src/hotspot/share/gc/parallel/parallelScavengeHeap.cpp
changeset 47216 71c04702a3d5
parent 46657 cc4ac8d1ef6b
child 47546 64ba55ba8516
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/gc/parallel/parallelScavengeHeap.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,673 @@
+/*
+ * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "gc/parallel/adjoiningGenerations.hpp"
+#include "gc/parallel/adjoiningVirtualSpaces.hpp"
+#include "gc/parallel/cardTableExtension.hpp"
+#include "gc/parallel/gcTaskManager.hpp"
+#include "gc/parallel/generationSizer.hpp"
+#include "gc/parallel/objectStartArray.inline.hpp"
+#include "gc/parallel/parallelScavengeHeap.inline.hpp"
+#include "gc/parallel/psAdaptiveSizePolicy.hpp"
+#include "gc/parallel/psMarkSweep.hpp"
+#include "gc/parallel/psParallelCompact.inline.hpp"
+#include "gc/parallel/psPromotionManager.hpp"
+#include "gc/parallel/psScavenge.hpp"
+#include "gc/parallel/vmPSOperations.hpp"
+#include "gc/shared/gcHeapSummary.hpp"
+#include "gc/shared/gcLocker.inline.hpp"
+#include "gc/shared/gcWhen.hpp"
+#include "logging/log.hpp"
+#include "oops/oop.inline.hpp"
+#include "runtime/handles.inline.hpp"
+#include "runtime/java.hpp"
+#include "runtime/vmThread.hpp"
+#include "services/memTracker.hpp"
+#include "utilities/vmError.hpp"
+
+PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
+PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
+PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
+PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
+GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
+
+jint ParallelScavengeHeap::initialize() {
+  CollectedHeap::pre_initialize();
+
+  const size_t heap_size = _collector_policy->max_heap_byte_size();
+
+  ReservedSpace heap_rs = Universe::reserve_heap(heap_size, _collector_policy->heap_alignment());
+
+  os::trace_page_sizes("Heap",
+                       _collector_policy->min_heap_byte_size(),
+                       heap_size,
+                       generation_alignment(),
+                       heap_rs.base(),
+                       heap_rs.size());
+
+  initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
+
+  CardTableExtension* const barrier_set = new CardTableExtension(reserved_region());
+  barrier_set->initialize();
+  set_barrier_set(barrier_set);
+
+  // Make up the generations
+  // Calculate the maximum size that a generation can grow.  This
+  // includes growth into the other generation.  Note that the
+  // parameter _max_gen_size is kept as the maximum
+  // size of the generation as the boundaries currently stand.
+  // _max_gen_size is still used as that value.
+  double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
+  double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
+
+  _gens = new AdjoiningGenerations(heap_rs, _collector_policy, generation_alignment());
+
+  _old_gen = _gens->old_gen();
+  _young_gen = _gens->young_gen();
+
+  const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
+  const size_t old_capacity = _old_gen->capacity_in_bytes();
+  const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
+  _size_policy =
+    new PSAdaptiveSizePolicy(eden_capacity,
+                             initial_promo_size,
+                             young_gen()->to_space()->capacity_in_bytes(),
+                             _collector_policy->gen_alignment(),
+                             max_gc_pause_sec,
+                             max_gc_minor_pause_sec,
+                             GCTimeRatio
+                             );
+
+  assert(!UseAdaptiveGCBoundary ||
+    (old_gen()->virtual_space()->high_boundary() ==
+     young_gen()->virtual_space()->low_boundary()),
+    "Boundaries must meet");
+  // initialize the policy counters - 2 collectors, 3 generations
+  _gc_policy_counters =
+    new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
+
+  // Set up the GCTaskManager
+  _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
+
+  if (UseParallelOldGC && !PSParallelCompact::initialize()) {
+    return JNI_ENOMEM;
+  }
+
+  return JNI_OK;
+}
+
+void ParallelScavengeHeap::post_initialize() {
+  // Need to init the tenuring threshold
+  PSScavenge::initialize();
+  if (UseParallelOldGC) {
+    PSParallelCompact::post_initialize();
+  } else {
+    PSMarkSweep::initialize();
+  }
+  PSPromotionManager::initialize();
+}
+
+void ParallelScavengeHeap::update_counters() {
+  young_gen()->update_counters();
+  old_gen()->update_counters();
+  MetaspaceCounters::update_performance_counters();
+  CompressedClassSpaceCounters::update_performance_counters();
+}
+
+size_t ParallelScavengeHeap::capacity() const {
+  size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
+  return value;
+}
+
+size_t ParallelScavengeHeap::used() const {
+  size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
+  return value;
+}
+
+bool ParallelScavengeHeap::is_maximal_no_gc() const {
+  return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
+}
+
+
+size_t ParallelScavengeHeap::max_capacity() const {
+  size_t estimated = reserved_region().byte_size();
+  if (UseAdaptiveSizePolicy) {
+    estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
+  } else {
+    estimated -= young_gen()->to_space()->capacity_in_bytes();
+  }
+  return MAX2(estimated, capacity());
+}
+
+bool ParallelScavengeHeap::is_in(const void* p) const {
+  return young_gen()->is_in(p) || old_gen()->is_in(p);
+}
+
+bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
+  return young_gen()->is_in_reserved(p) || old_gen()->is_in_reserved(p);
+}
+
+bool ParallelScavengeHeap::is_scavengable(const void* addr) {
+  return is_in_young((oop)addr);
+}
+
+// There are two levels of allocation policy here.
+//
+// When an allocation request fails, the requesting thread must invoke a VM
+// operation, transfer control to the VM thread, and await the results of a
+// garbage collection. That is quite expensive, and we should avoid doing it
+// multiple times if possible.
+//
+// To accomplish this, we have a basic allocation policy, and also a
+// failed allocation policy.
+//
+// The basic allocation policy controls how you allocate memory without
+// attempting garbage collection. It is okay to grab locks and
+// expand the heap, if that can be done without coming to a safepoint.
+// It is likely that the basic allocation policy will not be very
+// aggressive.
+//
+// The failed allocation policy is invoked from the VM thread after
+// the basic allocation policy is unable to satisfy a mem_allocate
+// request. This policy needs to cover the entire range of collection,
+// heap expansion, and out-of-memory conditions. It should make every
+// attempt to allocate the requested memory.
+
+// Basic allocation policy. Should never be called at a safepoint, or
+// from the VM thread.
+//
+// This method must handle cases where many mem_allocate requests fail
+// simultaneously. When that happens, only one VM operation will succeed,
+// and the rest will not be executed. For that reason, this method loops
+// during failed allocation attempts. If the java heap becomes exhausted,
+// we rely on the size_policy object to force a bail out.
+HeapWord* ParallelScavengeHeap::mem_allocate(
+                                     size_t size,
+                                     bool* gc_overhead_limit_was_exceeded) {
+  assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
+  assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
+  assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
+
+  // In general gc_overhead_limit_was_exceeded should be false so
+  // set it so here and reset it to true only if the gc time
+  // limit is being exceeded as checked below.
+  *gc_overhead_limit_was_exceeded = false;
+
+  HeapWord* result = young_gen()->allocate(size);
+
+  uint loop_count = 0;
+  uint gc_count = 0;
+  uint gclocker_stalled_count = 0;
+
+  while (result == NULL) {
+    // We don't want to have multiple collections for a single filled generation.
+    // To prevent this, each thread tracks the total_collections() value, and if
+    // the count has changed, does not do a new collection.
+    //
+    // The collection count must be read only while holding the heap lock. VM
+    // operations also hold the heap lock during collections. There is a lock
+    // contention case where thread A blocks waiting on the Heap_lock, while
+    // thread B is holding it doing a collection. When thread A gets the lock,
+    // the collection count has already changed. To prevent duplicate collections,
+    // The policy MUST attempt allocations during the same period it reads the
+    // total_collections() value!
+    {
+      MutexLocker ml(Heap_lock);
+      gc_count = total_collections();
+
+      result = young_gen()->allocate(size);
+      if (result != NULL) {
+        return result;
+      }
+
+      // If certain conditions hold, try allocating from the old gen.
+      result = mem_allocate_old_gen(size);
+      if (result != NULL) {
+        return result;
+      }
+
+      if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
+        return NULL;
+      }
+
+      // Failed to allocate without a gc.
+      if (GCLocker::is_active_and_needs_gc()) {
+        // If this thread is not in a jni critical section, we stall
+        // the requestor until the critical section has cleared and
+        // GC allowed. When the critical section clears, a GC is
+        // initiated by the last thread exiting the critical section; so
+        // we retry the allocation sequence from the beginning of the loop,
+        // rather than causing more, now probably unnecessary, GC attempts.
+        JavaThread* jthr = JavaThread::current();
+        if (!jthr->in_critical()) {
+          MutexUnlocker mul(Heap_lock);
+          GCLocker::stall_until_clear();
+          gclocker_stalled_count += 1;
+          continue;
+        } else {
+          if (CheckJNICalls) {
+            fatal("Possible deadlock due to allocating while"
+                  " in jni critical section");
+          }
+          return NULL;
+        }
+      }
+    }
+
+    if (result == NULL) {
+      // Generate a VM operation
+      VM_ParallelGCFailedAllocation op(size, gc_count);
+      VMThread::execute(&op);
+
+      // Did the VM operation execute? If so, return the result directly.
+      // This prevents us from looping until time out on requests that can
+      // not be satisfied.
+      if (op.prologue_succeeded()) {
+        assert(is_in_or_null(op.result()), "result not in heap");
+
+        // If GC was locked out during VM operation then retry allocation
+        // and/or stall as necessary.
+        if (op.gc_locked()) {
+          assert(op.result() == NULL, "must be NULL if gc_locked() is true");
+          continue;  // retry and/or stall as necessary
+        }
+
+        // Exit the loop if the gc time limit has been exceeded.
+        // The allocation must have failed above ("result" guarding
+        // this path is NULL) and the most recent collection has exceeded the
+        // gc overhead limit (although enough may have been collected to
+        // satisfy the allocation).  Exit the loop so that an out-of-memory
+        // will be thrown (return a NULL ignoring the contents of
+        // op.result()),
+        // but clear gc_overhead_limit_exceeded so that the next collection
+        // starts with a clean slate (i.e., forgets about previous overhead
+        // excesses).  Fill op.result() with a filler object so that the
+        // heap remains parsable.
+        const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
+        const bool softrefs_clear = collector_policy()->all_soft_refs_clear();
+
+        if (limit_exceeded && softrefs_clear) {
+          *gc_overhead_limit_was_exceeded = true;
+          size_policy()->set_gc_overhead_limit_exceeded(false);
+          log_trace(gc)("ParallelScavengeHeap::mem_allocate: return NULL because gc_overhead_limit_exceeded is set");
+          if (op.result() != NULL) {
+            CollectedHeap::fill_with_object(op.result(), size);
+          }
+          return NULL;
+        }
+
+        return op.result();
+      }
+    }
+
+    // The policy object will prevent us from looping forever. If the
+    // time spent in gc crosses a threshold, we will bail out.
+    loop_count++;
+    if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
+        (loop_count % QueuedAllocationWarningCount == 0)) {
+      log_warning(gc)("ParallelScavengeHeap::mem_allocate retries %d times", loop_count);
+      log_warning(gc)("\tsize=" SIZE_FORMAT, size);
+    }
+  }
+
+  return result;
+}
+
+// A "death march" is a series of ultra-slow allocations in which a full gc is
+// done before each allocation, and after the full gc the allocation still
+// cannot be satisfied from the young gen.  This routine detects that condition;
+// it should be called after a full gc has been done and the allocation
+// attempted from the young gen. The parameter 'addr' should be the result of
+// that young gen allocation attempt.
+void
+ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
+  if (addr != NULL) {
+    _death_march_count = 0;  // death march has ended
+  } else if (_death_march_count == 0) {
+    if (should_alloc_in_eden(size)) {
+      _death_march_count = 1;    // death march has started
+    }
+  }
+}
+
+HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
+  if (!should_alloc_in_eden(size) || GCLocker::is_active_and_needs_gc()) {
+    // Size is too big for eden, or gc is locked out.
+    return old_gen()->allocate(size);
+  }
+
+  // If a "death march" is in progress, allocate from the old gen a limited
+  // number of times before doing a GC.
+  if (_death_march_count > 0) {
+    if (_death_march_count < 64) {
+      ++_death_march_count;
+      return old_gen()->allocate(size);
+    } else {
+      _death_march_count = 0;
+    }
+  }
+  return NULL;
+}
+
+void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
+  if (UseParallelOldGC) {
+    // The do_full_collection() parameter clear_all_soft_refs
+    // is interpreted here as maximum_compaction which will
+    // cause SoftRefs to be cleared.
+    bool maximum_compaction = clear_all_soft_refs;
+    PSParallelCompact::invoke(maximum_compaction);
+  } else {
+    PSMarkSweep::invoke(clear_all_soft_refs);
+  }
+}
+
+// Failed allocation policy. Must be called from the VM thread, and
+// only at a safepoint! Note that this method has policy for allocation
+// flow, and NOT collection policy. So we do not check for gc collection
+// time over limit here, that is the responsibility of the heap specific
+// collection methods. This method decides where to attempt allocations,
+// and when to attempt collections, but no collection specific policy.
+HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
+  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
+  assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
+  assert(!is_gc_active(), "not reentrant");
+  assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
+
+  // We assume that allocation in eden will fail unless we collect.
+
+  // First level allocation failure, scavenge and allocate in young gen.
+  GCCauseSetter gccs(this, GCCause::_allocation_failure);
+  const bool invoked_full_gc = PSScavenge::invoke();
+  HeapWord* result = young_gen()->allocate(size);
+
+  // Second level allocation failure.
+  //   Mark sweep and allocate in young generation.
+  if (result == NULL && !invoked_full_gc) {
+    do_full_collection(false);
+    result = young_gen()->allocate(size);
+  }
+
+  death_march_check(result, size);
+
+  // Third level allocation failure.
+  //   After mark sweep and young generation allocation failure,
+  //   allocate in old generation.
+  if (result == NULL) {
+    result = old_gen()->allocate(size);
+  }
+
+  // Fourth level allocation failure. We're running out of memory.
+  //   More complete mark sweep and allocate in young generation.
+  if (result == NULL) {
+    do_full_collection(true);
+    result = young_gen()->allocate(size);
+  }
+
+  // Fifth level allocation failure.
+  //   After more complete mark sweep, allocate in old generation.
+  if (result == NULL) {
+    result = old_gen()->allocate(size);
+  }
+
+  return result;
+}
+
+void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
+  CollectedHeap::ensure_parsability(retire_tlabs);
+  young_gen()->eden_space()->ensure_parsability();
+}
+
+size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
+  return young_gen()->eden_space()->tlab_capacity(thr);
+}
+
+size_t ParallelScavengeHeap::tlab_used(Thread* thr) const {
+  return young_gen()->eden_space()->tlab_used(thr);
+}
+
+size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
+  return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
+}
+
+HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
+  return young_gen()->allocate(size);
+}
+
+void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
+  CollectedHeap::accumulate_statistics_all_tlabs();
+}
+
+void ParallelScavengeHeap::resize_all_tlabs() {
+  CollectedHeap::resize_all_tlabs();
+}
+
+bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) {
+  // We don't need barriers for stores to objects in the
+  // young gen and, a fortiori, for initializing stores to
+  // objects therein.
+  return is_in_young(new_obj);
+}
+
+// This method is used by System.gc() and JVMTI.
+void ParallelScavengeHeap::collect(GCCause::Cause cause) {
+  assert(!Heap_lock->owned_by_self(),
+    "this thread should not own the Heap_lock");
+
+  uint gc_count      = 0;
+  uint full_gc_count = 0;
+  {
+    MutexLocker ml(Heap_lock);
+    // This value is guarded by the Heap_lock
+    gc_count      = total_collections();
+    full_gc_count = total_full_collections();
+  }
+
+  VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
+  VMThread::execute(&op);
+}
+
+void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
+  young_gen()->object_iterate(cl);
+  old_gen()->object_iterate(cl);
+}
+
+
+HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
+  if (young_gen()->is_in_reserved(addr)) {
+    assert(young_gen()->is_in(addr),
+           "addr should be in allocated part of young gen");
+    // called from os::print_location by find or VMError
+    if (Debugging || VMError::fatal_error_in_progress())  return NULL;
+    Unimplemented();
+  } else if (old_gen()->is_in_reserved(addr)) {
+    assert(old_gen()->is_in(addr),
+           "addr should be in allocated part of old gen");
+    return old_gen()->start_array()->object_start((HeapWord*)addr);
+  }
+  return 0;
+}
+
+size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
+  return oop(addr)->size();
+}
+
+bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
+  return block_start(addr) == addr;
+}
+
+jlong ParallelScavengeHeap::millis_since_last_gc() {
+  return UseParallelOldGC ?
+    PSParallelCompact::millis_since_last_gc() :
+    PSMarkSweep::millis_since_last_gc();
+}
+
+void ParallelScavengeHeap::prepare_for_verify() {
+  ensure_parsability(false);  // no need to retire TLABs for verification
+}
+
+PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() {
+  PSOldGen* old = old_gen();
+  HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr();
+  VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end());
+  SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes());
+
+  PSYoungGen* young = young_gen();
+  VirtualSpaceSummary young_summary(young->reserved().start(),
+    (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end());
+
+  MutableSpace* eden = young_gen()->eden_space();
+  SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes());
+
+  MutableSpace* from = young_gen()->from_space();
+  SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes());
+
+  MutableSpace* to = young_gen()->to_space();
+  SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes());
+
+  VirtualSpaceSummary heap_summary = create_heap_space_summary();
+  return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space);
+}
+
+void ParallelScavengeHeap::print_on(outputStream* st) const {
+  young_gen()->print_on(st);
+  old_gen()->print_on(st);
+  MetaspaceAux::print_on(st);
+}
+
+void ParallelScavengeHeap::print_on_error(outputStream* st) const {
+  this->CollectedHeap::print_on_error(st);
+
+  if (UseParallelOldGC) {
+    st->cr();
+    PSParallelCompact::print_on_error(st);
+  }
+}
+
+void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
+  PSScavenge::gc_task_manager()->threads_do(tc);
+}
+
+void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
+  PSScavenge::gc_task_manager()->print_threads_on(st);
+}
+
+void ParallelScavengeHeap::print_tracing_info() const {
+  if (TraceYoungGenTime) {
+    double time = PSScavenge::accumulated_time()->seconds();
+    tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
+  }
+  if (TraceOldGenTime) {
+    double time = UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweep::accumulated_time()->seconds();
+    tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
+  }
+
+  AdaptiveSizePolicyOutput::print();
+}
+
+
+void ParallelScavengeHeap::verify(VerifyOption option /* ignored */) {
+  // Why do we need the total_collections()-filter below?
+  if (total_collections() > 0) {
+    log_debug(gc, verify)("Tenured");
+    old_gen()->verify();
+
+    log_debug(gc, verify)("Eden");
+    young_gen()->verify();
+  }
+}
+
+void ParallelScavengeHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
+  const PSHeapSummary& heap_summary = create_ps_heap_summary();
+  gc_tracer->report_gc_heap_summary(when, heap_summary);
+
+  const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
+  gc_tracer->report_metaspace_summary(when, metaspace_summary);
+}
+
+ParallelScavengeHeap* ParallelScavengeHeap::heap() {
+  CollectedHeap* heap = Universe::heap();
+  assert(heap != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
+  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Not a ParallelScavengeHeap");
+  return (ParallelScavengeHeap*)heap;
+}
+
+// Before delegating the resize to the young generation,
+// the reserved space for the young and old generations
+// may be changed to accommodate the desired resize.
+void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
+    size_t survivor_size) {
+  if (UseAdaptiveGCBoundary) {
+    if (size_policy()->bytes_absorbed_from_eden() != 0) {
+      size_policy()->reset_bytes_absorbed_from_eden();
+      return;  // The generation changed size already.
+    }
+    gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
+  }
+
+  // Delegate the resize to the generation.
+  _young_gen->resize(eden_size, survivor_size);
+}
+
+// Before delegating the resize to the old generation,
+// the reserved space for the young and old generations
+// may be changed to accommodate the desired resize.
+void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
+  if (UseAdaptiveGCBoundary) {
+    if (size_policy()->bytes_absorbed_from_eden() != 0) {
+      size_policy()->reset_bytes_absorbed_from_eden();
+      return;  // The generation changed size already.
+    }
+    gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
+  }
+
+  // Delegate the resize to the generation.
+  _old_gen->resize(desired_free_space);
+}
+
+ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
+  // nothing particular
+}
+
+ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
+  // nothing particular
+}
+
+#ifndef PRODUCT
+void ParallelScavengeHeap::record_gen_tops_before_GC() {
+  if (ZapUnusedHeapArea) {
+    young_gen()->record_spaces_top();
+    old_gen()->record_spaces_top();
+  }
+}
+
+void ParallelScavengeHeap::gen_mangle_unused_area() {
+  if (ZapUnusedHeapArea) {
+    young_gen()->eden_space()->mangle_unused_area();
+    young_gen()->to_space()->mangle_unused_area();
+    young_gen()->from_space()->mangle_unused_area();
+    old_gen()->object_space()->mangle_unused_area();
+  }
+}
+#endif