal = 1 - ( 1 / (1 + gc_cost_ratio))
+// gc_cost_ratio is the ratio
+//      application cost / gc cost
+// For example a gc_cost_ratio of 4 translates into a
+// throughput goal of .80
+
+AdaptiveSizePolicy::AdaptiveSizePolicy(size_t init_eden_size,
+                                       size_t init_promo_size,
+                                       size_t init_survivor_size,
+                                       double gc_pause_goal_sec,
+                                       uint gc_cost_ratio) :
+    _eden_size(init_eden_size),
+    _promo_size(init_promo_size),
+    _survivor_size(init_survivor_size),
+    _gc_pause_goal_sec(gc_pause_goal_sec),
+    _throughput_goal(1.0 - double(1.0 / (1.0 + (double) gc_cost_ratio))),
+    _gc_overhead_limit_exceeded(false),
+    _print_gc_overhead_limit_would_be_exceeded(false),
+    _gc_overhead_limit_count(0),
+    _latest_minor_mutator_interval_seconds(0),
+    _threshold_tolerance_percent(1.0 + ThresholdTolerance/100.0),
+    _young_gen_change_for_minor_throughput(0),
+    _old_gen_change_for_major_throughput(0) {
+  assert(AdaptiveSizePolicyGCTimeLimitThreshold > 0,
+    "No opportunity to clear SoftReferences before GC overhead limit");
+  _avg_minor_pause    =
+    new AdaptivePaddedAverage(AdaptiveTimeWeight, PausePadding);
+  _avg_minor_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
+  _avg_minor_gc_cost  = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
+  _avg_major_gc_cost  = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
+
+  _avg_young_live     = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
+  _avg_old_live       = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
+  _avg_eden_live      = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
+
+  _avg_survived       = new AdaptivePaddedAverage(AdaptiveSizePolicyWeight,
+                                                  SurvivorPadding);
+  _avg_pretenured     = new AdaptivePaddedNoZeroDevAverage(
+                                                  AdaptiveSizePolicyWeight,
+                                                  SurvivorPadding);
+
+  _minor_pause_old_estimator =
+    new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
+  _minor_pause_young_estimator =
+    new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
+  _minor_collection_estimator =
+    new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
+  _major_collection_estimator =
+    new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
+
+  // Start the timers
+  _minor_timer.start();
+
+  _young_gen_policy_is_ready = false;
+}
+
+//  If the number of GC threads was set on the command line,
+// use it.
+//  Else
+//    Calculate the number of GC threads based on the number of Java threads.
+//    Calculate the number of GC threads based on the size of the heap.
+//    Use the larger.
+
+uint AdaptiveSizePolicy::calc_default_active_workers(uintx total_workers,
+                                                     const uintx min_workers,
+                                                     uintx active_workers,
+                                                     uintx application_workers) {
+  // If the user has specifically set the number of
+  // GC threads, use them.
+
+  // If the user has turned off using a dynamic number of GC threads
+  // or the users has requested a specific number, set the active
+  // number of workers to all the workers.
+
+  uintx new_active_workers = total_workers;
+  uintx prev_active_workers = active_workers;
+  uintx active_workers_by_JT = 0;
+  uintx active_workers_by_heap_size = 0;
+
+  // Always use at least min_workers but use up to
+  // GCThreadsPerJavaThreads * application threads.
+  active_workers_by_JT =
+    MAX2((uintx) GCWorkersPerJavaThread * application_workers,
+         min_workers);
+
+  // Choose a number of GC threads based on the current size
+  // of the heap.  This may be complicated because the size of
+  // the heap depends on factors such as the throughput goal.
+  // Still a large heap should be collected by more GC threads.
+  active_workers_by_heap_size =
+      MAX2((size_t) 2U, Universe::heap()->capacity() / HeapSizePerGCThread);
+
+  uintx max_active_workers =
+    MAX2(active_workers_by_JT, active_workers_by_heap_size);
+
+  new_active_workers = MIN2(max_active_workers, (uintx) total_workers);
+
+  // Increase GC workers instantly but decrease them more
+  // slowly.
+  if (new_active_workers < prev_active_workers) {
+    new_active_workers =
+      MAX2(min_workers, (prev_active_workers + new_active_workers) / 2);
+  }
+
+  // Check once more that the number of workers is within the limits.
+  assert(min_workers <= total_workers, "Minimum workers not consistent with total workers");
+  assert(new_active_workers >= min_workers, "Minimum workers not observed");
+  assert(new_active_workers <= total_workers, "Total workers not observed");
+
+  if (ForceDynamicNumberOfGCThreads) {
+    // Assume this is debugging and jiggle the number of GC threads.
+    if (new_active_workers == prev_active_workers) {
+      if (new_active_workers < total_workers) {
+        new_active_workers++;
+      } else if (new_active_workers > min_workers) {
+        new_active_workers--;
+      }
+    }
+    if (new_active_workers == total_workers) {
+      if (_debug_perturbation) {
+        new_active_workers =  min_workers;
+      }
+      _debug_perturbation = !_debug_perturbation;
+    }
+    assert((new_active_workers <= ParallelGCThreads) &&
+           (new_active_workers >= min_workers),
+      "Jiggled active workers too much");
+  }
+
+  log_trace(gc, task)("GCTaskManager::calc_default_active_workers() : "
+     "active_workers(): " UINTX_FORMAT "  new_active_workers: " UINTX_FORMAT "  "
+     "prev_active_workers: " UINTX_FORMAT "\n"
+     " active_workers_by_JT: " UINTX_FORMAT "  active_workers_by_heap_size: " UINTX_FORMAT,
+     active_workers, new_active_workers, prev_active_workers,
+     active_workers_by_JT, active_workers_by_heap_size);
+  assert(new_active_workers > 0, "Always need at least 1");
+  return new_active_workers;
+}
+
+uint AdaptiveSizePolicy::calc_active_workers(uintx total_workers,
+                                             uintx active_workers,
+                                             uintx application_workers) {
+  // If the user has specifically set the number of
+  // GC threads, use them.
+
+  // If the user has turned off using a dynamic number of GC threads
+  // or the users has requested a specific number, set the active
+  // number of workers to all the workers.
+
+  uint new_active_workers;
+  if (!UseDynamicNumberOfGCThreads ||
+     (!FLAG_IS_DEFAULT(ParallelGCThreads) && !ForceDynamicNumberOfGCThreads)) {
+    new_active_workers = total_workers;
+  } else {
+    uintx min_workers = (total_workers == 1) ? 1 : 2;
+    new_active_workers = calc_default_active_workers(total_workers,
+                                                     min_workers,
+                                                     active_workers,
+                                                     application_workers);
+  }
+  assert(new_active_workers > 0, "Always need at least 1");
+  return new_active_workers;
+}
+
+uint AdaptiveSizePolicy::calc_active_conc_workers(uintx total_workers,
+                                                  uintx active_workers,
+                                                  uintx application_workers) {
+  if (!UseDynamicNumberOfGCThreads ||
+     (!FLAG_IS_DEFAULT(ConcGCThreads) && !ForceDynamicNumberOfGCThreads)) {
+    return ConcGCThreads;
+  } else {
+    uint no_of_gc_threads = calc_default_active_workers(total_workers,
+                                                        1, /* Minimum number of workers */
+                                                        active_workers,
+                                                        application_workers);
+    return no_of_gc_threads;
+  }
+}
+
+bool AdaptiveSizePolicy::tenuring_threshold_change() const {
+  return decrement_tenuring_threshold_for_gc_cost() ||
+         increment_tenuring_threshold_for_gc_cost() ||
+         decrement_tenuring_threshold_for_survivor_limit();
+}
+
+void AdaptiveSizePolicy::minor_collection_begin() {
+  // Update the interval time
+  _minor_timer.stop();
+  // Save most recent collection time
+  _latest_minor_mutator_interval_seconds = _minor_timer.seconds();
+  _minor_timer.reset();
+  _minor_timer.start();
+}
+
+void AdaptiveSizePolicy::update_minor_pause_young_estimator(
+    double minor_pause_in_ms) {
+  double eden_size_in_mbytes = ((double)_eden_size)/((double)M);
+  _minor_pause_young_estimator->update(eden_size_in_mbytes,
+    minor_pause_in_ms);
+}
+
+void AdaptiveSizePolicy::minor_collection_end(GCCause::Cause gc_cause) {
+  // Update the pause time.
+  _minor_timer.stop();
+
+  if (!GCCause::is_user_requested_gc(gc_cause) ||
+      UseAdaptiveSizePolicyWithSystemGC) {
+    double minor_pause_in_seconds = _minor_timer.seconds();
+    double minor_pause_in_ms = minor_pause_in_seconds * MILLIUNITS;
+
+    // Sample for performance counter
+    _avg_minor_pause->sample(minor_pause_in_seconds);
+
+    // Cost of collection (unit-less)
+    double collection_cost = 0.0;
+    if ((_latest_minor_mutator_interval_seconds > 0.0) &&
+        (minor_pause_in_seconds > 0.0)) {
+      double interval_in_seconds =
+        _latest_minor_mutator_interval_seconds + minor_pause_in_seconds;
+      collection_cost =
+        minor_pause_in_seconds / interval_in_seconds;
+      _avg_minor_gc_cost->sample(collection_cost);
+      // Sample for performance counter
+      _avg_minor_interval->sample(interval_in_seconds);
+    }
+
+    // The policy does not have enough data until at least some
+    // young collections have been done.
+    _young_gen_policy_is_ready =
+      (_avg_minor_gc_cost->count() >= AdaptiveSizePolicyReadyThreshold);
+
+    // Calculate variables used to estimate pause time vs. gen sizes
+    double eden_size_in_mbytes = ((double)_eden_size) / ((double)M);
+    update_minor_pause_young_estimator(minor_pause_in_ms);
+    update_minor_pause_old_estimator(minor_pause_in_ms);
+
+    log_trace(gc, ergo)("AdaptiveSizePolicy::minor_collection_end: minor gc cost: %f  average: %f",
+                        collection_cost, _avg_minor_gc_cost->average());
+    log_trace(gc, ergo)("  minor pause: %f minor period %f",
+                        minor_pause_in_ms, _latest_minor_mutator_interval_seconds * MILLIUNITS);
+
+    // Calculate variable used to estimate collection cost vs. gen sizes
+    assert(collection_cost >= 0.0, "Expected to be non-negative");
+    _minor_collection_estimator->update(eden_size_in_mbytes, collection_cost);
+  }
+
+  // Interval times use this timer to measure the mutator time.
+  // Reset the timer after the GC pause.
+  _minor_timer.reset();
+  _minor_timer.start();
+}
+
+size_t AdaptiveSizePolicy::eden_increment(size_t cur_eden, uint percent_change) {
+  size_t eden_heap_delta;
+  eden_heap_delta = cur_eden / 100 * percent_change;
+  return eden_heap_delta;
+}
+
+size_t AdaptiveSizePolicy::eden_increment(size_t cur_eden) {
+  return eden_increment(cur_eden, YoungGenerationSizeIncrement);
+}
+
+size_t AdaptiveSizePolicy::eden_decrement(size_t cur_eden) {
+  size_t eden_heap_delta = eden_increment(cur_eden) /
+    AdaptiveSizeDecrementScaleFactor;
+  return eden_heap_delta;
+}
+
+size_t AdaptiveSizePolicy::promo_increment(size_t cur_promo, uint percent_change) {
+  size_t promo_heap_delta;
+  promo_heap_delta = cur_promo / 100 * percent_change;
+  return promo_heap_delta;
+}
+
+size_t AdaptiveSizePolicy::promo_increment(size_t cur_promo) {
+  return promo_increment(cur_promo, TenuredGenerationSizeIncrement);
+}
+
+size_t AdaptiveSizePolicy::promo_decrement(size_t cur_promo) {
+  size_t promo_heap_delta = promo_increment(cur_promo);
+  promo_heap_delta = promo_heap_delta / AdaptiveSizeDecrementScaleFactor;
+  return promo_heap_delta;
+}
+
+double AdaptiveSizePolicy::time_since_major_gc() const {
+  _major_timer.stop();
+  double result = _major_timer.seconds();
+  _major_timer.start();
+  return result;
+}
+
+// Linear decay of major gc cost
+double AdaptiveSizePolicy::decaying_major_gc_cost() const {
+  double major_interval = major_gc_interval_average_for_decay();
+  double major_gc_cost_average = major_gc_cost();
+  double decayed_major_gc_cost = major_gc_cost_average;
+  if(time_since_major_gc() > 0.0) {
+    decayed_major_gc_cost = major_gc_cost() *
+      (((double) AdaptiveSizeMajorGCDecayTimeScale) * major_interval)
+      / time_since_major_gc();
+  }
+
+  // The decayed cost should always be smaller than the
+  // average cost but the vagaries of finite arithmetic could
+  // produce a larger value in decayed_major_gc_cost so protect
+  // against that.
+  return MIN2(major_gc_cost_average, decayed_major_gc_cost);
+}
+
+// Use a value of the major gc cost that has been decayed
+// by the factor
+//
+//      average-interval-between-major-gc * AdaptiveSizeMajorGCDecayTimeScale /
+//        time-since-last-major-gc
+//
+// if the average-interval-between-major-gc * AdaptiveSizeMajorGCDecayTimeScale
+// is less than time-since-last-major-gc.
+//
+// In cases where there are initial major gc's that
+// are of a relatively high cost but no later major
+// gc's, the total gc cost can remain high because
+// the major gc cost remains unchanged (since there are no major
+// gc's).  In such a situation the value of the unchanging
+// major gc cost can keep the mutator throughput below
+// the goal when in fact the major gc cost is becoming diminishingly
+// small.  Use the decaying gc cost only to decide whether to
+// adjust for throughput.  Using it also to determine the adjustment
+// to be made for throughput also seems reasonable but there is
+// no test case to use to decide if it is the right thing to do
+// don't do it yet.
+
+double AdaptiveSizePolicy::decaying_gc_cost() const {
+  double decayed_major_gc_cost = major_gc_cost();
+  double avg_major_interval = major_gc_interval_average_for_decay();
+  if (UseAdaptiveSizeDecayMajorGCCost &&
+      (AdaptiveSizeMajorGCDecayTimeScale > 0) &&
+      (avg_major_interval > 0.00)) {
+    double time_since_last_major_gc = time_since_major_gc();
+
+    // Decay the major gc cost?
+    if (time_since_last_major_gc >
+        ((double) AdaptiveSizeMajorGCDecayTimeScale) * avg_major_interval) {
+
+      // Decay using the time-since-last-major-gc
+      decayed_major_gc_cost = decaying_major_gc_cost();
+      log_trace(gc, ergo)("decaying_gc_cost: major interval average: %f  time since last major gc: %f",
+                    avg_major_interval, time_since_last_major_gc);
+      log_trace(gc, ergo)("  major gc cost: %f  decayed major gc cost: %f",
+                    major_gc_cost(), decayed_major_gc_cost);
+    }
+  }
+  double result = MIN2(1.0, decayed_major_gc_cost + minor_gc_cost());
+  return result;
+}
+
+
+void AdaptiveSizePolicy::clear_generation_free_space_flags() {
+  set_change_young_gen_for_min_pauses(0);
+  set_change_old_gen_for_maj_pauses(0);
+
+  set_change_old_gen_for_throughput(0);
+  set_change_young_gen_for_throughput(0);
+  set_decrease_for_footprint(0);
+  set_decide_at_full_gc(0);
+}
+
+void AdaptiveSizePolicy::check_gc_overhead_limit(
+                                          size_t young_live,
+                                          size_t eden_live,
+                                          size_t max_old_gen_size,
+                                          size_t max_eden_size,
+                                          bool   is_full_gc,
+                                          GCCause::Cause gc_cause,
+                                          CollectorPolicy* collector_policy) {
+
+  // Ignore explicit GC's.  Exiting here does not set the flag and
+  // does not reset the count.  Updating of the averages for system
+  // GC's is still controlled by UseAdaptiveSizePolicyWithSystemGC.
+  if (GCCause::is_user_requested_gc(gc_cause) ||
+      GCCause::is_serviceability_requested_gc(gc_cause)) {
+    return;
+  }
+  // eden_limit is the upper limit on the size of eden based on
+  // the maximum size of the young generation and the sizes
+  // of the survivor space.
+  // The question being asked is whether the gc costs are high
+  // and the space being recovered by a collection is low.
+  // free_in_young_gen is the free space in the young generation
+  // after a collection and promo_live is the free space in the old
+  // generation after a collection.
+  //
+  // Use the minimum of the current value of the live in the
+  // young gen or the average of the live in the young gen.
+  // If the current value drops quickly, that should be taken
+  // into account (i.e., don't trigger if the amount of free
+  // space has suddenly jumped up).  If the current is much
+  // higher than the average, use the average since it represents
+  // the longer term behavior.
+  const size_t live_in_eden =
+    MIN2(eden_live, (size_t) avg_eden_live()->average());
+  const size_t free_in_eden = max_eden_size > live_in_eden ?
+    max_eden_size - live_in_eden : 0;
+  const size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average());
+  const size_t total_free_limit = free_in_old_gen + free_in_eden;
+  const size_t total_mem = max_old_gen_size + max_eden_size;
+  const double mem_free_limit = total_mem * (GCHeapFreeLimit/100.0);
+  const double mem_free_old_limit = max_old_gen_size * (GCHeapFreeLimit/100.0);
+  const double mem_free_eden_limit = max_eden_size * (GCHeapFreeLimit/100.0);
+  const double gc_cost_limit = GCTimeLimit/100.0;
+  size_t promo_limit = (size_t)(max_old_gen_size - avg_old_live()->average());
+  // But don't force a promo size below the current promo size. Otherwise,
+  // the promo size will shrink for no good reason.
+  promo_limit = MAX2(promo_limit, _promo_size);
+
+
+  log_trace(gc, ergo)(
+        "PSAdaptiveSizePolicy::check_gc_overhead_limit:"
+        " promo_limit: " SIZE_FORMAT
+        " max_eden_size: " SIZE_FORMAT
+        " total_free_limit: " SIZE_FORMAT
+        " max_old_gen_size: " SIZE_FORMAT
+        " max_eden_size: " SIZE_FORMAT
+        " mem_free_limit: " SIZE_FORMAT,
+        promo_limit, max_eden_size, total_free_limit,
+        max_old_gen_size, max_eden_size,
+        (size_t) mem_free_limit);
+
+  bool print_gc_overhead_limit_would_be_exceeded = false;
+  if (is_full_gc) {
+    if (gc_cost() > gc_cost_limit &&
+      free_in_old_gen < (size_t) mem_free_old_limit &&
+      free_in_eden < (size_t) mem_free_eden_limit) {
+      // Collections, on average, are taking too much time, and
+      //      gc_cost() > gc_cost_limit
+      // we have too little space available after a full gc.
+      //      total_free_limit < mem_free_limit
+      // where
+      //   total_free_limit is the free space available in
+      //     both generations
+      //   total_mem is the total space available for allocation
+      //     in both generations (survivor spaces are not included
+      //     just as they are not included in eden_limit).
+      //   mem_free_limit is a fraction of total_mem judged to be an
+      //     acceptable amount that is still unused.
+      // The heap can ask for the value of this variable when deciding
+      // whether to thrown an OutOfMemory error.
+      // Note that the gc time limit test only works for the collections
+      // of the young gen + tenured gen and not for collections of the
+      // permanent gen.  That is because the calculation of the space
+      // freed by the collection is the free space in the young gen +
+      // tenured gen.
+      // At this point the GC overhead limit is being exceeded.
+      inc_gc_overhead_limit_count();
+      if (UseGCOverheadLimit) {
+        if (gc_overhead_limit_count() >=
+            AdaptiveSizePolicyGCTimeLimitThreshold){
+          // All conditions have been met for throwing an out-of-memory
+          set_gc_overhead_limit_exceeded(true);
+          // Avoid consecutive OOM due to the gc time limit by resetting
+          // the counter.
+          reset_gc_overhead_limit_count();
+        } else {
+          // The required consecutive collections which exceed the
+          // GC time limit may or may not have been reached. We
+          // are approaching that condition and so as not to
+          // throw an out-of-memory before all SoftRef's have been
+          // cleared, set _should_clear_all_soft_refs in CollectorPolicy.
+          // The clearing will be done on the next GC.
+          bool near_limit = gc_overhead_limit_near();
+          if (near_limit) {
+            collector_policy->set_should_clear_all_soft_refs(true);
+            log_trace(gc, ergo)("Nearing GC overhead limit, will be clearing all SoftReference");
+          }
+        }
+      }
+      // Set this even when the overhead limit will not
+      // cause an out-of-memory.  Diagnostic message indicating
+      // that the overhead limit is being exceeded is sometimes
+      // printed.
+      print_gc_overhead_limit_would_be_exceeded = true;
+
+    } else {
+      // Did not exceed overhead limits
+      reset_gc_overhead_limit_count();
+    }
+  }
+
+  if (UseGCOverheadLimit) {
+    if (gc_overhead_limit_exceeded()) {
+      log_trace(gc, ergo)("GC is exceeding overhead limit of " UINTX_FORMAT "%%", GCTimeLimit);
+      reset_gc_overhead_limit_count();
+    } else if (print_gc_overhead_limit_would_be_exceeded) {
+      assert(gc_overhead_limit_count() > 0, "Should not be printing");
+      log_trace(gc, ergo)("GC would exceed overhead limit of " UINTX_FORMAT "%% %d consecutive time(s)",
+                          GCTimeLimit, gc_overhead_limit_count());
+    }
+  }
+}
+// Printing
+
+bool AdaptiveSizePolicy::print() const {
+  assert(UseAdaptiveSizePolicy, "UseAdaptiveSizePolicy need to be enabled.");
+
+  if (!log_is_enabled(Debug, gc, ergo)) {
+    return false;
+  }
+
+  // Print goal for which action is needed.
+  char* action = NULL;
+  bool change_for_pause = false;
+  if ((change_old_gen_for_maj_pauses() ==
+         decrease_old_gen_for_maj_pauses_true) ||
+      (change_young_gen_for_min_pauses() ==
+         decrease_young_gen_for_min_pauses_true)) {
+    action = (char*) " *** pause time goal ***";
+    change_for_pause = true;
+  } else if ((change_old_gen_for_throughput() ==
+               increase_old_gen_for_throughput_true) ||
+            (change_young_gen_for_throughput() ==
+               increase_young_gen_for_througput_true)) {
+    action = (char*) " *** throughput goal ***";
+  } else if (decrease_for_footprint()) {
+    action = (char*) " *** reduced footprint ***";
+  } else {
+    // No actions were taken.  This can legitimately be the
+    // situation if not enough data has been gathered to make
+    // decisions.
+    return false;
+  }
+
+  // Pauses
+  // Currently the size of the old gen is only adjusted to
+  // change the major pause times.
+  char* young_gen_action = NULL;
+  char* tenured_gen_action = NULL;
+
+  char* shrink_msg = (char*) "(attempted to shrink)";
+  char* grow_msg = (char*) "(attempted to grow)";
+  char* no_change_msg = (char*) "(no change)";
+  if (change_young_gen_for_min_pauses() ==
+      decrease_young_gen_for_min_pauses_true) {
+    young_gen_action = shrink_msg;
+  } else if (change_for_pause) {
+    young_gen_action = no_change_msg;
+  }
+
+  if (change_old_gen_for_maj_pauses() == decrease_old_gen_for_maj_pauses_true) {
+    tenured_gen_action = shrink_msg;
+  } else if (change_for_pause) {
+    tenured_gen_action = no_change_msg;
+  }
+
+  // Throughput
+  if (change_old_gen_for_throughput() == increase_old_gen_for_throughput_true) {
+    assert(change_young_gen_for_throughput() ==
+           increase_young_gen_for_througput_true,
+           "Both generations should be growing");
+    young_gen_action = grow_msg;
+    tenured_gen_action = grow_msg;
+  } else if (change_young_gen_for_throughput() ==
+             increase_young_gen_for_througput_true) {
+    // Only the young generation may grow at start up (before
+    // enough full collections have been done to grow the old generation).
+    young_gen_action = grow_msg;
+    tenured_gen_action = no_change_msg;
+  }
+
+  // Minimum footprint
+  if (decrease_for_footprint() != 0) {
+    young_gen_action = shrink_msg;
+    tenured_gen_action = shrink_msg;
+  }
+
+  log_debug(gc, ergo)("UseAdaptiveSizePolicy actions to meet %s", action);
+  log_debug(gc, ergo)("                       GC overhead (%%)");
+  log_debug(gc, ergo)("    Young generation:     %7.2f\t  %s",
+                      100.0 * avg_minor_gc_cost()->average(), young_gen_action);
+  log_debug(gc, ergo)("    Tenured generation:   %7.2f\t  %s",
+                      100.0 * avg_major_gc_cost()->average(), tenured_gen_action);
+  return true;
+}
+
+void AdaptiveSizePolicy::print_tenuring_threshold( uint new_tenuring_threshold_arg) const {
+  // Tenuring threshold
+  if (decrement_tenuring_threshold_for_survivor_limit()) {
+    log_debug(gc, ergo)("Tenuring threshold: (attempted to decrease to avoid survivor space overflow) = %u", new_tenuring_threshold_arg);
+  } else if (decrement_tenuring_threshold_for_gc_cost()) {
+    log_debug(gc, ergo)("Tenuring threshold: (attempted to decrease to balance GC costs) = %u", new_tenuring_threshold_arg);
+  } else if (increment_tenuring_threshold_for_gc_cost()) {
+    log_debug(gc, ergo)("Tenuring threshold: (attempted to increase to balance GC costs) = %u", new_tenuring_threshold_arg);
+  } else {
+    assert(!tenuring_threshold_change(), "(no change was attempted)");
+  }
+}